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GRADED RESPONSE MODEL BASED ON THE LOGISTIC POSITIVE EXPONENT
FAMILY OF MODELS FOR DICHOTOMOUS RESPONSES

FUMIKO SAMEJIMA

UNIVERSITY OF TENNESSEE

Samejima (Psychometrika 65:319–335, 2000) proposed the logistic positive exponent family of
models (LPEF) for dichotomous responses in the unidimensional latent space. The objective of the present
paper is to propose and discuss a graded response model that is expanded from the LPEF, in the context
of item response theory (IRT). This specific graded response model belongs to the general framework of
graded response model (Samejima, Psychometrika Monograph, No. 17, 1969 and No. 18, 1972; Handbook
of modern item response theory, Springer, New York, 1997; Encyclopedia of Social Measurement, Aca-
demic Press, San Diego, 2004), and, in particular to the heterogeneous case (Samejima, Psychometrika
Monograph, No. 18, 1972). Thus, the model can deal with any number of ordered polytomous responses,
such as letter grades (e.g., A, B, C, D, F), etc.

For brevity, hereafter, the model will be called the LPEF graded response model, or LPEFG. This
model reflects the opposing two principles contained in the LPEF for dichotomous responses, with the
logistic model (Birnbaum, Statistical theories of mental test scores, Addison Wesley, Reading, 1968) as
their transition, which provide a reasonable rationale for partial credits in LPEFG, among others.
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1. Logistic Positive Exponent Family of Models

Let θ be the unidimensional latent trait, or ability, which represents the target hypothetical
construct, and is assumed to take on any real number. Let g denote an item, which is the smallest
unit of manifest entity in observable data (e.g., “[3/7] − [11/13] =” in an arithmetic test). The
item characteristic function (ICF), Pg(θ), of a dichotomous item g is defined as

Pg(θ) ≡ prob.[Ug = 1|θ ], (1)

where Ug is the binary item score.
Birnbaum (1968) proposed the logistic model for dichotomous responses as a substitute for

the normal ogive model (Lord and Novick, 1968) in which a simple sufficient statistic t (v) for
V = v exists, such that

t (v) =
∑

ug∈v

agug, (2)

where ug is the realization of Ug , V is the response pattern or a sequence of (binary) item scores
of n dichotomous items with v as its realization, and ag(>0) is the item discrimination parameter
in the logistic (and normal ogive) model, whose ICF, defined by (1), is specified by

Pg(θ) = 1

1 + exp[−Dag(θ − bg)] ≡ �g(θ), (3)

where bg is the item difficulty parameter and D is a scaling factor usually set equal to 1.702 to
approximate the ICF in the normal ogive model with the same values of item parameters. Hence,

Requests for reprints should be sent to Fumiko Samejima, Department of Psychology, 108 Conference Center
Bldg., University of Tennessee, Knoxville, TN 37996-4100, USA. E-mail: fsamejim@utk.edu

© 2008 The Psychometric Society
561

mailto:fsamejim@utk.edu


562 PSYCHOMETRIKA

the maximum likelihood estimate (MLE) of the examinee’s ability level, θ̂v , is obtainable as the
solution of

n∑

g=1

agPg(θ) = t (v).

Samejima (2000) observed that models with point-symmetric ICFs, such as those in the normal
ogive and logistic models, have an intrinsic contradiction in the principle of ordering the exam-
inees’ MLEs of θ , though the contradiction is degenerated in the logistic model in which the
sufficient statistic t (v) (2) does not include the difficulty parameter bg .

We hear a casual remark such as: “So-and-so succeeded in solving that difficult question:
what a bright man (woman)!” If we replace succeeded by failed, difficult by easy, and bright
by dumb in the above comment, it will become a remark of somewhat different implications.
Although both comments come out naturally, it should be noted that they are based on two
opposing principles or philosophies. When the first philosophy is used, a greater credit is given
for solving a difficult item than an easy item, and when the second principle is used, failure
in solving an easy item is more strongly penalized than that in solving a difficult item. If our
mathematical model provides a symmetric ICF, that is exemplified by the normal ogive model,
these two opposing rules are mixed and selection of one of the two principles is determined by
an incidental factor.

Samejima (2000, p. 324) illustrated an example of five dichotomous items following the
normal ogive model, with the same discrimination parameter (ag = 1.0) and equally distanced
difficulty parameters (bg = −3.0,−1.5,0.0,1.5,3.0, respectively). We assume that local inde-
pendence (Lord and Novick, 1968, Chap. 16) practically holds. Suppose two response patterns,
which are sequences of binary item scores, are identical, except for items g and h, where ug = 0
and uh = 1 in the first response pattern (0–1 response pattern), and ug = 1 and uh = 0 (1–0
response pattern) in the second response pattern. Choice of items g and h are arbitrary, but for
convenience here, item 1 and item 5 are used. Note that if the principle of giving greater credit
for solving a more difficult question is intrinsic in our mathematical model, a 0–1 response pat-
tern should indicate greater ability than the corresponding 1–0 response pattern in each pair
of response patterns, indicating the examinee’s success and honor in solving the more difficult
problem, and this order is reversed if our model is based on the principle of penalizing failure
in solving an easier question, for with the 1–0 response pattern the examinee is cleared from the
shame of failing in solving the easier problem.

