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A HIERARCHICAL ORNSTEIN–UHLENBECK MODEL FOR CONTINUOUS REPEATED
MEASUREMENT DATA
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In this paper, we present a diffusion model for the analysis of continuous-time change in multivariate
longitudinal data. The central idea is to model the data from a single person with an Ornstein–Uhlenbeck
diffusion process. We extend it hierarchically by allowing the parameters of the diffusion process to vary
randomly over different persons. With this approach, both intra and interindividual differences are ana-
lyzed simultaneously. Furthermore, the individual difference parameters can be regressed on covariates,
thereby providing an explanation of between-person differences. Unstructured and unbalanced data pose
no problem for the model to be applied. We demonstrate the method on data from an experience sampling
study to investigate changes in the core affect. It can be concluded that different factors from the five
factor model of personality are related to features of the trajectories in the core affect space, such as the
cross-correlation and variability of the changes.
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1. Introduction

Change over time is a central and nonnegligible concept that psychologists frequently en-
counter while studying different phenomena such as learning processes, developmental issues, or
mood changes. Emotions and related phenomena are prime examples that are subject to change
over time, but also measures that are intuitively believed to be very stable (such as personality
characteristics, see, e.g., Borkenau & Ostendorf, 1998) reveal their changing nature when re-
peated measures are taken. Going a step further, following the arguments of van Montfort, Oud,
and Satorra (2007), any serious causal analyses should be based on longitudinal data.

Many longitudinal studies rely on panel designs: a large number of subjects with typically
fewer than 10 measurements per person. However, technical innovations such as palmtops, beep-
ers, and online questionnaires have made it possible to measure variables of interest more “in-
tensively” than in the typical panel designs. Such intensive longitudinal designs (see Walls &
Schafer, 2006) have recently become quite popular. They typically consists of relatively long
(e.g., more than 50 measurement occasions) data chains from different subjects. Intensive lon-
gitudinal data frequently stem from experience sampling techniques (Bolger, Davis, & Rafaeli,
2003; Csikszentmihalyi & Larson, 1987; Larson & Csikszentmihalyi, 1983; Russell & Feldman-
Barrett, 1999), dyadic interaction studies (Ferrer & Nesselroade, 2003), or cognitive and senso-
rimotor performance research (Li, Huxhold, & Schmiedek, 2004). These methods often result in
a highly unstructured longitudinal dataset, since the records may be taken at different time points
for different individuals. Moreover, missing data often occur, which leads to unequal numbers of
observations.

Apart from a few exceptions (e.g., Oud & Singer, 2008; Singer, 2008), time is generally
handled in a discrete way in longitudinal models. This property makes modeling such data some-
what unrealistic, since the measured phenomena do not cease to exist between observations. Oud
(2002) argues that most processes in behavioral sciences unfold in continuous time and should
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be handled accordingly. Treating a theoretically continuous variable as discrete may lead to bi-
ased results, for a discussion see Delsing, Oud, and Bruyn (2005). In contrast, continuous-time
modeling appears to be a more realistic solution.

In this paper, we focus on introducing a hierarchical model for analyzing intensively mea-
sured variables while allowing for change in continuous time. This way, intra and interindividual
differences are studied simultaneously. The model incorporates two distinctive properties. First
of all, it concentrates on the dynamic feature of the change process by investigating a mean-
reverting tendency over time. Second, it explores interindividual variability from different per-
spectives, some of which have not been considered so far. Both aspects are summarized below.

Concerning the first special property, the paper introduces a stochastic process with Markov-
ian properties, namely the Ornstein–Uhlenbeck (OU) process, to serve as the basic model for
change within an individual. The OU process can be seen as a mathematical model of tempo-
ral change for phenomena with regulatory, mean-reverting, or centralizing mechanisms. This
property makes the process especially useful for modeling moods and emotions (Larsen, 2000;
Lykken & Tellegen, 1996), but it can also be applied to other change processes with a possible
regulatory mechanism (e.g., balance control). When we use the OU process as an analytical tool,
the focus is more on the dynamics of the process, and not so much on the systematic or structural
changes with respect to the mean level, as is commonly investigated by mixed models (e.g., Dig-
gle, Heagerty, Liang, & Zeger, 2002; Verbeke & Molenberghs, 2000). This way, our approach is
closer to the area of time series analysis, but a distinctive aspect is that our main emphasis lies
on studying interindividual differences in temporal change, while time series analysis mainly
focuses on a single measurement chain.

Regarding the second characteristic, the proposed hierarchical model is suited for exploring
interindividual differences from aspects which have been neglected so far. Other existing tech-
niques, like structural equation modeling (SEM, Bollen, 1989), multilevel modeling (Goldstein,
2003; Raudenbush & Bryk, 2002), state-space modeling either combined with SEM or with
Kalman filter estimation procedure (Oud, 2007; Oud & Singer, 2008) do not commonly deal
with interindividual differences with respect to all model parameters. In the hierarchical model
presented here, parameters like the serial- or the cross-correlation are considered to be person-
specific, and in this way we allow new aspects of interindividual differences to be investigated.

Regarding statistical inference, we will make use of a Bayesian approach (Gelman, Carlin,
Stern, & Rubin, 2004). The Bayesian methodology offers a sound way for statistical inference in
models with a complex hierarchical structure. With respect to the present model, since all the OU
parameters can be turned into random effects and can be regressed onto predictors or covariates
(De Boeck & Wilson, 2004), the parameter estimation in the classical framework would involve
a high-dimensional integration over the numerous random effect distributions. In contrast, the
paper will demonstrate that the hierarchical OU model can be fitted in a straightforward way
using the Bayesian framework. Also, the most commonly used statistical inference technique
in continuous time modeling involves some approximation methods to estimate the parameters,
while with the Bayesian approach this is no longer necessary.

The OU process in particular and some variants of it (e.g., the integrated OU process) have
been proposed as models for the analysis of longitudinal profiles in several fields. For example,
single time series from measurements of animal movement have been modeled as an OU process
by Blackwell (1997, 2003), Brillinger, Preisler, Ager, and Kie (2004) and Dunn and Gipson
(1977). A major difference between our psychological approach and this biological application
is that in the latter there is no interest in describing and explaining differences between subjects.
In the context of mixed models for longitudinal data analysis, the integrated OU process is pro-
posed to model serial correlation between measurements (e.g., see De la Cruz-Mesía & Marshall,
2006; Sy, Taylor, & Cumberland, 1997; Taylor, Cumberland, & Sy, 1994), but no interindividual
variation is allowed in the driving parameters of the process.
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The structure for the remainder of the article is as follows. In the next section, we explain
the OU diffusion process together with the interpretation of its parameters. Subsequently, we
discuss a hierarchical extension. The following section summarizes the statistical inference and
afterward an application to the modeling of core affect trajectories is presented. The last part
presents our conclusion.

