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We derive an analytic model of the inter-judge correlation as a function of five underlying parame-
ters. Inter-cue correlation and the number of cues capture our assumptions about the environment, while
differentiations between cues, the weights attached to the cues, and (un)reliability describe assumptions
about the judges. We study the relative importance of, and interrelations between these five factors with
respect to inter-judge correlation. Results highlight the centrality of the inter-cue correlation. We test the
model’s predictions with empirical data and illustrate its relevance. For example, we show that, typically,
additional judges increase efficacy at a greater rate than additional cues.
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1. Introduction

Decision makers (DMs) often seek advice from multiple experts1 and aggregate the advice
from the various sources to achieve more accurate decisions. Studies have shown that the accu-
racy of the aggregate increases monotonically as a function of the number of advisors, but at a
diminishing rate that depends on the inter-judge correlation (e.g., Ariely, Au, Bender, Budescu,
Dietz, Gu, Wallsten, & Zaubermann 2000; Clemen & Winkler, 1985; Hogarth, 1978; Johnson,
Budescu, & Wallsten, 2001; Wallsten, Budescu, Erev, & Diederich, 1997). In other words, the
relevance and usefulness of the information provided by each additional expert decreases as the
correlation between experts increases. This indicates that the best new piece of information for a
decision should be valid (correlated with the true state of, or value in, nature), and as uncorrelated
as possible with the other forecasts.

Expert advice is based on naturally occurring cues, such as medical tests, past stock perfor-
mance, weather patterns, etc., that are typically correlated. The experts often have similar edu-
cation and training. These factors can account for the magnitude of the inter-expert correlations.
Morris (1986, p. 143) summarizes the sources of inter-judge correlations: “in most situations
most experts have access to the same basic information and are basing their opinions on roughly
the same body of data. Overlapping methodology may exist if experts in the field have similar
academic and professional training. . . . The direct observation of the expert opinions, the presen-
tation of public reports to the scientific community, and the open discussion of viewpoints and

1The terms “expert,” “judge,” and “advisor” are used interchangeably throughout the paper.
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hypotheses will add to the overlap among expert judgments.” Surprisingly, there is no overall
model of the various sources of dependence. The goal of this paper is to fill this gap by mod-
eling the correlation between numerical estimates provided by two judges (denoted ρxj xj ′ ) as a
function of several basic components that characterize the nature of the decision situation. Such
a model can provide new insights about various ways to analyze (and optimize) acquisition, ag-
gregation, and use of information from multiple sources. For example, it will help us to identify
conditions for perfectly correlated judges and, conversely, uncorrelated judges, and study the
tradeoff between additional judges and informational cues in the environment. In addition, it will
shed new light on the definition of expertise (see Einhorn’s 1974 discussion).

A prototypical example of the situation which is the focus of this paper is given by Ashton
(1986) and Ashton and Ashton (1985). Thirteen managers and sales personnel at Time magazine
were asked to forecast the number of pages sold annually by Time from 1965 to 1978. Each judge
was given 5 pieces of information: (a) the quarter to which the data applied; (b) the total number
of advertising pages appearing that quarter; (c) the number of pages of liquor advertising appear-
ing that quarter; (d) the number of pages of automobile advertising that quarter; and (e) the total
number of pages committed by advertisers to date for the entire year and was asked to estimate
the number of pages sold annually. The mean inter-judge correlation was 0.60. Other empirical
studies (e.g., Clemen & Winkler, 1986; Winkler, 1971; Winkler & Poses, 1993) have found high
correlations between experts (e.g., sports forecasting r = .84 to 97, economic modeling r = .82
to .96, and medicine r = .76 to .79). This suggests that in many cases it does not pay to con-
sult many experts because their marginal contribution becomes negligible. Note, however, that
there are quite large differences in the level of inter-judge agreement across domains of expertise
(Shanteau, 2001; Weiss & Shanteau, 2003a).

1.1. Aggregation of Information from Correlated Sources

Clemen and Winkler (1985) offer an elegant analysis of effects of dependence among ex-
perts. They compute the posterior error variance, σ 2

D , of a DM who consults J experts whose
opinions are equicorrelated (ρjj ′ = ρ). This value is compared to posterior error variance of a
DM who consults n independent experts, σ 2

I . The authors solve for n such that σ 2
D = σ 2

I and
show that the equivalent number of independent experts, denoted n(σ 2,�), is always less than J

(for J > 1).

n
(
σ 2,�

) = J
[
1 + (J − 1)ρ

]−1
(1)

Note that as ρ increases the equivalent number of independent judges, n(σ 2,�), decreases.
Hogarth (1978) seeks to determine how many experts one should consult in the presence of

inter-dependence. He uses a psychometric model to predict the validity of the simple mean of a
group of J experts, denoted ρyx̄ . This validity is expressed as a function of the number of experts
(J ), the mean validity of the individual experts (ρ̄yx), and the mean correlation between experts
(ρ̄xixj

).

ρyx̄ = J 1/2ρ̄yx

[
1 + (J − 1)ρ̄xixj

](−1/2) (2)

Hogarth shows that adding experts is more valuable if these additional experts lower the mean
inter-correlation of the group (as opposed to simply adding the experts with the highest individ-
ual mean validity). An important insight of this analysis is that additional experts will be more
valuable when ρ̄yx > ρ̄xixj

. This model shows that the (mean) inter-judge correlation has just as
much influence on group validity as the (mean) individual validity. The model’s main predictions
were confirmed even in situations where some of its assumptions were violated (Ashton, 1986).

It is easy to see that Eqs. 1 and 2 are, essentially, equivalent. More precisely, n(σ 2,�) =
(ρyx̄/ρ̄yx)

2, which can be considered a measure of efficacy of a group of correlated judges. This
measure is revisited in the applications section of our paper.
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Wallsten et al. (1997) propose a cognitive model of the generation of probability judgments.
The judgments are a function of the judge’s internal confidence, U , and random variation, E,
transformed by a monotone function h (increasing in both its arguments). The overt judgment,
Xj = hj (Uj ,Ej ), is a random variable in (0,1). Wallsten and Diederich (2001) show that when
the judgments of the experts are independent, conditional on the true state of nature, the mean
of their estimates becomes increasingly diagnostic as the number of judges increases. At the
other extreme, if all judges share the same “true” probability (Uj = U for all j ) but vary in their
random components, there will be no improvement in diagnosticity. Johnson et al. (2001) show
that averaging (imperfectly) correlated estimates always increases diagnosticity, but the rate of
convergence to the ideal case of perfect discrimination slows as a function of the amount of
inter-judge dependence. Ariely et al. (2000) confirmed these results empirically.

