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This paper uses log-linear models with latent variables (Hagenaars, in Loglinear Models with Latent
Variables, 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between
many common models is explicitly defined and discussed. In addition, because the log-linear model with
latent variables is a general model for cognitive diagnosis, new alternatives to modeling the functional
relationship between attribute mastery and the probability of a correct response are discussed.
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1. Introduction

Over the past several decades, research in educational assessment has led to expanded mod-
els that provide a profile defining mastery or nonmastery of a set of predefined skills or attributes.
These models, commonly called cognitive diagnosis models (CDMs) define an individual’s abil-
ity based on the attributes that have or have not been mastered. Given this mastery profile, the
probability of a correct response is defined by mastery/nonmastery of the skills that are required
by an item. As opposed to more common models such as unidimensional item response theory
(IRT) and classical test theory (CTT), CDMs promise an explanation of why an individual is
not performing well based on those skills that have not been mastered. IRT and CTT provide a
continuous measure of ability and, therefore, only provide a rank ordering of examinees. Any
diagnostic information (mastery/nonmastery) must be obtained using additional analyses. This
paper seeks to define a family of models, additionally describing the relationship between many
common models that have been developed for cognitive diagnosis.

As they are currently defined, CDMs focus primarily on determining the set of skills that
an individual has or has not mastered. This focus on educational achievement testing has led
some to employ the label “skills assessment.” However, stronger links to cognitive theory are
possible. Where we define cognitive theory as describing the process of how the skills combine
to produce item response behavior. These links include evaluations of theories based on the “fit”
of specific CDM models. Where appropriate, connections to theory, evaluation, and development
are addressed.

Within the CDM literature, assumptions about how skills (or cognitive/psychological
processes) influence test performance are operationalized through selection of a specific CDM.
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One of the largest differences is between those CDMs that are described as noncompensatory
models (including conjunctive and disjunctive models) versus those models that are described
as compensatory models. Of the noncompensatory models, conjunctive models are typically
thought to be models for which one cannot “make up” for nonmastery of attributes by mastery of
other attributes. To perform reasonably well on any item under the assumption of a conjunctive
model, one must know all required attributes. Lacking even a single required attribute can dra-
matically decrease the probability of a correct response. Math tests are perhaps the best examples
where a set of skills are all required to perform well on an item (e.g., mixed fraction subtraction,
Tatsuoka, 1990), and if even one has not been mastered the item will most likely be missed, but
other examples include verbal tasks such as verbal classification and synonym items (Embret-
son, 1985; Janssen & DeBoeck, 1997) in addition to the Raven’s Progressive Matrices (Fischer
& Forman, 1982).

Disjunctive models are an alternative set of noncompensatory models, which can be consid-
ered as the “opposite” of conjunctive models. Specifically, disjunctive models define the proba-
bility of a correct response such that mastering a subset (in some cases only one) of the attributes
is sufficient to have a high probability of a correct response. Therefore, an examinee mastering
all of the required attributes is expected to perform in a similar way as an individual mastering
only a subset of the required attributes. Such models have been shown to be useful in psychology
(Templin & Henson, 2006), but could also be useful in education when items have more then one
strategy that could be used to obtain a correct answer. In that case, each strategy may require a
different skill and thus mastery of one or the other skill could still result in a high probability of
a correct response.

Unlike noncompensatory models, compensatory models have been described (using contin-
uous variables) as allowing an individual to “make up” for what is lacked in one skill by having
mastered another. However, we note that this terminology can be somewhat confusing given that
a similar statement could be said of disjunctive models, therefore, a different terminology is used
to discuss the differences between compensatory models and noncompensatory models in CMDs.
Specifically, we note that another way of discussing the difference between compensatory and
noncompensatory models is based on the relationship between any set of attributes (e.g., the two
attributes A1 and A2) and the item (X). A compensatory model can be defined as a model such
that the conditional relationship between any attribute and the item response does not depend
on mastery or nonmastery of the remaining required attributes of that item (using notation of a
model based on log-linear models this can be described as the model {A1X, A2X, A1A2}, and
thus only two interactions of each attribute with an item are needed). In contrast, the conditional
relationship between any attribute and the item response does depend on mastery or nonmastery
of the remaining attributes for noncompensatory models (again using notational short hand of the
log-linear model, the model {A1A2X} must be true, and thus a three-way interaction is needed).
Later in this manuscript a more detailed comparison of the distinctions between these models
will be discussed by using the log-linear model with latent variables.

Even within the breadth of noncompensatory and compensatory models, a number of sep-
arate models has been developed. For example, common conjunctive models include the Deter-
ministic Input; Noisy “And” gate (DINA; Junker & Sijtsma, 2001), Noisy Input; Deterministic
“And” gate model (NIDA, Junker & Sijtsma, 2001), and the Reparameterized Unified Model
(RUM, Hartz, 2002), whereas examples of disjunctive models include the Deterministic Input;
Noisy “Or” gate model (DINO, Templin & Henson, 2006). In addition, two of the most common
models that have been used as compensatory models are the General Diagnostic Model (GDM,
von Davier, 2005) and a special case of the GDM called the compensatory RUM (Hartz, 2002).

Because each model has different assumptions and levels of complexity (e.g., number of
parameters), one must first determine the appropriate model before completing an analysis. Little
has been done to explicitly express the differences of each model and directly parameterize these
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differences. Currently, one of the most general models was developed by von Davier (2005).
In his discussion of the general diagnostic model, he provides a general parameterization that
because of its link to log-linear models with latent variables, allows for most cognitive diagnosis
models. However, in his discussion, he provides no clear link between popular models in the
literature. Instead, von Davier (2005) focuses on even more general situations with little to no
mention of the models that are the focus of this paper.

The purpose of this paper is to first discuss several common models for cognitive diagnosis
and then briefly discuss log-linear models with latent variables (Haberman, 1979; Hagenaars,
1993). Then we will show that by using a specific form of these models where both attributes
and items are assumed to be dichotomous, the log-linear model with latent variables for cognitive
diagnosis (called LCDM) defines a full continuum of models that can be expressed easily ranging
from fully disjunctive models (i.e., the DINO) to fully conjunctive models (i.e., the DINA). With
this parameterization, a better understanding of these models and their differences is provided. In
addition, analyses will not be constrained to the models that have currently been developed, but
instead can be determined based on underlying theory of the construct or through exploratory
analyses. Finally, an example is provided where the full LCDM is estimated, which provides
empirical information as to the appropriate model for each item.

