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Multidimensional scaling (MDS) models for the analysis of dominance data have been developed in
the psychometric and classification literature to simultaneously capture subjects’ preference heterogeneity
and the underlying dimensional structure for a set of designated stimuli in a parsimonious manner. There
are two major types of latent utility models for such MDS models that have been traditionally used to
represent subjects’ underlying utility functions: the scalar product or vector model and the ideal point or
unfolding model. Although both models have been widely applied in various social science applications,
implicit in the assumption of such MDS methods is that all subjects are homogeneous with respect to their
underlying utility function; i.e., they all follow a vector model or an ideal point model. We extend these
traditional approaches by presenting a Bayesian MDS model that combines both the vector model and the
ideal point model in a generalized framework for modeling metric dominance data. This new Bayesian
MDS methodology explicitly allows for mixtures of the vector and the ideal point models thereby ac-
counting for both preference heterogeneity and structural heterogeneity. We use a marketing application
regarding physicians’ prescription behavior of antidepressant drugs to estimate and compare a variety of
spatial models.

Key words: Bayesian multidimensional scaling, structural heterogeneity, preference heterogeneity, mul-
tidimensional unfolding model, multidimensional vector model, pharmaceutical marketing.

1. Introduction

Multidimensional scaling (MDS) refers broadly to a plethora of spatial models used to obtain
multidimensional representations for the structure in various types of data including proximity,
profile, and dominance data. Typically, the MDS analysis of dominance data is based on one
of two distinct types of latent utility models: Slater’s (1960) and Tucker’s (1960) scalar product
or vector model, and Coombs’ (1964) ideal point or unfolding model. Although both models
assume that subjects reach their preferences by considering a multidimensional set of stimu-
lus characteristics, these models have rather different underlying utility assumptions (DeSarbo,
Young, & Rangaswamy, 1997). In the simple ideal point or unfolding model, utility decreases
for a subject for stimulus locations farther away from a subject’s ideal point in any direction.
For the two-dimensional ideal point utility model, the isopreference contours are circles of equal
radii around the subjects’ ideal points. While the ideal point model is a more generalized case
of the vector model (Carroll, 1972), it often suffers from degenerate solutions that hinders one
from interpreting and using the derived solutions (see Busing, Groenen, & Heiser (2005) for a
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recent discussion of this issue in ordinary multidimensional unfolding analysis as well as a lit-
erature review of procedures devised to remedy degenerate solutions). The vector MDS model
represents subjects by vectors and stimuli by coordinates. Here, subjects’ preferences are mod-
eled by the orthogonal projection of the stimulus coordinates onto these subject vectors. As such,
higher values of projection indicate higher utility. The underlying assumption of the vector util-
ity model is “the more the better”: stimuli positioned farther out in the direction of a subject’s
vector have higher predicted utility. Therefore, the isopreference contours in two dimensions are
straight lines perpendicular to the subject’s vector.

Although these two types of spatial models have been separately applied in various social
science applications, little attention has been given to comparative structural heterogeneity in
contrast to the vast literature on preference heterogeneity, where individuals have different pref-
erence parameters conditional on a specific utility model. By structural heterogeneity, we refer
to differences in the structure of underlying decision processes (Kamakura, Kim, & Lee, 1996).
As such, implicit in the assumptions of existing MDS methods are that all subjects are homoge-
neous with respect to the underlying utility function used in their preference formulation (either
all unfolding or all scalar products). Recent research, however, suggests that this may not be the
case. Deun, Groenen, Heiser, Busing, and Delbeke (2005) contended, in the context of tradi-
tional MDS, that there is a close connection between the vector model and degenerate solutions
frequently encountered in the ideal point model, and that those ideal points farther from the
centroid of stimuli coordinates can be replaced by vectors without altering subjects’ preference
order. This implies that combinations of the vector model and the ideal point model need to be
explicitly considered, and that a generalized approach which can explicitly identify “mixtures
of vector and unfolding (ideal point) representations” (DeSarbo & Carroll, 1985) would be an
important contribution to the MDS literature. Furthermore, several studies have shown that a
subject can exhibit changes in decision over time, situation, occasion, or context (Belk, 1975;
Petty & Cacioppo, 1986; Srivastava, Alpert, & Shocker, 1984). Both the psychology and con-
sumer behavior literature support the notion that individuals do not typically have stable utility
functions. Instead, they construct their final utility assessments spontaneously as they face spe-
cific decision problems. Moreover, these on-the-spot judgments are shaped by the needs and
goals of the individual, the aspects of the situation, the context in which the choice alternatives
are being evaluated, how the choice problem is stated, and how the choice alternatives are framed
(Bettman, Luce, & Payne, 1998; Belk, 1974, 1975, 1979). Thus, subsequent decisions are a func-
tion of both the context in which the decisions are made and the individual making the decision
(see Tversky & Kahneman, 1991; Simon, 1955, 1990). Hence, individuals can employ a differ-
ent decision strategy each time they make a decision. As a result, individuals may have different
preference judgments for the same stimuli across different situations or contexts (Bettman et
al., 1998), and context or situational effects may affect subjects’ decision making in different
situations (see Belk, 1975; Srivastava et al., 1984).