1.2. The Present Paper

Winkler (1981) describes the sources of dependence between experts: “Experts often have
some common training and experience, they may see the same data, and they may use similar aids
(e.g., statistical procedures).” The present paper incorporates this insight into a mathematical
model that allows us to identify the drivers of the inter-judge correlations and analyze their
relative importance. The paper is organized as follows. In Section 2, we describe a simple model
of the process by which experts form estimates, and discuss the various parameters in the model.
In Section 3, we derive the key results—the inter-judge correlation, analyze the effects of its
various drivers, and compare their relative importance. Section 4 analyzes the effects of the
constraints imposed by the cues’ validity on the inter-judge correlation. In Section 5, we use
the model to address various applied questions about the role of the inter-judge correlation in
the advice giving and taking process and use the model to analyze a simple example. Section 6
summarizes the results and links them to the literature on expertise.

2. A Model of the Experts’ Opinions

The model assumes that experts gather information (cues in nature) and aggregate it to gen-
erate an opinion or forecast, which is communicated to the DM who, in turn, aggregates the
experts’ opinions (e.g., Budescu, 2006). Figure 1 depicts this advice giving-and-taking process
which begins at the bottom of the figure with the informational cues in the decision environ-
ment. We motivate the model with a short review of Brunswik’s lens model. Then we derive the
model of inter-judge correlation of linear judgment that can be analyzed as a function of several
meaningful parameters that capture key features of the decision situation and the judges.

2.1. Linear Judgments

The cues in the decision environment are aggregated by each expert through a simple linear
combination. This characterization of the information aggregation process resembles the struc-
tural formulation of the multiple lens model (e.g., Hursch, Hammond, & Hursch, 1964; Ham-
mond, Wilkins, & Todd, 1966; Hammond & Stewart, 2001). In this research each experts’ opin-
ion, xj (j = 1,2, . . . , J ) is a weighted average of the information cues, ci (i = 1,2, . . . ,N) in
the decision environment perturbed by random noise (eij ). The cues are assumed to be jointly
distributed with mean vector, μ, and covariance matrix, �. Thus:

xj =
N∑

i=1

wij ci + eij where eij ∼ (
0, σ 2) and c ∼ (μ,�) (3)
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FIGURE 1.
Depiction of information aggregation scenario in seeking advice from experts.

This definition presents an expert’s opinion, xj , as a function of three variables: (a) the “natural”
information cues in the environment, ci , (b) the weights attached by each expert to each cue, wij ,
and (c) a random component, eij , which represents various sources of imperfection, unreliability,
and error in the expert’s performance.2 These errors reflect misperception of the cues or imperfect
aggregation of the cues, or both.

At this point, we deviate from Brunswik’s lens model. A different set of assumptions are
imposed and, more importantly, we focus on the analysis of the inter-judge agreement and not
on the correspondence between the judge and the environment which is typically the focus of the
lens model (see Hammond et al., 1966 for an example of interpersonal agreement). We assume
that all N cues are available to all J experts and, without loss of generality, we assume that
the cues are scaled in comparable units. We assume that all the weights are nonnegative and
normalized to sum to one for each expert.

N∑

i=1

wij = 1 for j = 1, . . . , J (4)

Our objective is to express the correlation between the opinions of two different experts (xj

and xj ′) in terms of (a) the number of cues, N , (b) the underlying correlations between the cues,
ρcc′ , (c) the variability in the weights assigned to the cues by judge j , σ 2

w , (d) the correlation of
the weights used by the two experts, ρww′ , and (e) the amount of noise (error) of the judges, σ 2

ej
,

and σ 2
ej ′ .

The variance of an expert opinion, σ 2
xj

, and the covariance between two experts’ opinions,
σxj xj ′ can be expressed in terms of the covariance matrix of the cues, the vectors of the judges’
weights, wj and wj ′ , and the random error. More specifically:

σ 2
xj

= wT
j �wj + σ 2

ej
(5)

σxj xj ′ = wT
j �wj ′ (6)

2We assume that the judges are unbiased, but one could generalize the model to accommodate biased judges by
allowing different (nonzero) values for the mean errors.
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Thus, the correlation between two judges, ρxj xj ′ , is:

ρxj xj ′ = wT
j �wj ′

(wT
j �wj + σ 2

ej
)1/2(wT

j ′�wj ′ + σ 2
ej ′ )

1/2
(7)

Note that this general formulation is not related to a particular domain or type of variable. It
applies to all cases where judges aggregate cues into numerical values on an interval scale (e.g.,
forecasts of earnings, probabilities of rain, scores assigned to a set of contestants, etc.). Next,
we add some assumptions that allow us to rewrite this equation in terms of factors that represent
the conditions of the decision scenario. In the next sections, we define and discuss the factors
involved in the model.

2.2. Description of Weights

Assumptions about the judges’ weights depend on how the judges are sampled, and how the
weights are determined. In many situations, judges are asked to make predictions about the target
variables based on N cues, and the weights are inferred from the predictions (meaning there is
no direct weight elicitation). In this case, the inferred weights are random variables, especially
if the various cases are selected randomly from a certain pool. A typical example is the study
by Schmidt, Johnson, and Gugel (1978) that examined the policies used by faculty members
to evaluate prospective students. In this familiar scenario, each faculty member had access to
several predictors (undergraduate GPA and GRE scores) and recommended to accept or reject
each applicant. The authors used multiple regression to estimate the weights for each of the cues
(predictors) in the various divisions of a psychology graduate program.

Recall that the weights are positive and add to one, implying that the mean weight is 1/N .
The variance of the weights is:

σ 2
w = 1

(N − 1)

(
wT

j wj − 1

N

)
(8)

The maximum and minimum of the inner product, wT
j wj , define the parameter space:

0 < σ 2
w ≤ 1

N
(9)

The lower bound is reached when all weights are equal (the judge takes a simple average of the
N cues). The upper bound is reached when the judge considers only one cue (one weight = 1,
and all others = 0). Appendix A presents a variety of additional reasonable weighting patterns,
along with their variance formulas. This is, of course, a partial list.