2. The Theory of the Ornstein–Uhlenbeck Diffusion Process

In this section, we give a nontechnical and self-contained account of the OU diffusion
process. More detailed explanations can be found in Cox & Miller (1972), Dunn & Gipson
(1977), Karlin & Taylor (1981), and Blackwell (2003). Usually, the model is presented as a solu-
tion to a first-order stochastic differential equation (SDE). However, since the details of the SDE
may not be generally known, we will start with the solution and introduce the SDE only later.
At this point, we do not yet present an application, so our explanation will be in general terms
without reference to a substantive area.

Let us assume that the state of an individual at time t (t ≥ 0) can be represented as a point
Y (t) = (Y1(t), Y2(t), . . . , Yq(t))T in a continuous, q-dimensional space. In general, an OU diffu-
sion process is a continuous-time Gaussian process {Y (t) : t ≥ 0} defined on this q-dimensional
space such that given that the process was in state Y (t) at time t , the conditional distribution of
the position Y (t + d) d time units later is

Y (t + d) | Y (t) ∼ Nq

(
μ + e−Bd

(
Y (t) − μ

)
,� − e−Bd�e−B′d)

, (1)

where μ is a q-dimensional vector and B and � are q × q matrices. The function eM (with M a
square matrix) is the matrix exponential. The matrix exponential eM is defined as follows:

eM = I +
∞∑

j=1

Mj

j ! .

As a special case (see later), if M is a diagonal matrix with diagonal elements m1, . . . ,mq , it is
equal to

eM =
⎛

⎜
⎝

em1 . . . 0
...

. . .
...

0 . . . emq

⎞

⎟
⎠ ,

where emi is the scalar exponential function value of mi .
If B is a positive definite matrix (and if E(Y (0)) = μ and var(Y (0)) = �), then the Ornstein–

Uhlenbeck process is stationary. This can be seen intuitively by letting d → ∞, so that the matrix
exponential part e−Bd goes to zero and the process has the following equilibrium or stationary
distribution:

Y (t) ∼ Nq(μ,�). (2)

From (2), it can be deduced that μ is the mean of the equilibrium distribution and � is its co-
variance matrix (hence, � is positive definite). The assumption of stationarity implies that if the
process runs for an infinitely long period of time, this equilibrium density is the density function
of the visited points in the q-dimensional space. It will also be assumed in this paper that the
distribution of Y (0) (the first measurement, when time t equals 0) is the equilibrium distribution
(in which case the model is strictly stationary).
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To explain the interpretation of the distinct parameter vectors and matrices in the model,
it is best to start by examining the conditional mean vector μ + e−Bd(Y (t) − μ) from (1). It
can be seen that this conditional mean depends on the previous position Y (t), on the time dif-
ference d between the two measurements and on the μ and B parameters of the process. The
interpretation of μ and B is the following: The parameter μ is the vector of expected values
of the equilibrium distribution (let d → ∞) and can thus be seen as a fixed point attractor in
the q-dimensional space. Because of this property, μ can be called the average position or the
“homebase” of the process. The other parameter, the matrix B controls the strength of the central-
izing tendency, which keeps the process in the vicinity of the homebase. This matrix represents
a mean reverting or dampening force, since it impedes the process to diffuse away from the
homebase. To illustrate the role of the centralizing tendency, it is easier to see its function in a
one-dimensional model (i.e., q = 1). In that case, the conditional mean of Y(t + d) given Y(t)

is equal to μ + e−βd(Y (t) − μ) (with, as required, β > 0). From the latter equation, it can be
easily derived that (1) if β is large, the conditional mean is very close to the homebase and (2) if
β approaches zero, the homebase takes a value close to the previous position.

To simplify the interpretation in the general q-dimensional case, in this paper we only deal
with the subset of isotropic B matrices, that is, B = βI , where I is the q ×q identity matrix. The
isotropic restriction is motivated by two main reasons. The first is a pragmatic one since making
the matrix B isotropic reduces the complexity of the model substantially. It is not unusual in
the applied literature on the OU process to use such a constraint (see, e.g., Blackwell, 2003).
For a general B, not only does just B have to be positive definite but the matrix B� + �B′
as well (Dunn & Gipson, 1977). Satisfying this constraint in the estimation process is quite
cumbersome. A second and more substantive reason to prefer the isotropic parametrization is
that it does not give any special importance to the chosen coordinate system. If the matrix B
is isotropic, the expected trajectories near the homebase are straight lines and, therefore, the
centralizing tendency matrix is invariant under rotation and reflection (see also Blackwell, 1997).
Accordingly, the centralizing tendency is controlled only by the distance from the homebase of
the process and not by its direction. However, for nonisotropic centralizing tendency matrices,
the expected trajectories close to the homebase are generally not straight lines, but are curved. In
the latter case, special importance is given to the coordinate system at hand. However, in most
psychological applications, the coordinate system is arbitrary (see also the application below).

If B is restricted to be isotropic, then it holds that e−Bd = e−βdI . Hence, if β is large (in
which case there is a strong centralizing tendency), the exponential factor in the conditional mean
μ + e−βd(Y (t) − μ) goes to 0, so that the next point is a draw from a normal distribution with
the homebase μ as a mean. Alternatively, if β is small (i.e., weak centralizing tendency), the
exponential factor is close to 1 and the next position is a draw from a normal distribution with
the previous position as its mean. Thus, as in the one-dimensional case, the matrix exponential
e−Bd part behaves as a weighting function, taking values between 0 and 1, and adding a certain
proportion to the homebase from the distance between the previous point and the homebase.
For isotropic B matrices, it holds that the conditional mean lies somewhere on the straight line
connecting μ and Y (t). This is further illustrated in Figure 1 where the 0.5 probability contour
curves of three conditional distributions from (1) for a two-dimensional (q = 2) model are drawn.
A cross × denotes the center of each conditional distribution. In all three cases, all parameters
are kept constant, except for the centralizing tendency which can take a small, medium, or large
value (see the figure for the exact numerical values). With a small β value, the conditional mean
of the distribution of the next point is close to the previous point but as β increases the conditional
mean is moving closer to the homebase. Note that the conditional variance also depends on the
centralizing tendency parameter: a larger β value implies a larger variability (see later).

The centralizing tendency controls the autocorrelation function. In Appendix A, it is shown
that the (continuous) autocorrelation function ρ(d) of an OU process equals e−βd . Because the



ZITA ORAVECZ, FRANCIS TUERLINCKX, AND JOACHIM VANDEKERCKHOVE 399

FIGURE 1.
The 0.5 probability contour curves of conditional distributions—the centers denoted by ×-s—with three different values
for β .

autocorrelation function is an exponentially decaying function of (continuous) time, the OU
process is the continuous time variant of an autoregressive process of order 1. Brockwell and
Davis (2002) denote such a process as a CAR(1) process (where C stands for continuous-time).
Figure 2 shows the change in the autocorrelation function as a function of time for four different
β values. Although the range of the β parameter is relatively small, it has a remarkable effect on
the slope of the autocorrelation function. Large (small) β values lead in general to small (large)
autocorrelation because the serial correlation function decays more (less) steeply.