There are eight possible subresponse patterns for items 2, 3, and 4, and they are (000),
(001), (010), (100), (011), (101), (110), (111), and for each subresponse pattern there are 1–0
and 0–1 full response patterns. If those sixteen response patterns are picked up from the total set
of thirty two response patterns in Table 1 of Samejima (2000) and the corresponding values of
the maximum likelihood estimates of θ are compared within each pair, they are as follows:

Subresp. pat. 1–0 response pat. 0–1 response pat.

(000) MLE(10000) = −2.28385 −0.86577 = MLE(00001)

(100) MLE(11000) = −0.75034 −0.27309 = MLE(01001)

(010) MLE(10100) = −0.75012 −0.36062 = MLE(00101)

(001) MLE(10010) = −0.34310 −0.19116 = MLE(00011)

(110) MLE(11100) = 0.75034 0.27309 = MLE(01101)

(101) MLE(11010) = 0.75021 0.36062 = MLE(01011)

(011) MLE(10110) = 0.34310 0.19116 = MLE(00111)

(111) MLE(11110) = 2.28385 0.86577 = MLE(01111)
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It can be seen that the value of MLE is greater for the 0–1 response pattern in each of the
four pairs out of eight, and greater for the 1–0 response pattern in the other four pairs, meaning
that the order of two MLEs within a pair is determined by the subresponse pattern, that is, an
incidental factor.

The LPEF was proposed as a model that does not have this intrinsic contradiction, whose
ICF is defined by

Pg(θ) = [
�g(θ)

]ξg , (4)

where �g(θ) is the logistic ICF given by (3), and the third item parameter ξg(>0), called the
acceleration parameter, has a critical role in this family of models. In ordering the examinees’
MLEs of θ , the ICF follows the principle of penalizing failure in solving an easier item when
0 < ξg < 1, whereas it follows the opposing principle, that is, greater credit is given for solving
a more difficult item when ξg > 1.

In proving the relationships between the parameter ξg and the two opposing principles,
Samejima (2000) defined the model/item feature function Sg(θ), such that

Sg(θ) = P ′
g(θ)

Pg(θ)Qg(θ)
,

where Pg(θ) is the ICF defined by (1),

Qg(θ) = 1 − Pg(θ),

and P ′
g(θ) is the first derivative of Pg(θ) with respect to θ . Showing that this model/item feature

function is strictly decreasing in θ for ξg > 1, equals a constant for ξg = 1, and strictly increasing
in θ for 0 < ξg < 1, the relationship described in the preceding paragraph is proved. For details,
the reader is directed to Figs. 4a, b, and c (pp. 331–332) in Samejima (2000), where examples of
ξg = 2.0,1.0, and 0.3 are given.

Note that when ξg = 1 (4) becomes (3), namely, the logistic ICF. Thus, the ICF in the logistic
model does not follow either of the two opposing principles, and can be interpreted as a transition
from one principle to the other.

Figure 1 illustrates ICFs in the LPEF for seven dichotomous items with the common item
parameters ag = 1.0 and bg = 0.0, respectively, and of seven different ξg’s, 0.3, 0.5, 0.8, 1.0, 1.5,
2.0, 3.0.

2. General Graded Response Model

2.1. Rationale

The general graded response model was proposed by Samejima (1969, 1972, 1997, 2004),
which represents a family of mathematical models that deal with ordered polytomous responses
in general. This expansion of IRT resulted in substantial enhancement of applicability of IRT for
various areas of social and natural sciences.

Let Xg (=0,1, . . . ,mg) denote a graded item score to item g and xg be its realization. Note
that unlike dichotomous responses, the values of mg’s can be different for separate items; the
feature that makes the graded response model more widely applicable to different types of data.
The dichotomous response model is included in the graded response model as its special case
where mg = 1 for all items.

The operating characteristic, Pxg (θ), of the graded item score xg is defined by

Pxg (θ) ≡ prob.[Xg = xg | θ ], (5)
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FIGURE 1.
Illustration that the item characteristic functions of seven dichotomous items following the logistic positive exponent
family of models with ag = 1, bg = 0, and ξg = 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 3.0, respectively, can be the cumulative
operating characteristics of a single graded response item with mg = 7.

and the general graded response model is represented by

Pxg (θ) =
[ ∏

u≤xg

Mu(θ)

][
1 − M(xg+1)(θ)

]
, (6)

where Mxg(θ) is called the processing function, which is strictly increasing in θ except

Mxg(θ)

{
=1 for xg = 0,

=0 for xg = mg + 1.
(7)

Let P ∗
xg

(θ) be the cumulative operating characteristic of the graded item score, Xg = xg , defined
by

P ∗
xg

(θ) ≡ prob.[Xg ≥ xg | θ ] =
∏

u≤xg

Mu(θ). (8)

It is obvious from (7) and (8) that

P ∗
xg

(θ)

{
=1 for xg = 0,

=0 for xg = mg + 1.
(9)

From (5) through (9), the operating characteristic Pxg (θ) can be written as

Pxg (θ) = P ∗
xg

(θ) − P ∗
(xg+1)(θ) (10)

for xg = 0,1,2, . . . ,mg .
Note that each of the P ∗

xg
(θ)’s for xg = 1,2, . . . ,mg can be considered as the ICF when

graded scores are changed to dichotomous scores using one of the mg borderlines of adjacent
two graded categories as the cutting point. This is exemplified by a usual practice of changing
letter grades A, B, C, D, and F into P (pass) and F (fail) setting the borderline between C and D.
Thus, seven ICFs in Fig. 1 can also be considered as the cumulative operating characteristics
P ∗

xg
(θ)’s for xg = 1,2,3,4,5,6,7 of a single graded response item, and from (10), it can be seen
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that Pxg (θ) is represented by a dotted line segmented by two adjacent P ∗
xg

(θ)’s, given θ , in the
figure.