The covariance between two sets of weights is also bounded:

−1

N(N − 1)
≤ σwj wj ′ ≤ 1

N
(10)

The lower bound of the covariance is reached when the two judges use (i.e., assign nonzero
weights to) nonoverlapping sets of cues. Excluding the case where an expert weights all cues
equally (so they have no variance), we can describe the similarity between two experts using the
correlation between their respective weight vectors (ρwj wj ′ ).
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2.3. Description of Cues

The multivariate distribution of the cues has mean vector, μ, and covariance matrix, �.
These calculations are only concerned with � (the inter-judge correlations are not affected by
the values in μ). To simplify calculations, we assume that all N cues have unit variances, and are
equally correlated (ρcc′ = ρc for all cues), so � can be re-expressed as a simple function of the
common inter-cue correlation, ρc:

� = (1 − ρc)IN + ρc1N 1T
N (11)

The assumption of equal variances is innocuous (the inter-judge correlations are invariant under
change of scale). The assumption that all cues are equally correlated restricts somewhat the
generality of our model, and it was invoked to simplify the interpretation of the results. If the
assumption does not hold, the model can be viewed as a first order approximation in which ρc is
the average correlation between cues.

2.4. Description of Random Noise

Finally, we define δj to be the “noise to signal” ratio. This is the ratio of the error variance
of the j th expert to the variance of a perfect (error-free) aggregate of the N cues:

δj = σ 2
ej

σ 2
cj

where cj =
N∑

i=1

wij ci (12)

The variance of the expert opinion, σ 2
xj

, (Eq. 5) can be reexpressed as

σ 2
xj

= wT
j �wj (1 + δj ) (13)

Table 1 summarizes the various parameters used in describing and analyzing the drivers and
determinants of the inter-judge correlation.

TABLE 1.
The variables involved in the model of the inter-judge correlation (ρxj xj ′ ).

Assumptions about nature

ρc The average correlation between the cues used by the judges (medical tests,
stock performance, etc.)

N The amount of total information (number of cues) available in a given decision
context

Assumptions about experts

σ 2
w The variance of the weights—A measure of the expert’s differentiation between

cues
ρw The correlation between the weights assigned by the experts to the various cues
δj Noise-to-Signal ratio—A measure of the unreliability of the expert

Assumptions about validity

ρcy The average validity of the cues used by the judges to predict the criterion, y
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3. The Inter-Judge Correlation

Substituting Eqs. 8, 11, and 13 into Eq. 7 expresses the inter-judge correlation in terms of
the parameters listed in Table 1. (See derivation in Appendix B.)

ρxj xj ′ = ρc + (1 − ρc)[(N − 1)ρwσwj
σwj ′ + 1/N]

([ρc + (1 − ρc)((N − 1)σ 2
wj

+ 1/N)][ρc + (1 − ρc)((N − 1)σ 2
wj ′ + 1/N)](1 + δj )(1 + δj ′ ))1/2

(14)

3.1. The Symmetric Model

The model can be simplified further by assuming symmetry among the judges in their dis-
crimination between cues (i.e., the variance of the weights) and their unreliability (i.e., the noise-
to-signal ratios). For our primary analysis, we assume σ 2

w = σ 2
wj

= σ 2
wj ′ and δ = δj ′ = δj . (We

provide an analysis of the sensitivity of inter-judge correlation to violations of these assumptions
in the next section.) The correlation between two symmetric judges is

ρxj xj ′ = ρc + (1 − ρc)[(N − 1)ρwσ 2
w + 1/N ]

[ρc + (1 − ρc)((N − 1)σ 2
w + 1/N)](1 + δ)

(15)

Taking partial derivatives with respect to each of the factors shows that ρc (the inter-cue
correlation), N (the number of cues), and ρw (the inter-weight correlation), are positively asso-
ciated with the inter-judge correlation, while σ 2

w (the cue differentiation) and δ (a measure of
unreliability) are negatively associated with it.

To understand the joint effect of the various sources of dependence (inter-cue and inter-
weight correlations), we plot several examples. Figure 2 displays the value of the predicted inter-
judge correlation between judges who have access to N = 2 cues, as a function of ρw and ρc

for two different weighting patterns—equal weights (1/2, 1/2), or weights proportional to the
ranks of the cues (2/3, 1/3), and for two signal to noise ratios. For N = 2, both ρc and ρw

range between −1 and 1. The inter-judge correlation can take on almost every possible value in
(−1,1), but note that it increases very rapidly. The inter-judge correlation increases linearly with
respect to ρw , and at a quadratic rate with respect to ρc (except for the case of maximal variance).
Increasing the number of cues produce similar results, however, the lower bound of inter-judge
correlation is higher.

We can assess which parameters will be more influential in determining the magnitude of
inter-judge correlation through comparisons of the partial derivatives of the inter-judge correla-
tion with respect to inter-cue correlation (ρc), the inter-weight correlation (ρw), and the weight
variance (σ 2

w). Figure 3 has the inter-cue correlation on the vertical axis, and the inter-weight
correlation on the horizontal axis. The figure shows the ‘iso-influence’ curves (where the ratio of
the partial derivatives is 1) that divide the parameter space into two sections for various values
of N . The area of the plane which is shaded (white) identifies the region under which ρw(ρc)

induces a higher rate of change. Clearly, the inter-cue correlation is more influential over a much
larger portion of the parameter space, and the area under which ρw is dominant recedes as the
number of cues, N , increases.

Figure 4 compares the partial derivatives of the inter-judge correlation with respect to ρc and
σ 2

w (scaled by a factor of N to aid in comparison across various numbers of cues). This figure
also has a much larger region of dominance for the inter-cue correlation. This trend is more
pronounced as N increases.

This analysis shows that the cues in the environment are typically the dominant influence on
the agreement between judges. This idea will be revisited in Section 5.
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FIGURE 2.
Inter-judge correlation as a function of inter-weight and inter-cue correlations for N = 2 cues for two weighting schemes
and two noise-to-signal ratios.

FIGURE 3.
The ratio of the partial derivatives of the inter-judge correlation with respect to inter-cue and inter-weight correlation as
a function of the number of cues (σ 2

w computed assuming the weights are proportional to ranks).