The matrix � is the covariance matrix of the stationary distribution in (2) and is part of
the conditional covariance. It is a positive definite, symmetric q × q matrix containing the vari-
ances for each dimension on the diagonal (denoted with the corresponding row index) and the
covariances as off-diagonal elements:

� =
⎛

⎜
⎝

γ1 . . . γ1q

...
. . .

...

γq1 . . . γq

⎞

⎟
⎠ .

Large variance values imply that the process can go through many changes (i.e., it is very
volatile), while small variances lead to smoother trajectories. The covariances represent the ex-
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FIGURE 2.
Four different β values and their corresponding autocorrelation functions.

tent to which changes in one dimension tend to covary with changes in another dimension. In a
unidimensional context, the single γ parameter is often referred to as the volatility parameter.

Examining the features of the instantaneous variance � − e−Bd�e−B′d , we can see that
as the exponential part goes to 0 (i.e., a large centralizing tendency and/or time difference), the
instantaneous variance converges to the variance of the stationary distribution. As the exponential
part goes to 1 (i.e., small centralizing tendency and/or time difference), the conditional variance
becomes very small. To illustrate this, assume for simplicity that q = 2 (and B is isotropic). Then
� − e−Bd�e−B′d equals:

(
γ1(1 − e−2βd) γ12(1 − e−2βd)

γ12(1 − e−2βd) γ2(1 − e−2βd)

)

from which we can see the effect of the centralizing tendency β for a higher dimensional case
(given a constant time difference). On the one hand, when β is large, γ1 and γ2 are multiplied by
a number close to one, and hence the instantaneous variances are near to the variances of the sta-
tionary distribution. On the other hand, when β is small, the conditional variances are close to 0.
The same reasoning applies to the covariances. However, when considering the instantaneous
cross-correlations, it can easily be seen that they are independent of the centralizing tendency
and the time difference. Moreover, they are equal to the correlations of the stationary distribution
(ρ = γ12√

γ1
√

γ2
).

As already mentioned above, (1) is part of the solution of a stochastic differential equation
(SDE). Without presenting too much technical detail, the SDE is a convenient and intuitively
appealing way of representing the OU process because it provides a link with the more familiar
field of deterministic differential equations. A full and rigorous treatment of SDEs can be found
in Arnold (1974), Karlin and Taylor (1981), and Smith (2000). For demonstrative purposes, we
simplify matters here, and we will assume that q = 1, such that the vector μ and the matrices
� and B reduce to the scalars μ, γ and β , respectively. For the one-dimensional OU process as
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considered in this paper, the corresponding SDE equals

dY (t) = β
(
μ − Y(t)

)
dt + √

2βγ dW(t), (3)

where dY (t) is the (random) change in the process Y(t) in a small time interval (t, t + dt) and
W(t) represents a univariate standard (i.e., driftless and variance equal to one) Wiener process,
which is a mathematical model for a continuous-state continuous-time process with independent
increments (i.e., Brownian motion). The quantity dW(t) is the increment of this process W in
the small time interval (t, t + dt). As can be seen from (3), the change in Y(t) consists of two
components: a deterministic part and a stochastic part (embodied by the Wiener process term).
The solution of such a SDE requires a special stochastic calculus which we will not further
discuss here (a short introduction can be found in Brockwell & Davis, 2002).

However, if we let γ → 0, so that the stochastic part disappears, we are left with a simple
first-order linear differential equation. One can also see that the magnitude of change in the deter-
ministic part depends on the difference between the homebase μ and the current position Y(t). If
there were no stochastic disturbance in (3), the solution of the deterministic differential equation
(given an arbitrary initial value at time 0 of Y(0)) would be equal to

Y(t) = μ + (
Y(0) − μ

)
e−βt .

This solution represents the scalar version of the mean of the conditional distribution in (1).
Given the initial value Y(0), the exact position of the deterministic process can be found for every
time difference t . Moreover, if the time difference becomes large, the process converges to the
homebase μ. However, when the stochastic disturbance term is added again, the OU process is
retrieved and the exact position of the process is unpredictable because of the inherent stochastic
nature of the process.

In the following section, we will discuss how to extend the basic OU process in order to
make it appropriate for studying interindividual differences.

3. Hierarchical Extension of the OU Process

For the case where longitudinal data are collected for a random sample of persons, as is
often the case in psychological research, it is natural to consider a hierarchical extension of the
OU diffusion process in order to describe and explain interindividual differences. A hallmark of
the presented model is that all parameters are allowed to vary over individuals (and not only the
means as is commonly done).

Let us first fix some notation. A specific person p (p = 1, . . . ,P ) is measured np times at
the following sequence of time points: tp1, tp2, . . . , tps, . . . , tp,np . Note that we do not require
that persons are measured at regular time intervals or that they are measured at exactly the same
time points. The measured sequence of positions in the multidimensional space is denoted as
Y (tp1), . . . ,Y (tps), . . . ,Y (tp,np ). (Note that we will usually set tp1 equal to 0 for all persons to
align the measurements of the different persons.) For all persons, the model for the first observa-
tion of the chain of measurements is the person-specific equilibrium distribution:

Y (tp1) ∼ Nq(μp,�p). (4)

This assumption can be justified, since in many applications the process has been diffusing long
enough to have converged to its stationary distribution and forgotten its initial position. For the
subsequent points, we rely on (1) the conditional distribution of a single person p at time ts
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given its position at the previous measurement occasion Y (tp,s−1) is normal with conditional
mean vector δps and conditional covariance matrix �ps

Y (tps) | Y (tp,s−1) ∼ Nq(δps,�ps), (5)

where

δps = μp + e−Bp(tps−tp,s−1)
(
Y (tp,s−1) − μp

)

and

�ps = �p − e−Bp(tps−tp,s−1)�pe−B′
p(tps−tp,s−1).

Note that all parameter vectors and matrices carry an index p to denote that they are allowed to
be person specific.

In a hierarchical model, the individual parameters are assumed to be drawn from a population
distribution. Instead of merely listing these population distributions, we will also indicate how
the model can be complemented with person-specific covariate information, with which we will
attempt to explain interindividual differences in the basic OU parameters. If one only wants
to describe the amount of between-person variation in some parameters, the covariates can be
removed from the model so that only the intercept is left.

Let us suppose that k covariates are measured and xjp denotes the score of person p on
covariate j (j = 1, . . . , k). Then we can collect all covariate scores into a vector (together with
a constant 1 for the intercept) x′

p = (1, x1p, x2p, . . . , xkp). Furthermore, let αμ1 be the vector (of
length k + 1) with regression coefficients for the regression of the individual homebases onto the
covariates. The vectors with regression coefficients for the other parameters are given names in
a similar fashion (e.g., αβ for β , etc.).