1.1. Current Cognitive Diagnosis Models

As was briefly mentioned, CDMs define the probability of a correct response based on an
attribute mastery profile. Because there are a finite set of attribute mastery profiles, CDMs are
similar to latent class models. Specifically, CDMs are special cases of constrained latent class
models where classes are defined by the attribute mastery profiles (for a general progression to
CDMs, see Macready & Dayton, 1977; Rindskopf, 1983; Haertel, 1989). Thus, CDMs assume
that all individuals mastering the same set of required attributes for any given item will have the
same probability of a correct response for an item (i.e., probabilities are constrained to be equal
across all examinees who have the same profile for attributes required by an item).

Although this assumption is somewhat restrictive, CDMs have shown promise in educational
and psychological assessment and it is believed that their applications will continue to expand.
For example, Tatsuoka (1990) and others (e.g., de la Torre & Douglas, 2004) have discussed the
use of CDMs to assess mixed number subtraction (a data set that is later used as an example in
this paper). In this case, it was argued that there are certain “skills” such as finding a common
denominator that a student either knows or does not know. Another use of cognitive diagnosis
models in education has been in language assessment among which one of the most complete
studies was completed by Jang (Jang, 2005). Using two prototype tests of the Next Generation
Test of English as a Foreign Language (NG TOEFL), developed by the Educational Testing Ser-
vice, Jang seeks to first determine a reasonable set of dichotomous attributes and then validate
the use of a CDM by providing teachers with diagnostic information about their students. Jang
(Jang, 2005) was able to determine a set of nine attributes such as “Analyze and evaluate relative
importance of information in the text by distinguishing major ideas from supporting details.” In
addition, Jang showed a measurable increase in the skills when teachers are informed of students’
specific deficits. Finally, CDMs can be useful in the assessment of psychological disorders. Tem-
plin and Henson (2006) discussed the evaluation of pathological gambling based on identifying
the set of 10 dichotomous criteria that are met by an individual. Currently, many disorders are
identified by a set of dichotomous criteria are either met or not met. Although these are a few
examples of applications where CDMs have been shown to be useful, many more situations
in the social sciences could benefit from these models because of the more detailed diagnostic
information that is provided.

As was the case in the examples previously discussed and in all models discussed in this
paper, a Q-matrix, Q is required by the analysis. The Q-matrix is an item by attribute indicator
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matrix that defines which attributes must be mastered to have a high probability of a correct
response. Specifically, for each element, qjk = 1 if the j th item measures (and thus requires)
the kth attribute and qjk = 0 if the kth attribute is not required for the j th item. Notice that in
specifying the q-matrix, it is implicitly assumed that the set of skills used for correctly answering
each item can be determined. In addition, another assumption made by the q-matrix is that one
and only one strategy is being used by students, which is one limitation suffered by many CDMs
(for an example of a multiple strategy CDM, see de la Torre & Douglas, 2004).

By defining which items measure which attributes, the q-matrix explicitly defines all at-
tributes (in the context of the test and the model). Any change in the q-matrix or model redefines,
at least slightly, the interpretations of the set of user-specified attributes, even if we keep their
substantive labels the same. Therefore, it is important that the construction of the q-matrix for
a specific model be done with care. Ironically, while the development of the q-matrix and the
identification of the model are among the most critical, as well the most challenging steps in a
CDM analysis, most CDMs assume that the q-matrix is given and favor a specific model based
partially on availability of software. Because of this, great effort must go in to the development
of the Q-matrix based on a well-developed theory.

In addition to the Q-matrix, all models in this paper assume that an examinee’s ability is
characterized by a mastery profile αi . Where the ith examinee’s mastery profile, αi , is a vector
of length K (where K is the total number of attributes) indicating which attributes have been
mastered. Specifically, αik = 1 if the kth attribute has been mastered by the ith examinee and
αik = 0 if the kth attribute has not been mastered.

Given the Q-matrix and an examinee’s attribute pattern, CDMs define the probability of a
correct response. Cognitive diagnosis models differ in how the probability of a correct response
is defined. Therefore, the following subsections describe models classified as noncompensatory
and compensatory models.

1.2. Noncompensatory Models

Recall that noncompensatory models are defined as models where the conditional relation-
ship between any attribute and the item responses depend on the remaining required attributes
that have been mastered or not. Because of the nature of this dependency, noncompensatory
models can be divided into conjunctive and disjunctive models.

1.2.1. Conjunctive Models Among some of the simplest conjunctive models is the DINA
(Deterministic Input; Noisy “And” Gate, Haertel, 1989; Junker & Sijtsma, 2001) model. For each
item, the DINA model divides examinees into two classes, those who have mastered all required
attributes and those who have not that are indicated by the latent variable, ξij . The value ξij

equals one for those examinees who have mastered all required attributes and is zero otherwise.
Specifically, for examinee i for item j ,

ξij =
K∏

k=1

α
qjk

ik . (1)

Once the value of ξij is known, the probability of a correct response for examinee i for correctly
responding to item j is defined by sj and gj , where sj is the probability of incorrectly answering
an item when in fact all required attributes have been mastered (or “slipping”) and gj is the
probability of correctly responding to an item when all required attributes for that item have not
been mastered (a “guessing” parameter).

sj = P
(
Xij = 0|ξij = 1

)
, (2)

gj = P
(
Xij = 1|ξij = 0

)
. (3)
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Given the j th item’s parameters and ξij , the probability of a correct response can be written as

P
(
Xij = 1|ξij

) = (1 − sj )
ξij g

(1−ξij )

j . (4)

The DINA makes one additional constraint that (1−sj ) > gj and, therefore, an examinee master-
ing all required attributes, ξij = 1, has a higher probability of a correct response than an examinee
who has not mastered all required attributes, ξij = 0.

Notice that by defining the DINA model in this way, the probability of a correct response
is only high when an examinee has mastered all required attributes. If only a subset of the re-
quired attributes have been mastered, the probability of a correct response is expected to be low,
meaning that a positive relationship between any required attribute and the item exists only if
all other required attributes have been mastered, otherwise mastery of any required attribute is
independent of the item response.