3.2. The Asymmetric Model

One can argue that in practice most experts will be similar to each other with respect to cue
discrimination and reliability. For example, if one consults J physicians of similar experience
and specialization, it makes sense to assume that their reliability and differentiation will not vary
by much. On the other hand, if one seeks advice from judges that vary widely in experience,
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FIGURE 4.
The ratio of the partial derivatives of the inter-judge correlation with respect to inter-cue correlation and weight variance
(scaled by N) as a function of the number of cues.

expertise, or specialization, the assumption of symmetry may be harder to justify. This section
accommodates and compares these two sources of asymmetry between experts. Let β be the ratio
of variances of the two sets of weights, so that σ 2

wj ′ = βσ 2
wj

. Similarly, let γ represent the ratio
of the two expert’s reliabilities, so that (1 + δj ′) = γ (1 + δj ). We can rewrite the inter-judge
correlation in a way that highlights the asymmetry between two experts:

ρxj xj ′ =
ρc + (1 − ρc)[(N − 1)ρwσ 2

wj
β1/2 + 1/N ]

([ρc + (1 − ρc)((N − 1)σ 2
wj

+ 1/N)][ρc + (1 − ρc)((N − 1)σ 2
wj

β + 1/N)](1 + δj )2γ )1/2

(16)

Figure 5 evaluates the influence of the asymmetry parameters for a case with N = 8 cues. We
fixed the variance of one of the advisors at σ 2

wj
= 0.012 (corresponding to weights proportional

to squared ranks of the cues), and fixed that judge’s noise to signal ratio at 1/9. We examine 4
cases produced by crossing inter-cue (ρc) and inter-weight (ρw) correlations of 0 and 0.5.

The benchmark symmetric case is defined by the combination β = γ = 1 (log(β) =
log(γ ) = 0), and the degree of asymmetry (operationalized by the ranges of β and γ ) is con-
strained by the fixed values of σ 2

wj
and δj as well as by restrictions of values these parameters

can take for the second expert. The effects of both facets of asymmetry are not very large and are
more pronounced for the cases where the weights, and especially the cues, are uncorrelated and
are quite negligible as these correlations increase (compare the top-left and bottom-right pan-
els of the figure). In most cases studied here, the effect of asymmetry between the judges’ cue
differentiation (log(β)) are more pronounced than the effects of differential reliabilities (log(γ )).

4. The Role of Validity

So far, our analysis has ignored the validity of the judgments (the degree to which they are
related to the actual value of the criterion variable, y). Of course, cues are selected in the first
place solely because they are (or at least expected to be) valid (e.g., diagnostic tests, economic
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FIGURE 5.
Inter-judge correlation as a function of log(β), the asymmetry term for σ 2

w , and log(γ ), the asymmetry term for δj , with

fixed values δ = 0.11, σ 2
w = 0.012, and N = 8.

indicators, etc.). Is it possible that the inter-judge correlation is simply a by product of the nec-
essary correlation between valid cues? This section explores the constraints that judge validity
(ρxj y) has on inter-judge correlation by “partialing out” its effects. We calculate the lower bound
for inter-judge correlation, as a function of cue validity and the variance of the experts’ esti-
mates, and use this quantity as a benchmark in our analysis. We seek to show that the inter-judge
correlation goes well above the constraints due to the cues’ validities.

4.1. Modeling Validity

The predictive validity of an expert is the correlation between his/her opinion, xj as defined
in Eq. 3, and the criterion variable y. This quantity is a function of the validity of the cues the
expert aggregates and the weighting scheme used. We augment the original model by adding the
criterion variable to the vector of cues.

cT
y = [

cT, y
]
, where cy ∼ (μy,�y) (17)

The covariance matrix for this new vector is a simple augmentation of the covariance matrix
(Eq. 11) with an additional row (and column) that includes the validities of the cues (ρciy). To
simplify the analysis, we assume that all cues are equally valid (i.e., ρciy = ρcy for all i). This
assumption can be justified in part by the notion that the essence of expertise is the ability to
identify the most valid cues (e.g., Einhorn, 1974), and discard the others, reducing the variance
of the cue validities. A model assuming equal validity of cues provides a good first-order approx-
imation. The validity of the expert’s opinion is (see Appendix B):

ρxj y = ρyc

σxj

(18)
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FIGURE 6.
Inter-judge correlation as a function of average cue validity for three values of inter-cue correlations and three weighting
schemes. The shaded region shows the restricted range of inter-judge correlation.

The partial correlation between two symmetric experts (i.e., with equal variances of opinions:
σ 2

xj
= σ 2

xj ′ = σ 2
x ), partialling out the criterion, y, is given by:

ρxj xj ′ .y = ρxj xj ′ σ 2
x − ρ2

cy

σ 2
x − ρ2

cy

(19)

Given that (−1 ≤ ρxj xj ′ .y ≤ 1) it is easy to derive the bounds of the restricted range:

2ρ2
cy − σ 2

x

σ 2
x

≤ ρxj xj ′ ≤ 1 (20)

Figure 6 displays the bounds of ρxj xj ′ as a function of the average cue validity for 9 combi-

nations of the inter-cue correlation, ρc, and cue differentiation, σ 2
w , for a case with N = 8 cues.

The shaded region in each panel represents the lower bound of the inter-judge correlation in-
duced by a given cue validity. The range of cue validity is restricted as a function of the value of
ρc by the requirement that |�y | ≥ 0 (positive semidefinite). The plot shows that as (a) cue dis-
persion and (b) inter-cue correlation increase, the restriction of inter-judge correlation becomes
more severe. Yet, the lower bounds of the inter-judge correlation are not very high (they are all
less than, or equal to, 0.5 in these examples).

We calculated the difference between the inter-judge correlation predicted by the model
(Eq. 15), and its lower bound (Eq. 20) and expressed it as a fraction of its possible range, to
obtain a measure of Relative Improvement (RI). Formally:

RI = [ρxj xj ′ − Lower Bound]/[Upper Bound − Lower Bound] (21)

RI is a rescaling of the inter-judge correlation that represents its increase beyond the lower bound,
as a fraction of range of validities. This quantity is bounded from below at 0—when the corre-
lation is exactly at its lower bound implied by the cues’ validity—and from above at 1, when
the correlation reaches its upper bound. Thus, a RI close to 0 shows little change in the inter-
judge correlation beyond the values predicted from the cues’ validities. Conversely, RIs closer
to 1 show strong effects of the inter-cue and/or the inter-weight correlations on the inter-judge
correlation, above and beyond the levels anticipated based on the cues’ validities.
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FIGURE 7.
Relative Improvement plotted as a function of cue validity for four different combinations of inter-weight and inter-cue
correlation, along with three different weighting methods. Assuming symmetric judges, N = 8 and δ = 1/9.