This manuscript presents a generalized MDS model that explicitly accommodates both
structural and preference heterogeneity. Specifically, we propose a Bayesian MDS model that
combines both the vector model and the ideal point model in a generalized framework for mod-
eling preference or other forms of dominance data. The proposed model has several merits. First,
this model explicitly allows for mixtures of the vector and the ideal point model, thereby ac-
counting for structural heterogeneity. As such, both the vector-only and the ideal point-only
model can be considered as special cases of the proposed model. Second, within each structure
(type of utility function representation), preference heterogeneity is explicitly accommodated
since estimation is performed at the individual level. Third, we extend structural heterogeneity to
the situation level so that a subject may exhibit mixtures of the vector and the ideal point depend-
ing upon the situation or context by relaxing the assumption that all observations from a subject
are homogeneous. Finally, inference is performed using Markov chain Monte Carlo (MCMC)
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methods, which are logically developed given the hierarchical model specification that reflects
the uncertainty in the model parameters.

We proceed by first defining the vector and ideal point MDS model which we then generalize
to the proposed model. We explain how these two models can be incorporated into one general
framework to accommodate structural heterogeneity. Next, we briefly describe the Bayesian
framework including prior specifications, likelihood function, joint posterior distribution, and
an estimation procedure using a MCMC algorithm to accommodate preference heterogeneity.
Detailed descriptions of the full conditional distributions are also provided. In Section 3, we
present a marketing application involving an analysis of physician’s prescribing behavior of
several brands of antidepressants over time. Here, we demonstrate the ability of the proposed
methodology to portray individual physicians who “switch” between vector and ideal point la-
tent utility functions by time period. We conclude the paper with a discussion of future research
directions.

2. The Proposed Model

For i = 1, . . . , I subjects who make preference judgments toward j = 1, . . . , J stimuli in
r = 1, . . . ,R situations (e.g., time periods, experimental treatments, occasions, replications, etc.),
let �ijr denote the preference rating (or dominance score) for stimulus j by subject i in the r-th
situation; and t = 1, . . . , T unknown dimensions. We define the corresponding latent vector and
the ideal point utility functions as:

Uijr|V =
T∑

t=1

xjtvit + bi + eijr|V , (1)

Uijr|IP = ci

T∑

t=1

(xjr − wit)
2 + di + eijr|IP, (2)

where eijr|V ∼ N(0, δ2
V ) and eijr|IP ∼ N(0, δ2

IP). Here, Uijr|V and Uijr|IP represent subject i’s
latent utility toward stimulus j in situation r given that the subject belongs to a vector model or
the ideal point model, respectively. Without loss of generality, we assume that δ2

V = δ2
IP = 1. In

(1) and (2), xjt represents stimulus j ’s coordinate on the t-th dimension, and bi and di represent
additive constants for the vector model and the ideal point model, respectively. vit represents the
t-th coordinate of subject i’s vector, and wit represents the t-th coordinate of the ideal point for
individual i. Finally, ci is a scale parameter affecting the squared Euclidean distance between
stimulus coordinates and ideal points of subject i. As such, (1) and (2) represent typical vector
and ideal point utility functions, respectively. As indicated in GENFOLD2 (DeSarbo & Rao,
1984, 1986), a positive sign for scale parameter ci indicates an anti-ideal point when the data
represent preference. For ease of interpretation, this scale parameter ci is constrained to be strictly
negative so as to represent an ideal point model. We impose a restriction for this scale parameter
in the section of the paper describing the prior distributions.