The operating characteristic Pxg (θ) is the sole basis of the graded response model, and added
by the assumption of local independence (Lord and Novick, 1968, Chap. 16), all other important
functions such as various types of information functions, the basic function for each of the mg +1
grades, and the bias function of the maximum likelihood estimate of θ (MLE bias function)
(Samejima, 1993) of a test are derived from Pxg (θ) (cf. Samejima, 1993). In other words, (5)
has an equivalent importance for the general graded response model as the item characteristic
function defined by (1) does for the general dichotomous response model. It can be seen that (1)
is a special case of (5), which is obtainable by replacing the graded item score Xg by the binary
item score Ug , and its realization xg by a specific value of binary item scores, 1.

It is also noted from (6), (7), (8), (9), and (10) that any specific mathematical model that
belongs to the general graded response model can be represented, alternately, either by Mxg(θ)

or P ∗
xg

(θ).

2.2. Homogeneous and Heterogeneous Cases

It is noted that when mg > 1, the mg + 1 graded response categories can be redichotomized
by choosing one of the mg borderlines between any pair of adjacent graded response categories
into two binary categories, as is done when the letter grades A, B, and C are categorized into
“Pass” and D and F into “Fail.” When the borderline was set between the categories (xg − 1)

and xg , the cumulative operating characteristic P ∗
xg

(θ), defined by the right-hand side of (8),
equals the ICF defined by (1). If these mg ICFs are identical except for the positions alongside
the θ dimension, the model is said to belong to the homogeneous case, and otherwise to the
heterogeneous case.

In the homogeneous case, a model can be represented by

P ∗
xg

(θ) =
∫ ag(θ−bxg )

−∞
ψ(t) dt, (11)

where ψ(·) denotes a four times differentiable density function with limt→−∞ ψ(t) = 0, and the
item response parameter bxg satisfies

−∞ = b0 < b1 < b2 < · · · < bmg < bmg+1 = ∞. (12)

Models in the homogeneous case imply that each and every graded response boundary has the
same discrimination power (Lord and Novick, 1968), the principle that may fit categorical judg-
ment data. If, for instance, in (11), ψ(t) is replaced by the standard normal density function, it
will provide the cumulative operating characteristic in the normal ogive model for graded re-
sponses (Samejima, 1969, 1972, 1997, 2004). Another widely used model in the homogeneous
case is the logistic model (Samejima, 1969, 1972) expanded from the same model for dichoto-
mous responses proposed by Birnbaum (1968).

Several examples of models which belong to the heterogeneous case can be seen in those
graded response models modified from Bock’s (1972) nominal response model, and the acceler-
ation model (Samejima, 1995b). The graded response model that is proposed in this paper, i.e.,
LPEFG, also belongs to the heterogeneous case.
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3. The LPEF Graded Response Model

3.1. Model Specification

In LPEFG, defining ξ−1 = 0, the processing function is given by

Mxg(θ) = [
�g(θ)

]ξxg −ξxg−1 (13)

for xg = 0,1,2, . . . ,mg,mg + 1, where �g(θ) is the logistic function defined by (3), and ξxg

denotes the item response parameter, called acceleration parameter, satisfying the relationships:

0 = ξ0 < ξ1 < · · · < ξmg < ξmg+1 = ∞. (14)

The partial derivative of Mxg(θ) with respect to θ is obtained from (13), and because of (14),
it can be written as

∂

∂θ
Mxg (θ) = (ξxg − ξxg−1)

[
�g(θ)

]ξxg −ξxg−1−1
Dag�g(θ)

[
1 − �g(θ)

]
> 0. (15)

It is obvious that (13) and (14) satisfy (7), and from (13) and (15), it can be seen that the Mxg(θ)’s
for xg = 1,2, . . . ,mg are strictly increasing functions of θ with zero and unity as their lower and
upper asymptotes.

It is interesting to recall that in the logistic model of the homogeneous case for graded
responses, unlike in the normal ogive model, the lower asymptotes of the processing functions
are positive values, not zero, for xg = 1,2, . . . ,mg , respectively (cf. Samejima, 1972, p. 43). This
asymptote value is larger, if the difficulty parameter bxg is closer to that of the preceding item
score, bxg−1.

