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CORRELATION WEIGHTS IN MULTIPLE REGRESSION

NIELS G. WALLER AND JEFF A. JONES

UNIVERSITY OF MINNESOTA

A general theory on the use of correlation weights in linear prediction has yet to be proposed. In
this paper we take initial steps in developing such a theory by describing the conditions under which
correlation weights perform well in population regression models. Using OLS weights as a comparison,
we define cases in which the two weighting systems yield maximally correlated composites and when
they yield minimally similar weights. We then derive the least squares weights (for any set of predictors)
that yield the largest drop in R2 (the coefficient of determination) when switching to correlation weights.
Our findings suggest that two characteristics of a model/data combination are especially important in
determining the effectiveness of correlation weights: (1) the condition number of the predictor correlation
matrix, Rxx , and (2) the orientation of the correlation weights to the latent vectors of Rxx .

Key words: multiple regression, correlation weights, alternate weights, parameter sensitivity.

During the past forty years, numerous studies have documented the effectiveness of so-called
“alternate” (non-OLS weights) regression weights (Goldberger, 1968; Hoerl & Kennard, 1970;
Schmidt, 1971; Wainer, 1976, 1978; Wesman & Bennett, 1959). Commenting on this work,
Wainer once suggested that when choosing between OLS and alternate weights, “it don’t make
no never mind” (Wainer, 1976). More recently, Dana and Dawes (2004) proclaimed that “[OLS]
regression is rarely useful for prediction in most social science contexts” (p. 317). Although
provocative, both views reflect a growing consensus among methodologists (e.g., Claudy, 1972;
Einhorn & Hogarth, 1975; Green, 1977; Keren & Newman, 1978; Laughlin, 1978; Pruzek &
Fredrick, 1978; Raju, Bilgic, Edwards & Fleer, 1997; Rozeboom, 1979; Schmidt, 1971; Wainer,
1976, 1978) that alternate regression weights—such as unit weights, rounded weights, and cor-
relation weights (rxy )—can often be profitably used in linear prediction and selection models.

In this paper we examine the use of correlation weights in population regression models.
Although prior work (Campbell, 1974; Claudy, 1972; Dana & Dawes, 2004; Davis & Sauser,
1991; Goldberg, 1972; Marks, 1966) supported the effectiveness of correlation weights in sample
data, much of this work relied on Monte Carlo simulations or reanalyses of existing data sets.
A general theory on the use of correlation weights in linear prediction has yet to be proposed.
The object of this paper is to sketch the initial strands of such a theory by describing the requisite
conditions for correlation weights to perform well in population models.

The paper is divided into four sections. In Section 1, we show when correlation and OLS
weights will yield maximally correlated composites. In Section 2, we show when the weights will
be maximally separated in Euclidean space. In Section 3, we discuss weight sensitivity, which
we define as the loss in R2

b when switching from OLS to correlation weights, and we provide
equations for locating the maximally sensitive OLS weights for any predictor correlation matrix.
Finally, in Section 4, we describe two examples that illustrate the geometry of correlation weights
in linear regression. To set bounds on our discussion, we assume throughout that (1) all variables
have been standardized and that we are working with (2) a correctly specified population model.
Although the use of standardized regression weights (b) is somewhat controversial (Bring, 1994;

The authors would like to express their appreciation to Drs. Will Grove, Bob Pruzek, Scott Vrieze, and Steve Nydick
for helpful comments on a draft of this article.

Requests for reprints should be sent to Niels G. Waller, Department of Psychology, University of Minnesota, N218
Elliott Hall, 75 East River Road, Minneapolis, MN, 55455 USA. E-mail: nwaller@umn.edu

© 2009 The Psychometric Society
58

mailto:nwaller@umn.edu


NIELS G. WALLER AND JEFF A. JONES 59

Greenland, Schlesselman & Criqui, 1986), this is the appropriate metric when discussing corre-
lation weights. To motivate the model, let y denote a random variable of criterion scores, let x
denote a p × 1 random vector of predictor variables, and let e denote a random variable of model
errors. Then, when all variables have been standardized to have means of zero and unit variances
and when y = b′x + e, the model coefficients, b, and predictor/criterion correlations, rxy , are
linear functions of one another. Specifically,

b = R−1
xx rxy, (1)

where b is a p × 1 vector of standardized regression weights, Rxx is a p × p matrix of predictor
correlations (Rxx = E[xx ′]), and rxy is a p × 1 vector of correlation weights (i.e., criterion
correlations; rxy = E[xy]). Hereafter we omit subscripts if the meaning of a term is obvious
(e.g., b = R−1r).