Given the utility specified in (1) and (2), the individual likelihood functions for the vector
and the ideal point model are constructed as follows:

Li|V =
R∏

r=1

J∏

j=1

1√
2π

exp

(
−1

2

(
�ijr −

T∑

t=1

xjtvit − bi

)2)
, (3)
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Li|IP =
R∏

r=1

J∏

j=1

1√
2π

exp

(
−1

2

(
�ijr − ci

T∑

t=1

(xjt − wit)
2 − di

)2)
, (4)

where Li|V and Li|IP represent individual level likelihoods given that the observations from a
subject i belong to the vector model or the ideal point model respectively.

Note, (3) and (4) are not much different from existing MDS models that accommodate pref-
erence heterogeneity via vectors vit and ideal points wit. We now incorporate structural hetero-
geneity by introducing a latent variable χi such that P(χi = V ) = φ1 and P(χi = IP) = 1 − φ1.
This latent variable determines the probability that subject i belongs to either a vector model
(i.e., φ1) or an ideal point model (i.e., 1 − φ1). The resulting individual level complete likelihood
is:

Li = Li|V φ1 + Li|IP(1 − φ1). (5)

Following the standard data augmentation procedure (Diebolt & Robert, 1994; Tanner &
Wong, 1987), we augment this structural heterogeneity latent variable φ1 and 1 − φ1 using an
indicator function such as I (χi = V ) and I (χi = IP) = 1 − I (χi = V ). Therefore (5) can be
rewritten as

Li = Li|V I (χi = V ) + Li|IPI (χi = IP). (6)

Note that the specification of (6), which we will refer to as Model 1, is a generalized model
that nests both the vector and the ideal point-only models. If no subject is assigned to the vector
model, then this model becomes the ideal point model, and vice versa. Otherwise, a subset of
subjects can be classified to the vector model, and the others to the ideal point model. Although
Model 1 incorporates structural heterogeneity at the individual level, one can argue that this spec-
ification is somewhat restrictive as it does not permit a subject to exhibit heterogeneous utility
in different situations. For instance, a subject can exhibit vector utility in some situations and
ideal point utility in other situations. To incorporate this situation level structural heterogeneity,
we extend Model 1 by introducing a situation level structural heterogeneity latent variable such
that P(χir = V ) = φ2 and P(χir = IP) = 1 − φ2. Similar to (6), the resulting individual level
complete likelihood now becomes

Li =
R∏

r=1

{
Lir|V I (χir = V ) + Lir|IPI (χir = IP)

}
, (7)

where I ( ) is an indicator function, and

Lir|V =
J∏

j=1

1√
2π

exp

(
−1

2

(
�ijr −

T∑

t=1

xjtvit − bi

)2)
, (8)

Lir|IP =
J∏

j=1

1√
2π

exp

(
−1

2

(
�ijr − ci

T∑

t=1

(xjt − wit)
2 − di

)2)
. (9)

We will label this model extension as Model 2. Note that we do not have a situation-level vector
or ideal point in (7) as situation-level parameters would require extensive data replications (sit-
uations). Rather, we try to relax Model 1’s assumption that all observations of an individual are
homogeneous. As such, we expect that the specification in (7) could capture structural changes
in subjects’ observations. Thus far, we have postulated two MDS models with both preference
heterogeneity and structural heterogeneity at the individual and occasion level. Note that the



J. PARK ET AL. 455

specification of (7), i.e., Model 2, is a generalized version of Model 1; Model 2 is equivalent to
Model 1 if all observations of a subject are classified to either the vector or the ideal point model.

To estimate the proposed models, we employ a hierarchical Bayesian approach. We use
Markov chain Monte Carlo methods (MCMC) to generate random deviates from the posterior
distributions without requiring analytic integration (Chib, 2002; Gelfand & Smith, 1990; Gilks,
Richardson, & Spiegelhalter, 1996; Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller,
& Teller, 1953; Tanner & Wong, 1987). Next, we turn the discussion to the specification of the
prior distributions and issues related to the identification of these MDS models.