From (8) and (13), P ∗
xg

(θ) can be written as

P ∗
xg

(θ) = [
�g(θ)

]ξxg , (16)

for xg = 0,1, . . . ,mg . Thus, it is obvious that P ∗
xg

(θ) strictly increases in θ for xg = 1,2, . . . ,mg ,
and for all θ equals 1 and 0 for xg = 0 and xg = mg + 1, respectively, which satisfy (9), and

P ∗
xg

(θ) > P ∗
(xg+1)(θ) for xg = 0,1, . . . ,mg. (17)

Figures 2 and 3 present examples of the processing functions Mxg(θ) and the cumula-
tive operating characteristics P ∗

xg
(θ). In these examples, mg = 5, ag = 1 and bg = 0, and

ξxg = 0.3,0.5,0.8,1.5,3.0 for xg = 1,2,3,4,5, respectively. It is obvious from Fig. 3 that
LPEFG belongs to the heterogeneous case for these P ∗

xg
(θ)’s are not identical in shape.

Note, however, that the processing functions, Mxg(θ)’s depend on the difference between
the two adjacent acceleration parameters, and this means that there are no restrictions in ordering
the positions of their curves for xg = 1,2, . . . ,mg in accordance with the item score, xg , as is the
case with the cumulative operating characteristics, P ∗

xg
(θ)’s.

Substituting (16) into (10), we obtain the operating characteristics of the graded response xg

Pxg (θ) = [
�g(θ)

]ξxg − [
�g(θ)

]ξxg+1 > 0 for xg = 0,1, . . . ,mg. (18)

From (18), the first partial derivative of Pxg (θ) with respect to θ is given by

∂

∂θ
Pxg (θ) = Dag

[
1 − �g(θ)

][
ξxg�g(θ)ξxg − ξxg+1�g(θ)

ξxg+1
]

for xg = 1,2, . . . ,mg − 1. (19)
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FIGURE 2.
Example of a set of seven processing functions of a graded response item following the LPEFG with mg = 5, ag = 1,
bg = 0, and ξxg = 0.3, 0.5, 0.8, 1.5, 3.0, for xg = 0, 1, 2, 3, 4, 5, 6, respectively.

FIGURE 3.
The set of seven cumulative operating characteristics of the same graded response item for xg = 0, 1, 2, 3, 4, 5, 6,
respectively.

Note that because of (14) the first term of the last factor in the right-hand side of (19) disappears
when xg = 0, and when xg = mg its second term disappears to provide

∂

∂θ
Pxg (θ)

{= −Dag[1 − �g(θ)]ξxg+1[�g(θ)]ξxg+1 for xg = 0,

= Dag[1 − �g(θ)]ξxg [�g(θ)]ξxg for xg = mg.
(20)

From (18), (19), and (20) it can be seen that the Pxg (θ) is strictly decreasing in θ with a
terminal maximum at θ = −∞ for xg = 0, strictly increasing in θ with a terminal maximum at
θ = ∞ for xg = mg , and it is unimodal for each of the other values of xg . The local modal points
of these (mg − 1) Pxg (θ)’s are the values of θ to set (19) equal to zero, which is equivalent to the
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FIGURE 4.
The set of six operating characteristics of the same graded response item for xg = 0, 1, 2, 3, 4, 5, respectively.

solutions of
ξxg+1

ξxg

= {
1 + exp

[−Dag(θ − bg)
]}ξxg+1−ξxg . (21)

This modal point, θmod, can be obtained from (21) and is given by

θmod = bg − (Dag)
−1 log

[
ξxg+1−ξxg

√
ξxg+1

ξxg

− 1

]
. (22)

Figure 4 presents the six operating characteristics of the same example item used in Figs. 2
and 3. These modal points computed from (22) turned out to be: −0.77394, −0.16397, 0.15878,
and 0.43121 for xg = 1,2,3,4, respectively.

3.2. Satisfaction of the Unique Maximum Condition

This satisfaction is considered as one of the desirable features of specific graded response
models, together with additivity, ordered modal points of Pxg (θ)’s in accordance with the graded
item scores xg’s, etc. (cf. Samejima, 1996).

The basic functions, Axg (θ), (Samejima, 1969, 1997, 2004) in the general graded response
model is defined by

Axg (θ) ≡ ∂

∂θ
logPxg (θ) =

∂
∂θ

Pxg (θ)

Pxg (θ)
. (23)

A sufficient condition that a unique maximum exists in the likelihood function of each and every
possible response pattern when all the items follow a specific model is given by

1. Axg (θ) defined by (23) is strictly decreasing in θ , and
2. either

(a) its upper asymptote is positive and lower asymptote is nonpositive, or
(b) its upper asymptote is nonnegative and lower asymptote is negative

(cf. Samejima, 1969, 1972, 1997, 2004). For brevity, this condition is called the unique maximum
condition. Satisfaction of this condition is a desirable feature of a model.
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In LPEFG, the basic function can be written from (18) and (19) as

Axg (θ) = Dag(1 − �g(θ))[ξxg�g(θ)ξxg − ξxg+1�g(θ)
ξxg+1 ]

[�g(θ)]ξxg − [�g(θ)]ξxg+1
(24)

for xg = 1,2, . . . ,mg − 1.
Similar simplifications as pointed out for (19) are possible in the numerator of (24) when

xg = 0 and xg = mg , respectively. It is also noted that in the denominator of (24), when xg = 0,
the first term becomes unity, and when xg = mg , the second term disappears. Thus, for these two
cases, we can write

Axg (θ)