The DINA model has been considered too restrictive in that all examinees who lack at least
one required attribute are assumed to have the same probability of a correct response, gj . One
model that addresses this concern is a reduced1 version of the Reparameterized Unified Model
(RUM; Hartz, 2002). Given an examinee’s αi , the reduced RUM defines the probability of a
correct response as:

P
(
Xij = 1|αi

) = π∗
j

K∏

k=1

r∗
jk

qjk(1−αik). (5)

Here, the item parameter π∗
j is defined as the probability of a correct response to item j assuming

that all required attributes have been mastered. The r∗
jk parameters are constrained such that

0 ≤ r∗
jk ≤ 1, and indicate the proportional amount that the probability of a correct response to

item j is reduced if the kth required attribute (qjk = 1) has not been mastered. Unlike the DINA,
when using the reduced RUM, the probability of a correct response decreases for each attribute
that has not been mastered.

As was the case when using the DINA, the conditional relationship between any attribute and
an item response is smallest when all other required attributes are not mastered. This conditional
relationship (i.e., which defines the difference of the log-odds comparing masters of a specific
attribute to nonmasters) is largest when all other attributes have been mastered.

1.2.2. Disjunctive Models As an alternative to conjunctive models, disjunctive models as-
sume that mastery of additional attributes provide little to no gain once a subset of the required
attributes have been mastered. Templin and Henson (2006) describe a disjunctive model called
the DINO (Deterministic Input; Noisy “Or” Gate) model. The DINO, much like the DINA, mod-
els the probability of a correct response as a function of a slipping parameter, sj , and a guessing
parameter, gj . However, instead of defining ξij they use the parameters ωij . The latent variable
ωij is defined as

ωij = 1 −
K∏

k=1

(1 − αik)
qjk , (6)

which is an indicator of whether the ith examinee has mastered at least one of the required
attributes for the j th item. Therefore, ωij = 1 for any examinee having mastered one or more
of the item’s required attributes and ωij = 0 for an examinee who has not mastered any of the

1The full model includes a continuous latent variable in addition to the dichotomous latent variables. However, to
define a family of cognitive diagnosis models, we currently only address those models that are constrained latent class
models without any additional continuous variables, and thus use the reduced version of the RUM.
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required attributes. Given ωij the probability of a correct response is defined as:

P
(
Xij = 1|ωij

) = (1 − sj )
ωij g

(1−ωij )

j . (7)

As in the DINA, examinees are divided into two groups, however, once one of the required
attributes has been mastered the probability of a correct response increases from gj to (1 − sj ),
where gj < (1 − sj ). The probability of a correct response does not increase for examinees who
have mastered more than one of the required attributes, and thus the conditional relationship
between any required attribute and the item response is zero given that at least one other required
attribute has been mastered.

1.3. Compensatory Models

As was mentioned previously, compensatory models are defined such that the conditional
association of any required attribute and an item does not depend on mastery of any other required
attributes and, therefore, the increase of the log-odds of a correct response when comparing a
nonmaster to a master is constant across all other levels mastery and nonmastery of the other
required attributes.

One of the simplest examples of a compensatory model is the compensatory version of the
RUM (Compensatory RUM; Hartz, 2002), which is a special case of the GDM (von Davier,
2005). The compensatory RUM is defined as:

P
(
Xij = 1|α) = exp (

∑K
k=1 r∗

jkαikqjk − π∗
j )

1 + exp (
∑K

k=1 r∗
jkαikqjk − π∗

j )
, (8)

where all r∗
jk > 0. Notice that in the compensatory RUM, the lowest probability is defined as a

function of only −π∗
j (similar to a guessing parameter). The probability of a correct response is

then increased as a function of each required attribute that is mastered (defined by r∗
jk). Therefore,

the relationship between any attribute and item performance is not conditional on the remaining
required attributes.

1.4. Summary of Cognitive Diagnosis Models

A number of cognitive diagnosis models have been defined, each with their own benefits and
limitations and although we have described the differences based on the conditional relationships
of each attribute with each item, little is understood as to the true differences between each of
these models. In defining a model that unifies many of the previously defined models, a general
approach to cognitive diagnosis is given, which will also quantify the true differences between
these models. In the following section, a general description of the model is provided and its
relationship to each of the previously defined models is discussed.

2. Log-Linear Models with Latent Variables

We begin by briefly discussing the basic log-linear model and its extension to include la-
tent variables which was initially discussed and estimated by Haberman (1974, 1979) and later
discussed by Hagenaars (1993). To better discuss the log-linear model, we use a basic example
using three discrete variables X, Y , and Z. The basic log-linear model is used to evaluate rela-
tionships between X, Y , and Z, where X has categories i = {0,1}, Y has categories j = {0,1},
and Z has categories k = {0,1}. We assume that n independent observations have been collected
and for each observation, X = i, Y = j , and Z = k are observed. One way to summarize the in-
formation of the n observations is using a 3-way contingency table. The log-linear model is used
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to model the frequency (Fijk) of any cell. Specifically, using the full saturated model to predict
the frequency of all 2 × 2 × 2 = 8 cells Fijk is defined as

logFijk = η + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ij + λYZ

jk + λXYZ
ijk . (9)

Using the full saturated model, all cells are perfectly predicted in that there are also eight para-
meters. In addition, each λ represents a change in the logFijk . For example, λX

i represents the
change in logFijk of being at category i for the variable X when compared to a defined reference
group. Whereas λXY

ij represents the added change in the logFijk of being in the ij category of
variables X and Y . One way of identifying this model is based on a reference coding such that
one determine category of any variable is set to zero (this method is assumed throughout the rest
of the paper, where the reference group contains those individuals who have not mastered any
of the required attributes). For a more detailed description of the log-linear model, see Agresti
(1990) and Hagenaars (1993).

The log-linear model has also been extended such that latent variables can be included in the
model. Specifically, using the previous example with X, Y , and Z it may be hypothesized that
the only relationships between X, Y , and Z are due to a set of latent variables. Hagenaars (1993)
discusses a model such that these latent variables are discrete (see also Haberman, 1979). For the
purpose of this paper, a discrete dichotomous latent variable will be indicated as αu, where αu is
a 0/1 latent variable. In this case, the following model could be used.

logFuxyz = η + λα
u + λX

i + λY
j + λZ

k + λαX
ui + λαY

uj + λαZ
uk . (10)

In this model, the variables X, Y , and Z are assumed to be conditional independent given α,
however, α is related to each of X, Y , and Z. It should be noted that while this example only
contains a single latent variable, the models easily extend to multiple discrete latent variables.