Figure 7 shows the relative improvement in the inter-judge correlation as a function of cue
validity ranging from 0 (no validity) to the maximal possible validity for each case. The four
panels pertain to 4 combinations of ρc and ρw , and each panel traces three levels of cue dif-
ferentiation selected from Appendix A. Several regularities stand out. The key result is that the
relative improvement is always at least 0.5, and for most cue validities it is substantially higher.
Note that the case of maximal cue differentiation (using a single cue) is the least sensitive to the
cue validity. This is indicative of a general pattern—decreasing cue differentiation increases the
sensitivity of relative improvement to cue validity. Another interesting result is that increasing
either the inter-cue correlations or inter-weight correlation (moving from the top left to the bot-
tom right) reduces the difference between these three lines. As the inter-cue correlation increases
(moving from the left column to the right column) the relative improvement becomes less sen-
sitive to the weighting scheme. This implies that, in the presence of moderate to high inter-cue
correlation, cue validity is critical only when reaching extremely high values that are higher than
the validity of the cues available to experts in most domains.

5. Predictions and Applications of the Model

Our aggregation model combined with knowledge about relevant parameters can be used to
formulate optimal policy guidelines, and to justify decisions in many high stakes decisions. In
this section, we illustrate the use of the model to answer five questions that are of theoretical and
practical importance: (a) When will judges be perfectly correlated? (b) Under what conditions
will judges be uncorrelated? (c) What are the effects of different weighting methods on the inter-
judge correlation? (d) Keeping everything else equal, should one recruit an additional judge, or
obtain an additional cue? (e) How well does the model predict real world data?
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5.1. Perfectly Correlated Judges

If judges are perfectly correlated, it is sufficient to retain the services of a single advisor.
Thus, it is important to be able to identify such cases. A necessary condition for a perfect cor-
relation is the absence of random noise (δ = 0). In addition, if either the cues or the weighting
patterns are perfectly correlated (i.e., either ρc or ρw = 1), one can expect perfect correlations
between error-free judges.

When an expert weights all cues equally σ 2
w = 0, and the correlation, ρw , is undefined.

Uniform weighting of the cues is equivalent to using a single cue (N = 1), denoted c∗ (where c∗
is the mean of all N cues). Then

ρxj xj ′ = 1

(1 + δj )(1 + δj ′)
(22)

Thus, in the absence of noise this case also induces a perfect inter-judge correlation.
Clearly, these conditions are extremely rare, so it is highly unlikely to encounter experts that

are consistently in perfect agreement.

5.2. Uncorrelated Judges

If judges are uncorrelated, the performance of any group of advisors is a simple sum of the J

individual judges’ performance (see Eqs. 1 and 2). The model predicts an inter-expert correlation
of 0 when the numerator of Eq. 15 vanishes, i.e., when

ρc = N(N − 1)σwj wj ′ + 1

(N − 1)(Nσwj wj ′ − 1)
(23)

This occurs when the covariance of the weights is minimal (σwj wj ′ = −1
N(N−1)

). All other values
of σwj wj ′ produce values of ρc < 0 (which is outside the parameter space of ρc for N > 2).
Thus, with N ≥ 3 cues the judges’ opinions are uncorrelated only when weight covariance and
inter-cue correlation take on their lowest possible values.

Such circumstances are also very rare, so it is equally unlikely to come across judges and
experts whose opinions are uncorrelated.

5.3. Controlling the Inter-Weight Correlation

Imagine a situation where a DM has access to N cues with an inter-cue correlation of ρc. The
DM could control, at least to some degree, the inter-judge correlation by choosing “appropriate”
judges. Can a sophisticated DM exert some control over the inter-judge correlation by anticipat-
ing which weighting pattern will be invoked by the experts based on their previous performance,
or by asking them about it? To answer this question, we simulated 4 groups of 1,000 experts who
use distinct weighing patterns that vary with respect to the level of cue differentiation (see Ap-
pendix A): triangular (labeled TRI), proportional to ranks (RK), proportional to squared ranks
(SqRK), and pick a single cue (SNG). For the purpose of this illustration, we assume that the
judges have access to N = 8 cues, correlated at ρc = .5 and they operate with a noise to signal
ratio δ = 1/9. We also assume that all judges agree on the identity of the four most important
(i.e., should be given the highest weights) cues. The ordering of these four best cues, as well as
the ordering of the other four cues was determined randomly for each judge.

The top panel of Figure 8 shows the distribution of the inter-weight correlations for the six
types of pairings of judges. Most distributions have high medians (near 0.8) and relatively homo-
geneous spread. The exceptions are the correlations involving judges that use a single cue. They
have lower medians and higher variability. The bottom panel of Figure 8 displays the distributions
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FIGURE 8.
Simulated distribution of inter-weight (top) and inter-judge (bottom) correlation between judges using various weighting
schemes. Simulations assume that judges agree on best four and worst four cues using N = 8, ρc = 0.5, and δ = 1/9. The
rules compared are: a Single cue (SNG), weights proportional to Ranks (RK), weights proportional to Squared Ranks
(SqRK), and Triangular distribution of weights (TRI).

of the corresponding inter-judge correlations. The inter-judge correlation is not strongly influ-
enced by fluctuations in inter-weight correlation (confirming and complementing, Dawes, 1979).
This result highlights the importance of the cues which are utilized (and their inter-correlations)
over the impact of the judges’ ability to distinguish between them and weigh them differentially.

5.4. An Extra Judge or an Extra Cue?

Consider the situation where a group of J judges has access to N cues that induce a certain
inter-judge correlation. If this correlation is judged to be too high, one may consider dropping a
cue or reducing the number of judges in future applications. Conversely, one may decide to add
an extra judge, or obtain an extra cue from the decision environment. Assuming the costs of an
extra judge and an extra cue are comparable, and that all parameters are fixed, is it more effective
to add (drop) a cue or an expert? We defined a measure of efficacy consistent with the analyses
of Hogarth (1978) and Clemen and Winkler (1985). It is derived by dividing both sides of Eq. 2
by the mean individual validity, or by taking the square root of Eq. 1:

Efficacy = ρyx̄

ρ̄yx

= J 1/2[1 + (J − 1)ρ̄xixj

](−1/2) (24)
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FIGURE 9.
Efficacy of a group of judges as a function of number of judges and number of cues (signal to noise ratio = 1/9 and σ 2

w
assumes weights proportional to ranks).