⎧
⎪⎨

⎪⎩

= −Dag [1−�g(θ)] ξxg+1 [�g(θ)]ξxg+1

1−[�g(θ)]ξxg+1
for xg = 0,

= Dag [1 − �g(θ)]ξxg for xg = mg,

(25)

respectively.
Using l’Hospital’s rule, it can be seen that the basic functions provided by (24) and (25) are

strictly decreasing in θ for all xg’s, with the two asymptotes

lim
θ→−∞Axg (θ)

{= 0, xg = 0,

= Dagξxg > 0, xg = 1,2, . . . ,mg,
(26)

and

lim
θ→∞Axg (θ)

{= −Dag < 0, xg = 0,1,2, . . . ,mg − 1,

= 0, xg = mg.
(27)

LPEFG satisfies the unique maximum condition, therefore, indicating that for each and every
response pattern a unique maximum likelihood estimate of θ exists. These MLEs assume finite
values for all possible response patterns except for the two extreme cases in which all item
scores are zero and all item scores are the highest scores, mg’s, respectively, where the MLEs are
negative and positive infinities.

Figure 5 presents the six basic functions of the same example of graded item responses
shown in Figs. 2–4, with the values of upper and lower asymptotes shown at both ends of each
curve, which were calculated through (26) and (27).

It is noted that these curves never cross each other, and the values of θ at which these
curves touch the θ axis are ordered in accordance with the values of xg . These values are: −∞,
−0.77394, −0.16397, 0.15878, 0.43121, and ∞ for xg = 0,1,2,3,4,5, respectively. They are
the modal points of the operating characteristics of these graded scores, shown in Fig. 4.

3.3. Item Response Information Function

For the general graded response model, the item response information function Ixg (θ) is
defined by

Ixg (θ) ≡ − ∂2

∂θ2
logPxg (θ) =

[ ∂
∂θ

Pxg (θ)

Pxg (θ)

]2

−
∂2

∂θ2 Pxg (θ)

Pxg (θ)
, (28)

for xg = 0,1,2, . . . ,mg (cf. Samejima, 1973b, 1997, 2004), where ∂2

∂θ2 indicates the second
partial derivative of the function with respect to θ . The item information function is given as the
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FIGURE 5.
The set of six basic functions of the same graded response item for xg = 0, 1, 2, 3, 4, 5, respectively.

conditional expectation of the item response information function, given θ , which can be written
as

Ig(θ) ≡ E
[
Ixg (θ) | θ] =

∑

xg

Ixg (θ)Pxg (θ) =
∑

xg

[ ∂
∂θ

Pxg (θ)]2

Pxg (θ)
. (29)

Note that (29) includes Birnbaum’s (1968) item information function for the dichotomous item,
which is based on somewhat different rationale as a special case.

Samejima (1973b, 1997, 2004) also proposed the response pattern information function,
Iv(θ), for graded responses that can be written as

Iv(θ) ≡ − ∂2

∂θ2
logPv(θ) = −

∑

xg∈v

∂2

∂θ2
logPxg (θ) =

∑

xg∈v

Ixg (θ), (30)

where Pv(θ) denotes the operating characteristic of the response pattern V = v provided by

Pv(θ) ≡ prob.[V = v | θ ] =
∏

xg∈v

Pxg (θ). (31)

The test information function, I (θ), is defined as the conditional expectation of Iv(θ), given θ ,
which from (29), (30), and (31) can be written as

I (θ) ≡ E
[
Iv(θ) | θ] =

∑

v

Iv(θ)Pv(θ) = −
∑

v

[
∂2

∂θ2
logPv(θ)

]
Pv(θ) =

n∑

g=1

Ig(θ). (32)

The outcome of (32) also includes Birnbaum’s (1968) test information function for dichotomous
responses as a special case.

Figure 6 presents the item response information functions for xg = 0,1,2,3,4,5 for the
same example shown in Figs. 2, 3, 4, and 5. It is noted that in this example Ixg (θ)’s for xg = 4
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FIGURE 6.
The set of six item response information functions of the same graded response item for xg = 0, 1, 2, 3, 4, 5, respectively,
and item information function (dashed line).

and 5 are overlapping each other. This comes from the fact that in this example the acceleration
parameters for the item scores 4 and 5 happen to be:

ξ5 = 3.07913 = 2.07913 + 1 = ξ4 + 1,

and from (24) and the second line of (25), it can be written:

A5(θ) − A4(θ) = Dag

[
1 − �g(θ)

][
ξ5 − Dag[1 − �g(θ)][ξ4�g(θ)ξ4 − ξ5�g(θ)ξ5 ]

�g(θ)ξ4 − �g(θ)ξ5

]

= Dag

[
1 − �g(θ)

][1 + ξ4]

− Dag[1 − �g(θ)][ξ4�g(θ)ξ4 − [1 + ξ4]�g(θ)ξ4�g(θ)]
�g(θ)ξ4 − �g(θ)[1+ξ4]

= Dag

[
1 − �g(θ)

][1 + ξ4] − Dag[1 − �g(θ)]�g(θ)ξ4 [ξ4 − [1 + ξ4]�g(θ)]
�g(θ)ξ4 [1 − �g(θ)]

= Dag

[
1 − �g(θ)