3. The Log-Linear Cognitive Diagnosis Model (LCDM)

The log-linear model with latent variables is a flexible model that allows the relationships
between categorical variables to be modeled using a latent class model. For this reason, it eas-
ily generalizes to applications for cognitive diagnosis models (Fu, 2005; von Davier, 2005). In
addition, because most cognitive diagnosis models are typically parameterized to define the prob-
ability of a correct response (i.e., each item is either correct Xij = 1 or incorrect Xij = 0) the
log-linear model is re-expressed in terms of the log-odds of a correct response for each item (as
a function of the latent variables). We note that this is not necessary, but defining the probability
of a correct response is consistent with the literature for cognitive diagnosis models.

Currently, two different models have been discussed using the log-linear model with latent
variables as models for cognitive diagnosis. Fu (2005) provides a complex model that includes
the log-linear model as a submodel. In addition, von Davier (2005) discusses the General Diag-
nostic Model (GDM) as a general approach to log-linear models with latent variables, where the
latent variables are both continuous and discrete in addition to focusing on ordered responses for
items. Currently, the GDM has only been applied as a compensatory cognitive diagnosis model
and discussed as a mixed Rasch model. However, as a special case, the GDMs general defin-
ition easily incorporates log-linear models with dichotomous latent variables for dichotomous
responses (LCDM), and for that reason we use the notation of the GDM (von Davier, 2005) to
define the LCDM. Specifically, the probability of a correct response is defined as:

P
(
Xij = 1|αi

) = exp (λT
j h(αi ,qj ) − ηj )

1 + exp (λT
j h(αi ,qj ) − ηj )

, (11)

where the vector λj represents a 1 × (2K − 1) vector of weights for the j th item and h(αi ,qj )

represents a set of linear combinations of the αi and the Q-matrix entries for the j th item, qj .
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The value ηj is used to define the probability of a correct response for the reference group, which
is defined as those individuals who have not mastered any of the attributes. For the LCDM,
h(αi ,qj ) is defined as the set of all weights included in the full log-linear model with K latent
dichotomous attributes. Using the LCDM, λT

j h(αi ,qj ) can be written as:

λT
j h(αi ,qj ) =

K∑

u=1

λju(αuqju) +
K∑

u=1

∑

v>u

λjuv(αuαvqjuqjv) + · · · . (12)

Therefore, the conditional relationship between mastery or nonmastery of the uth attribute for
the j th item is related to λju, where eλju describes the factor by which the odds of a correct
response changes when comparing a nonmaster to a master given that all other attributes have
not been mastered (i.e., the reference group represents those individuals who have not mastered
any of the attributes). The extent to which the conditional relationship of attribute u and the item
depends on a second attribute v for the j th item is defined by λjuv . Thus, given that attribute
v has been mastered, the odds of a correct response increases by a factor of eλju+λjuv when
comparing nonmasters to masters, which is different from eλju given attribute v has not been
mastered. Such a model can be expanded to include all possible conditional relationships. In
addition, we note that the notation has slightly changed from the log-linear model. For example,
λ

α1α2
ij would have been used to indicate the weight for level i of a discrete latent variable α1 and

level j for a discrete latent variable α2. However, because all latent variables for the cognitive
diagnosis models discussed in this paper have only two levels, λj12 is used to indicate the weight
that is added when α1 = 1 and α2 = 1. In all other instances, this weight would be zero.

A number of constraints are included to ensure identifiability of the LCDM. One set of con-
straints is determine by specification of the Q-matrix. Notice that in identifying a Q-matrix the
analysis is comparable to a confirmatory analysis in that the definition of attributes is identi-
fied by those items that require each attribute. Without the Q-matrix, attributes could alternate
in their definition, much like the rotational indeterminacy that can occur in exploratory factor
analysis. A second set of constraints must be defined to ensure “monotonicity.” For cognitive di-
agnosis models, monotonicity is defined as the property such that for any examinee that masters
additional skills his or her probability of a correct response must be equal to or greater than the
probability of a correct response prior to learning the additional skills. Specifically, monotonicity
is defined as

P
(
Xij = 1|αw

i

) ≥ p
(
Xij = 1|αi

)
for all w (13)

where

αw
ik =

{
αik, where w �= k,

1 otherwise.

One last constraint is based on the fact that attributes and Q-matrix entries are defined as 0/1
(although this is not necessarily required by the model). By requiring this constraint, a reference
group is identified as those individuals who have not mastered any of required attributes for an
item. Thus, identifying the probability of a correct response for those individuals who have not
mastered any of the required attributes as the logit(−η).

To aid in the clarity of the LCDM, we define the parameters for an item that requires two
attributes (attribute one and attribute two), thus the probability of a correct response for this item
using the LCDM is defined as

P
(
Xij = 1|α) = eλj1α1+λj2α2+λj12α1α2−ηj

1 + eλj1α1+λj2α2+λj12α1α2−ηj
. (14)

In doing so, we will show that any model can be fit by constraining a set of the LCDM parameters,
which provides a method for model comparison. In addition, a theoretical “family” of cognitive
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diagnosis models is defined allowing for descriptions of additional models that have not yet
been defined while providing a natural definition of compensatory, conjunctive, and disjunctive
models.

3.1. Compensatory RUM

In many ways, the simplest relationship between the LCDM and any of the models is how
a compensatory RUM can be defined as a reduced version of the LCDM. Specifically, the com-
pensatory RUM is defined such that the conditional relationship between any required attribute
and the item is fixed across all levels of the remaining required attributes. Using the example of
the item which only requires attribute one and attribute two (defined in (14)), the compensatory
RUM is defined by simply setting λj12 = 0. Thus, the odds of a correct response will increase
by a factor of eλj1 when comparing a nonmaster to an individual who has mastered attribute one,
which does not depend on mastery or nonmastery of attribute two. Notice that a similar strategy
can be used if an item where to measure three or more attributes.