2.1. Selection of the Prior Distributions

First, we assume a priori, that the structural heterogeneity parameter φk follows a Beta
prior with parameters ak and bk for k = 1,2, where f (φk) = 1

B(ak,bk)
φ

ak−1
k (1 − φk)

bk−1 if
0 < φk < 1 and 0 otherwise. Here we set ak = bk = 1 to reflect the case of a lack of infor-
mation. With this prior setting, the Beta prior becomes a Uniform distribution so that each
individual (or occasion) has an equal chance to belong to either the vector or the ideal point
model. We then assign a univariate Normal distribution with zero mean as a prior for all other
parameters. That is, P(xjt) ∼ N(0, τ 2

x ), P(wit) ∼ N(0, τ 2
w), P(vit) ∼ N(0, τ 2

v ), P(bi) ∼ (0, τ 2
b ),

P(di) ∼ N(0, τ 2
d ), and P(ci) ∼ N(0, τ 2

c )I (ci < 0), respectively.1 As discussed before, the scale
parameter ci needs to be constrained to be negative to prevent anti-ideal point solutions. As
such, we assume a right-truncated normal prior for this parameter, and this leads to a poste-
rior with a right-truncated normal distribution. We use the conjugate prior for the inverse of the
variance P(τ−2

x ) ∼ G(kx,ux), (τ−2
v ) ∼ G(kv,uv), P(τ−2

w ) ∼ G(kw,uw), P(τ−2
b ) ∼ G(kb,ub),

P(τ−2
d ) ∼ G(kd,ud), and P(τ−2

c ) ∼ G(kc,uc), respectively, where G denotes the Gamma dis-
tribution, and we set kx = · · · = kc = ux = · · · = uc = 0.5 to reflect the lack of prior information.

2.2. Issues in Identification

While specifying these models, we have acted as if both the vector and ideal point models are
identifiable. However, this is not the case here as these spatial models are “under-identified”—
these models have an infinite number of solutions that render the same likelihood values.
Thus, parameters need to be constrained to obtain unique solutions (Wedel & DeSarbo, 1996;
Wedel & Kamakura, 2000; Young, 1987). These “parameter indeterminacies” stem from the
fact that orthogonal transformations of respective configurations in both vector and unfolding
model portions do not alter the likelihood, seriously affecting the resulting inference from the
proposed MCMC procedure. In addition, such spatial models can be translated, expanded, or
reflected (depending upon either the vector or unfolding portion) without any effect on the likeli-
hood (DeSarbo, Manrai, & Manrai, 1994; DeSarbo & Rao, 1984, 1986; Wedel & DeSarbo, 1996;
Young, 1987). Without explicit constraints, summarizing the MCMC output will be hopelessly
and unnecessarily complicated. Generally, these indeterminacies are acknowledged by subtract-
ing the corresponding degrees of freedom from the number of model parameters in a maximum
likelihood approach (DeSarbo & Cho, 1989). In Bayesian analysis, however, these indetermi-
nacy issues have to be circumvented either by the imposition of strong or informative priors on
stimulus coordinates (DeSarbo, Kim, & Fong, 1998, DeSarbo, Kim, Wedel, & Fong, 1999) or by
a post-processing of the resulting coordinates (Oh & Raftery, 2001). A notable exception is the
Bradlow & Schmittlein (2000) Mahalonobis distance formulation. To remove the rotational and
reflection indeterminacies in their formulation, they imposed 2T constraints of which T stimu-
lus coordinates are fixed at zero, and T other coordinates are constrained to lie in the positive

1We also tested shrinkage effects for additive parameters bi and di such as P(bi ) ∼ N(b̄, τ2
b
) and P(di ) ∼ N(d̄, τ2

d
),

and found no significant difference in the results.
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orthant of the derived space. In a similar vein, we impose constraints to remove the various types
of indeterminacies in the ideal point model and the vector model, respectively. Specifically, we
fix T parameters equal to one for the first T stimulus coordinates, and constrain the remaining
T parameters of these stimulus coordinates on the positive real line for our mixture specification
of vector and ideal point representations. For instance, let x = (x11, x21, . . . , xjt)

