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Multiple-set canonical correlation analysis (Generalized CANO or GCANO for short) is an impor-
tant technique because it subsumes a number of interesting multivariate data analysis techniques as special
cases. More recently, it has also been recognized as an important technique for integrating information
from multiple sources. In this paper, we present a simple regularization technique for GCANO and demon-
strate its usefulness. Regularization is deemed important as a way of supplementing insufficient data by
prior knowledge, and/or of incorporating certain desirable properties in the estimates of parameters in
the model. Implications of regularized GCANO for multiple correspondence analysis are also discussed.
Examples are given to illustrate the use of the proposed technique.

Key words: information integration, prior information, ridge regression, generalized singular value de-
composition (GSVD), G-fold cross validation, permutation tests, the Bootstrap method, multiple corre-
spondence analysis (MCA).

1. Introduction

Multiple-set canonical correlation analysis (GCANO) subsumes a number of representa-
tive techniques of multivariate data analysis as special cases (e.g., Gifi, 1990). Perhaps for this
reason, it has attracted the attention of so many researchers (e.g., Gardner, Gower & le Roux,
2006; Takane & Oshima-Takane, 2002; van de Velden & Bijmolt, 2006; van der Burg, 1988).
When the number of data sets K is equal to two, GCANO reduces to the usual (2-set) canoni-
cal correlation analysis (CANO), which in turn specializes into canonical discriminant analysis
or MANOVA, when one of the two sets of variables consists of indicator variables, and into
correspondence analysis (CA) of two-way contingency tables when both sets consist of indica-
tor variables. GCANO also specializes into multiple correspondence analysis (MCA) when all
K data sets consist of indicator variables representing patterns of responses to multiple-choice
items, and into principal component analysis (PCA) when each of the K data sets consists of
a single continuous variable. Thus, introducing some useful modification to GCANO has far
reaching implications beyond what is normally referred to as GCANO.

GCANO analyzes the relationships among K sets of variables. It can also be viewed as a
method for information integration from K distinct sources (Takane & Oshima-Takane, 2002;
see also Dahl & Næs, 2006, Devaux, Courcoux, Vigneau & Novales, 1998, Fischer, Ross &
Buhmann, 2007, and Sun, Jin, Heng & Xia 2005). For example, information regarding an object
comes through multi-modal sensory channels, e.g., visual, auditory, and tactile. The information

The work reported in this paper is supported by Grants 10630 and 290439 from the Natural Sciences and Engi-
neering Research Council of Canada to the first and the second authors, respectively. The authors would like to thank the
two editors (old and new), the associate editor, and four anonymous reviewers for their insightful comments on earlier
versions of this paper. Matlab programs that carried out the computations reported in the paper are available upon request.

Requests for reprints should be sent to Yoshio Takane, Department of Psychology, McGill University, 1205 Dr.
Penfield Avenue, Montreal, QC, H3A 1B1 Canada. E-mail: takane@psych.mcgill.ca

© 2008 The Psychometric Society
753

mailto:takane@psych.mcgill.ca


754 PSYCHOMETRIKA

TABLE 1.
Wine tasting data from Abdi and Valentin (2007).

Expert 1 Expert 2 Expert 3
Wine Oak-type Fruity Woody Coffee Red fruit Roasted Vanillin Woody Fruity Butter Woody

1 1 1 6 7 2 5 7 6 3 6 7
2 2 5 3 2 4 4 4 2 4 4 3
3 2 6 1 1 5 2 1 1 7 1 1
4 2 7 1 2 7 2 1 2 2 2 2
5 1 2 5 4 3 5 6 5 2 6 6
6 1 3 4 4 3 5 4 5 1 7 5

coming through multiple pathways must be integrated in some way before an identification judg-
ment is made about this object. GCANO mimics this information integration mechanism. As
another example, let us look at Table 1. This is a small data set from Abdi and Valentin (2007)
in which three expert judges evaluated six brands of wine according to several criteria. As in this
example, these criteria are not necessarily identical across different judges. In a situation like this,
one may be tempted to ask: (1) What are the most discriminating factors among the six brands of
wine that are commonly used by the three judges? (2) Where are those wines positioned in terms
of those factors? These questions can best be answered by applying GCANO, which extracts a
set of attributes (called canonical variates or components) most representative of all three judges
in characterizing the wines. In the application section of this paper, a GCANO analysis of this
data set will be given in some detail.

In this paper, we discuss a simple regularization technique for GCANO and demonstrate its
usefulness in data analysis. Regularization can broadly be construed as a process for incorporat-
ing prior knowledge in data analysis for better understanding of data, and as such, it includes all
such processes that are variously called penalizing, smoothing, shrinking, soft-constraining, etc.
Regularization has proven useful as a means of identifying an over-parameterized model (e.g.,
Tikhonov & Arsenin, 1977), of supplementing insufficient data by prior knowledge (e.g., Poggio
& Girosi, 1990), of incorporating certain desirable properties (e.g., smoothness) in the estimates
of parameters (e.g., Ramsay & Silverman, 2005), and of obtaining estimates of parameters with
better statistical properties (e.g., Hoerl & Kennard, 1970).

There are a variety of regularization techniques that have been developed. In this paper,
however, we focus on a ridge type of shrinkage estimation initially developed in the context
of regression analysis. In ridge regression (Hoerl & Kennard, 1970), the vector of regression
coefficients b is estimated by

b̃ = (
X′X + λI

)−1X′y, (1)

where X is the matrix of predictor variables (assumed columnwise nonsingular), y is the vector of
observations on the criterion variable, I is the identity matrix of appropriate size, and λ is called
the ridge parameter. A small positive value of λ in (1) often provides an estimate of b which
is on average closer to the true parameter value than the least squares (LS) estimator (Hoerl &
Kennard, 1970). Let θ represent a generic parameter vector, and let θ̂ represent its estimator. One
way to measure the average closeness of an estimator to the population value is provided by the
mean square error (MSE) defined by

MSE
(
θ̂
) = E

[(
θ̂ − θ

)′(
θ̂ − θ

)]
, (2)

where E indicates an expectation operation. The MSE(θ̂) can be decomposed into two parts,

MSE
(
θ̂
) = (

θ − E
(
θ̂
))′(

θ − E
(
θ̂
)) + E

[(
θ̂ − E

(
θ̂
))′(

θ̂ − E
(
θ̂
))]

, (3)
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where the first term on the right-hand side is called “squared bias” and the second term “vari-
ance.” The LS estimator is usually unbiased, but tends to have a large variance. The ridge esti-
mator, on the other hand, is usually biased (albeit often slightly), but is associated with a much
smaller variance. As a result, the latter tends to have a smaller MSE than its LS counterpart.
The ridge estimation has been found particularly useful when there are a large number of pre-
dictor variables (compared to the number of cases), and/or when they are highly correlated (e.g.,
Hoerl & Kennard, 1970). It can also be easily adapted to the estimation of parameters in many
multivariate data analysis techniques (Takane & Hwang, 2006, 2007; Takane & Jung, in press;
Takane & Yanai, 2008). In this paper, we demonstrate the usefulness of the ridge regularization
in GCANO through the analysis of both Monte Carlo data sets and actual data sets. In Takane and
Hwang (2006), a special case of regularized GCANO (RGCANO), regularized multiple corre-
spondence analysis (RMCA), was discussed. However, it was assumed in that paper that K sets
of variables were disjoint. In this paper, this assumption is lifted, and RGCANO is developed
under a general condition.

This paper is organized as follows. In the next section, we present the proposed method
of RGCANO in some detail. We first (Section 2.1) briefly discuss ordinary (nonregularized)
GCANO. This is for preparation to introduce regularization in the following subsection (Sec-
tion 2.2). We then discuss how to choose an optimal value of the regularization parameter
(Section 2.3). In Section 2.4, we discuss some additional considerations necessary to deal with
multiple-choice categorical data by RGCANO (RMCA). In Section 3, we first (Section 3.1) give
a simple demonstration of the effect of regularization using a Monte Carlo method. We then
(Sections 3.2 through 3.5) illustrate practical applications of RGCANO using actual data sets.
In none of these examples, the disjointness condition holds. We conclude the paper by a few
remarks about the method. Appendix A provides further technical information.