3.2. DINA

The LCDM can also fit many of the models that would typically be referred to as conjunctive
models and, therefore, the difference when selecting a conjunctive model over a compensatory
model can be described. One of the CDMs with the fewest number of parameters is the DINA.
Recall that the DINA only defines two parameters for each item: a guessing parameter (gj ) and
a slipping parameter (sj ). In this case, the probability of a correct response is equal to gj unless
all required attributes have been mastered in which case the probability of a correct response
increases to 1−sj . In the context of the LCDM, the same functional relationship can be described
as only having a positive conditional relationship between a required attribute and the item when
all other attributes have been mastered. All conditional relationships between an attribute and the
item, given at least one attribute has not been mastered are set to zero. Specifically, there is no
gain in the probability of a correct response (or odds of a correct response) for only knowing
a subset of the attributes, but only when all required attributes have been mastered. Using the
previous example for a two attribute item, the reduced LCDM is defined as

P
(
Xij = 1|α) = e(0)α1+(0)α2+λj12α1α2−ηj

1 + e(0)α1+(0)α2+λj12α1α2−ηj
(15)

where the zeros have been added to emphasize the constraint that λj1 = 0 and λj2 = 0 and
λi12 > 0. Notice that if attribute two has not been mastered then there is no relationship between
attribute one and the item (the odds of a correct response increases by a factor of eλ1 = e0 = 1
when comparing a nonmaster to a master). However, if attribute two has been mastered, the con-
ditional relationship between attribute one and the item increases (the odds of a correct response
increases by a factor of eλ1+λ12 = e0+λ12 > 1 when comparing a nonmaster to a master). Because
λi12 > 0, we would characterize this model as a conjunctive model.

Defining the LCDM parameters for the example as a function of the DINA parameters:

ηj = − ln

(
gj

1 − gj

)
(16)

and

λj12 = η + ln

(
sj − 1

sj

)
. (17)

Although the parameters are defined for only the example, this result can generalize to an
item measuring any number of attributes by changing λj12 used in defining sj to the weight that



200 PSYCHOMETRIKA

is only associated with mastery of all required attributes. It is important to notice that as in the
DINA, the LCDM only requires the estimation of two parameters when these constraints are
imposed.

3.3. DINO

As was mentioned previously, the DINO is similar to the DINA in that it only uses two pa-
rameters (sj and gj ) to model the probability of a correct response. However, conceptually it is
different in that only one of an item’s required attributes must be mastered to have a high proba-
bility of a correct response. Mastery of any additional attributes will not change the probability
of a correct response beyond the probability of a correct response when only a single attribute
has been mastered. In terms of the LCDM, the DINO can be expressed as a model such that
the conditional relationship is only positive when all other required attributes have not be mas-
tered. Given that any other required attributes have been mastered, this conditional relationship
between an attribute and the item is reduced to zero (i.e., the probability of a correct response
does not change as a function of that attribute).

Specifically, the LCDM for the example item requiring only two attributes would be ex-
pressed as:

P
(
X = 1|αi

) = eλj α1+λj α2+(−λj )α1α2−ηj

1 + eλj α1+λj α2+(−λj )α1α2−ηj
. (18)

Here, λj is used to indicate a single value that is estimated for each item (in addition to ηj ).
Therefore, the odds of a correct response when comparing masters to nonmasters, given that all
other attributes have not been mastered, increase by a factor of eλj . Whereas the factor that the
lod-odds increases is reduced to eλj −λj = e0 = 1 given that the second required attribute has
been mastered (α2 = 1).

In the simple case with two attributes, it can be shown that

ηj = − ln

(
gj

1 − gj

)
(19)

and

λj = ηj + ln

(
sj − 1

sj

)
(20)

when using the original parameterization of the DINO.
A similar strategy can be applied to items requiring more than two attributes. Where all item

parameters are defined such that the conditional distribution given mastery of any additional
required attributes equal zero. In general, the sign in front of the weight, λj is determined as:

(−1)(c−1) = sign of the λj weight, (21)

where c indicates the number of αik that are in the conditional relationship. For example, to
determine the sign for the relationship of four attributes and the item (e.g., λj1234), c = 4 and,
therefore,

(−1)(4−1) = −1. (22)

3.4. Reduced RUM

In many ways, the most complicated of the models to be derived from the LCDM is the
reduced RUM. One cause of the complication between relating the reduced RUM to the LCDM
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is that the reduced RUM functions by penalizing an individual for not mastering any required
attributes. Specifically, the probability of a correct response is defined as π∗

j unless someone has
not mastered a set of the required attributes, in which this probability is reduced by each r∗

jk of
the attributes not mastered. In contrast, the LCDM increases the odds, and thus the probability
of a correct response for each attribute that has been mastered is increased. Therefore, before
showing the relationship between the probability space defined by the reduced RUM and the
LCDM, the “inverse” RUM is defined. Here, we use “inverse” to imply that mastery increases
the probability of a correct response, a terminology that will be useful in defining the relationship
between the LCDM and the RUM later.

The inverse RUM is mathematically equivalent to the reduced RUM and, therefore, the only
difference is the definition of each item parameter and its respective space. The item response
function for the inverse RUM is defined as:

P
(
Xij = 1|αi

) = π∗
j

′
K∏

k=1

1

r∗
jk

qjkαik
, (23)

where π∗′ is equal to the probability of a correct response given that no required attributes have
been mastered. Using the reduced RUM,

π∗
j

′ = π∗
j

K∏

k=1

r∗
jk

qjk . (24)

The remaining parameters are defined as the same r∗
jk parameters that were previously defined by

the reduced RUM, where 0 < r∗
jk < 1. However, because the inverse is used, for every attribute

that is required and has been mastered by the ith examinee for the j th item (i.e., qjkαik = 1), the
probability of a correct response increases.

In doing this, the result of mastering an attribute is comparable to the functional form of the
LCDM and so the LCDM can now be defined in terms of the parameters of the reduced RUM.
We begin by defining

ηj = − ln

(
π∗

j
′

1 − π∗
j

′
)

, (25)

which is the intercept and is therefore used to compute the probability of guessing the correct
answer when all required attributes have not been mastered. Next, the conditional relationships
(λju) are defined as

λju = ln

(
π∗

j
′/r∗

jk

e−η + e−ηπ∗
j

′/r∗
jk

)
. (26)

Recall, that if only the λju values are nonzero, the LCDM is equivalent to the compensatory
RUM. However, given that the true model is the reduced RUM, the remaining parameters of the
LCDM have a specific functional form defined only by the λju values. Specifically, the effect of
mastery or nonmastery of the additional required attributes on the conditional relationship of any
attribute and the item are defined based on the conjunctive nature of the attributes. Again, using
the example item defined in (14) (without loss of generality), λj12 is defined as

λj12 = ln

(
1 + e−η

1 + eλj1−ηj + eλj2−ηj − eλj1+λj2−ηj

)
. (27)

In defining the λj12 based only on λj1 and λj2, no additional parameters are required when
compared to the total number of estimated parameters of the reduced RUM. In addition, the true
nature of what is meant by a conjunctive model is defined. Specifically, based on (27), it can be
shown that all λj12 > 0, which defines a conjunctive model in terms of the LCDM.
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4. A Family of Cognitive Diagnosis Models

The LCDM is a general model that also includes many of the models that have been pre-
viously defined. However, even more importantly, the LCDM provides a parameterization that
allows for a description of the differences between each model, while also providing for more
complex data structures. In fact, through using the constraints described above, a natural ordering
of the models can be provided ranging from disjunctive models to conjunctive models. To illus-
trate the ordering of the models previously discussed based on the their parameterizations using
the LCDM, a two attribute item is used, but this ordering will be consistent for items requiring
more than two attributes.