′ = (xc, xnc),
where xc are constrained and xnc are unconstrained stimulus coordinates in a two-dimensional
model. Here, we use a Gamma prior for x11 and x22 so that these parameters are constrained on
the positive real line, while fixing x12 and x21 at one in two-dimensional space, and a similar ap-
proach can be taken in higher space. With these constraints, the reflection, rotational, and scale
indeterminacies can be treated simultaneously. Finally, for the origin indeterminacy present in
the unfolding model, we impose a restriction on the stimulus locations xjt such that

∑J
j=1 xjt = 0

for each dimension t (t = 1, . . . , T ).

2.3. Estimation Procedure and Model Selection

Given the likelihood and prior specification discussed earlier, we employ Markov chain
Monte Carlo (MCMC) methods to iteratively generate samples from the posterior density (Gilks
et al., 1996). Random starting values are generated for initial parameter values followed by the
steps described in the Appendix. This process is iterated first for a designated number of burn-in
cycles, and then for a preset number of estimation iterations.

For model and dimensionality selection, we select the best model by computing the posterior
densities of the different specifications for the observed data. An alternative, which we do not
implement but leave as a topic for future research, is to treat the dimensionality (t) as a random
variable, and then to find posterior probabilities for t according to the proportion of time that
the MCMC algorithm spends in dimension t (Green, 1995; Richardson & Green, 1997). While
the second approach has its own merits, it is computationally very challenging, particularly with
regards to the mixing properties of the resulting MCMC Markov chain. As such, we choose
to estimate each model separately given fixed t , and compare the posterior densities of these
specifications. For model selection criteria, we initially use Harmonic mean, p̂1(D), and Newton
and Raftery’s fourth estimate, p̂4(D) (Kass & Raftery, 1995; Newton & Raftery, 1994).

Although p̂1(D) and p̂4(D) are easy to implement, they often tend to favor more complex
models (Lopes, 2000). Lopes (2000) showed that both p̂1(D) and p̂4(D) often favor higher
dimensional models than the true model structure. As such, we also use two additional criteria
for model selection. First, we employ Bayesian Information Criteria (BIC) as it can be used as an
approximation of the marginal likelihood. Rust, Simester, Brodie, and Nilakant (1995) compared
various model selection heuristics and concluded that the BIC is the most consistent and accurate
model selection criteria. We also use a model selection criterion similar to the reversible jump
MCMC methods (referred to RJMCMC hereafter). RJMCMC methods treat a specification Hk

as unknown over k ∈ K , and are useful for exploring posterior distributions for model parameters
in the context of uncertainty of a model Hk (Green, 1995). A feasible approach for conducting
RJMCMC in our context is to use a “mini” RJMCMC similar to a strategy described by Lopes
(2000). The basic premise of this approach is to use the posterior likelihood at each iteration
for each model k = 1, . . . ,K . In addition to model-specific priors specified above, we also need
to specify the marginal “Model” prior probability, P(k), over k ∈ K . This algorithm can be
described as follows:

Step 1. Propose a new visit to a new model k′ according to transition probability P(k|k′) =
J (k → k′). We assume that we would have K equally likely models and the probability to
move from a model k to model k′ to be uniform (i.e., p(k′|k) = I (k′ �=k)

K−1 and P(k′|k)
P (k|k′) = 1).

Step 2. Propose a new candidate �n
k from the posterior distribution P(�k|D) and �n

k′ from
P(�k′ |D) and set �n

j = �j for all j �= k, k′ where D denotes data.
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Step 3. Accept the new model k′ with probability α:

α = Min

(
1,

(
P(k|k′)P (D|�k)P (�k)P (D|�k′)P (�k′)P (D|�n

k′)P (�n
k′)P (�n

k)
∏

j �=k,k′ P(�j )P (k)

P (k|k′)P (D|�n
k)P (�n

k)P (D|�n
k′)P (�n

k′)(D|�k)P (�k)P (�k′)
∏

j �=k,k′ P(�j )P (k′)

))

= Min

(
1,

P (D|�k′)P (k′)
P (D|�k)P (k)

)
.