Using our model (Eq. 15) to predict the mean inter-judge correlation, ρ̄xixj
, we can compute

efficacy as a function of the number of judges, J , and the number of cues, N . Figure 9 displays
the efficacy under different combinations of inter-cue and inter-weight correlations (ρc and ρw ,
respectively). The noise to signal ratio was set to a relatively low value of δ = 1/9, and σ 2

w

was computed using weights proportional to ranks (see Appendix A). Figure 9 shows that, in
most cases, additional judges influence the efficacy more than additional cues. Additional cues
can be slightly detrimental in the presence of high cue dependence, whereas additional judges
are always monotonically increasing in efficacy. The effects of additional cues and/or additional
judges are less pronounced for higher levels of inter-cue and inter-weight correlations.

The previous results assume that adding or dropping cues does not affect the other key
parameters, especially the inter-cue correlation, ρc. In fact, one could choose new cues with
the explicit intention of reducing the average inter-cue correlation. Thus, the relevant question
becomes: How much must the average inter-cue correlation be lowered by the additional cue to
be as efficacious as adding an extra judge? The efficacy of an additional judge can be computed
and equated with the efficacy of an addition cue:

Efficacy
{
(J + 1),N, ρ̄c

} = Efficacy
{
J, (N + 1), ρ̄∗

c

}
(25)

We treat ρ̄∗
c as an unknown variable and solve for the value of inter-cue correlation which makes

the efficacy of an additional cue equal to an additional judge.
Table 2 presents the reduction in the inter-cue correlation (ρc − ρ̄∗

c ), that affects the inter-
judge correlation to the same degree as the addition of a new expert. We use the same assumptions
about the noise to signal ratio (δ = 1/9) and cues weighted proportional to ranks (σ 2

w computed
as a function of N). In a few cases (bold typeface), the new inter-cue correlation is higher than
the original one, i.e., adding a cue is more efficacious than adding a judge. Note that this can only
happen when the cues are uncorrelated (ρc = 0). In the vast majority of the cases, the reduction
in the inter-cue correlation must be quite extensive, especially when N and J are small and the
inter-weight correlation is larger.

5.5. Modeling of Correlation of Baseball Expert Predictions

This section illustrates an application of the model to real data. We recruited 16 self-
proclaimed baseball experts who participate in fantasy baseball leagues. All of them participated
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TABLE 2.
The reduction in inter-cue correlation (ρc − ρ̄∗

c ) that equates the efficacy of an additional cue and an additional judge.

ρw = 0 ρw = 0.5

N N

2 3 4 5 2 3 4 5

ρc = 0 J 2 0.07 0.09 0.08 0.07 J 2 0.14 0.12 0.10 0.09

3 −0.05 0.01 0.02 0.03 3 −0.01 0.04 0.04 0.04

4 −0.09 −0.01 0.00 0.01 4 −0.06 0.00 0.01 0.02

5 −0.11 −0.03 0.00 0.00 5 −0.09 −0.02 0.00 0.01

N N

2 3 4 5 2 3 4 5

ρc = 0.5 J 2 0.29 0.30 0.29 0.29 J 2 0.44 0.42 0.40 0.39

3 0.11 0.15 0.15 0.15 3 0.20 0.22 0.22 0.23

4 0.05 0.09 0.10 0.10 4 0.10 0.14 0.15 0.15

5 0.02 0.06 0.07 0.07 5 0.05 0.10 0.10 0.11

in fantasy leagues in 2006 and 2007 (at least). Expertise was established in a previous study
(Miller, 2008) where they answered a questionnaire pertaining to MLB knowledge. The average
subject answered correctly 62% of the questions (SD = 18%).

Subjects were asked to predict the worth/ value of various players based on selected statisti-
cal information that we provided (cues). The experts were randomly assigned to 4 groups which
differed in the number and nature of cues provided. The experts in Group 1 were provided N = 5
cues (statistics of baseball batters) which had an average inter-cue correlation of ρc = 0.61.3

Groups 2 and 3 were provided only N = 4 of these cues. Cues were dropped such that the av-
erage inter-cue correlations would be reduced (ρc = 0.49 in group 2), or increased (ρc = 0.74
in group 3). Experts in Group 4 were given N = 5 different cues (statistics of baseball pitch-
ers) which had an average inter-cue correlation of ρc = 0.27. Subjects were paid $15 for their
participation.

In the first session, participants judged 40 players based on these cues. The names of the
players were not provided to ensure that the subjects did not use additional private information.
In the second session (a few days later), participants judged 40 players—20 new ones and 20
who were also shown in the first session. We used the 20 repeated judgments to assess the re-
liability and the noise to signal ratio, δ, for each expert. These ratios were quite low for most
judges (Median = 0.26), especially in groups 1–3. The individual weights were inferred from
their judgments using two different methods: standardized regression coefficients and general
dominance statistics (Azen & Budescu, 2003). The estimated weights were highly similar and
we only report results based on the regression coefficients. We used the normalized weights to
estimate the variance of each expert, σ 2

w , and the inter-weight correlation, ρw , for each pair of
judges. Table 3 presents the average inter-judge correlations observed in each group and the
model’s predictions. The model predicts correctly the ordering of the inter-expert correlations in
the four cases (highest in Group 3 and lowest in Group 4), and the predictions are quite accurate
(error in the 0.02–0.08 range) for both sets of weights.

3These correlations are based on the performance of all the MLB players over the last 5 seasons.
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TABLE 3.
The model’s prediction of the inter-judge correlation for the baseball example.

Group Design parameters Mean inter-judge correlation

N = # of cues ρc = Inter-cue corr. Predicted Observed Difference

1 5 0.61 0.72 0.66 0.05

2 4 0.49 0.85 0.77 0.08

3 4 0.74 0.92 0.88 0.05

4 5 0.27 0.60 0.61 −0.02

TABLE 4.
The model’s prediction of efficacy in the baseball example.

Group Design parameters Mean efficacy

N = # of cues J = # of judges Predicted Observed Difference

1 5 4 1.12 1.16 0.04

2 4 5 1.07 1.11 0.04

3 4 4 1.03 1.05 0.02

4 5 3 1.17 1.08 −0.08

We compared the observed correlations between each pair of judges with the values pre-
dicted by the model. The Mean Absolute Deviation (MAD) between the correlations and the
model’s predictions across all 25 pairs is 0.08. The within group MADs are 0.07, 0.09, 0.04,
and 0.11. The order of the MADs roughly matches the magnitude of the correlations in Table 3
indicating that the model predicted better higher correlations.