At this point, we will introduce a simplification of our model in order to make the exposition
not overly complex. Most potential applications we encountered for the hierarchical OU model
are two-dimensional in nature and, therefore, we will assume in the remainder of the paper that
q = 2. However, the extension to higher-dimensional cases is mostly evident, except for one
part of the model (the variances), but it will be indicated explicitly how the general case can be
handled.

The person-specific homebase μp (for q = 2) is assumed to be a draw from the following
bivariate normal distribution:

μp ∼ N2
(
αμx′

p,�μ

)
, (6)

where

αμ = (αμ1,αμ2),

so that αμ is a (k + 1) × 2 matrix of regression coefficients. Furthermore, the matrix �μ, which
is defined as

�μ =
(

σ 2
μ1

σμ1μ2

σμ1μ2 σ 2
μ2

)
,

is the (residual) covariance matrix, representing the variations and associations that exist in the
population between the individual means of the stationary distribution after taking into account
the person covariates. As said above, if only the intercept is present in the covariate vector, then
the model just describes the population mean vector of the homebases and the variability in
the population. Note that the regression of μp onto covariates is in general a q-variate multiple
regression problem since μp is of length q .
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Not only the mean of the stationary distribution is assumed to be person-specific, but its
covariance matrix as well:

�p =
(

γ1p γ12p

γ12p γ2p

)
.

We need to propose a population distribution for these covariance matrices such that positive
definiteness of �p is ensured. Moreover, we would like to regress the variances and covariances
on covariates. An obvious choice would be to assume that �p is a draw from an inverse-Wishart
distribution. However, such a distribution does not allow the regression of variances and covari-
ances on covariates in a natural way. One possible alternative is to decompose the covariance
matrix (Barnard, McCulloch, & Meng, 2000), usually into standard deviations and correlation
matrices and assume proper distributions for these in order to ensure the positive definiteness.
In this paper, we make use of the fact that �p is a two-by-two covariance matrix such that it
can be decomposed into two variances and a correlation. Next, the logarithms of the variances
are assumed to be sampled from a normal distribution. After applying the Fisher-z transfor-
mation to the correlation coefficient, the transformed value is taken as a draw from a normal
distribution, which also provides the possibility of regressing the mean of this distribution on
covariates.

The two diagonal elements of the covariance matrix �p are regressed on the covariates in
the following way:

log(γ1p) ∼ N
(
x′

pαγ1 , σ
2
γ1

)
,

log(γ2p) ∼ N
(
x′

pαγ2 , σ
2
γ2

)
,

with αγ1 and αγ2 being regression coefficient vectors with k +1 components. Since it is assumed
that the log-transformed γ -parameters are normally distributed, the original γ -parameters follow
a lognormal distribution:

f (γup) = 1

γup

√
2πσ 2

γu

e
− 1

2
(log(γup)−x′

pαγu )2

σ2
γu , (7)

for u = 1,2 and where f (·) will be used in the remainder of the paper as the generic symbol to
denote a probability density function.

The covariance parameter γ12p of �p can be expressed in terms of standard deviations and
the correlation: γ12p = √

γ1p × √
γ2p × ρp . Instead of proposing a population distribution for

the covariance parameter, it will be assumed that the Fisher-z transformed (or z-transformed for
short) individual-specific cross-correlation coefficient F(ρp) is drawn from a normal population
distribution whose mean depends on covariates

F(ρp) ∼ N
(
x′

pαρ, σ 2
ρ

)
.

The parameter ρp is the cross-correlation for a person p and it indicates the extent to which
changes in one dimension tend to correlate with changes in the other dimensions for person p.
From the mean of the population distribution of the z-transformed ρp , it can be learned whether
there is on average (i.e., in the population) a positive, negative, or zero correlation between the
changes in two dimensions. The density of the original ρp then equals (applying the transforma-



404 PSYCHOMETRIKA

tion of variables technique; see, e.g., Mood, Graybill, & Boes, 1974):

f (ρp) =
∣∣∣∣
dF(ρp)

dρp

∣∣∣∣φ
(
F(ρp);x′

pαρ, σ 2
ρ

)

= 1

(1 − ρp)(1 + ρp)

1
√

2πσ 2
ρ

exp

(
− 1

2

( 1
2 log

( 1+ρp

1−ρp

) − x′
pαρ

)2

σ 2
ρ

)
, (8)

where F(·) is the Fisher-z transform and φ(x;μ,σ 2) is the normal density evaluated at x with
mean μ and variance σ 2. Again, αρ contains k + 1 regression coefficients.

It should be noted that the solution outlined here, where the elements of the matrix �p are
regressed onto covariates while still maintaining the positive definiteness of �p , is only valid
in the two-dimensional case. For q > 2 and with a regression of the elements of the covariance
matrix on predictors, we refer to Daniels and Pourahmadi (2002), whose approach is based on a
Cholesky decomposition of the covariance matrix �p .

Finally, because the centralizing tendency matrix Bp is isotropic, we need to assume a pop-
ulation distribution only for the single parameter βp . Since βp has to be positive, similarly to the
variance parameters, it is assumed that the log-transformed βp-values follow a normal distribu-
tion whose mean again depends on the covariates:

log(βp) ∼ N
(
x′

pαβ, σ 2
β

)
,

where the length of vector αβ is k + 1. As in the case of the variance parameters (γ1p and γ2p),
the distribution of βp is lognormal:

f (βp) = 1

βp

√
2πσ 2

β

e
− 1

2
(log(βp)−x′

pαβ )2

σ2
β . (9)

This completes the description of the model and puts us in a position to address issues of statis-
tical inference.

4. Statistical Inference for the Ornstein–Uhlenbeck Model

The intrinsic complexity of the model motivated us to perform all statistical inferences in a
Bayesian framework. The model complexity is mainly the result of the fact that all parameters
are treated in a hierarchical sense and are allowed to differ over persons. The resulting high-
dimensional integration over the many random effects distributions cannot be handled using
brute force quadrature methods. Therefore, parameter estimation is done by sampling from the
posterior density using a MCMC algorithm. For the model selection, we rely on the Deviance
Information Criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002). The major part
of this section is devoted to the estimation of the parameters. More details about the Bayesian
methodology can be found in Gelman et al. (2004) and Robert and Casella (2004).

As a first step, we derive the likelihood. Let us denote the data from person p as follows:
{Y (tps)}np

s=1. Given the sequence of observations from person p, the likelihood contribution for
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person p reads as

f
(
Y (tp1) | μp,Bp,�p

) np∏

s=2

f
(
Y (tps) | Y (tp,s−1),μp,Bp,�p

)

∝
np∏

s=1

|V ps |− 1
2 e− 1

2 (λT
psV

−1
ps λps) (10)

with

λps =
{

Yp1 − μp if s = 1,

Yps − [μp + e−Bp(tps−tp,s−1)(Y (tp,s−1) − μp)] if s > 1,

(11)

V ps =
{

�p if s = 1,

�p − e−Bp(tps−tp,s−1)�pe−B′
p(tps−tp,s−1) if s > 1.