1. For a Given Set of Predictors, When Will b and r Produce
Maximally Correlated Composite Scores?

It is well known that with orthogonal predictors, correlation weights are equivalent to stan-
dardized OLS weights (i.e., when R = I , b = r). What is less well known is that with p predic-
tors (and R full rank), there are 2p additional cases in which the two weighting systems yield
perfectly correlated composite scores. These situations can be characterized as follows. Let

R−1 = V �−1V ′, (2)

where V is a p × p orthonormal matrix of latent vectors, and � is the p × p diagonal matrix of
latent values of R. Then

b = V �−1V ′r. (3)

It is easily proved that composites that have been constructed with b and r will be perfectly cor-
related whenever cos(b, r) = 1.00. Consideration of (3) reveals that cos(b, r) = 1.00 whenever
r is collinear with an eigenvector (vi ) of R. More formally, if r is a scalar multiple of vi such
that

r = c vi , (4)

then

b = V �−1V ′cvi

= c

λi

vi

= λ−1
i r. (5)

When (5) is true, cos(b, r) = cos(λ−1
i r , r) = 1.00. To find c, simply substitute (4) and (5) into

R2
b = b′r (where R2

b equals the squared multiple correlation between the criterion and the pre-
dictors) such that

R2
b = c2

λi

. (6)

Then, by simple algebra

c = (
R2

bλi

)1/2
. (7)
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Importantly, these results indicate that correlation and OLS weights will produce linearly
related composites whenever ŷ (where ŷ = b′x, i.e., the OLS composite) is collinear with a
principal component of x (where the ith principal component of x equals x′vi ). Because the
sign of an eigenvector is indeterminate, this implies that for any (full rank) Rxx , there are 2p

sets of potential predicted scores in which |cos(b, r)| = 1.00.

2. Measuring the Similarity of b and r

A well-known measure of vector similarity is the vector cosine (Koopman, 1988). In this
section we use cos(b, r) to quantify the similarity between b and r and we describe equations
for locating the minimum extremum of cos(b, r) for a given R (the maximum extremum was
discussed in the previous section). To formalize the problem, note

cos(b, r) = b′r
|b||r| , (8)

where for any vector a, |a| = (a′a)1/2. Computationally, we can simplify our task by redefining
r and b in terms of the latent vectors (V ) of R. Specifically, let

r = V w, (9)

where w = V ′r . Thus,

b = V �−1w. (10)

Recalling that R2
b = b′r , we have

R2
b = w′�−1w. (11)

Substituting (9)–(11) into (8) yields

cos(b, r) = w′�−1w

(w′�−2w)1/2(w′w)1/2
, (12)

an equation with p unknowns in w. To minimize (8) we simply minimize (12) with respect to w

subject to the constraint w′�−1w − R2
b = 0. More formally, let

f = w′�−1w

(w′�−2w)1/2(w′w)1/2
+ L

(
w′�−1w − R2

b

)
, (13)

where L is a Lagrange multiplier, and all other terms have been previously defined. The ith
element of the gradient of f with respect to w and L can be written as

∂f

∂wi

= 2wi

�[i,i](w′�−2w)1/2(w′w)1/2

− (w′�−1w)wi

�2[i,i](w′�−2w)3/2(w′w)1/2

− (w′�−1w)wi

(w′�−2w)1/2(w′w)3/2
+ 2Lwi

�[i,i]
(14)
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and

∂f

∂L
= (

w′�−1w − R2
b

)
. (15)

Four analytic solutions minimize (13). In each solution, the elements of w take on the fol-
lowing values:

wi =

⎧
⎪⎪⎨

⎪⎪⎩

±
√

2
2

√
R2

bλ1, i = 1,

0, i �= 1 or p,

±
√

2
2

√
R2

bλp, i = p.

(16)

When wi is defined as above, f achieves a global minimum. This can be proved by noting that
the first term of (13) can be expressed as a quadratic form and thus f cannot have a saddle point
when R is full rank. In the previous section we proved that f reaches a maximum when b is
collinear with an eigenvector of R. f reaches a local minimum when any two elements of w, say

wi and wj (other than i = 1 and j = p), equal ±
√

2
2

√
R2

bλk , k = i or j , and all remaining terms
equal zero.