2. The Methods

A number of procedures have been proposed so far for relating multiple sets of variables.
See Gifi (1990, Section 5.1) and Smilde, Bro and Geladi (2004) for a concise summary of these
procedures. We consider only one of them in this paper, developed by Carroll (1968; see also
Horst, 1961, and Meredith, 1964). This approach is most attractive because the solution can be
obtained noniteratively (Kroonenberg, 2008).

2.1. Multiple-Set Canonical Correlation Analysis (GCANO)

Let Xk (k = 1, . . . ,K) denote the n-case by pk-variable (n > pk) matrix of the kth data set.
Unless otherwise stated, we assume that Xk is column-wise standardized. Let X denote an n by
p (= ∑

k pk) row block matrix, X = [X1, . . . ,XK ]. Let W denote a p by t matrix of weights
applied to X to obtain canonical (variate) scores, where t is the dimensionality of the solution
(the number of canonical variates to be extracted). Let W be partitioned conformably with the
partition of X, that is, W = [W′

1, . . . ,W′
K ]′, where Wk is a pk by t matrix. In GCANO, we

obtain W which maximizes

φ(W) = tr
(
W′X′XW

)
, (4)

subject to the restriction that W′DW = It , where D is a block diagonal matrix formed from
Dk = X′

kXk as the kth diagonal block. This leads to the generalized eigen equation of the form,

X′XW = DW�2, (5)
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where �2 is the diagonal matrix of the t largest generalized eigenvalues of X′X with respect to
D (arranged in descending order of magnitude), and W is the matrix of the corresponding gener-
alized eigenvectors. Matrix of canonical scores (variates) F can be obtained by F = XW�−1. In
the above generalized eigen problem, D is not necessarily of full rank. A way to avoid the null
space of D in the solution has been given by de Leeuw (1982).

Essentially, the same results as above can also be obtained by the generalized singular value
decomposition (GSVD) of matrix XD− with column metric D, where D− is a g-inverse of D.
This is written as

GSVD
(
XD−)

In,D
. (6)

In this decomposition, we obtain a matrix of left singular vectors F∗ such that F∗′F∗ = Ir (where
r is the rank of X), a matrix of right generalized singular vectors W∗ such that W∗′DW∗ = Ir ,
and a pd (positive definite) diagonal matrix of generalized singular values �∗ (in descending
order of magnitude) such that XD− = F∗�∗W∗′ (e.g., Abdi, 2007; Greenacre, 1984; Takane
& Hunter, 2001). To obtain GSVD(XD−)In,D , we first calculate the ordinary SVD of XD−1/2,
denoted by XD−1/2 = F̃�̃W̃′, and then obtain XD− = F̃�̃W̃′D−1/2 = F∗�∗W∗′, where F∗ = F̃,
�∗ = �̃, and W∗ = D−1/2W̃. The matrix W that maximizes (4) is obtained by retaining only
the first t columns of W∗ corresponding to the t largest generalized singular values (assuming
that t ≤ r), and matrix � in (5) is obtained by retaining only the leading t by t block of �∗. The
matrix of canonical scores F is obtained directly by retaining only the first t columns of F∗.

We choose D−D1/2 for D−1/2 above, where D− is an arbitrary g-inverse and D1/2 is the
symmetric square root factor of D. This choice of D−1/2 is convenient since X(D−D1/2)2 =
XD+, where D+ is the Moore–Penrose g-inverse of D, uniquely determines the solution to the
above GSVD problem. (Note, however, a different choice of D−1/2 is typically made in MCA as
will be explained in Section 2.4.)

There is another popular criterion for GCANO called the homogeneity criterion (Gifi, 1990).
It is defined as

ψ(F,B) =
K∑

k=1

SS
(
F − XkBk

)
, (7)

where SS(Y) = tr(Y′Y), and Bk is the pk by t matrix of weights. Let B denote a column block
matrix B = [B′

1, . . . ,B′
K ]′. We minimize (7) with respect to B and F under the restriction that

F′F = It . Minimizing (7) with respect to B for fixed F leads to B̂ = D−X′F. By putting this
estimate of B in (7), we obtain ψ∗(F) = ψ(F, B̂). Minimizing ψ∗(F) with respect to F under the
restriction that F′F = It leads to the following eigen equation:

XD−X′F = F�2. (8)

Matrix B is related to W in the previous formulation by B = W�−1. Note that XD−X′ is
invariant over the choice of a g-inverse D− because Sp(X′) ⊂ Sp(D) (Rao & Mitra, 1971,
Lemma 2.2.4(iii)), where Sp indicates a range space. Let D−(∗) denote a block diagonal ma-
trix with D−

k as its kth diagonal block. Clearly, D−(∗) ∈ {D−} (i.e., D−(∗) is a g-inverse of D).

Thus, XD−X′ = XD−(∗)X′ = ∑K
k=1 Pk , where Pk = Xk(X′

kXk)
−X′

k is the orthogonal projector
onto Sp(Xk). Note also XD−DD−X′ = XD−X′, which explains the relationship between (8) and
(6), where we noted a similar relationship between (5) and (6).

Among the three approaches, the first approach (solving (5)) has a computational advantage
when the sample size n is greater than the total number of variables p, while the homogeneity
approach (solving (8)) has the advantage when p > n. (These methods obtain eigenvalues and
vectors of a p by p and an n by n matrix, respectively, and the smaller the size of the matrix,
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the more quickly the solution can be obtained.) The GSVD approach (solving (6)) is numerically
most stable (least prone to rounding errors because it avoids calculating the matrix of sums of
squares and products) and provides a theoretical bridge between the first two.

The following notations, though not essential in nonregularized GCANO, will be extremely
useful in regularized GCANO to be described in the following section. Let DX denote the block
diagonal matrix with Xk as the kth diagonal block, and let N = 1K ⊗ In, where 1K is the
K-component vector of ones, and ⊗ indicates a Kronecker product. (We define A ⊗ B = [aij B].)
Then X = N′DX and D = D′

XDX . The homogeneity criterion (7) can also be rewritten as

ψ(F,B) = SS
(
NF − DXB

)
. (9)

An estimate of B that minimizes (9) for fixed F can then be written as B̂ = D−D′
XNF = D−X′F.

2.2. Regularized GCANO (RGCANO)

We now incorporate a ridge type of regularization into GCANO. In RGCANO, we maximize

φλ(W) = tr
(
W′(X′X + λJp

)
W

)
(10)

subject to the ortho-normalization restriction W′D(λ)W = It , where λ is the regularization
parameter (a shrinkage factor), D(λ) = D + λJp , and Jp is the block diagonal matrix with
Jpk

= X′
k(XkX′

k)
−Xk as the kth diagonal block. (Matrix Jpk

is the orthogonal projector onto
the row space of Xk . It reduces to an identity matrix of order pk , if Xk is columnwise nonsingu-
lar.) An optimal value of λ is determined by a cross validation procedure (to be explained in the
next section). It usually takes a small positive value and has the effect of shrinking the estimates
of canonical weights W. As has been alluded to earlier, this tends to produce estimates with a
smaller mean square error (Hoerl & Kennard, 1970) than in the nonregularized case (λ = 0).

The above criterion leads to the following generalized eigen equation to be solved:

(
X′X + λJp

)
W = D(λ)W�2. (11)

As before, essentially the same results can also be obtained by GSVD. Using the notations intro-
duced at the end of the previous section, let

T = [
N λ1/2DXD+]

(12)

be a row block matrix, and define

MDX
(λ) = TT′ = NN′ + λ

(
DXD′

X

)+
. (13)

(Note that (DXD′
X)+ = DX(D′

XDX)+2D′
X = DX(D+)2D′

X .) Then X′X+λJp can be rewritten as

X′X + λJp = D′
XMDX

(λ)DX. (14)

This suggests that we obtain

GSVD
(
T′DXD(λ)−

)
In+p,D(λ)

, (15)

where the matrix in parentheses reduces to

T′DXD(λ)− =
[

X
λ1/2Jp

]
D(λ)−. (16)
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Let this GSVD be represented by

T′DXD(λ)− = F∗�∗W∗′ =
[

F∗
1

F∗
2

]
�∗W∗′, (17)

where F∗′F∗ = I. We split the F∗ matrix into two parts, one (F∗
1) corresponding to the X part, and

the other (F∗
2) corresponding to the λ1/2Jp part of T′DX in (16). We are typically only interested

in the first part. As before, W in (11) can be obtained by retaining the only t leading columns
of W∗.