Because our goal is to display the differences between each model using the LCDM para-
meterizations, a simple case is used where each attribute has an equal degree of discrimination2

(i.e., λj 1 = λj 2). In addition, to aid in the interpretation, the minimum probability of a correct
response (i.e., relating to an examinee who has not mastered either of the required attributes) is
fixed to 0.20 and the maximum probability for this item (for an examinee mastering both of the
required attributes) is fixed to 0.90. Figure 1 plots the item parameters of the LCDM when fitting
the DINO, compensatory RUM, reduced RUM, and DINA, respectively. Each plot within this
figure is a bar graph (to simplify visual inspection of the parameters) indicating the values of
λj1, λj2, and λj12 for each model. Note that ηj is not included because for all models ηj = 1.39,
which defines the minimum probability of a correct response for the illustrative item j at 0.20.
In addition, because the maximum probability is 0.90, λj1 + λj2 + λj12 = 3.58, in all models.

The first of the plots provides the parameters for the DINO model, which is the disjunctive
model that was discussed earlier. In this example, λj1 = λj2 = 3.58 and λj12 = −3.58, indicat-
ing the disjunctive nature of this model. In this “or” model, mastery of either attribute or both
attributes results in the same sum of 3.58. The second plot, labeled compensatory RUM, shows
the parameter space assuming a compensatory RUM were fit to the illustrative item. Notice that
λj1 and λj2 have reduced to 1.79, and λj12 = 0. Finally, the bottom two plots show the parameter
space for two conjunctive models, the reduced RUM and DINA, respectively. The parameters for
the reduced RUM show that λj1 and λj2 are even smaller and λj12 is now positive, whereas for
the DINA, λj1, and λj2 equal zero and λj12 is positive and equal to 3.58, which was the initial
value of λj1 and λj2 for the DINO.

The LCDM defines a continuum of models where disjunctive models will always have a
negative λj12 (characterizing the change on the conditional relationship given that an attribute is
mastered) and large λj1 and λj2. As the models move through to conjunctive models, the λj12

increases and λj1 and λj2 decrease. By defining such a family of models, it is now conceivable
to modify the original assumptions made by each model. For example, imagine a model that has
a large λj12, much like the DINA, but λj1 and λj2 are slightly nonzero. Such a model would
allow an examinee to have a slightly better chance at guessing the correct answer when at least
one of the required attributes has been mastered, while still modeling the importance of knowing
all required attributes. An alternative model could function much like the DINO, where only one
of the specified attributes is required to have a high probability of correctly responding to the
item. However, if the magnitude of λj12 were slightly reduced, then there could be some benefit,
although minor to mastering additional attributes.

Based on these results, any possible set of constraints can be used to define a model that fits
the cognitive theory of item responses. In addition, a better understanding of the relationships
between any model (including new models) can be described in a general parametric form.

2Here, we use discrimination to indicate that the increase in the probability of a correct response is the same when
comparing an examinee knowing only attribute one to an examinee knowing only attribute two.
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FIGURE 1.
Four graphs to provide graphical representation of model differences in terms the LCDM parameterization.

5. Estimation

The primary intent of this paper was to introduce the LCDM and provide its relationship to
other models with comparable assumptions. However, defining a model is not enough, because
its estimation and application must be feasible. In this paper, LCDM estimation is accomplished
using a Markov chain Monte Carlo algorithm (MCMC). MCMC estimation is has been growing
in popularity and is a common choice in the literature to estimate cognitive diagnosis models
(e.g., Hartz, 2002; Templin, Henson, Templin, & Roussos, in press; Templin & Henson, 2006).
However, it should be noted that alternative estimation algorithms that allow estimation of con-
strained latent class analysis could be used such as M-Plus (e.g., M-plus; Muthén & Muthén,
1998–2006), as is discussed by Templin, Henson, and Douglas (2008), or Latent Gold (Vermunt
& Magidson, 2005).

In the MCMC estimation algorithm, all priors for item parameters (λj and ηj for all
j = 1, . . . , J ) are set to have uniform distributions U(−10,10). However, uniform priors are
not assumed for examinee attributes because of the possibility that attributes are related. That is,
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an examinee that has mastered one attribute will tend to have also mastered additional attributes.
Hartz (2002) was one of the first to describe an algorithm using an empirical Bayes structure for
CDMs as a way to estimate attribute associations. In Hartz (2002), tetrachoric correlations were
used to describe the relationship between any attribute-pair association, and thus an underlying
multivariate distribution is implemented (also see DiBello, Stout & Roussos, 2007). Although
this method has been shown to perform well, as the number of attributes increases, the number
of estimated item parameters increases exponentially. As an alternative, de la Torre and Dou-
glas (2004) (and also Templin, 2004) describe an alternative method to reduce the number of
estimated parameters. Specifically, the assumption is made that the attribute associations can be
modeled using a nonlinear factor model. Therefore, the prior distribution of attribute mastery
vectors is assumed to have a dichotomized multivariate normal distribution with “cutoffs” equal
to κk for k = 1, . . . ,K and factor weights, γk , for k = 1, . . . ,K . Because attributes are typically
based on a common content (e.g., math) such an assumption may not be too restrictive. In ad-
dition, this method has been shown to be robust to minor violations (Templin et al., in press).
Because both κk and γk are also estimated the method is described as “empirical Bayes” (the
prior of examinee attribute patterns is estimated from the sample). In addition, to ensure a unique
solution, the constraints previously specified are incorporated. Specifically, “monotonicity” and
specification of the Q-matrix is assumed and attribute mastery and nonmastery is defined as a
0/1 variable, as in all discussed CDMs.