The likelihood of all person-specific parameters (given the data from all persons 1, . . . ,P and
making use of the fact that the persons are independent) then equals

f
({

Y (t1s)
}n1
s=1, . . . ,

{
Y (tP s)

}nP

s=1 | μ1, . . . ,μP ,B1, . . . ,BP ,�1, . . . ,�P

)

=
P∏

p=1

f
({

Y (tps)
}np

s=1 | μp,Bp,�p

) ∝
P∏

p=1

np∏

s=1

|V ps |− 1
2 e− 1

2 (λT
psV

−1
ps λps), (12)

where λps and V ps are defined as in (11).
To find the posterior distribution, let us first collect (for simplicity) all model parameters in a

single parameter vector θ which contains the (unique) elements of the person-specific vectors and
matrices μ1, . . . ,μP ,�1, . . . ,�P ,B1, . . . ,BP , the regression coefficients αμ,αγ1 ,αγ2,αρ,αβ ,
the residual (co)variances �μ,σ 2

γ1
, σ 2

γ2
, σ 2

ρ , σ 2
β . The joint posterior of all parameters can then be

written as follows:

f
(
θ | {Y (t1s)

}n1
s=1, . . . ,

{
Y (tP s)

}nP

s=1

)

∝ f
({

Y (t1s)
}n1
s=1, . . . ,

{
Y (tP s)

}nP

s=1 | μ1, . . . ,μP ,B1, . . . ,BP ,�1, . . . ,�P

)

×
P∏

p=1

f
(
μp | αμ,�μ

) ×
P∏

p=1

2∏

u=1

f
(
γup | αγu, σ

2
γu

)

×
P∏

p=1

f
(
ρp | αρ, σ 2

ρ

) ×
P∏

p=1

f
(
βp | αβ, σ 2

β

)

× f (αμ)f (αγ1)f (αγ2)f (αρ)f (αβ)f (�μ)f
(
σ 2

γ1

)
f

(
σ 2

γ2

)
f

(
σ 2

ρ

)
f

(
σ 2

β

)
, (13)

where we have assumed independence between all sets of prior parameters. The distributions of
the person-specific parameters (third line of (13)) are given in (6), (7), (8), and (9).

In (13), we have not yet specified the prior distributions (last line of the equation). For all
regression coefficients α we assume a uniform prior:

f (αg) ∝ 1,
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where g can be equal to μ1, μ2, γ1, γ2, ρ or β (for the two-dimensional case). The prior distrib-
ution of �μ is assumed to be equal to

f (�μ) ∝ |�μ|−(q+1)/2

which is Jeffreys prior, and q = 2 in the two-dimensional case. We choose noninformative priors
for all the other variance parameters σ 2

g as well:

f
(
σ 2

g

) ∝ σ−2
g

which is a uniform prior on logσ . For the two-dimensional case g can be equal to μ1, μ2, γ1,
γ2, ρ, or β .

To sample from the joint posterior, we make use of the Gibbs sampler (Gelman et al., 2004;
Robert & Casella, 2004). For this, we need to derive the full conditionals, that is, the conditional
distribution of each parameter given the other parameters and the data. In many cases, the full
conditionals are known densities from which one can sample directly. If the full conditional is an
unknown distribution, we make use of a Metropolis–Hastings step in the Gibbs sampler to obtain
a draw from it. Because of reasons of efficiency, when deriving the full conditionals, we try to
treat parameters that logically belong together as one block (e.g., �μ or αμ). We start with the
full conditionals of the regression coefficients for the variances, the centralizing tendency and
the cross-correlation and subsequently treat the residual variances of these parameters. Next, we
treat the regression coefficients and residual covariance matrix for the mean positions and move
then to the lowest level parameters (the individual homebases, variances, cross-correlations, and
centralizing tendencies).

With regard to the unidimensional parameters (γ1, γ2, ρ, and β), the full conditionals of
their regression coefficients (αγ1 , αγ2 , αρ , and αβ ) and their residual variances (σ 2

γ1
, σ 2

γ2
, σ 2

ρ ,

and σ 2
β ) can be derived in a similar fashion. Here, we give the example of the full conditional of

αγ1 and σ 2
γ1

, but γ1 could be substituted by γ2, ρ, or β as well. The full conditional of αγ1 reads
as:

f
(
αγ1 | γ11, . . . , γ1P ,σ 2

γ1

) ∝ |V g|− 1
2 exp

(
− 1

2

(
αγ1 − Xα̂γ1

)′
V −1

g

(
αγ1 − Xα̂γ1

))
, (14)

where X is a P × (k + 1) matrix defined by stacking the person-specific covariate vectors x ′
p

below each other. If we denote g = (log(γ11), . . . , log(γ1P ))′ such that α̂γ1 = (X′X)−1X′g and
V g = σ 2

γ1
(X′X)−1, it can be seen that the full conditional of αγ1 is a normal density with mean

Xα̂γ1 and covariance matrix V g .
The full conditional for σ 2

γ1
, the residual variance of αγ1 , follows a scaled inverse-χ2 distri-

bution:

f
(
σ 2

γ1
| γ11, . . . , γ1P

) ∝ (
σ 2

γ1

)−( P−k−1
2 +1)

e
− (P−k−1)s2

2σ2
γ1

with

s2 = 1

P − k − 1

(
g − Xα̂γ1

)T (
g − Xα̂γ1

)
,

where g,X, and α̂γ1 are defined in the same way as in (14).
The full conditional of αμ is also a known density, but it is somewhat harder to obtain since

it involves a multivariate regression problem. The Bayesian treatment of multivariate regression
is described in Zellner (1971). The solution lies in treating αμ and �μ together: First, we draw
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�μ given all other parameters (except αμ) and subsequently we draw αμ, conditional upon all
other parameters and �μ. To start, we define the matrix M as the P × 2 matrix of individual
homebases, that is, M = (μ1, . . . ,μP )′. Then the least squares regression coefficient matrix (of
the regression of M on X, where the latter is defined in (14)), equals Âμ = (X′X)−1X′M .