There is an interesting relationship between F∗
1 and F∗

2, namely

F∗
1 = λ−1/2XF∗

2 (18)

that allows further reduction of the above GSVD problem. From (16) and (17), it is obvious that

Sp
([F∗

1
F∗

2

]) ⊂ Sp
([ X

λ1/2Jp

])
, which implies

[F∗
1

F∗
2

] = [ X
λ1/2Jp

]
G for some G. From the bottom portion

of this relationship, we obtain JpG = λ−1/2F∗
2. Note that XJp = X. Note also that the restriction

F∗′F∗ = I is turned into

λ−1F∗′
2

(
X′X + λJp

)
F∗

2 = I. (19)

By premultiplying (17) by λ−1/2(X′X + λJp)+1/2[λ−1/2X′ Jp], where (X′X + λJp)+1/2 is the
symmetric square root factor of (X′X + λJp)+, and also taking into account (16), we obtain

(
X′X + λJp

)1/2D(λ)− = λ−1/2(X′X + λJp

)1/2F∗
2�

∗W∗′. (20)

By setting

F̃∗
2 = λ−1/2(X′X + λJp

)1/2F∗
2, (21)

we obtain
(
X′X + λJp

)1/2D(λ)− = F̃∗
2�

∗W∗′. (22)

This is the GSVD((X′X + λJp)1/2D(λ)−)I,D(λ), since F̃∗′
2 F̃∗

2 = I from (19). The matrix whose
GSVD is obtained in (22) is usually much smaller in size than the one in (17). Once F∗

2 is
obtained, F∗

1 can easily be calculated by (18).
The homogeneity criterion (7) can also be adapted for regularization. Let

ψλ(F,B) = SS
(
NF1 − DXB

) + λSS
(
F̄2 − B

)
Jp

+ λ(K − 1)SS
(
F̄2

)
Jp

= SS

⎛

⎝

⎡

⎣
NF1
F2

(K − 1)1/2F2

⎤

⎦ −
⎡

⎣
DX

λ1/2Jp

0

⎤

⎦B

⎞

⎠ (23)

be the regularized homogeneity criterion, where in general SS(A)M = tr(A′MA), and F2 =
λ1/2JpF̄2. This criterion is minimized with respect to B and F = [F′

1,F′
2]′ under the restriction

that F′F = It . For fixed F, an estimate of B that minimizes (23) is given by

B̂ = D(λ)−
[
D′

X λ1/2Jp 0
]
⎡

⎣
NF1
F2

(K − 1)1/2F2

⎤

⎦ , (24)
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where D(λ) = D′
XDX + λJp . By putting this estimate of B in (23), we obtain

ψ∗
λ (F) ≡ ψλ

(
F, B̂

) = SS

⎛

⎝

⎡

⎣
NF1
F2

(K − 1)1/2F2

⎤

⎦

⎞

⎠

I−R

= Const − SS

⎛

⎝

⎡

⎣
NF1
F2

(K − 1)1/2F2

⎤

⎦

⎞

⎠

R

, (25)

where

R =
⎡

⎣
DX

λ1/2Jp

0

⎤

⎦D(λ)−
[
D′

X λ1/2Jp 0
]
. (26)

It can be easily verified that

SS

⎛

⎝

⎡

⎣
NF1
F2

(K − 1)1/2F2

⎤

⎦

⎞

⎠

I

= K
(
F′

1F1 + F′
2F2

) = KI (27)

is a constant. The second term on the right-hand side of (25) can be further rewritten as

tr

⎛

⎝

⎡

⎣
NF1
F2

K̃F2

⎤

⎦

′

R

⎡

⎣
NF1
F2

K̃F2

⎤

⎦

⎞

⎠

= tr

⎛

⎝[
F′

1N′ F′
2 K̃F′

2

]
⎡

⎣
DX

λ1/2Jp

0

⎤

⎦D(λ)−
[

D′
X λ1/2Jp 0

]
⎡

⎣
NF1
F2

K̃F2

⎤

⎦

⎞

⎠

= tr

([
F′

1 F′
2

][
XD(λ)−X′ λ1/2XD(λ)−Jp

λ1/2JpD(λ)−X′ λJpD(λ)−Jp

][
F1
F2

])
, (28)

where K̃ = (K − 1)1/2. Minimizing (25) with respect to F subject to F′F = It is equivalent to
maximizing (28) under the same normalization restriction on F, which leads to the following
eigen equation:

[
XD(λ)−X′ λ1/2XD(λ)−Jp

λ1/2JpD(λ)−X′ λJpD(λ)−Jp

][
F1
F2

]
=

[
F1
F2

]
�2, (29)

where as in the nonregularized case, XD(λ)−X′ is invariant over the choice of a g-inverse
D(λ)− since Sp(X′) ⊂ Sp(D(λ)). Let D(λ)−(∗) be a block diagonal matrix with Dk(λ)− as
the kth diagonal block. Clearly, D(λ)−(∗) ∈ {D(λ)−}, so that XD(λ)−X′ = XD(λ)−(∗)X′ =∑K

k=1 Xk(X′
kXk + λJpk

)−X′
k . Again, we are only interested in F1. This F1 is equal to the t

leading columns of F∗
1 in (17).

Takane and Hwang (2006) developed regularized MCA, a special case of RGCANO for
multiple-choice data, under the disjointness condition on Xk’s. Matrices Xk’s are said to be dis-
joint if the following rank additivity condition holds (Takane & Yanai, 2008):

rank(X) =
K∑

k=1

rank(Xk). (30)
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The above development is substantially more general in that no such condition is required. That
the present formulation is indeed more general than that by Takane and Hwang (2006) is explic-
itly shown in Appendix A.

Criterion (10) can also be readily generalized into the maximization of

φ
(L)
λ (W) = tr

(
W′(X′X + λL

)
W

)
(31)

subject to the restriction that W′(D + λL)W = It , where L is a block diagonal matrix with Lk as
the kth diagonal block. Matrix Lk could be any symmetric nnd (nonnegative definite) matrix such
that Sp(Lk) = Sp(X′

k). This generalization is often useful when we need a regularization term
more complicated than Jp . Such cases arise, for example, when we wish to incorporate certain
degrees of smoothness in curves to be approximated by way of regularization (Adachi, 2002;
Ramsay & Silverman, 2005). In this case, we define M(L)

DX
(λ) = TT′, where

T = [
N (λL)1/2]. (32)

2.3. The Choice of λ

We use the G-fold cross validation method to choose an “optimal” value of λ. In this method,
the entire data set is partitioned into G subsets, one of which is set aside in turn as the test sample.
Estimates of parameters are obtained from the remaining G − 1 subsets, which are then used to
predict the test sample to assess the amount of prediction error. This process is repeated G times
with the test sample changed systematically. Let X(−g) denote the data matrix with the gth subset,
X(g), removed from X. We apply RGCANO to X(−g) to obtain W(−g), from which we calculate
X(g)W(−g)W(−g)′. This gives the cross validatory prediction of X(g)D(λ)−. We repeat this for all
g’s (g = 1, . . . ,G), and collect all X(g)W(−g)W(−g)′ in the matrix X̂D(λ)−. We then calculate

ε(λ) = SS
(
XD(λ)− − X̂D(λ)−

)
In,D(λ)

(33)

as an index of cross validated prediction error, where SS(Y)In,D(λ) = tr(Y′YD(λ)). We evaluate
ε(λ) for different values of λ (e.g., λ = 0, 5, 10, 20, 50, 100), and choose the value of λ associated
with the smallest value of the prediction error.