Thus, to determine which model provides the best fit to the data, we compute and inspect
p̂1(D), p̂4(D), BIC, and RJMCMC model selection heuristics. Note, we generated synthetic data
sets with known structural and preference heterogeneity to verify the proposed model’s ability to
uncover the true preference structure and correctly detect both types of heterogeneity, as well as
to understand whether these various model selection criteria identify the true (known) structure.
Results indicate that the proposed model does recover the true structure with high accuracy, and
that all model selection heuristics point to the true model structure with respect to the synthetic
data tested. Details of the simulation study are available online in a supplementary appendix.

3. A Pharmaceutical Marketing Application

A major US pharmaceutical company conducted a market research study among physicians
(i.e., general practitioners, internists, psychiatrists, etc.) in order to understand their prescribing
decisions for prescription antidepressant medications. Antidepressants are prescribed for symp-
toms such as depression, social anxiety disorder, and generalized anxiety disorder (GAD). People
with social anxiety disorder have an extreme, constant fear of one or more social or public situa-
tions. GAD is characterized by feelings of excessive anxiety and worry that cannot be controlled
and are present for at least six months. Symptoms of depression often include: (1) a sad feeling
that will not go away; (2) restlessness or slowed movements; (3) changes in appetite or weight;
(4) changes in sleeping patterns; (5) fatigue or lack of energy; (6) feeling worthless or feeling
guilty for no reason; or (7) repeated thoughts of death or suicide (Karasu, Gelenberg, Merriam, &
Wang, 2006). To be diagnosed as having major depression, a person must show at least five of the
above symptoms. Treatments of depression include: (1) antidepressant medication; (2) a variety
of psychotherapeutic approaches; (3) electroconvulsive therapy (ECT); and (4) other treatments
(e.g., light therapy). Currently, the depression therapy market is one of the largest medication
markets in the world. It is estimated that approximately 6% of US population—some 19 mil-
lion people—will have a depressive illness that warrants treatment (Consumer Reports, 2005).
In 2004, global sales of branded antidepressants exceeded $14 billion, and US sales totaled $9.9
billion.

The data are composed of prescriptions from a sample of 250 US physicians for five leading
brands of antidepressants. These data concern the total number of prescriptions written for each
brand recorded on a monthly basis over a seven-month period. Due to confidentiality agreements
with the client pharmaceutical company, the specific brands are disguised and labeled with letters
A to E. The leading five brands in the data can be categorized into three types of antidepressants
based on their chemical components: (1) SSRI (selective serotonin reuptake inhibitors); (2) SNRI
(serotonin and norepinephrine reuptake inhibitors); and (3) NDRI (norepinephrine and dopamine
reuptake inhibitors). SSRIs are known to increase the brain’s level of serotonin, thereby improv-
ing mood, and are particularly helpful in heading off depression in the early stages. Three brands
in our data, including Brand B, Brand C, and Brand D, belong to this category. SNRIs are be-
lieved to work especially well for patients (up to 40%) who don’t respond to serotonin-related
antidepressants (or SSRIs). As such, an SNRI is usually prescribed as a second-line medication.
Brand A is an SNRI. Finally, NDRI is a selective catecholamine (norepinephrine and dopamine)
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reuptake inhibitor, and it has only a minor effect on serotonin reuptake. Brand E is an NDRI.
These five brands can also be classified by their intended treatment.

Side effects may occur in a number of patients taking any medication, and are typically de-
pendent on dosage and blood level. Many side effects are more likely to occur at the initiation
of treatment or within a short time following dosage increases, and patients often adapt to side
effects over time. Some common side effects are headache, nausea, diarrhea, dizziness, sweat-
ing, tremor, and dry mouth. These common side effects are relatively minor and usually go away
in time (or are short-lived). However, there are some side effects that are not minor and may
become bothersome or sometimes dangerous. These side effects include: nervousness and agita-
tion, feeling of panic or dread, increased thoughts of suicide, insomnia, drowsiness or confusion,
loss of libido or difficulty of achieving erections, and weight gain. In addition, many antidepres-
sants often interact with other medications and caution must be exercised in their prescription to
patients.