6. Mixed Number Subtraction Example

To provide an example of the benefits of the LCDM, we use an example that was originally
presented by Templin, Henson, and Douglas (2006). They use a subset of items developed to
measure mixed number fraction subtraction from a data set using 2,144 examinees that was orig-
inally developed and collected by Tatsuoka (1990). The value of using such a data set is that it has
been established as a realistic example for the implementation of cognitive diagnosis (Tatsuoka,
1990; de la Torre & Douglas, 2004; Templin et al., 2006). In particular, Templin et al. (2006) use
13 of the items that are determined to measure a total of four attributes. The four attributes (or
skills) are defined as (1) convert a whole number to a fraction, (2) separate a whole number from
a fraction, (3) simplify before subtracting, and (4) find a common denominator. Although these
attributes are used as an initial analysis to recover their original parameters, a new set of three
attributes were defined later (Templin et al., 2008) which will be used for our example. The new
attributes were determined based on the fact that a different set of models were being used. No-
tice that this again emphasizes the importance of the Q-matrix. In many ways, the usefulness of
the Q-matrix is defined by the theory underlying the model and its application. Therefore, effort
must always go into establishing a cognitive theory as to what skills are necessary and the func-
tional form that these skills define the probability of a correct response. The skills defined for this
example are (1) borrowing from a whole number, (2) separating a whole number from a fraction
and (3) determining a common denominator. Table 1 provides the 13 items and the their required
skills. In addition, we note that the item number 7 originally discussed by Templin et al. (2006)
was 3 4

5 − 3 2
5 = was removed because none of the three newly defined skills were required.

6.1. Method

In their paper, Templin et al. use the DINA model and provide estimates of the sj and
the gj parameters for each item determining a reasonable fit. One advantage of using this data
set as an example is that the algorithm developed to estimate the LCDM can be used with the
previously defined constraints for the DINA and the estimated parameters can be compared to
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TABLE 1.
Mixed number fraction subtraction items.

Item number Item Q-matrix

1 3 1
2−2 3

2 1 1 0

2 3−2 1
5 1 0 1

3 3 7
8−2 1 0 1

4 4 4
12−2 7

12 1 0 0

5 4 1
3−2 4

3 1 1 0

6 11
8 − 1

8 1 1 0

8 2− 1
3 1 0 1

9 4 5
7−1 7

4 1 1 1

10 7 3
5− 4

5 1 0 0

11 4 1
10−2 8

10 1 0 0

12 7−1 4
3 1 1 1

13 4 1
3−1 5

3 1 1 0

the parameters estimated by Templin et al. (2006) as a preliminary evaluation of the estimation
software. Therefore, initially the agreement of LCDM estimation is reported after transforming
the LCDM parameters to the DINA parameterizations based on the relationships defined in (16)
and (17). The mean absolute deviation (MAD) is used as measure of the consistency of the
LCDM estimated sj and gj when compared with the original parameter estimates.

As a second analysis, the same data set is used for an LCDM calibration where all parame-
ters are estimated using the newly defined Q-matrix (as opposed to using constraints consistent
with the DINA model). The chains are visually explored for convergence and the item parame-
ter estimates are obtained. Here, we note that in its current form, this analysis was used as an
exploratory analysis to suggest possible alternative models for particular items as opposed to the
DINA model. However, prior to determining the reasonableness of an alternative model, a basic
measure of model fit was used based on a posterior predictive check. Specifically, the observed
item associations were compared to what is predicted by the model (for a general description, see
Gelman, Carlin, Stern, & Rubin, 1995; Gelman, Meng, & Stern, 1996; Lynch & Western, 2004).
The statistic used for this comparison is the mean absolute deviation (or MAD). In general, as
shown in (28), the MAD can be used to compare the observed item associations (ρij ) to the
model predicted item associations (ρ̂ij ) across all possible pairs of items where i �= j . However,
when a Bayesian model is used, all item parameters have an estimated posterior distribution and,
therefore, this discrepancy measure (the MAD) also has a distribution. The distribution of the
MAD comparing the observed item correlations to the “predicted” item correlations is computed
as the measure of discrepancies (Templin & Henson, 2006). The mean and credibility interval is
reported as measure to indicate “fit” (i.e., the ability of the estimated model to recover character-
istics of the observed data)

MAD =
∑J

j=1
∑

i �=j |ρij − ρ̂ij |
J (J − 1)

. (28)

After evaluating the fit of the full model, the LCDM is used to explore alternatives to the full
model, which is an advantage of defining a family of CDMs based on the LCDM. Therefore, after
fitting the full model, the item parameters are explored for a simplification. Having determined
possible constraints to the full model, a new reduced model is estimated and the relative fit of
each model is compared using the AIC (Akaike, 1974) and BIC (Schwarz, 1978).
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6.2. Results

As a preliminary analysis, the data is fit using the LCDM with DINA constraints and, there-
fore, all λj = 0 with the exception of the weight associated with all attributes required by the
item. A chain of length 10,000 is used with a burnin of 5,000. The chains were visually inspected
and it was determined that convergence had been reached. Given convergence, the posterior
means were used as estimates of LCDM parameters and these values were transformed to DINA
parameters. In comparing the estimated parameters with the values reported by Templin et al.
(2006), the MAD of the slip parameters was 0.03 and the MAD for the guess parameters was
0.01, providing evidence that the algorithm can be effective in estimating the DINA.

As a second analysis, the LCDM was estimated without any additional constraints using the
new Q-matrix. All chains were visually inspected for convergence and it was determined that
a chain length of 10,000 with a burnin of 5,000 was sufficient. The posterior means are used
to serve as parameter estimates and standard deviation of the posteriors are used to estimate
parameters standard errors.

The posterior distribution of the MAD comparing the observed item associations to the
model predicted item associations had a mean of 0.064 where the 95% credibility limit is 0.052
to 0.077 suggesting an acceptable recovery of the item associations and model fit. Therefore, the
estimated parameters for each of the items were visually inspected for patterns as a method to
determine item specific models, and thus suggestions as to the underlying cognitive theory. Note
that such a distinction between multiple models is only relevant for those items that require more
than a single attribute. Recall that the distinctive feature that differentiates each of the models is
based on the extent to which the conditional distribution of any attribute and the item response
depends on mastery or nonmastery of other attributes. In the event that an item only measures a
single attribute, all models reduce to the same model and for this reason items 4, 6, 10, and 11
are not included in our discussion. The remaining item parameters for each item are summarized
in Fig. 2.