Stacking the two columns of Âμ below each other results in α̂μ = (Â
′
μ1

, Â
′
μ2

)′. In the same
vein, stacking the two columns of αμ below one another gives 	αμ = (α′

μ1
,α′

μ2
)′. Also, define

S = (M − XÂμ)′(M − XÂμ). The full condition of �μ then equals

f
(
�μ | μ1, . . . ,μP

) ∝ |�μ|− P−k+2
2 e− 1

2 tr�−1
μ S (15)

which is an inverse-Wishart distribution with scale matrix S and degrees of freedom v = P −
k − 1. The full conditional of the matrix αμ is

f
(
αμ | �μ,μp,x′

p

) ∝| �μ |−k/2 e− 1
2 (	αμ−α̂μ)′�−1

μ ⊗(xpx′
p)(	αμ−α̂μ) (16)

with ⊗ denoting the Kronecker product.
The full conditional of μp (with p = 1, . . . ,P ) is a bivariate normal distribution (because of

conjugacy of the relevant parts of the likelihood and prior):

μp | {Yps}np

s=1,Bp,�p,αμ,�μ ∼ N2(	p,
p)

where


p =
(

�−1
μ + �−1

p +
np∑

s=2

V −1
ps −

np∑

s=2

V −1
ps e−Bpdps

−
np∑

s=2

(
e−Bpdps

)T
V −1

ps +
np∑

s=2

(
e−Bpdps

)T
V −1

ps e−Bpdps

)−1

,

	p = 
p

(

�−1
μ x′

pαμ + �−1
p Yp1 +

np∑

s=2

V −1
ps Yps −

np∑

s=2

V −1
ps e−Bpdps Yp,s−1

−
np∑

s=2

(
e−Bpdps

)T
V −1

ps Yps +
np∑

s=2

(
e−Bdps

)T
V −1

ps e−Bdps Yp,s−1

)

with dps = tps − tp,s−1 and V ps is defined in (11).
Unfortunately, there is no closed form solution for the rest of the full conditional distrib-

utions of the person specific diffusion parameters. To calculate the posterior of the covariance
matrix �p , we use the decomposition method which has been described earlier. Consequently,
we have to deal with the calculation of the conditional distributions of the variances and the
correlation. The full conditional of the variance γ1p is

f
(
γ1p | {Yps}np

s=1,μp, γ2p,ρp,Bp

) ∝ f (γ1p)

np∏

s=1

|V ps |− 1
2 e− 1

2 (λT
psV

−1
ps λps), (17)

where λps and V ps are defined as in (11). For the exact expression of f (γ1p), please see (7).
The formulation of the posterior distribution of γ2p follows exactly the same principle.
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The expression for the full conditional of ρp is very similar to that of the variances:

f
(
ρp | {Yps}np

s=1,μp, γ1p, γ2p,Bp

) ∝ f (ρp)

np∏

s=1

|V ps |− 1
2 e− 1

2 (λT
psV

−1
ps λps) (18)

since λps and V ps are specified as in (11). For the formula of f (ρp), see (8).
Since Bp = βpI , we have to deal only with βp . The full conditional for βp equals (note that

because this parameter does not play a role in the distribution of the first observation the product
starts only at s = 2):

f
(
βp | {Yps}np

s=1,μp,�p

) ∝ f (βp)

np∏

s=2

|V ps |− 1
2 e− 1

2 (λT
psV

−1
ps λps), (19)

where f (βp) is as in (9) and λps and V ps are shown in (11).
As has been discussed above, we use the Gibbs sampler for sampling for the posterior dis-

tribution. If a full conditional distribution is not a known distribution from which it is easy to
sample, a Metropolis–Hastings step is used. For this procedure, reasonable candidate generating
distributions have to be assigned. The types of these distributions were always chosen to be iden-
tical to the population distribution of these parameters with the previously accepted value as a
mean and with a variance which ensured a reasonable acceptance ratio (around 0.44, see Gelman
et al., 2004, p. 306). The acceptance ratio was monitored and updated during the burn-in. The
evaluation of the convergence is based on a visual assessment of the trace plots and on the values
of the R̂ diagnostic as it is described by Gelman et al. (2004).

A software program to sample from the joint posterior has been written in MATLAB. How-
ever, as can be seen from the equations of the full conditionals for all person-specific parameters
(with the exception of μp), we have to calculate a product with np factors involved (or a sum of
np terms on the logscale). Since this calculation has to be performed many times in an MCMC
algorithm, the process is computationally very demanding. For that reason, we have written the
most computationally intensive subroutines of the code—namely the above mentioned person-
specific likelihood parts—in C++, which then can be called from MATLAB in a straightforward
way. Consequently, the computation time is highly reduced. As an example, 10,000 iterations
take 2 hours on a computing node with an AMD Opteron250 processor and 2 Gb of RAM.

To carry out subsequent model selection, we opted for the Deviance Information Criterion
(DIC) statistic (Spiegelhalter et al., 2002). The DIC takes into account two important features
of the model: the complexity (based on the number of the parameters) and the fit (typically
measured by a deviance statistic). DIC examines the two features together and gives a measure
which balances between the two. Its formula is the sum of the effective number of parameters
and the posterior mean of the deviance (defined as −2 times loglikelihood). Theoretically, the
model with smaller DIC would better predict a replicate dataset of the same structure.

5. Application to Core Affect Trajectories

The hierarchical OU model as described in the previous sections will serve as a model for
the trajectories of individuals in the core affect space (Russell, 2003). According to Russell
(2003), core affect lies at the heart of a person’s emotional experience and can be character-
ized as a compound of hedonic (pleasure-displeasure) and arousal (deactivated-activated) values.
This core affect is always part of the human psyche as a consciously accessible state, which
changes continuously over time. The core affect space is defined by two dimensions: activation
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(vs. deactivation) and pleasantness (vs. unpleasantness). Consequently, the emotional experience
at a particular moment can be represented as a single point in the two-dimensional plane, and the
itinerary of a person’s emotional experience is the core affect trajectory. Our goal with modeling
the core affect variability with an OU model is twofold. First, we want to describe the individ-
ual and population characteristics of movement throughout the core affect space. By making use
of a stochastic model approach such as the OU model, we are able to treat the elapsed time as
continuous and model the two dependent variables (pleasantness and activation) simultaneously
(together with their cross-correlation). Moreover, we are able to evaluate the strength of the cen-
tralizing tendency and the magnitude of individual difference in it. As a second goal, we want to
explain the individual differences in the characteristics of individual trajectories. In doing this,
we could try to answer such questions as: Can the average position (mood) of an individual be
predicted from some of their major personality dimensions?

The most common method for collecting data about such trajectories is experience sam-
pling (Bolger et al., 2003; Csikszentmihalyi & Larson, 1987; Larson & Csikszentmihalyi, 1983;
Russell & Feldman-Barrett, 1999). Persons are surveyed repeatedly at randomly chosen time
points with respect to their position in the core affect space and this assessment takes place in the
natural environment of the participants. From data obtained by experience sampling, we are able
to investigate the intra and interindividual variation in core affect position.

As an illustration of the hierarchical OU model for the core affect trajectories, we used a
dataset of which a subset has been described in Kuppens, Van Mechelen, Nezlek, Dossche, and
Timmermans (2007). In the present study, 80 students from the University of Leuven were paid
to give systematic self-reports about their emotional state in the core affect space during one
week. The participants were provided with a booklet in which they could indicate their positions
on the Affect Grid (Russell, Weiss, & Mendelssohn, 1989; see the used format of the grid on
Figure 3), when a preprogrammed wristwatch beeped (9 times a day).