The above procedure is based on the following rationale. Let F∗
1�

∗W∗′ denote
GSVD(XD−(λ))I,D(λ), and let F1, �, and W represent the reduced rank matrices ob-
tained from F∗

1, �∗, and W∗. Then XWW′ = F∗
1�

∗W∗′D(λ)WW′ = F1�W′ (denoted by
X̂D(λ)−) gives the best reduced rank approximation to XD(λ)−. In cross validation, we use
X(g)W(−g)W(−g)′ to obtain the best prediction to X(g)D(λ)−, which is accumulated over g.

A similar procedure can be used for selecting an optimal number of canonical variates to be
extracted. It is, however, rather time consuming to vary both the value of λ and the number of
canonical variates simultaneously in the G-fold cross validation procedure. It is more econom-
ical to choose the number of canonical variates by some other means, and then apply the cross
validation method to find an optimal value of λ. We use permutation tests for dimensionality
selection. This procedure is similar to the one used by Takane and Hwang (2002) in generalized
constrained CANO. General descriptions of the permutation tests for dimensionality selection
can be found in Legendre and Legendre (1998), and ter Braak (1990).

We also use a bootstrap method (Efron, 1979) to assess the reliability of parameter esti-
mates derived by RGCANO. In this procedure, random samples (called bootstrap samples) of
the same size as the original data are repeatedly sampled with replacement from the original
data. RGCANO is applied to each bootstrap sample to obtain estimates of parameters each time.
We then calculate the mean and the variance-covariance of the estimates (after reflecting and per-
muting dimensions if necessary) across the bootstrap samples, from which we calculate estimates
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of standard errors of the parameter estimates, or draw confidence regions to indicate how reliably
parameters are estimated. The latter is done under the assumption of asymptotic normality of the
parameter estimates. When the asymptotic normality assumption is not likely to hold, we may
simply plot the empirical distribution of parameter estimates. In most cases, this is sufficient to
get a rough idea of how reliably parameters are estimated.

Significance tests of canonical weights and structure vectors (correlations between canonical
scores and observed variables) may also be performed as byproducts of the bootstrap method de-
scribed above. We count the number of times bootstrap estimates “cross” the value of zero (i.e., if
the original estimate is positive, we count how many times the corresponding bootstrap estimate
comes out to be negative, and vice versa). If the relative frequency (the p-value) of “crossing”
zero is smaller than a prescribed α level, we conclude that the corresponding parameter is signif-
icantly positive (or negative).

2.4. Regularized Multiple Correspondence Analysis (RMCA)

GCANO reduces to MCA when each of the K data sets consists of indicator variables (e.g.,
Gifi, 1990). However, there is a subtle “difference” between them that needs to be addressed. In
MCA, the data are usually only columnwise centered (but not standardized). The columnwise
centering, however, reduces the rank of an indicator matrix by one. Consequently, D and D(λ)

defined in Sections 2.1 and 2.2, respectively, are bound to be rank deficient, and the choice of
g-inverses of D and D(λ) is crucial from a computational point of view. Both MCA and RMCA
use special g-inverses (Takane & Hwang, 2006).

Let us begin with the nonregularized case. Let Z = [Z1, . . . ,ZK ] denote a matrix of raw
indicator matrices, and let DZ denote a block diagonal matrix with Zk as the kth diagonal block.
To allow missing data (zero rows in Zk) in our formulation, let Dwk

(k = 1, . . . ,K) denote a
diagonal matrix with its ith diagonal element equal to 1 if the ith subject has responded to item k,
and 0 otherwise. (This approach for handling missing data is similar to that of van de Velden &
Bijmolt (2006).) Let QDwk

= In − 1n(1′
nDwk

1n)
−11′

nDwk
(the orthogonal projector onto Sp(1n)

in the metric Dwk
), where 1n is the n-component vector of ones. Then

Xk = Q′
Dwk

Zk = ZkQ1pk
/D̃k

, (34)

for k = 1, . . . ,K , where D̃k = Z′
kZk ,

Q1pk
/D̃k

= Ipk
− 1pk

(
1′
pk

D̃k1pk

)−11′
pk

D̃k, (35)

and 1pk
is the pk-component vector of ones. Matrix Q1pk

/D̃k
is the orthogonal projector onto

1pk
in the metric D̃k . To show (34), we simply note that Zk1pk

= Dwk
1n, and 1′

nDwk
1n =

1′
pk

D̃k1pk
. Let Q′

Dw
denote a supermatrix formed from Q′

Dwk
arranged side by side (i.e.,

Q′
Dw

= [Q′
Dw1

, . . . ,Q′
DwK

]). Then the columnwise centered data matrix is obtained by

X = Q′
Dw

DZ = ZQ1p/D̃
, (36)

where Q1p/D̃
is a block diagonal matrix with Q1pk

/D̃k
as the kth diagonal block.

Let D̃ = D′
ZDZ denote the diagonal matrix with D̃k as the kth diagonal block, and let D

denote the block diagonal matrix with Dk = X′
kXk as the kth diagonal block. Then

Dk = D̃kQ1pk
/D̃k

= Q′
1pk

/D̃k
D̃k, (37)
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and

D = D̃Q1p/D̃
= Q′

1p/D̃
D̃. (38)

To see (37), we note that Dk = Q′
1pk

/D̃k
D̃kQ1pk

/D̃k
, but D̃kQ1pk

/D̃k
= Q′

1pk
/D̃k

D̃k in general, and

Q1pk
/D̃k

(and Q′
1pk

/D̃k
) are idempotent.

For the sake of generality, we do not assume that D̃ is always nonsingular in the following
discussion. That is, the existence of response categories with zero marginal frequencies is al-
lowed. When the original data set includes such categories, they can be removed a priori from
all subsequent analyses. However, it is important to be able to handle such categories, since they
may occur quite frequently in applications of the bootstrap methods.

A straightforward application of GCANO with columnwise centered data requires

GSVD
(
ZQ1p/D̃

D−)
In,D

, (39)

whereas in MCA, we typically obtain

GSVD
(
ZQ1p/D̃

D̃+)
In, D̃

, (40)

where D̃+ indicates the Moore–Penrose g-inverse of D̃. The latter is solved by first post-
multiplying ZQ1p/D̃

D̃+ by D̃1/2, that is, ZQ1p/D̃
D̃+D̃1/2 = ZQ1p/D̃

(D̃+)1/2, whose ordi-

nary SVD is then obtained. Let this SVD be denoted by ZQ1p/D̃
(D̃+)1/2 = F̃�̃W̃′. Then

GSVD(ZQ1p/D̃
D̃+)

In, D̃
, denoted by F∗�∗W∗′, is obtained by F∗ = F̃, �∗ = �̃, and W∗ =

W̃(D̃+)1/2. This is equivalent to making the following sequence of choices in solving (39):

(a) Take D̃+ as a g-inverse of D and obtain GSVD(ZQ1p/D̃D+)In,D . (That D̃+ is a g-inverse of

D can easily be shown by DD̃+D = Q′
1p/D̃

D̃D̃+D̃Q1p/D̃
= Q′

1p/D̃
D̃Q1p/D̃

= D̃Q1p/D̃
= D

due to (38).)
(b) Take Q′

1p/D̃
D̃1/2 as a square root factor of the metric matrix D, where D̃1/2 is the sym-

metric square root factor of D̃. By Theorem 1 in Appendix B, postmultiplying ZQ1p/D̃
D̃+

by Q′
1p/D̃

D̃1/2 leads to ZQ1p/D̃
(D̃+)1/2, whose SVD we obtain. Note that postmulti-

plying ZQ1p/D̃
D̃+ by Q′

1p/D̃
D̃1/2 has the same effect as postmultiplying the former by

merely D̃1/2. (That Q′
1p/D̃

D̃1/2 is a square root factor of D can easily be shown by

Q′
1p/D̃

D̃1/2D̃1/2Q1p/D̃
= D due to (38).)