Figure 2 contains a set of graphs (one for each of the included items) similar to the figures
presented previously in that the X-axis represents the estimated parameters other than the in-
tercept values (these are not used to differentiate between models) for each of the eight items.
The Y -axis represents the estimated value of each of the parameters. In addition, because these
values are estimated, a slightly different presentation is used. Specifically, instead of a bar graph,
the estimate (as indicated as a point) and its 95% credibility limits (computed as the 2.5th per-
centile and the 97.5th percentile of each posterior distribution) are provided. In general, these
bounds can provide an approximate guide as to the significance of each parameter although we
acknowledge that there are certain parameters for which the true distribution is skewed. That is,
monotonicity constrains the association of any attribute with any given item to be positive and,
therefore, the corresponding weights (e.g., λ1 and λ2 for Item 1) must be positive.

Because these graphs are similar to Fig. 1, it is possible to identify items that may be as-
sociated with specific models. For example, recall that the LCDM reduces to the DINA model
when there is no conditional association between any given attribute and the item unless all other
required attributes for that item have been mastered. Using the full parameterization, it can seen
that Item 3 is consistent with this pattern. Item 3 (3 7

8 − 2) was defined as requiring the ability of
borrowing and finding a common denominator. In this case, it could be argued that lacking either
of these skills would dramatically impede an examinee’s chances of correctly responding to this
item. However, the DINA model is not appropriate for many of these items. For example, Item
8 (2 − 1

3 ) would appear to be closely related to the assumptions made by the DINO model. That
is, an examinee is expected to perform well if they know how to borrow from a whole number
or find a common denominator, which suggests two possible strategies to obtaining the correct
answer. In the first strategy, examinees have mastered the attribute of borrowing, and for that rea-
son, they recognize that 2 = 1 3

3 which allows the solution of this item to be obtained. However, if
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FIGURE 2.
Parameter estimates for the mixed fraction subtraction items requiring more than one attribute.

TABLE 2.
AIC and BIC to compare a full and reduced model.

Model # of parameters AIC BIC

Full 48 22,541 22,813
Reduced 35 22,546 22,745

examinees have mastered the skill of determining a common denominator, they could set 2 = 6
3

as a way to obtain the correct answer.
In summary, the current model, which is the estimated LCDM with a total 48 item parame-

ters, appears as though it may be simplified. Specifically, based on the estimated model parame-
ters, it would appear that Items 1 and 3 may be consistent with a DINA, Item 8 may be consistent
with a DINO model and Items 2, 5, and 12 may be consistent with a compensatory RUM. Should
these constraints be placed on the LCDM, a total 35 parameters (a reduction of 13 item parame-
ters) would be estimated. Thus, the new constrained model is estimated. In this particular case,
the AIC and BIC are used to compare the two models and aid in model selection. Table 2 contains
a summary of the number of estimated item parameters, AIC, and BIC for the full model (the
first row) and for the reduced Model (the second row). As can be seen from the table, the AIC
is very similar between the two different models, although the full model has a slightly smaller
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value. Thus, the AIC provides weak evidence that the full model should be used. However, the
BIC, which has a stronger penalty for additional parameters, is smaller for the reduced model
suggesting that the reduced model should be used. Therefore, the AIC and BIC seem to suggest
that the proposed reduction of the model is feasible. This example illustrates how the LCDM can
be used as a method to identify reasonable models for each of the items.

In addition to model selection, this example can also be used to show how the LCDM can
provide some evidence of a misspecified Q-matrix or a misspecified theory of cognition for items
that need additional attention. A good example of such a case is Item 12. Notice that for Item 12
(7−1 4

3 ) it was assumed that all three attributes are required, however, all weights associated with
attribute two are essentially zero. Upon further review of this item, it appears that examinees may
never use the “separating” attribute to define 1 4

3 = 2 1
3 , but instead simply define 7 = 5 6

3 prior
to completing this problem. In using this strategy, they would only need to know how to borrow
and find a common denominator. In addition, items such as Item 9 (suggesting a DINO) may be
difficult to interpret, which can be used to direct a researchers attention to those problems where
cognition may not be well understood.

Therefore, using this small example, it can be seen that the LCDM can be a useful tool to
provide possible item specific models which can give some insight as to the cognitive process
that is being used (assuming that reasonable attributes have originally been identified). We should
note that in application, further modification of the Q-matrix and attributes should be completed.
However, the subset of items for mixed number subtraction does provide clear examples for
which the LCDM can provide value over cognitive diagnosis models previously defined in the
literature.

7. Discussion

In this paper, we have provided a discussion about the LCDM. In doing so, we have explicitly
defined the relationship between a number of models that have currently been introduced allow-
ing for natural comparisons between these models to be made. In addition, the LCDM provides
a model that can describe the functional relationship between attribute mastery and the item
response probability without having to specify a restrictive type of model such as conjunctive
versus disjunctive. Therefore, the LCDM has the added benefit of estimating attribute mastery,
while providing empirical information regarding a reasonable “model.”

Also, because of its flexibility, the LCDM can be used to describe a family of models, and
thus gives a clearer explanation of conjunctive models, compensatory models, and disjunctive
models. In addition, the presented analysis provided a preliminary example of the value of the
LCDM as opposed to using one of the specific models previously presented in the literature. In
this particular case, it could be seen that the DINA model (which was originally fit) does not
seem appropriate for all items. In addition, the LCDM provided some insight as to what model
could be more reasonable for some items while allowing for limited inspection as to Q-matrix
misspecification. However, the example also shows some of the limitations. As a result of the
small number of items and the total number of parameters for each item, it can be seen that some
of the estimates have large standard errors. By adding appropriate constraints, as were suggested
by the initial parameters’ estimates, estimation precision possibly could be improved.

Future research will focus on the estimation limitations of the LCDM. Specifically, as the
number of attributes included in the Q-matrix increases and as its complexity increases, the num-
ber of parameters estimated by this model will also increase. In these cases, expectations of its
performance in estimated attribute mastery and item parameters must be explored. In addition,
model comparisons using common indices such as the AIC, BIC, and measures of absolute fit
such as posterior predictive checks must continue to be explored, which could result to clear
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guidelines for model identification. Finally, possible expansions of this model such as the addi-
tion of a continuous ability measure to imply an incomplete Q-matrix (much like what is used in
the full RUM) will be explored.
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