Not surprisingly, some of the planned measurements were missing. If the participants missed
a beep, they had to indicate why they missed it, and in almost all cases the reason was that they
did not hear it. Therefore, the missing data were considered to be missing completely at random

FIGURE 3.
The Affect Grid used in the application.
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(MCAR; Little & Rubin, 2002) and it was assumed that there was no observation at that particular
time (which makes the data unbalanced).

The average age of the participants was 21.7 years (SD = 4.7) and 60% of them were
women. The maximum number of measurements for a single person was 63 and on average there
were 60 measurements per person (SD = 3.4). The elapsed time interval between the measure-
ments was semi-random. The participants were asked to give information about the time when
they were awake, this interval was divided into equal periods, and a random beep was scheduled
into each period. As a result of this procedure, we do not have measurements for the nights.

In addition to the experience sampling, in an introductory session the participants also com-
pleted the Dutch version of NEO-FFI (Hoekstra, Ormel, & de Fruyt, 1996), which is a question-
naire to measure the dimensions of the Five Factor model of personality (Big Five). The NEO–
FFI consists of 60 items divided equally into five scales which asses Neuroticism, Extraversion,
Openness to experience, Agreeableness, and Conscientiousness. All items are rated on a 5-point
scale ranging from 1 (strongly disagree) to 5 (strongly agree). The five factors will be used as
covariates to explain individual differences in the characteristics of core affect trajectories.

5.1. Exploratory Data Analysis

An exploratory data analysis was carried out to investigate the main characteristics of the
measurements. First, we present two typical person profiles from the data set (Figure 4).

Subsequent measurements are connected with straight lines. We can see from these profiles
that there is variability in the occupied positions in the core affect space but we also notice that
the extent of this variability may differ somewhat between individuals.

Figure 5 shows a smoothed heat map of the visit frequencies in the core affect space, based
on the aggregated data. We can clearly see a central area, where most of the visits are concen-
trated. We expect the population distribution of homebases to be located somewhere in that area.

Figure 6 shows the estimated vector-field of the core affect grid with the data pooled together
for all individuals in the dataset. For each cell in the core affect grid, the length of the vector is
proportional to the estimated escape velocity from that cell and its angle corresponds to the
direction of escape. At the more central locations in the grid, the average velocity to move away
is very small. However, as farther away from this central point, there is a tendency to be pulled
toward the center: the directions of most of the vectors are more or less toward the central location

FIGURE 4.
Person profiles in the core affect grid.



ZITA ORAVECZ, FRANCIS TUERLINCKX, AND JOACHIM VANDEKERCKHOVE 411

and with increasing distance from the central point, the vector length tends to increase. (At the
border cells, we notice more irregularity—these are due to sampling variability because there are
much fewer visits to these outer cells; see also the heat map in Fig. 5.)

FIGURE 5.
Smoothed heat map of the visit frequencies in the core affect space.

FIGURE 6.
Estimated vector field of the core affect grid.
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FIGURE 7.
Convergence of the core affect space data with respect to the population mean of the pleasantness homebase, intraindi-
vidual variance in activation and the serial-correlation.

5.2. Implementation of the MCMC Algorithm

The results presented below are based on 36,000 draws from the posterior distribution, which
come from six chains with 6,000 iterations each. Each chain started with a burn-in period, to be
discarded, of length 4,000. The initial values of the chains are randomly perturbed rational values
derived from the data (e.g., the sample average for the homebases). Convergence checks showed
no problems (all R̂ < 1.1). Generally, the convergence was fast for all parameters. Figure 7 shows
the six iteration histories for three parameters (in each case starting from different initial values).

To demonstrate the efficiency, we ran some simulations for illustrative purposes. We simu-
lated two data sets with the estimated population means, but with different numbers of people.
Figure 8 shows the recovered population means with sample size 80, as in the application in the
first column and with sample size 20 in the second column. The black line shows the simulated
value. As can be seen, as the sample size increases, convergence is faster and the uncertainty
with respect to the mean decreases, but the model does reasonably well with a relatively small
sample size (20 subjects) as well.

5.3. Results

In a first step, we estimated the model without covariates to get a general description about
the core affect space (technically by reducing the covariate vector x′

p to the scalar value 1 for
each person). Table 1 shows a summary of the results, containing the posterior mean (which is
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FIGURE 8.
Convergence of the simulated data with respect to the population mean of the pleasantness homebase, intraindividual
variance in activation and the serial-correlation for population size 80 (first column) and 20 (second column).

TABLE 1.
Summary measures of the posterior distributions for the most important parameters of the OU model estimated without
covariates.

Model Description Posterior 95% posterior Posterior
parameter mean credibility interval SD

Pleasantness
αμ1 Average homebase 5.95 5.79 6.10 0.08
σμ1 SD of the average homebase 0.42 0.29 0.61 0.08
αγ1 Average log-variability 0.94 0.81 1.07 0.06

Activation
αμ2 Average homebase 5.23 5.09 5.37 0.07
σμ2 SD of the average homebase 0.30 0.19 0.45 0.06
αγ2 Average log-variability 1.18 1.07 1.30 0.05

σμ1μ2 Covariance between the homebases 0.05 −0.04 0.16 0.05
αρ Average Fisher transformed cross-correlation 0.02 −0.04 0.08 0.03
αβ Average log-centralizing tendency −4.03 −4.23 −3.82 0.10

technically the intercept) and standard deviation and the endpoints of the 95% posterior cred-
ibility interval. The estimated means of the homebase population distribution are (5.95, 5.23),
which correspond to the findings of previous research (Russell et al., 1989). It shows that on
average, the emotional state of persons is slightly pleasant and rather activated than deactivated.
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FIGURE 9.
Change in the autocorrelation function according to the estimated βp parameters of the individuals.

If we look at the standard deviations of the homebases (0.42, 0.30) on the two dimensions, it
appears that there is an approximately equal amount of variability in the homebases across per-
sons. The covariance in the population between the homebases of the dimensions is estimated to
be 0.05, which means that across persons, the homebases of the pleasantness and the activation
dimensions are not related.

The average log-variance of the activation-deactivation dimension (1.18, which corresponds
to an expected mean of 3.65 on the normal scale) is somewhat larger than the average log-
variance of the pleasantness-unpleasantness dimension (0.94, i.e., 2.94 on the normal scale).
Considering the posterior mean of the Fisher transformed correlation in the stationary distribu-
tion, it can be seen that the latter is rather small (i.e., 0.02), suggesting that on average, there is
not much cross-correlation (i.e., on average, the bivariate person-specific stationary distributions
have zero correlation). However, there is considerable variability in the estimated person-specific
untransformed cross-correlation parameters: The average value is 0.02, while the between-person
standard deviation is large (0.21), with the endpoints of the 95% credibility interval equal to
−0.42 and 0.39, respectively. (It must be emphasized here that there is a large conceptual differ-
ence between the population correlation of the homebase distribution as discussed above—equal
to 0.05—and the average correlation of the stationary distribution as discussed in this paragraph;
both concepts are unrelated to each other.)