(c) Take (D̃+)1/2 as a g-inverse of D1/2 = Q′
1p/D̃

D̃1/2. The SVD of ZQ1p/D̃
(D̃+)1/2 ob-

tained above is postmultiplied by (D̃+)1/2 to obtain GSVD(ZQ1p/D̃
D̃+)

I, D̃
. (That (D̃+)1/2

is a g-inverse of Q′
1p/D̃

D̃1/2 can easily be shown by Q′
1p/D̃

D̃1/2(D̃+)1/2Q′
1p/D̃

D̃1/2 =
Q′

1p/D̃
D̃1/2.)

Note that the choices of solutions in the above steps are not necessarily unique, but they are
chosen to make the solution to (39) equivalent to that of (40).

An important question is if an analogous relationship holds for regularized MCA. The an-
swer is “yes,” as shown below. Let D̃(λ) = D̃ + λJp , where Jp is, as defined earlier, a block
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diagonal matrix with Jpk
= X′

k(XkX′
k)

−Xk as the kth diagonal block. Then

D(λ) = D̃(λ)Q1p/D̃
= Q′

1p/D̃
D̃(λ), (41)

since Q′
1p/D̃

Jp = JpQ1p/D̃
= Jp . A straightforward application of (15) with columnwise cen-

tered data requires

GSVD
(
T′DZQ1p/D̃

D(λ)−
)
In,D(λ)

, (42)

whereas RMCA typically obtains (Takane & Hwang, 2006)

GSVD
(
T′DZQ1p/D̃

D̃(λ)+
)
In, D̃(λ)

, (43)

where D̃(λ)+ is the Moore–Penrose g-inverse of D̃(λ). The two GSVD problems can be made
equivalent by making the following sequence of choices in solving (42):

(a) Take D̃(λ)+ as a g-inverse of D(λ) and obtain GSVD(T′DZQ1p/D̃D(λ)+). (That D̃(λ)+ is

a g-inverse of D(λ) can be shown by D(λ)D̃(λ)+D(λ) = Q′
1p/D̃

D̃(λ)D̃(λ)+D̃(λ)Q1p/D̃
=

Q′
1p/D̃

D̃(λ)Q1p/D̃
= D̃(λ)Q1p/D̃

= D(λ) due to (41).)

(b) Take Q′
1p/D̃

D̃(λ)1/2 as a square root factor of D(λ). By Theorem 2 in Appendix B, postmul-

tiplying T′DZQ1p/D̃
D̃(λ)+ by Q′

1p/D̃
D̃(λ)1/2 leads to T′DZQ1p/D̃

(D̃(λ)+)1/2, whose SVD

we obtain. Note that postmultiplying T′DZQ1p/D̃
D̃(λ)+ by Q′

1p/D̃
D̃(λ)1/2 has the same ef-

fect as postmultiplying the former by merely D̃(λ)1/2. (That Q′
1p/D̃

D̃(λ)1/2 is a square root

factor of D(λ) can be shown by Q′
1p/D̃

D̃(λ)1/2D̃(λ)1/2Q1p/D̃
= D(λ) due to (41).)

(c) Take (D̃(λ)+)1/2 as a g-inverse of Q′
1p/D̃

D̃(λ)1/2. The SVD of T′DZQ1p/D̃
(D̃(λ)+)1/2 is

postmultiplied by (D̃(λ)+)1/2 to obtain GSVD(T′DZQ1p/D̃
D̃(λ)+)

I, D̃(λ)
. (That (D̃(λ)+)1/2

is a g-inverse of Q′
1p/D̃

D̃(λ)1/2 can be shown by Q′
1p/D̃

D̃(λ)1/2(D̃(λ)+)1/2Q′
1p/D̃

D̃(λ)1/2 =
Q′

1p/D̃
D̃(λ)1/2.)

Again, the choices in the above steps make the solution to (42) equivalent to that of (43).

3. Some Numerical Examples

In this section, we report some results on applications of RGCANO. We first present a simple
demonstration of the effect of regularization using a Monte Carlo technique. We then discuss
four applications of RGCANO to illustrate practical uses of the method. The first two of these
analyze continuous data (applications of RGCANO proper), while the last two analyze multiple-
choice data (applications of GCANO for RMCA). In none of these examples the rank additivity
condition (30) holds, requiring the generalized formulation developed in this paper.

3.1. A Monte Carlo Study

In this demonstration, a number of data sets were generated from a population GCANO
model. (This is somewhat different from the Monte Carlo study conducted for RMCA by Takane
& Hwang, 2006, where no population model existed according to which the data could be gen-
erated. Instead, multiple-choice data with a very large sample size was taken as the population
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FIGURE 1.
MSE as a function of the regularization parameter (λ) and sample size (n).

data from which a number of data sets were sampled.) They were then analyzed by RGCANO
to examine the effect of regularization on the estimates of parameters. Since “true” population
values are known in this case, MSE can be directly calculated as a function of the regularization
parameter.

The population model used was as follows. First, it was assumed that there were three sets
of variables, and that the first set had 3 variables, the second set 4 variables, and the third set 5
variables (p = 12). A model with two canonical variates was then postulated by assuming

A′ =
[

1 1 1 1 1 1 1 1 1 1 1 1
− 1√

2
0 1√

2
− 3√

20
− 1√

20
1√
20

3√
20

− 2√
10

− 1√
10

0 1√
10

2√
10

]

,

from which a population covariance matrix was generated by

� = aAA′ + bI,

where both a and b were further assumed to be unity. (Note that columns of A consist of a
constant vector and a vector of linear trend coefficients within each subset of variables. There was
no strong reason to postulate this particular A, except that we wanted a population covariance
matrix with two canonical variates.) The population parameters (W) in GCANO can be derived
from the generalized eigen decomposition of � with respect to D� , where D� is a block diagonal
matrix formed from diagonal blocks of � of order 3, 4, and 5. (This decomposition has exactly
2 eigenvalues larger than one.) A number of data matrices (100 within a particular sample size),
each row following the p-variate normal distribution with mean 0 and covariance matrix �, were
generated and subjected to GCANO with the value of λ systematically varied (λ = 0, 10, 50, 100,
200, 400). This was repeated for different sample sizes (n = 50, 100, 200, and 400).

Figure 1 depicts MSEs as a function of the sample size and the value of the ridge parameter.
The MSE was calculated according to (1). As can be seen, the MSE decreases as soon as λ departs
from 0, but begins to increase after a while. The minimum value of MSE occurs somewhere in
the middle. This tendency is clearer for small sample sizes, but can still be observed for a sample
size as large as 400. Figure 2 breaks down the MSE function for n = 200 into its two constituents,
squared bias, and variance. The squared bias consistently increases as the value of λ increases,
while the variance decreases. The sum of the two (MSE) takes its smallest value in the mid range.
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FIGURE 2.
MSE, Squared Bias, and Variance as a function of the regularization parameter (λ) for n = 200.

Figures 1 and 2 are similar to those derived theoretically by Hoerl and Kennard (1970) in multiple
regression analysis, and it is reassuring to find that essentially the same holds for GCANO as
well. (See also Takane & Hwang, 2006.) We also tried a number of parameter combinations
within the two-component model, and the one-component model to assess the generality of the
above results. We obtained essentially the same results.

3.2. The First Example of Application

We first analyze the data set given in Table 1. We refer the reader to the Introduction section
for a description of the data and motivations for data analysis. Permutation tests indicated that
there was only one significant component (p < 0.0005 for the first component, and p > 0.15 for
the second component, both with λ = 10). The six-fold cross validation found that an “optimal”
value of λ was 10. The cross validation index (ε) was 0.755 for λ = 10, and 0.781 for λ = 0.