The validity was calculated for the 16 judges in predicting the players’ values: The mean
individual validity is an impressive 0.66 corresponding to a mean RI (Eq. 21) of 0.79 above
the lower bound based on the cues’ validity. Table 4 summarizes the efficacy (Eq. 25) in the four
groups. The observed efficacy is the ratio of the validity of the mean forecast (across all J judges)
and the average individual validity, and the predicted values are derived from the right-hand side
of Eq. 24 (using Eq. 15 to calculate ρ̄xixj

). The predictions are very accurate, especially for
groups 1–3.

The two tables illustrate nicely the interplay between adding judges and cues discussed in
Section 5.4. Note that group 3 has N = 4 cues (with ρc = 0.74) and J = 4 judges. In group 2,
we also have N = 4 cues (with a lower ρc = 0.49) and more judges (J = 5). On the other
hand, in group 1, we have the same number of judges (J = 4), but more cues (N = 5 with
ρc = 0.61). Adding either a judge (group 3) or a cue (group 1) reduced the mean inter-judge
correlation (Table 3) and increased the efficacy of the process (Table 4). In this case, adding
a cue had a slightly stronger effect. Overall, these results show that the model predicts quite
well empirical results assessed in a way that matches closely the assumptions of the model.
The discrepancies are due, in part, to the fact that the cues are not necessarily equicorrelated,
especially in group 4.

6. Summary and Discussion

We have presented a quantification of Morris’ (1986) and Winkler’s (1981) analysis of the
sources of inter-judge correlation. The model invokes a set of reasonable simplifying assump-
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tions to describe the overt agreement between experts as a function of several easy to interpret
parameters. We examined how these parameters interact to drive the observed correlations be-
tween experts. The model shows that ρc (inter-cue correlation), N (the number of cues), and
ρw (inter-weight correlation), are positively associated with the inter-judge correlation, while
σ 2

w (a measure of cue differentiation) and δ (a measure of unreliability) are negatively associated
with the inter-judge correlation. The model enabled us to evaluate analytically the impact of each
parameter and to compare their relative influence on the inter-judge correlation.

6.1. Summary of Analysis

Relative Importance of the Factors The iso-influence curves in Figs. 3 and 4 show that in
most cases the inter-cue correlation, ρc, dominates both ρw and σ 2

w . The region of the parameter
space under which inter-cue correlation is the most important driver of inter-judge correlation
includes most cases that are likely to be observed in real-life applications. The relative importance
of ρc, compared to ρw and σ 2

w , increases as the numbers of cues increases.

Asymmetry Figure 5 shows that the overall impact of asymmetry between judges who vary
in their qualifications and/or performance is not as strong as the other parameters. The effects of
asymmetry are more pronounced for the case of uncorrelated cues and weights.

Validity The cues’ (and consequently, the experts’) validities restrict the range of the inter-
judge correlations. Accounting for the contribution of validity reveals weak support for the ar-
gument that experts are highly correlated simply because they are highly valid. We show that
validities which mimic the magnitude of empirical results exhibit the potential for a high RI (see
Eq. 21). This confirms the importance of the model’s parameters that capture our assumptions
about the decision environment and the judges.

6.2. On Expertise

Throughout the paper, we have used the term “expert” without defining it formally. We
are not alone in taking this approach since expertise is an elusive concept that defies simple
definition. It is not our intention to offer a definitive characterization of expertise, nor to take
sides in the debate on this topic. We simply seek to illustrate how our model of the environment
and the judgment process, and the decomposition of the inter-judge correlation can contribute to
the analysis of expertise.

Einhorn’s (1974) analysis listed a set of necessary conditions for expertise. His framework
and his assumptions about the sources of the inter-judge dependence (similarity in cues and
weights) are quite similar to those in our model. Among the necessary conditions for expertise,
Einhorn (1974) lists (a) high reliability/consistency that corresponds to a low noise to signal
ratio (δ) in our model, (b) inter-expert agreement in the identification and grouping of cues, and
(c) inter-judge similarity in the way cues are weighted and combined. Thus, he equates expertise
(especially in cases where there is no external criterion) with inter-judge agreement.4 Interest-
ingly, recent empirical work (Budescu & Yu, 2007; Yaniv, Choshen-Hillel, & Milyavsky, 2009)
suggests that most people share this intuition and they are highly confident in consensus opin-
ions. The results of the current analysis (especially Section 5.3) suggest that not all these factors
are equally important. While high reliability (low δ) is crucial, the similarity of the weighting
schemes (ρw) play a much smaller role than the identification of the key cues and their corre-
lations (ρc). Based on our analysis and on Dawes’ (1979) results, we would argue that in most
cases similarity in weighting is not a necessary condition for high inter-judge agreement and for
expertise.

4He found large differences between the weighting schemes of expert pathologists reviewing biopsy slides.
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Einhorn’s emphasis on consensus is not universally accepted. Weiss and Shanteau (2003a)
make a compelling case against this view, and argue that agreement with other experts is nei-
ther necessary, nor sufficient, for expertise. Weiss and Shanteau (2003b) advocate a definition
of expertise that requires high discrimination between different cases and high consistency (re-
liability). Their empirical index of expertise, CWS, is calculated as the ratio of measures of
discriminative ability and inconsistency, so experts, who have high discriminative ability and are
highly consistent, have high CWS scores. Our analysis confirms that high reliability (low δ) is
critical, but suggests that the CWS definition of discrimination—“as the stimulus changes, the
evaluation changes accordingly”—may be too narrow. It certainly applies to cases where there
are few and/or uncorrelated cues, but not cases with many highly correlated cues where the same
final outcome, y, can be obtained for multiple values of a certain cue, say c1, under various com-
binations of the other cues, c2, . . . , cN . Moreover, the CWS index ignores the role of the external
validity of the expert judges that was illustrated in Section 4.1.

6.3. Final Remarks on Choosing Advisors

We conclude with a short discussion of the two critical questions in the area of advice giving
and taking—which and how many, advisors to employ—in light of the results of our analysis. It
is well understood that, everything else being equal, to maximize efficacy one should seek advi-
sors whose opinions are valid but as uncorrelated with each other as possible. Low inter-judge
correlations are associated with low inter-cue correlations, low inter-weight correlations, and
unreliable judges with high levels of differentiation between the cues. Some of circumstances
that reduce inter-judge correlations are clearly undesirable—no reasonable DM would seek un-
reliable experts (if the term can be even used in such cases) simply because they appear to be
uncorrelated. Instead, we focus on the level of the dependence between the cues in nature, and
more importantly, whether experts are using overlapping sets of cues, or different sets of cues.