Notice in (16) that the positive ratio of the first and last elements of w equals an important
quantity in regression diagnostics. Namely

κ =
∣∣∣∣
w1

wp

∣∣∣∣ =
√

λ1

λp

,

where κ is the condition number of Rxx . This is the first of many examples in which κ will play
an important role. For a second example, notice in (16) that any vector minimizing (13) must lie
in a plane defined by the first and last eigenvectors of Rxx (i.e., the eigenvectors that are paired
with the largest and smallest eigenvalues of Rxx ). Moreover, when r is so defined (i.e., by (9)
and (16)),

|r| =
(

1

2
R2

b(λ1 + λp)

)1/2

, (17)

|b| =
(

1

2
R2

b

(
λ−1

1 + λ−1
p

))1/2

, (18)

and

cos(b, r)min = 2

(2 + λ1
λp

+ λp

λ1
)1/2

(19a)

= 2

(2 + κ2 + κ−2)1/2
. (19b)

The previous equation merits further consideration for at least two reasons. First, it demonstrates
that cos(b, r)min can be expressed in terms of a single parameter: κ . Second, it shows that in the
limit, as κ → ∞, cos(b, r)min → 0. This last point is illustrated in Figure 1, where it can be seen
that even moderate condition numbers can be associated with widely separated weight vectors,
b and r .

To better understand the practical implications of these findings, we now consider the effect
on R2

b of using correlation weights when b and r are maximally separated. Let R2
w denote the
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FIGURE 1.
The influence of the predictor condition number on the maximum angle between OLS and correlation weights.

squared multiple correlation that results from using the maximally separated correlation weights.
From previous considerations, it can be shown (c.f. Tatsuoka, 1988, p. 45) that

R2
w = (w2

1 + w2
p)2

w2
1λ1 + w2

pλp

. (20)

After making appropriate substitutions,

R2
w = (0.5R2

bλ1 + 0.5R2
bλp)2

0.5R2
bλ

2
1 + 0.5R2

bλ
2
p

, (21)

an equation that reduces to

R2
w = 0.5R2

b

(λ1 + λp)2

λ2
1 + λ2

p

. (22)

Alternatively, (22) can be written as a function of κ ,

R2
w = 0.5R2

b

1 + κ−4 + 2κ−2

1 + κ−4
. (23)

When expressed in this form, it is easily shown that

lim
κ→∞R2

w = 0.5R2
b . (24)
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Taking stock of these results, we have shown that when b and r are maximally separated, the use
of correlation weights may result in the loss of up to 50% of the predictive power of a model.
Of course, few data sets will approximate the precise requirements of these draconian results
(e.g., extremely large values of κ). Nevertheless, these findings are useful in that they clearly set
the bounds of a worst-case scenario. Practically speaking, however, perhaps a more informative
bound for a given Rxx is the quantity max(R2

b −R2
r ). In the next section we show how this index

can be easily calculated.

3. Calculating max(R2
b − R2

r ) for a Given Rxx

To breathe some life into this topic, imagine a researcher who is interested in the predictive
power of a test battery but who is not particularly interested in the individual regression weights
of the final equation. This situation might arise in applied psychology when an individual uses a
fixed test battery to predict diverse criteria. For instance, an I/O psychologist might use a standard
test battery to predict multiple and diverse job performance criteria. In this setting, before using
correlation weights in a prediction model, our I/O psychologist would be well advised to calculate
max(R2

b − R2
r ) for typical values of Rxx .

When solving this problem, our task is made easier by working with scaled correlation
weights. Specifically, scale the weights to minimize the sum of squared errors around the re-
gression line. The calculus reveals that to minimize Q = ∑N

j=1(yj − sr ′xj )
2 (where summation

occurs over cases)

s = r ′r
r ′Rr

. (25)

Next, define r in terms of the orthonormal basis V , where R = V �V ′, such that

r = V ω (26)

and

ω = V ′r.