The top portion of Table 2 provides the estimates of weights (applied to the observed vari-
ables to derive the canonical component) and the correlations between the canonical compo-
nent and the observed variables for nonregularized GCANO (columns 3 and 4) and RGCANO
(columns 5 and 6). It can be observed that the weights (and the correlations) obtained by
RGCANO tend to be closer to zero than their nonregularized counterparts, indicating the shrink-
age effect of regularization. The weights as well as the correlations indicate that this component
represents the type of material used to store the wine. It is highly positively correlated with
“woodiness” for all three judges, and negatively with “fruitiness.” The bottom portion of the ta-
ble gives canonical scores for the six wines on the derived component. The wines are grouped
into two groups, wines 1, 5, and 6 on the positive side, and wines 2, 3, and 4 on the negative side,
which coincide with the two different types of oak to store the wines indicated in the second col-
umn of Table 1. Patterns of canonical scores are similar in both nonregularized and regularized
cases. However, the standard errors given in parentheses indicate that the estimates of canonical
scores in the latter are much more reliable than in the former. (The former are at least 10 times as
large.) The overall size of the canonical scores was equated across the two estimation methods
to ensure that the smaller standard errors in RGCANO are not merely due to smaller sizes of the
estimates. (This roughly has the effect of equating the degree of bias across the two methods.)
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TABLE 2.
Analysis of wine tasting data in Table 1 by nonregularized and regularized GCANO.

Column Scale Non-regularized Regularized
Weight Correlation Weight Correlation

Expert 1 Fruity −0.415 −0.993 −0.264 −0.890
Woody 0.500 0.996 0.275 0.902
Coffee 0.097 0.926 0.225 0.837

Expert 2 Red fruit −0.298 −0.928 −0.174 −0.824
Roasted −0.187 0.928 0.205 0.872
Vanillin 0.490 0.974 0.186 0.873
Woody 0.443 0.947 0.222 0.884

Expert 3 Fruity 0.267 −0.447 −0.067 −0.511
Butter 0.218 0.884 0.270 0.856
Woody 0.943 0.982 0.324 0.903

Row Score Std. error Score Std. error

Wine 1 0.597 (0.418) 0.539 (0.024)

Wine 2 −0.142 (0.366) −0.133 (0.009)

Wine 3 −0.457 (0.523) −0.540 (0.040)

Wine 4 −0.514 (0.616) −0.466 (0.032)

Wine 5 0.351 (0.292) 0.341 (0.016)

Wine 6 0.165 (0.313) 0.258 (0.025)

TABLE 3.
Description of the 21 music pieces.

No. Composer Symbol Description

1 Bach 1 11 A†—English Suite No. 1, Guigue 806
2 Bach 2 12 Bb—Partitas No. 1, BWV 825
3 Bach 3 13 C—Three-Part Invention, BWV 787
4 Bach 4 14 C minor—French Suite No. 2, BWV 813
5 Bach 5 15 D—Prelude No. 5, BWV 850 (Well-tempered Piano I)
6 Bach 6 16 F—Little Fugue, BWV 556
7 Bach 7 17 G—French Suite No. 5, BWV 816
8 Beethoven 1 21 A—Sonata K331, Allegro
9 Beethoven 2 22 Bb—Sonata K281, Allegro

10 Beethoven 3 23 C—Sonata K545, Allegro
11 Beethoven 4 24 C minor—Sonata K457, Allegro assai
12 Beethoven 5 25 D—Sonata K576, Allegro
13 Beethoven 6 26 F—Sonata K280, Allegro
14 Beethoven 7 27 G—Sonata K283, Allegro
15 Mozart 1 31 A—Sonata No. 2, Op. 2, Allegro
16 Mozart 2 32 Bb—Sonata No. 11, Op. 22
17 Mozart 3 33 C—Sonata in C, Op. 21, Allegro con brio
18 Mozart 4 34 C minor—Sonata No. 5, Op. 10 No. 1, Allegro
19 Mozart 5 35 D—Sonata No. 7, Op. 10, Presto
20 Mozart 6 36 F—Sonata No. 6, Op. 10 No. 2
21 Mozart 7 37 G—Sonata No. 10, Op. 14, Allegro

†A capital letter indicates key, and a lower case “b” a bemol (flat).
Note: All are major except those explicitly designated as minor.
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FIGURE 3.
Regularized GCANO with the musical piece data along with vectors representing the directions with which average
ratings on six scales are most highly correlated.

3.3. The Second Example

The data to be analyzed in this section are similar to the wine tasting data in the previ-
ous section, but on a much larger scale (Tillman, Dowling & Abdi, 2008). Twenty six judges
rated 21 music pieces on six rating scales. The 21 music pieces were sampled from works by
three composers (seven pieces each): (1) Bach, (2) Beethoven, and (3) Mozart. (See Table 3 for
more detailed descriptions.) After hearing each piece for 10 seconds, each judge rated the piece
on the following six bipolar scales: (1) simple/complex, (2) fierce/gentle, (3) positive/negative,
(4) elegant/plain, (5) regular/irregular, and (6) jagged/smooth. (The underlined symbols are used
as plotting symbols in Figure 3.) Each rating scale had eight response categories numbered from
1 to 8. A larger number indicated a more complex, more gentle, more negative, plainer, more
regular, and smoother piece.

Our interest in applying GCANO in this case is to find a representation of the 21 music pieces
most representative of the 26 judges. We, therefore, mainly focus on canonical scores (F1) that
indicate the spatial locations of the pieces in relation to each other. Permutation tests found that
the first two components were clearly significant (both p < 0.0005), while the third one was
on the borderline. The third component was not significant for the nonregularized case with a
p-value of 0.120, while it was marginally significant (p = 0.021) with the value of λ = 10. For
ease of comparison, however, we adopted a two-dimensional solution for both cases. (The third
component was also rather difficult to interpret because none of the six scales was correlated
highly with this component.) The 21-fold cross validation found that an optimal value of the
ridge parameter was 10. The cross validation index (ε) was 0.926 for λ = 10 compared to 0.931
for λ = 0. The difference is rather small, but this is due to the fact that this data set is fairly large
(21 by 6 by 26).

Figure 3 displays the two-dimensional configuration of the 21 music pieces from RGCANO
(the plot of F1). Music pieces are indicated by number pairs, the first one indicating the composer
number followed by the piece number within a composer. For example, 23 indicates Beethoven’s
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piece number 3. Works by the same composer loosely form clusters; those composed by Bach
tend to be located toward the upper left corner, those by Beethoven toward the right, and those
by Mozart toward the lower left corner. This is seen from the convex hulls (shown by connected
line segments) drawn to enclose the works by the three composers separately.

Mean ratings of the 26 judges on the six scales were mapped into the configuration as vec-
tors. (The mean ratings can be taken in this example because all judges used the same six scales.
This is in contrast to the previous example in which different sets of attributes were used by dif-
ferent judges.) Six arrows indicate the directions with which the mean ratings on the six rating
scales are most highly correlated. Bach’s compositions were rated plainer and more negative,
Beethoven’s works more gentle and smoother, and Mozart’s pieces more irregular and complex.
The numbers in parentheses indicate the multiple correlations, which are fairly large in all cases.

The bootstrap method was used to assess the reliability of the estimated locations of the
music pieces. (The number of bootstrap samples was set to 1,000.) Figure 4 displays the two-
dimensional configuration of music pieces obtained by the nonregularized GCANO along with
the 95% confidence regions. The variabilities of point locations are fairly large in almost all cases.
This is partly due to the fact that the 26 judges varied considerably in their ratings. Figure 5, on
the other hand, displays the same (as Figure 4) but that derived by RGCANO. The confidence
regions derived by RGCANO are almost uniformly smaller than those derived by nonregularized
GCANO. Again, the configuration in Figure 5 has been resized to match the size of Figure 4
to ensure that the tighter confidence regions in the former were not merely due to the shrunken
configuration size. (As before, this adjustment may be seen as a bias correction.)