The mean of the population distribution of the logarithm of the centralizing tendency is
estimated to be −4.03. If we convert it back to the original scale, the estimate for the mean of the
population average centralizing tendency is 0.026. We may also look at the posterior estimates
for the person-specific centralizing force (i.e., βp). To illustrate the interpretation of this average
and the individual variation in centralizing tendency graphically, we convert the posterior person-
specific βp estimates to the corresponding autocorrelation functions. Figure 9 shows the person-
specific autocorrelation function together with the autocorrelation functions based on the average
population value (thick line). For most participants, the autocorrelation between subsequent core
affect positions separated 2 hours in time is fallen below 0.2.
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TABLE 2.
Summary of the regression coefficients with a 95% posterior credibility not containing 0.

Model Description Covariate Posterior 95% posterior Posterior
parameter mean credibility interval SD

Pleasantness
αμ1N Homebase Neuroticism −0.38 −0.64 −0.11 0.13
αγ1N Variability Neuroticism 0.23 0.01 0.45 0.11
αγ1A Variability Agreeableness −0.29 −0.58 −0.00 0.14

αρC Cross-correlation Conscientiousness −0.17 −0.29 −0.06 0.06

Note. Model parameters refer to the regression weights. For example, αμ1N is the regression weight for
neuroticism relating to the homebase in the pleasantness dimension (μ1).

In a next step, each of the six person-specific Ornstein–Uhlenbeck parameters (i.e., the
two homebases μp and the log-variances log(γup) of the pleasantness-unpleasantness and the
activation-deactivation dimensions, the Fisher transformed cross-correlation between the dimen-
sions F(ρp) and the log-centralizing tendency log(βp)) were regressed onto the Big Five per-
sonality dimensions. Table 2 summarizes posterior means and standard deviations for the four
regression coefficients for which the 95% posterior credibility intervals do not contain zero.

The current analysis shows that the neurotic individuals tend to have a lower homebase with
respect to pleasantness. Also, they show higher intra-individual variance in this dimension. Based
on these findings, it seems that they generally feel quite unpleasant but it changes dynamically,
which might suggest emotional instability. In contrast, agreeable individuals tend to have lower
variation with respect to pleasantness.

The cross-correlation parameter presents another interesting aspect of the core affect space.
It shows how changes with respect to hedonic and arousal values coincide. Interestingly, for
conscientious individuals, changes in one dimension are negatively correlated with the changes
in the other one. In their case, high levels of pleasantness might often be accompanied with
relatively low levels of activation and vice versa.

The presented results are based on the basic OU model in which every diffusion parameter
was modeled as a random effect, that is, we assumed that people would differ from each other
with respect to all of the modeled variables. However, we can construct simpler models, by
removing individual difference dimensions from the model (i.e., restricting parameters to be
equal across persons) or by dropping parameters altogether. Three constrained models were fitted
and compared to the basic model using the DIC (estimated on 4,000 posterior draws). The DIC
value of the basic model is 18,103. In the first constrained model, we did not allow βp to vary
across persons, but we still estimated a nonperson-specific β . The DIC of this model is higher,
namely 18,366. Then we tested whether there is any need for autocorrelation in the model at
all by fixing β to a large value. The resulting DIC of this constrained model was even higher,
19,377, indicating that we indeed need to take into account the autocorrelation in the model.
Finally, we estimated a very simple constrained model where just the homebases were person-
specific. This model showed the highest DIC value (i.e., 19,723). These outcomes tend to confirm
our assumption that people do differ with respect to the modeled parameters.

6. Conclusion

In this paper, we have introduced a model for the analysis of multivariate longitudinal pro-
files with continuous and possibly unbalanced measurement times. The presented hierarchical
diffusion modeling approach offers three distinctive characteristics.
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First of all, in our approach a multivariate Ornstein–Uhlenbeck diffusion process serves
as a model for individual behavior. The OU diffusion process is an intuitively appealing way of
describing the continuous change of certain phenomena over time, certainly for constructs related
to mood and emotion. Although we must mention that the current methodology is developed for
quantitative variables, and not yet able to deal with categorical or mixed responses.

Second, we have succeeded in allowing for individual differences in all parameters of the
model. Traditionally, one only looks for between-person differences in the mean structure. How-
ever, our application suggests that with respect to variation in core affect trajectories, there are
also differences between people in their variabilities, cross-correlations between the dimensions
and autocorrelations. The latter aspects are usually thought of as fixed over persons. That there is
individual variation in these features has been confirmed by regressing the individual differences
parameters on covariates and thereby explaining the existing variation. Although we have only
a single application, it holds interesting suggestions for further substantive research in the core
affect domain.

Third, we have fitted the model using a Bayesian approach. The parameter estimation pro-
cedure is exact (in the sense that it is not an approximated model that is fitted) and relatively
fast (a single analysis takes only a few hours). Bayesian parameter estimation has the advantage
that relatively complex models (as the one described in this paper) can be handled and that the
uncertainty in the parameter estimates is easy to express (by means of credibility intervals or
even visually by plotting marginal posterior distributions). It also provides a useful framework
for model selection.

A major remaining challenge regarding the present modeling framework is the issue of sys-
tematic model testing. In this paper, we have concentrated on model selection (i.e., selecting the
best fitting model among a predefined set of possible models) using the DIC. This is a common
way of working in the domain on hierarchical or multilevel models where model selection is
carried out using approximative methods such as DIC, AIC, or BIC (the latter two employed
in a non-Bayesian context). In addition, absolute measures of model fit can also be considered,
but this is a far more involved issue not in the last place because of the hierarchical nature of
the model. Candidate procedures that could be considered involve, for instance, the posterior
predictive check framework (e.g., Gelman et al., 2004; Gelman, Goegebeur, Tuerlinckx, & Van
Mechelen, 2000).

Appendix A. Derivation of the Autocorrelation Function for a Multivariate OU Process

For simplicity and without loss of generality, let us assume that μ is a q × 1 vector of zeros.
Then the covariance matrix function of the OU process with a general B and � can be derived as
follows (see also Schach, 1971):

E
[
Y (t)Y ′(t + d)

] = E
[
E

(
Y (t)Y ′(t + d) | Y (t)

)]

= E
[
Y (t)E

(
Y ′(t + d) | Y (t)

)]

= E
[
Y (t)Y ′(t)e−B′d]

= E
[
Y (t)Y (t)′

]
e−B′d

= �e−B′d .

If B equals βI then the covariance matrix function becomes �e−βd . Because var[Y (t)] =
var[Y (t + d)] = �, the autocorrelation function ρ(d) is equal to e−βd .
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