Then, by substitution,

s = ω′ω
ω′�ω

, (27)

R2
b = ω′�−1ω, (28)

and

R2
r = s2ω′�ω, (29)

where R2
r denotes the coefficient of determination that results from using correlation weights. In

these forms, it is easily shown that the desired weights are obtained by maximizing

g = R2
b − R2

r − L
(
ω′�−1ω − R2

b

)
, (30)

where L is a Lagrange multiplier, and all other terms are as previously defined. Making further
substitutions,

g = ω′�−1ω − s2ω′�ω − L
(
ω′�−1ω − R2

b

)

= ω′�−1ω −
(

ω′ω
ω′�ω

)2

ω′�ω − L
(
ω′�−1ω − R2

b

)
, (31)
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an equation that can be solved in terms of the p unknowns in ω. Furthermore, it can be proved
that g is maximized whenever

ωi =
⎧
⎨

⎩

( R2
b

1
λ1

+ 1
λp

)1/2
, i = 1 or p,

0.00, i �= 1 or p,

(32)

implying that

R2
�max = max

(
R2

b − R2
r

) = R2
b

(
1 − 4λ1λp

(λ1 + λp)2

)
, (33)

an equation that is also expressible in terms of κ (the condition number of Rxx ),

R2
�max = R2

b

(
1 − 4

2 + κ2 + κ−2

)
. (34)

Two immediate results follow from these solutions. First, at one extreme, when κ = 1.00,
Rxx = I (the case of orthogonal predictors) and R2

�max = 0.00. This is simply another way
of stating that correlation weights will equal standardized regression weights when working with
orthogonal predictors. Second, as κ increases without bound,

lim
κ→∞R2

�max = R2
b . (35)

In other words, under some conditions, correlation weights represent the absolute worst
choice of weights. As illustrated in the next section, inspection of the OLS and correlation
weights that produce this unfortunate result can yield important insights into the types of criteria
that reside in this danger zone.

4. The Geometry of Correlation Weights

Before leaving this topic, we consider two examples that illustrate how the aforementioned
results can be used to better understand the limitations of correlation weights in multiple regres-
sion. In our first example, we demonstrate an important point that, heretofore, has gone unrecog-
nized. Namely, that small changes in a criterion can have dramatic changes on the effectiveness
of correlation weights. We then explain this phenomenon in a second example that illustrates the
geometry of correlation weights in a low-dimensional model.

To set the stage for these illustrations, let us take another look at (31)–(33). Notice in (32)
that when g reaches a maximum, rxy is an equally weighted composite of the first and last
eigenvectors of Rxx . Let r�max = rxy at the solution point (i.e., when g is maximized). From
previous considerations, it is easily proved that r�max is situated 45◦ from the first and last
eigenvectors of Rxx . Moreover, simple algebra reveals that when rxy = r�max, b�max (the
associated OLS weight vector) will approach vp (the last eigenvector of Rxx ). Specifically, when
g reaches a maximum,

cos(b�max, vp) = 1

(1 + κ−4)1/2
, (36)

an equation that approaches 1.00 as κ → ∞ (recall, however, that when cos(b, vp) = 1.00,
R2

�max = 0.00). These results can be used to show that extremely small changes in a criterion
can have substantial effects on the performance of correlation weights. This important point is
illustrated in the Appendix, where we report a small R (R Development Core Team, 2007) pro-
gram to analyze data from 50,000 hypothetical subjects who were administered the Wechsler
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Adult Intelligence Scale-III (WAIS; The Psychological Corporation, 1997). The predictor corre-
lations for this example were originally reported in the WAIS-III test manual (Table A.7, p. 224).
The R code in the Appendix generates raw data that will perfectly reproduce these correlations.
It then generates scores for two criteria that we have labeled y1 and y2. Both OLS and correlation
weights are used to predict these criteria.

All persons who have seen this example have been surprised by its findings, which can
be briefly summarized as follows. The example demonstrates that when predicting y1 with the
simulated intelligence data, the OLS(b) or correlation weights (rxy ) are equally effective. In both
models, the coefficient of determination is 0.99. However, when predicting y2, the two sets of
weights are not equally effective. On the contrary, when y2 is the criterion, the r-squared for
the OLS weights is also 0.99, but it is only 0.09 when using correlation weights. In itself, this
result is not remarkable. No one claims that correlation weights are a universally good choice.
What makes this finding so surprising is that the correlation between y1 and y2 is 0.98! Here we
have a clear example in which a small change in the criterion produced a large change in the
performance of correlation weights.