3.4. The Third Example

The third example pertains to a small multiple-choice data set used by Maraun, Slaney and
Jalava (2005) to illustrate the use of MCA. Two groups of subjects (5 depressed inpatients, and
5 university undergraduates) responded to four items of the Beck Depression Inventory (BDI;
Beck, 1996). The items and the response categories used were: (1) Item 1—Sadness (1: I do
not feel sad, 2: I feel sad much of the time, 3: I am sad all the time, 4: I am so sad or unhappy
that I can’t stand it). (2) Item 4—Loss of pleasure (1: I get as much pleasure as I ever did from
the things I enjoy, 2: I do not enjoy things as much as I used to, 3: I get very little pleasure
from the things I used to enjoy, 4: I cannot get any pleasure from the things I used to enjoy).
(3) Item 7—Self-dislike (1: I feel the same about myself as ever, 2: I have lost confidence about
myself, 3: I am disappointed about myself, 4: I dislike myself). (4) Item 21—Loss of interest
in sex (1: I have not noticed any recent change in my interest in sex, 2: I am less interested
in sex than I used to be, 3: I am much less interested in sex now, 4: I have lost interest in sex
completely). Although the response options are roughly ordinal, they were treated as nominal for
the purpose of MCA.

Permutation tests indicated that there was only one significant component (p < 0.0005 for
the first component and p > 0.15 for the second component with λ = 1). The 10-fold cross
validation indicated that the optimal value of λ was 1. The value of ε was 0.240 for λ = 1, and
0.468 for λ = 0. Table 4 shows that the overall patterns of estimates remain the same across
the nonregularized and the regularized cases. The derived component represents the degree of
depression with the negative side indicating more serious depression. (For category 3 of item 7
the weight estimate is 0 with 0 variance. This is because no respondents chose this category.)
Scores of depressed inpatients tend to be on the negative side (they are also more variable),
while those of university undergrads on the positive side. Standard errors were almost uniformly
smaller in the regularized case. (The regularized estimates were again scaled up to match the size
of the nonregularized estimates.)
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FIGURE 4.
Two-dimensional stimulus configuration from the musical piece data obtained by nonregularized GCANO along with
95% confidence regions.

FIGURE 5.
Two-dimensional stimulus configuration from the musical piece data obtained by regularized GCANO along with 95%
confidence regions.

3.5. The Fourth Example

The fourth and final example concerns the analysis of sorting data by MCA (Takane, 1980).
Ten university students sorted 29 “Have” words into as many groups as they liked in terms of the
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TABLE 4.
Analysis of Maraun et al. (2005) data by regularized GCANO (MCA).

BDI Category Non-regularized Regularized
Weight Std. error Weight Std. error

Item 1 1 0.905 (0.298) 0.827 (0.223)

2 0.540 (0.259) 0.321 (0.219)

3 0.671 (0.370) 0.390 (0.243)

4 −1.149 (0.285) −1.537 (0.223)

Item 4 1 0.813 (0.399) 1.086 (0.313)

2 0.983 (0.660) 0.732 (0.452)

3 −1.586 (0.804) −1.128 (0.663)

4 −0.663 (0.537) −0.691 (0.463)

Item 7 1 0.992 (0.447) 0.943 (0.361)

2 0.449 (0.360) 0.580 (0.322)

3 0.000 (0.000) 0.000 (0.000)

4 −1.410 (0.385) −1.523 (0.341)

Item 21 1 0.797 (0.274) 0.843 (0.236)

2 0.866 (0.472) 0.682 (0.417)

3 0.088 (0.387) 0.065 (0.330)

4 −1.410 (0.411) −1.589 (0.349)

Subj. Score Std. Error Score Std. Error

Depressed 1 −1.322 (0.575) −1.374 (0.499)

inpatients 2 0.358 (0.320) 0.345 (0.322)

3 −1.322 (0.575) −1.374 (0.499)

4 −1.586 (0.558) −1.490 (0.476)

5 −0.364 (0.414) −0.374 (0.407)

University 1 0.983 (0.495) 0.820 (0.378)

undergrads 2 0.846 (0.360) 0.934 (0.352)

3 0.540 (0.323) 0.592 (0.341)

4 1.001 (0.434) 1.030 (0.388)

5 0.866 (0.385) 0.891 (0.346)

similarity in meaning. The 29 Have words were: (1) Accept, (2) Beg, (3) Belong, (4) Borrow,
(5) Bring, (6) Buy, (7) Earn, (8) Find, (9) Gain, (10) Get, (11) Get rid of, (12) Give, (13) Have,
(14) Hold, (15) Keep, (16) Lack, (17) Lend, (18) Lose, (19) Need, (20) Offer, (21) Own, (22) Re-
ceive, (23) Return, (24) Save, (25) Sell, (26) Steal, (27) Take, (28) Use, and (29) Want. The sort-
ing data are a special case of multiple-choice data with rows of the table representing stimuli,
while columns representing sorting clusters elicited by the subjects.

Permutation tests indicated that there were seven significant components (p < 0.0005 up
to the seventh component, and p > 0.85 for the eighth component with λ = 1). However, for
ease of presentation, we adopt a two-dimensional solution defined by the two most dominant
components. The 29-fold cross validation found the optimal value of λ was 1. The value of ε

was 0.593 for λ = 1, and 0.906 for λ = 0. Figures 6 and 7 display the two-dimensional stimulus
configurations by nonregularized and regularized MCA, respectively, along with 95% confidence
regions for the point locations. The configurations are similar in both cases. We find verbs such
as 13. Have, 21. Own, 3. Belong, 15. Keep, etc. on the left, while 12. Give, 25. Sell, 11. Get rid
of, 18. Lose, etc. on the right. At the bottom, we see 16. Lack, 19. Need, and 29. Want, while at
the top, 22. Receive, 10. Get, 7. Earn, 8. Find, etc. We may interpret dimension 1 (the horizontal
direction) as contrasting two states of possession, stable on the left and unstable on the right,
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FIGURE 6.
Two-dimensional stimulus configuration for 29 have words obtained by non-regularized MCA along with 95% confi-
dence regions.

FIGURE 7.
Two-dimensional stimulus configuration for 29 have words obtained by regularized GCANO along with 95% confidence
regions.

while dimension 2 (the vertical direction) contrasting the two states of nonpossession, stable at
the bottom and unstable at the top. Although the configurations are similar, confidence regions
are almost uniformly smaller in the regularized case.
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4. Concluding Remarks

We presented a simple regularization technique for multiple-set canonical correlation analy-
sis (RGCANO). This technique is a straightforward extension of the ridge estimation in regres-
sion analysis (Hoerl & Kennard, 1970) to multiple-set canonical correlation analysis (GCANO).
We outlined the theory for regularized GCANO and extended it to multiple correspondence
analysis (RMCA: Takane & Hwang, 2006). We demonstrated the usefulness of RGCANO us-
ing both a Monte Carlo method and actual data sets. The regularization technique similar to the
one presented here may be incorporated in many other multivariate data analysis methods. Re-
dundancy analysis (Takane & Hwang, 2007; Takane & Jung, in press), canonical discriminant
analysis (DiPillo, 1976; Friedman, 1989), PCA, hierarchical linear models (HLM), logistic dis-
crimination, generalized linear models, log-linear models, and structural equation models (SEM)
are but a few examples of the techniques in which regularization might be useful.

GCANO (Multiple-set CANO) has not been used extensively in data analysis so far. Hardly
any use of it has been reported in the literature, except in food sciences (Dahl & Næs, 2006; see,
however, Devaux, et al., 1998, Fischer, et al., 2007, Sun, et al., 2005.), and in the special cases of
GCANO, such as MCA and an optimal scaling approach to nonlinear multivariate analysis (Gifi,
1990). The point of view given in the Introduction section that it can be viewed as a method of
information integration from multiple sources may broaden the scope of GCANO and generate
more applications in the future.

Incorporating prior knowledge is essential in many data analyses. Information obtained from
the data is never sufficient and must be supplemented by prior information. In regression analysis,
for example, the regression curve (the conditional expectation of y on X) is estimated for the
entire range of X based on a finite number of observations. In linear regression analysis, this
is made possible by the assumption that the regression curve is linear at least within the range
of X of our interest. Regularization provides one way of incorporating prior knowledge in data
analysis.