The predictability of the target variables varies considerably across domains (e.g., Shanteau,
2001; Weiss & Shanteau, 2003a). As we showed in Section 4.1, high levels of validity induce
high lower bounds of the correlations between expert opinions and reduce the likelihood of find-
ing uncorrelated experts. The analysis in Section 4.1 provides clear benchmarks for inter-judge
correlations in various environments that are characterized by various levels of cue validity and
inter-cue correlations. This can help a DM determine to what degree the inter-judge agreement
is driven by the highly valid cues, or due to some of the other parameters. Consider, for example,
the middle panel of Fig. 6, where the inter-cue correlation is ρc = 0.5, and imagine that two
judges are moderately correlated, say around ρxx′ = 0.4. This is an excellent situation in an envi-
ronment with highly valid cues (e.g., ρyc ≥ 0.6) that imposes high constraints on the judges. On
the other hand, if the cues are not very valid (e.g., ρyc ≤ 0.2), this suggests that the two judges
are too similar, and that one should be able to find other, more informative advisors.

The question regarding the number of advisors is best answered through analysis of relative
measures, such as our index of efficacy (Eq. 24), rather than absolute ones. Such indices ask how
to achieve a desired level of efficacy (say twice, or thrice, as efficacious as a single “typical’
advisor in the domain) at minimal cost, i.e., with the smallest number of advisors. The efficacy
measure is a negative monotone function of the inter-judge correlations so, keeping everything
else fixed, any factor that reduces the inter-judge correlation increases the efficacy, and reduces
the number of advisors required to achieve a particular level of improvement in the performance
of the group of advisors.

The analysis of efficacy presented in Section 5.4 also reveals new insight into how cues can
be valued in comparison to additional advisors. The overarching theme of our analyses is that
the underlying dependence in cues (the environment) plays the largest role in undermining the
value of additional opinions. Using the current model in combination with the formulation of
efficacy in Eq. 24 it is possible to assess the reduction of the average inter-cue correlation which
is necessary for an additional cue to contribute more than an additional judge in terms of efficacy.
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Appendix A

Weighting Description Formula for Weights Value for
method variance N = 8

Uniform 0 wi = 1/N 0

Triangular (N/2 − 1)/(3N(N

− 1)(N/2 + 1))

wi = 2i/(N(N + 1))

i = 1, . . . , i/2
0.004

Ranked 1/(3N(N + 1)) wi = 2i/(N(N + 1)) 0.005

Two equal
sets

(1/(N − 1))((n1
+ n2r2)/((n1
+ n2r)2) − 1/N)

wi = c, wj = cr ,
i �= j

0.009
(r = 1/6)

Squared
ranked

(8N + 11)/(5N(N

+ 1)(2N + 1))

wi = [2i/(N(N

+ 1))]2
0.012
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Weighting Description Formula for Weights Value for
method variance N = 8

Single 1/N wi = 1, wj = 0,
j = 1, . . . , i − 1,
i + 1, . . . ,N

0.125

Note: Computational formulas for several weighting methods.

Appendix B

Derivation of the model of inter-judge correlation, Eq. 14 By the definition of the vector
wj in Eq. 4, the mean weight is

w̄ = 1

N
wT

j 1N = 1

N

Using the definition of the unbiased variance estimator we obtain the following equality.

σ 2
w = 1

(N − 1)

(
wT

j wj − N(w̄)2) = 1

(N − 1)

(
wT

j wj − 1

N

)

Solving for wT
j wj , we can rewrite the above as

wT
j wj = (N − 1)σ 2

w + 1

N

Using the same method, we can rewrite the covariance:

wT
j wj ′ = (N − 1)σww′ + 1

N
= (N − 1)ρwσwσw′ + 1

N

Note from Eqs. 11 and 13 that

� = (1 − ρc)IN + ρc1N1T
N

σ 2
xj

= wT
j �wj (1 + δj )

Proof: Substituting the above into Eq. 7, we get

ρxj xj ′ = wT
j �wj ′

(wT
j �wj + σ 2

ej
)1/2(wT

j ′�wj ′ + σ 2
ej ′ )

1/2

= wT
j [(1 − ρc)IN + ρc1N1T

N ]wj ′

(wT
j [(1 − ρc)IN + ρc1N1T

N ]wj (1 + δj ))1/2(wT
j ′ [(1 − ρc)IN + ρc1N1T

N ]wj ′(1 + δj ′))1/2

= [(1 − ρc)w
T
j wj ′ + ρc]

([(1 − ρc)w
T
j wj + ρc](1 + δj ))1/2([(1 − ρc)w

T
j ′wj ′ + ρc](1 + δj ′))1/2
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= [(1 − ρc)((N − 1)ρwσwσw′ +1/N) + ρc]
([(1−ρc)((N−1)σ 2

w + 1/N)](1 + δj ))1/2([(1 − ρc)((N − 1)σ 2
w′ + 1/N) + ρc](1 + δj ′))1/2

This equation defines inter-judge correlation with the following constraints.

ρxj xj ′ = f
(
ρc,ρw,σ 2

w,N, δ
)

for 0 ≤ ρc ≤ 1, −1 ≤ ρw ≤ 1

0 ≤ σ 2
w ≤ 1

N
, 0 < N, and 0 ≤ δ �

Derivation of expert validity, Eq. 18 Assume the vectors of cues has included at the end
the criterion variable y, Eq. 17,

cT
y = [

cT, y
]
, where cy ∼ (μy,�y)

The matrix �y is of the same form as � in Eq. 11 with an added (N + 1)th row and column
which have the value ρyc. The weight vectors have an extra (N + 1)th element added to the end
as follows,

wT
j = [w1j w2j . . . wNj 0] and wT

y = [0 0 . . . 0 1]

Proof: This allows the expression of the covariance of the opinion, xj , and the criterion, y,

σxj y = wT
j �ywy = ρyc

The variance of the criterion, y,

σ 2
y = wT

y�ywy = 1

The variance of the opinion, xj ,

σ 2
xj

= wT
j �ywj + σ 2

ej
= [

ρc + (1 − ρc)
(
(N − 1)σ 2

w + 1/N
)]

(1 + δj )

Therefore, we get the correlation between xj and y,

ρxj y = ρyc

σxj
�
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