Brand-specific characteristics merit further explanation. First, Brand B was introduced more
recently compared to other brands. Brand B also has a smaller chance of unwanted side effects,
as this medication can be given in small doses, and is known to cause less interaction with other
drugs compared to other SSRIs.2 Compared to other brands, Brand D is the only brand approved
for obsessive-compulsive disorder (OCD) in children and adolescents age 6–17 years. Brand C
is strongly warned against female patients who are pregnant given its possible teratogenic ef-
fect. Brand E has the lowest incidence of sexual dysfunction. Consumer Reports (2005) reported
that Brand E has the lowest sexual dysfunction side effects based on 1664 patients’ clinical re-
sults. However, if this medication is taken in increased dosage (e.g., 450 mg/day), Brand E has
a higher risks of seizure. Furthermore, Brand E is associated with the development of some psy-
chotic symptoms, including delusions and hallucinations, and is recommended for use cautiously
in patients with psychotic disorders. As discussed earlier, Brand A is believed to work especially
well for the patients who don’t respond to SSRIs, and is usually recommended as a second-line
medication. It also has the lowest elimination half-life3 (5 hours vs. 24 hours of other antide-
pressants). Note, antidepressants need to be taken for at least four to eight weeks before the
treatment can be assessed. Although much progress has been made in developing medications
for treating depression, the exact causes and optimal treatments of depression have not been re-
solved (Berndt, Cockburn, & Griliches, 1996). The American Psychiatric Association’s medical
practice guidelines for the prescription of antidepressants include: (1) anticipated side effects and
their safety or tolerability; (2) history of prior response of patient or family member; (3) patient
preference; (4) cost; and (5) quantity and quality of clinical trial data. Doctors usually recom-
mend an antidepressant that is least likely to cause side effects for the person taking it. A recent
study led by the National Institute of Mental Health, however, shows that less than 30% of pa-
tients who take their first-line medication have significant remission (Menza, 2006). As such, if
the patient shows no response or partial response to the medication, doctors usually change dose,
switch to other antidepressants, or add a second antidepressant medication from a different class
(Karasu et al., 2006). It should be noted that there is no further information provided in these
data whether each prescription represents a new prescription, renewal, or mixing prescriptions
of multiple brands. Nor is there any individual difference information collected on these various
physicians relating to type of physician, size of the practice, hospital-based vs. private practice,
years of experience, geographic location, gender, etc.

The data are composed of a total of 162,515 prescriptions over a seven-month period. The
prescription shares are: Brand A (22.2%), Brand B (21.3%), Brand C (16.3%), Brand D (16.4%),

2Brand A and Brand D are also known to have few drug interactions (see the Antidepressant Comparison Chart at
www.RxFiles.ca).

3The elimination half-life of a drug refers to the time necessary for the quantity of the xenobiotic agent in the body
to be reduced to half of its original level through various elimination processes.

http://www.RxFiles.ca
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TABLE 1.
Descriptive statistics on the total number of prescriptions.

Mean Standard Maximum Minimum
deviation

Brand A 21 17 99 0
Brand B 20 17 103 0
Brand C 15 11 88 0
Brand D 15 13 94 0
Brand E 22 13 97 0

TABLE 2.
Comparison of model selection criteria.

Dimension Calibration data Hold out data
Model Newton and Harmonic BIC RJMCMC RMSE VAF RMSE VAF

raflery mean

1 Vector only −221398 −221365 444685 0 7.563 0.393 8.017 0.325
Ideal point only −259068 −258369 518693 0 8.189 0.295 8.470 0.246
Model 1 −218123 −218017 439927 0 7.503 0.402 8.002 0.327
Model 2 −207135 −206560 417012 0 7.297 0.439 7.908 0.345

2 Vector only −135021 −134970 272878 0 5.844 0.638 6.859 0.510
Ideal point only −134836 −134785 272503 0 5.840 0.639 6.904 0.505
Model 1 −122957 −122909 251662 0 5.562 0.672 6.854 0.514
Model 2 -105069 -105000 215846 1 5.115 0.725 6.765 0.527

3 Vector only −132778 −132715 269354 0 5.725 0.655 6.858 0.512
Ideal point only −132641 −132589 269100 0 5.722 0.655 6.898 0.509
Model 1 −123385 −123085 253169 0 5.557 0.681 6.648 0.536
Model 2 −106839 −106139 220078 0 5.144 0.724 6.694 0.534

and Brand E (23.9%), respectively. Table 1 shows the descriptive statistics on the number of pre-
scriptions by brands. On average, a physician in our sample writes approximately 2.65 prescrip-
tions for an antidepressant per month, and 18 prescriptions over a seven-month period (although
there is substantial variation among this sample of physicians).