Appendix A. RGCANO when the Rank Additivity Condition (30) Holds

We show that the formulation of RGCANO presented in Section 2.2 reduces to that of
Takane and Hwang (2006) developed under the assumption of rank additivity (30). Under this
condition, a solution of RGCANO was obtained by

GSVD
(
XD(λ)−

)
M(λ),D(λ)

, (44)

where

M(λ) = Jn + λ
(
XX′)+ (45)

is called the ridge metric matrix (Takane & Yanai, 2008). Here, Jn is any matrix such that
X′JnX = X′X (e.g., Jn = In, Jn = X(X′X)−X′, etc.). In this Appendix, it will be shown that
(15) reduces to (44) if (30) holds.

Let (17) be the solution to (15), where F∗′F∗ = [F∗
1

F∗
2

]′[F∗
1

F∗
2

] = I. Then obviously

XD(λ)− = F∗
1�

∗W∗′ (46)

holds. We will show that under (30) this is the solution to (44). That is,

F∗′
1 M(λ)F∗

1 = I. (47)



YOSHIO TAKANE, HEUNGSUN HWANG, AND HERVÉ ABDI 773

Let

M(λ) = CC′, (48)

where

C = [
Jn λ1/2X(X′X)+

]
. (49)

Note that (XX′)+ = X(X′X)+2X′. When (30) holds,

C′XD(λ)− =
[

X
λ1/2(X′X)+X′X

]
D(λ)− =

[
X

λ1/2Jp

]
D(λ)− = T′DXD(λ)−. (50)

(Note that (X′X)+X′X = PX′ which in turn is equal to Jp if and only if (30) holds Takane &
Yanai, 2008.) This leads to

M(λ)F∗
1 = C

[
F∗

1
F∗

2

]
. (51)

We thus have

F∗′
1 M(λ)F∗

1 =
[

F∗
1

F∗
2

]′
C′M(λ)+C

[
F∗

1
F∗

2

]
= I, (52)

since Sp(F∗) ⊂ Sp(C′).
From (51), F∗

1 + λ(XX′)+F∗
1 = F∗

1 + λ1/2X(X′X)+F∗
2, from which it follows that

F∗
2 = λ1/2(X′X

)+X′F∗
1, (53)

indicating Sp(F∗
2) ⊂ Sp(X′), or

F∗
1 = λ−1/2XF∗

2, (54)

indicating Sp(F∗
1) ⊂ Sp(X). (The latter always holds as given in (18), while the former holds

only when the rank additivity holds.)
By (53), we obtain

XD(λ)−X′F∗
1 + λXD(λ)−

(
X′X

)+X′F∗
1 = XD(λ)−X′M(λ)F∗

1 = F∗
1�

∗2 (55)

from (29), where (X′X)+X′ = X′(XX′)+ was used to establish the first equality. (Note that F1
is the t leading columns of F∗

1.) Premultiplying the equation by M(λ)1/2, where M(λ)1/2 is the
symmetric square root factor of M(λ), leads to

M(λ)1/2XD(λ)−X′M(λ)1/2F̃1 = F̃1�
2, (56)

where F̃1 = M(λ)1/2F∗
1, and F̃′

1F̃1 = I. As in the nonregularized case, XD(λ)−X′ is invari-
ant over the choice of a g-inverse D(λ)− since Sp(X′) ⊂ Sp(D(λ)). Let D(λ)−(∗) be the
block diagonal matrix with Dk(λ)− as the kth diagonal block. Clearly, D(λ)−(∗) ⊂ {D(λ)−},
so that M(λ)1/2XD(λ)−X′M(λ)1/2 = M(λ)1/2XD(λ)−(∗)X′M(λ)1/2 = ∑K

k=1 PM(λ)1/2Xk
(λ),

where PM(λ)1/2Xk
(λ) = M(λ)1/2Xk(X′

kM(λ)Xk)
−X′

kM(λ)1/2 is the orthogonal projector onto
Sp(M(λ)1/2Xk).

When K = 2, the above procedure leads to the canonical ridge “regression” proposed by
Vinod (1976). Matrix M(λ)1/2XD(λ)−X′M(λ)1/2 in (56) reduces to the sum of two orthogonal
projectors when K = 2. In the standard CANO, on the other hand, the eigenvalues and vectors
of the product of the two orthogonal projectors are typically obtained. However, the dominant
eigenvalues and the corresponding eigenvectors of the sum of two projectors are related in a
simple manner to those of the products of the two projectors (ten Berge, 1979).
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Appendix B. Two Theorems Bridging (R)GCANO and (R)MCA

In this appendix, we give some nontrivial results used in Section 2.4. We refer the reader
to that section for definitions of various symbols. However, to avoid notational clutters, we use
Q for Q1p/D̃

, 1 for 1p , and J for Jp . (Remember that Jp is defined shortly after (10), and that
Q1p/D̃

is a block diagonal matrix with Q1pk
/D̃k

defined in (35) as the kth diagonal block, so that

Q1p/D̃
has the following expression: Q1p/D̃

= In − AD̃, where A is the block diagonal matrix

with 1pk
(1′

pk
D̃k1pk

)−11′
pk

as the kth diagonal block.)

Theorem 1. ZQD̃+Q′ = ZQD̃+.

Proof: The left-hand side of the above equation can be expanded as Z{D̃+−1(1′D̃1)−11′D̃D̃+−
D̃+D̃1(1′D̃1)−11′ + 1(1′D̃1)−11′D̃D̃+D̃1(1′D̃1)−11′}, the third and the fourth terms of which
cancel out because ZD̃+D̃1 = Z1. �

A stronger result holds when D̃ is nonsingular, namely QD̃−1 = D̃−1Q′, but this is rather
trivial.

The following lemma is necessary to prove Theorem 2.

Lemma. D̃(λ)+ = D̃+ − D̃+JS−1JD̃+, where S = JD̃+J + λ−1I.

Proof: We first prove D̃(λ)D̃(λ)+ = D̃D̃+ (symmetric). By expanding the left-hand side,
we obtain D̃(λ)D̃(λ)+ = D̃D̃+ − D̃D̃+J(JD̃+J + λ−1I)−1JD̃+ + λJD̃+ − λJD̃+J(JD̃+J +
λ−1I)−1JD̃+. The second and the fourth terms on the right-hand side of this equation can be
rewritten as −λJλ−1I(JD̃+J+λ−1I)−1JD̃+, and −λJJD̃+J(JD̃+J+λ−1I)−1JD̃+, respectively,
and these two terms add up to −λJD̃+, establishing D̃(λ)D̃(λ)+ = D̃D̃+. This in turn implies
the other Penrose conditions: D̃(λ)+D̃(λ) = D̃+D̃ (symmetric), D̃(λ)D̃(λ)+D̃(λ) = D̃(λ), and
D̃(λ)+D̃(λ)D̃(λ)+ = D̃(λ)+. �

Theorem 2. ZQD̃(λ)+Q′ = ZQD̃(λ)+.

Proof: Using the expression of D̃(λ)+ in the previous lemma, the left-hand side of the above
equation can be expanded as ZQD̃+Q′ −ZQD̃+JS−1D̃+Q′, the second term of which can further
be expanded as Z{D̃+JS−1JD̃+ − 1(1′D̃1)−11′D̃D̃+JS−1JD̃+ − D̃+JS−1JD̃+D̃1(1′D̃1)−11′ +
1(1′D̃1)−11′D̃D̃+JS−1JD̃+D̃1(1′D̃1)−11′}. Each of the last three terms of this expression van-
ishes since JD̃+D̃1 = 0, leaving ZQD̃+ − ZQD̃+JS−1JD̃+ = ZQD̃(λ)+. �

Again, a stronger result holds when D̃(λ) (and consequently, D̃) is nonsingular, namely
QD̃(λ)−1 = D̃(λ)−1Q′. This can be shown as follows: when D̃(λ) is nonsingular, its in-
verse takes the form of D̃(λ)−1 = D̃−1 − D̃−1JS−1JD̃−1, where S = JD̃−1J + λ−1I (see the
lemma above). Thus, D̃(λ)−1Q′ = D̃−1Q′−D̃−1JS−1JD̃−1Q′ = D̃−1Q′−D̃−1Q′JS−1JQD̃−1 =
QD̃−1 − QD̃−1JS−1JD̃−1 = QD̃(λ)−1. Note that Q′J = JQ = J.
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