][1 + ξ4] − Dag

[
ξ4 − [1 + ξ4]�g(θ)

]

= Dag[(1 + ξ4) − �g(θ)(1 + ξ4) − ξ4 + �g(θ)[1 + ξ4]]
= Dag. (33)

The vertical distance of A5(θ) from A4(θ) equals a constant, Dag , for all θ , therefore, can be
visualized in Fig. 5. Since from (23) and (28), it can be written as

Ixg (θ) = − ∂

∂θ
Axg (θ), (34)

the item response information functions for xg = 4 and xg = 5 are also identical.
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It is noted that in the example given here, the maximal values of the item response infor-
mation functions are ordered in accordance with the item score. Since the lower asymptote of
the basic function is zero for xg = mg while it is uniformly −Dag otherwise (cf. (27), however,
this order does not necessarily exist). If, for instance, ξ5 is just slightly greater than ξ4, the curve
for xg = 5 may become flatter, and the maximal value of the item response information response
function will assume a less value than the corresponding value for x4.

In the same figure, the item information function is shown by a dashed line.

3.4. Additivity

Samejima (2004) categorizes those models in the family of general graded response model
into:

1. models that can be naturally expanded to those for continuous responses, and
2. those which are discrete in nature.

It can be shown that LPEFG is naturally expanded to a model for continuous responses, that
is, it belongs to category 1. The continuous response model thus obtained will be discussed in a
separate paper, however.

Most models in the first category also have additivity (Samejima, 1996), in the sense that:

1. If two or more adjacent graded response categories (e.g., A, B, and C) are combined into one
new category (e.g., Pass), the operating characteristic of the resulting new category, which
is the sum total of the original separate operating characteristics, also belongs to the original
model, and

2. If an original graded response category (e.g., “agree”) is divided into two or more graded cat-
egories (e.g., “strongly agree” and “moderately agree”) the operating characteristics of these
new categories can be found in the original mathematical model. (Note that in the acceleration
model, however, additivity 1 does not rigorously hold, but at least it approximately does in
most practical situations (cf. Samejima, 1995b).)

LPEFG has such a desirable characteristic described above, that is, additivity.

3.5. The Relationship with the Acceleration Model

Let ξ∗
xg

be defined as

ξ∗
xg

= ξxg − ξxg−1. (35)

From inequality (14), it is obvious that ξ∗
xg

> 0 for xg = 1,2, . . . ,mg , and ξ∗
xg

= 0 for xg = 0 and
ξ∗
xg

= ∞ for xg = mg + 1. Let �xg (θ) denote

�xg (θ) = 1

1 + exp[−Dαxg (θ − βxg )]
, (36)

where αxg (>0) and βxg are item response discrimination and location parameters, respectively.
It is noted that if in (13) �g(θ) is replaced by �xg (θ) defined by (36) with the item response

parameter αxg and rewriting ξxg − ξxg−1 as ξ∗
xg

, it will become the processing function of a
special case of the acceleration model, with ξ∗

xg
as the step acceleration parameter (cf. Samejima,

1995b).
Thus, it is legitimated to consider that LPEFG belongs to the family of acceleration models.

Aside from the differences in the objectives of these models, however, LPEFG has an advantage
over more general acceleration models in the sense that as was pointed out earlier, it has perfect
additivity and orderliness of the modal points of the operating characteristics, while for more
general acceleration models only their robustnesses are assured (cf. Samejima, 1996).
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4. Limitation of Curve Fittings in Model Validation

The reader might expect the author to use a set of simulated data for demonstrating the fit-
ness of LPEFG to a certain type of data. This can be done by creating a hypothetical set of data
that follows LPEFG using the Monte Carlo method, estimating the cumulative operating char-
acteristic, P ∗

xg
(θ), for each graded response xg by one of the nonparametric estimation methods

such as Levine’s (1984), Ramsay’s (1991), and Samejima’s (1998, 2001). The processing func-
tions Mxg(θ)’s can be computed from the P ∗

xg
(θ)’s, and the operating characteristic Pxg (θ)’s, and

then find out how the outcomes fit LPEFG with a certain set of parameter values.
A problem of graded response models is that such a curve fitting may not validate the model,

because two or more mathematical models that are substantially different in principle may pro-
vide a very similar set of curves. Samejima (1996, 1997) illustrated this fact using the accelera-
tion model (1995b) and Bock’s nominal response model (1972).

Figure 7 is the combination of Figs. 2 (upper graph) and 1 (lower graph) in Samejima (1996)
arranged in a reversed order because the parameter values of the latter were calculated from those

FIGURE 7.
A set of operating characteristics of six discrete responses following Bock’s nominal model, with αxg = 1, 2, 3, 4, 5, 6
and βxg = 1.0, 2.0, 3.0, 3.5, 1.8, 1.0, for xg = 0, 1, 2, 3, 4, 5, 6, respectively (upper graph), and those of six steps in
the acceleration model (lower graph), approximating the processing functions in Bock’s model, whose parameter values
turned up to be: αxg = 1.35719, 1.03009, 0.87689, 1.07899, 0.58824, βxg = −0.95250, −0.77484, 0.04352, 1.32708,
0.80000, and ξxg = 0.42671, 0.52069, 0.53958, 0.62196, 1.00000, for xg ’s, 1 through 5.
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of the former to make each of the resulting operating characteristics very close to those in the
upper graph.