When explaining these results to colleagues, we have found it useful to work with a smaller
example that allows one to visualize the geometry of the problem in R

3. Our example includes
three predictors with the following correlations,

Rxx =
⎛

⎝
1.00 0.80 0.30
0.80 1.00 0.34
0.30 0.34 1.00

⎞

⎠ ,

with � = (2.00,0.80,0.20)′ and κ =
√

2.00
0.20 = 3.16. For the sake of argument, imagine that we

are interested in all criterion variables yi (i = 1,2, . . . ,∞; where i runs over possible variables,
not cases) such that yi = b′

ix + ei and R2
bi

= 0.40. In other words, for a given set of predictor
correlations, we are considering all criteria that can be predicted with an r-squared of 0.40. This
constraint implies that

b′
iRxxbi = 0.40, (37)

an equation that is easily recognized as a quadratic form. It can be shown (Ferguson, 1979) that
quadratic forms in R

3 define ellipsoids in Euclidean space. In terms of our example, this implies
that all bi that satisfy (37) will define the surface of an ellipsoid with each bi defining a point
on this surface. We have found that by controlling the color of these points, one can literally
visualize the effectiveness of correlation weights for all possible criteria. This idea is illustrated
in Figure 2.

Each color in this figure represents a different amount of predictive loss, R2
�, when using

correlation weights in lieu of OLS weights for a given class of criteria. Each class represents the
set of yi that can be optimally (in a least squares sense) predicted with a given bi . To construct
these figures, we generated 5 million sets of regression weights using a modified algorithm by
Fishman (1996, p. 235) that samples points on the surface of an ellipsoid (defined by (37)). When
constructing Figure 2, each point on this surface was colored using the following scheme.

• Blue: R2
� ≤ 0.01

• Red: 0.01 < R2
� ≤ 0.05

• Orange: 0.05 < R2
� ≤ 0.10

• Cyan: 0.10 < R2
� ≤ 0.20

• Yellow: 0.20 < R2
� ≤ 0.30

• White: 0.30 < R2
�.
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FIGURE 2.
Four views of the effectiveness of correlation weights.

The three axes of the ellipsoid point in the directions of the three eigenvectors of the afore-
mentioned correlation matrix. In Panel 2B, our line-of-sight is oriented towards the first eigen-
vector; in Panel 2C, it is oriented towards the second eigenvector; in Panel 2D, we are fac-
ing the third eigenvector. Perhaps the most striking feature of these plots concerns the relative
sizes and placements of the blue-colored patches. Recall that OLS vectors are colored blue
whenever R2

� ≤ 0.01. In other words, a blue-colored point indicates that for a given vector bi ,
R2

b − R2
rxy

≤ 0.01. Thus, in an important sense, blue-colored patches represent “neighborhoods
of indifference” in that, when predicting relative standing, it makes little difference if one uses
the optimal, OLS weights or the alternate, correlation weights.

Significantly, each (scaled) eigenvector of Rxx resides in one of these neighborhoods. Of
equal importance is the fact that the six neighborhoods are not of equal size. Notice, for in-
stance, that the blue patch that surrounds the first eigenvector is considerably larger than that
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surrounding the last eigenvector. This pattern will be observed with all correlation matrices that
have eigenvalues � = (2.00,0.80,0.20). (Marsaglia & Olkin, 1984 show how to generate these
matrices.) As bi moves away from a neighborhood of indifference, R2

� increases. Moreover, the
rate of increase is highest in the neighborhood of the last eigenvector (Panel 2D) and smallest
in the neighborhood of the first eigenvector (Panel 2B). (Recall that the longest axis of the ellip-
soid corresponds to the smallest eigenvalue of the correlation matrix.) We used this observation
to construct the data for the WAIS-III example. Specifically, we constructed y1 to be collinear
with the last principal component of the predictors, producing a situation in which both b and
rxy were collinear with the last eigenvector of Rxx (and thus, R2

� = 0). This direction (for b)
was chosen because the blue patch that is centered on the largest axis of this 14-dimensional
hyper-ellipsoid is so small that trivial changes to the criterion produce dramatic changes in the
effectiveness of correlation weights (recall that y1 and y2 correlate 0.98). Other choices that were
available to us would have produced similar results.

Nearly three decades ago, Dunnette and Borman proclaimed that the “use of zero-order va-
lidity coefficients as weights is an under-utilized practice [and that] under a variety of conditions
it seems preferable to other approaches” (Dunnette & Borman, 1979, p. 492). Although a handful
of studies have supported this position during the past 40 years (Campbell, 1974; Claudy, 1972;
Dana & Dawes, 2004; Davis & Sauser, 1991; Goldberg, 1972; Marks, 1966), heretofore, no one
has offered a comprehensive theory of the putative effectiveness of correlation weights in linear
prediction and selection models. We hope that by describing the conditions under which correla-
tion weights perform well (and not so well) in population regression models, this work will lay
the foundations for such a theory.