A close observation of the two graphs in Fig. 7 and straightforward logic are convincing
enough to say that any set of data that fit the acceleration model (lower graph) also fit the nominal
response model (upper graph), which means failure in validating either of the two models when
curve fittings alone are used.

Actually, noting similarities in the shapes of the processing functions in Bock’s nomi-
nal response model and those in the acceleration model, the parameter values of the accelera-
tion model were calculated from those in the nominal response model by fitting each curve at
Mxg(θ) = 0.1,0.5,0.9. Changing these three values of Mxg(θ) in several different ways, say, to
Mxg(θ) = 0.3,0.6,0.7, etc., it was confirmed that the outcomes were almost identical (cf. Same-
jima, 1995a). The parameter values in the acceleration model illustrated here were obtained by
using the latter set of three values, i.e., 0.3, 0.6, 0.7, and have as many as five digits after the
decimal point. Details of this method will be presented and discussed in a separate paper.

5. Substantive Modeling: Examples

From the standpoint of substantive mathematical modeling, one type of psychological phe-
nomena that LPEFG may fit well is problem solving, that includes proving a mathematical theo-
rem. In proving a theorem, various levels of problem complexity are conceivable.

It is said, Pythagoras’ theorem has as many as 367 different proofs. In most problem solving,
it is usual that there are multiple e.g. cognitive process sequences that lead to the correct answer.
In real research, therefore, it may be advisable to conduct good pilot studies, and then from their
outcomes pick up several typical cognitive sequences that the majority of examinees in the pilot
studies followed, and then analyze them separately and then eventually combined (cf. Samejima,
1983).

In this section, a couple of relatively simple examples to which LPEFG is likely to fit will
be illustrated.

5.1. Example 1

The first item taken as an example here, item D2.2, is a reasoning test item, taken from the
LIS Measurement Scale of Nonverbal Reasoning Ability (Indow and Samejima, 1962). The test
is a paper and pencil test, and each item was originally scored dichotomously, i.e., either correct
(ug = 1) or incorrect (ug = 0). The test was administered to 883 junior high school students
(584 eighth graders and 299 ninth graders) in Tokyo, Japan. Based on this group of examinees,
the scale was constructed using the normal ogive model for dichotomous responses. Out of 883
eighth graders, 202 examinees, or 22.88% answered the item correctly and the other 681 did not.

Item D2.2, is an addition, such that

Y A M A
+ U M I

K A W A

that consists of seven alphabetical letters A, I, K, M, U, W, and Y, each of which represents one
of the positive integers, 0, 3, 4, 6, 7, 8, and 9, and the examinee is to find out which alphabetical
letter represents which number.
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It is noted that the right most column of the above addition is A + I = A, and because the
column indicates these numbers are of the lowest digit, it can be reasoned that I = 0. Thus, this
first process provides:

Y A M A
+ U M 0

K A W A

The graded item score given to those who answered I = 0 correctly, but could not go further,
will be xg = 1.

After this first process has been successfully followed, the six unused letters are A, K, M,
U, W, and Y, and six unused numbers are 3, 4, 6, 7, 8, and 9, respectively. Then it is noted that
in the third column from the right there is A + U = A. Because 0 has already been matched to
I, U cannot be zero. This is also confirmed by the fact that in the fourth column Y and K must
represent two different numbers. Thus, the only logical answer is U = 9. This second reasoning
process provides:

Y A M A
+ 9 M 0

K A W A

The graded score given to those who answered U = 9 correctly in addition to I = 0, but
could not go further will be xg = 2.

When the author checked the examinees’ writings years ago, it was noted that out of the 681
students who could not go through all the processes, as many as 187 had obviously reasoned up
to I = 0 and U = 9 correctly, and then could not go further. This fact is a good reason to use the
item as a graded response item, instead of a dichotomous response item.

Today, unlike early 1960s, it is easy to trace an examinee’s performance in the computerized
testing environment instead of paper and pencil testing, and identify each examinee’s level of
performance.

It is obvious from (7) and (8) that when xg = 1, the processing function Mxg(θ) equals
the cumulative operating characteristic P ∗

xg
(θ), and the latter will also be the ICF when the item

score is redichotomized by setting the borderline of “pass” and “fail” between xg = 1 and xg = 2.
Thus, using one of the nonparametric estimation methods such as Levine’s (1984), Ramsay’s
(1991), and Samejima’s (1998, 2001), the processing function for xg = 1 can be estimated. Then
likewise the cumulative operating characteristic, P ∗

xg
(θ), for xg = 2 can be estimated, setting the

borderline of redichotomization between xg = 2 and xg = 3, and from (8) the conditional ratio
of this estimated P ∗

xg
(θ) for xg = 2, given θ , to the one for xg = 1 will provide the estimate of

Mxg(θ) for xg = 2.
If most examinees who have found out I = 0 can also find out U = 9, then the processing

function Mxg(θ) for xg = 2 will be strictly increasing in θ but very close to the constant function
Mxg(θ) = 1. Note that unlike P ∗

xg
(θ)’s, there is no ordering relationship for Mxg(θ) in accordance

with the graded item score xg , and yet P ∗
xg

(θ)’s are always ordered, as is obvious from (8),
because 0 < Mxg(θ) < 1 for xg = 1,2, . . . ,mg , for all θ .

The remaining five unused letters are A, K, M, W, and Y, and the five unused numbers are
3, 4, 6, 7, and 8, respectively. It is noted that K = Y + 1, because the addition is of two numbers
only. From the list of unused integers, it can be seen that either Y = 3 and K = 4, Y = 6 and
K = 7, or Y = 7 and K = 8. Also, M must be greater than 5 and W = 2M − 10, so either M = 7
and W = 4 or M = 8 and W = 6, because M = 6 is impossible because 2 is not included in last
subset of unused numbers.
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If Y = 6 or 7, however, neither of the above two possible pairs of M and W can be realized.
Thus, Y must be 3 and K must be 4, that is,

3 A M A
+ 9 M 0

4 A W A

This outcome receives xg = 3.
Then the three unused letters are A, M, and W, and the three unused numbers are 6, 7, and 8,

respectively. Thus, it is obvious that M = 8, W = 6, and A = 7, to make the formula

3 7 8 7
+ 9 8 0

4 7 6 7

which is the correct answer that deserves xg = 4 (=mg).
We could separate Y = 7 from the above process, and make the highest item score category

xg = 5. However, after the process of finding M = 8 and W = 6, no other values but 7 remain
that can be assigned to A. Thus, it is very possible that when analyzing the data, we will find this
last step a degenerated category, or Mxg(θ) = 1.0 for xg = 5 to provide an identical P ∗

xg
(θ) with

that of xg = 4. Thus, the highest item score category xg = 5 will be meaningless.
Table 1 presents possible graded scores of item D2.2 when it is given as a paper and pencil

test item and a computerized test item. It is noted that in the environment of computerized testing
not only when matching of a number and a letter is completed, but a reasoning process itself can
be scored, as exemplified by xg = 3 and xg = 4. It is also noted that these two processes can be
reversed, that is, some examinees might work on (Y, K) first and then (M, W) second, and others
might work in a reversed order. It is recommended that the examinee group should be divided
into two subgroups in accordance with the two orders, and the resulting estimated processing
functions are compared.

Note that even in paper and pencil testing, if detailed instructions are given, and if scorers
read the examinees’ handwritings intensively as they do in scoring projective tests, then mg can
be 5 just as in computerized testing. Such a scoring will be far more time consuming, however.

TABLE 1.
Item D22 and its graded item scores that may be optimal in two different testing environments.

Paper–pencil Computerized Subprocess
testing testing

0 0 (None)

0 1 J = 0, Left: (3 4 6 7 6 9)

1 2 U = 9, Left: (3 4 6 7 8)

1 3 K = Y · 1,
(Y,K) = (3,4) or (6,7) or (7,8)

1 4 W = 2M − 10(M,W) = (7,4) or (8,6)

2 5 M = 8
W = 6
Y = 3
K = 4, Left: (7)

2 5 A = 7
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FIGURE 8.
Given triangle (left) and the same triangle after used for reasoning processes (right).

5.2. Example 2

The second example is the proof of an elementary geometry theorem. Suppose in the left-
hand side triangle in Fig. 8 a > b > c. Prove that

angle BAC > angle ABC > angle ACB.

Proof: Here, the proof will be shown for angle BAC > angle ABC only because the other in-
equality, angle ABC > angle ACB can be worked out in the same way.

(a) The proof starts from taking the same length as b on a, starting from C, and call the other end
of the new line A∗. Since a > b, A∗ must be located on the line a, as shown in the right-hand
side triangle in Fig. 8.

(b) Combine A and A∗ by a straight line.
(c) Thus, angle BAC = angle A∗AC + angle BAA∗, and
(d) angle ABC = angle ABA∗.
(e) angle ABA∗ = angle AA∗C − angle BAA∗, since for any triangle the sum of the three angles

equals π .
(f) Because triangle AA∗C is an isosceles triangle, angle AA∗C = angle A∗AC.
(g) Thus, angle ABC = angle A∗AC − angle BAA∗.
(h) angle BAC − angle ABC = 2 angle BAA∗ > 0.
(i) Therefore, angle BAC > angle ABC.

We could score 1 through 9 for these processes. Note that in this proof process (a) is essential,
so the processing function for (a) is expected to have a large acceleration parameter. �

6. Discussion and Practical Implications

LPEFG, a new graded response model that belongs to the heterogeneous case, has been
proposed and its characteristics have been observed. The author has been in search of a graded
response model that belongs to the heterogeneous case and can be naturally expanded to a con-
tinuous response model, that is comparable to the normal ogive and logistic models for graded
responses in the homogeneous case (Samejima, 1973a). The model proposed in the present paper
is an answer to the author’s search.

It is fairly common that when one tries to solve a mathematical problem, for example, early
processes are relatively easy in the sense even people of lower ability levels have high probabili-
ties of finding and completing each process, but on later stages such probabilities will decrease.
After following one or more right processes in solving the problem, one might have to bang
his/her head on a wall trying to go further without success. LPEFG may be appropriate to use in
giving partial credit to such an outcome.
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