Appendix

## R Code for Correlation Weights Example
## Authors: Niels G. Waller and Jeff A. Jones
###################################################

# Correlations derived from Table A.7 page 224
# from WAIS-III manual
# The Psychological Corporation (1997). WAIS-III
# WMS-III Technical Manual.
# San Antonio, TX: Author.

wais3 <- matrix(
c(1, .76, .58, .43, .75, .75, .42, .54, .41, .57, .64, .54, .50, .53,
.76, 1, .57, .36, .69, .71, .45, .52, .36, .63, .68, .51, .47, .54,
.58, .57, 1, .45, .65, .60, .47, .48, .43, .59, .60, .49, .56, .47,
.43, .36, .45, 1, .37, .40, .60, .30, .32, .34, .35, .28, .35, .29,
.75, .69, .65, .37, 1, .70, .44, .54, .34, .59, .62, .54, .45, .50,
.75, .71, .60, .40, .70, 1, .42, .51, .44, .53, .60, .50, .52, .44,
.42, .45, .47, .60, .44, .42, 1, .46, .49, .47, .43, .27, .50, .42,
.54, .52, .48, .30, .54, .51, .46, 1, .45, .50, .58, .55, .53, .56,
.41, .36, .43, .32, .34, .44, .49, .45, 1, .47, .49, .41, .70, .38,
.57, .63, .59, .34, .59, .53, .47, .50, .47, 1, .63, .62, .58, .66,
.64, .68, .60, .35, .62, .60, .43, .58, .49, .63, 1, .59, .50, .59,
.54, .51, .49, .28, .54, .50, .27, .55, .41, .62, .59, 1, .48, .53,
.50, .47, .56, .35, .45, .52, .50, .53, .70, .58, .50, .48, 1, .51,
.53, .54, .47, .29, .50, .44, .42, .56, .38, .66, .59, .53, .51, 1),
nrow=14,ncol=14)
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## Generate 50,000 cases for WAIS III R matrix
NumSubj<-50000
library(MASS)
set.seed(111)
wais.data <- mvrnorm(n = NumSubj,

mu=rep(0,14),
Sigma=wais3,
empirical = TRUE)

EigVecs <- eigen(wais3)$vectors
EigVals <- eigen(wais3)$values

PC.Weights.1 <- matrix(EigVecs[, 1] * 1/sqrt(EigVals[1]), 14,1)
PC.Weights.14 <- matrix(EigVecs[,14] * 1/sqrt(EigVals[14]),14,1)

PC.Scores.1 <- scale(wais.data %*% PC.Weights.1)
PC.Scores.14 <- scale(wais.data %*% PC.Weights.14)

#yhat.1 is collinear with the last principal component
y1 <- PC.Scores.14 + rnorm(NumSubj,mean=0,sd=.1)

# R^2 from OLS weights
Rsq.OLS.1 <- summary(lm(y1~wais.data))$r.squared

rxy1 <- cor(y1, wais.data)

# R^2 from correlation weights
Rsq.rxy1 <- cor(y1, wais.data%*%t(rxy1) )^2

#yhat.2 is ALMOST parallel with last principal component
y2 <- .99*PC.Scores.14 +

sqrt(1-.99^2)* PC.Scores.1 +
rnorm(NumSubj,mean=0,sd=.1)

# R^2 from OLS weights
Rsq.OLS.2 <- summary(lm(y2~wais.data))$r.squared

rxy2<-cor(y2,wais.data)

# R^2 from correlation weights
Rsq.rxy2 <- cor(y2, wais.data%*%t(rxy2) )^2

r.y1.y2 <- cor(y1,y2)

cat("R^2 OLS weights, y1:", round(Rsq.OLS.1,3),"\n")
cat("R^2 rxy weights, y1:", round(Rsq.rxy1,3),"\n\n")

cat("R^2 OLS weights, y2:", round(Rsq.OLS.2,3),"\n")
cat("R^2 rxy weights, y2:", round(Rsq.rxy2,3),"\n\n")

cat("Correlation of y1 and y2:", round(cor(y1,y2),3),"\n")
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#~~~~~~~~OUTPUT ~~~~~~~~~~~~~#
# R^2 OLS weights, y1: 0.99
# R^2 rxy weights, y1: 0.99
#
# R^2 OLS weights, y2: 0.99
# R^2 rxy weights, y2: 0.089
#
# Correlation of y1 and y2: 0.98
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