We initially preprocessed these prescription data by double mean centering to minimize the
predominance of rows (i.e., prescription volume) and column (i.e., brand share) effects in the
resulting spatial solution (see Harshman & Lundy, 1984a, 1985). We then calibrated the pro-
posed model based on the first six months’ prescriptions (140,404 prescriptions), and used the
last month’s prescriptions for model validation (22,111 prescriptions). Note that we set ci = −1
to facilitate the interpretation of the derived joint space with respect to estimating ideal points
(i.e., no anti-ideal points). To find the best-fitting model, we first estimated models without struc-
tural heterogeneity (i.e., the vector-only and ideal point-only models). Next, we compared them
with the individual level structural heterogeneity model (Model 1), and finally the situation level
structural heterogeneity model (Model 2). Table 2 presents results of the various model-selection
criteria. The results in Table 2 suggest that the two-dimensional solution is most parsimonious for
these data across the various model-selection criteria for models with structural heterogeneity. In
particular, the two-dimensional solution for Model 2, which incorporates situation-level struc-
tural heterogeneity, shows the highest harmonic mean (−105,000) and Newton and Raftery’s
estimator (−105,069), as well as minimum BIC (215,846).
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FIGURE 1.
Distribution of additive parameters.

A simple comparison of the results in Table 2 reveals that models that combine both struc-
tural and preference heterogeneity clearly outperform models only with preference heterogeneity
regarding all model-selection criteria. In addition, other model solutions appear to require a third
dimension. This is surprising as models without structural heterogeneity have more parameters
than models with structural heterogeneity. For instance, the three-dimensional vector model has
about 1.5 times as many parameters as Model 1 due to the increase in the dimensionality. It
appears that the incorporation of structural heterogeneity results in the reduction of dimension-
ality. (We also experienced this same phenomena with our simulations of synthetic data whose
structure is known. See the Web Appendix.) In addition to these model-selection criteria, we
compared the model-selection probability using the “mini” RJMCMC method discussed ear-
lier. Here, we ran 10 million iterations with likelihoods of the models estimated in order to get
marginal posterior probability from the “mini” RJMCMC method, and used the last 5 million it-
erations to calculate the model-selection probability. As shown in Table 2, the “mini” RJMCMC
method also points to the two-dimensional, occasion level structural heterogeneity model with
the highest probability to be chosen (Prob.=1). Similar results can be found in such measures as
Variance Accounted For (VAF) and Root Mean Squared Error (RMSE) for the calibration sam-
ple as shown in Table 2. Interestingly, for the validation hold-out sample, the three-dimensional
structural heterogeneity models slightly outperform the two-dimensional structural heterogene-
ity solution. We will focus our discussion on the model with the most explanatory power as this
allows us to facilitate the discussion with a two-dimensional joint space.

Next, we devote the remainder of this section to discussing the results of the two-
dimensional, situation-level structural heterogeneity MDS solution. Here, we start our discus-
sion with parameters of somewhat less interest. Figure 1 displays the distribution of additive
parameters (e.g., bi , di ), and Table 3 shows summary statistics of hyperparameters. Note that
we specify a hyper prior distribution for each of τ 2. As shown in Table 3, the differences in the
posterior estimates for these hyperparameters vary dramatically, indicating that this additional
level of model hierarchy can accommodate different levels of uncertainty. For instance, τ 2

b and
τ 2
d exhibit huge difference in posterior means. We witness a similar result for two additional pa-

rameters, bi and di , as shown in Figure 1. While the vector model additive parameter bi is mostly
concentrated around zero (mean = −0.0002, standard deviation = 0.0002), the ideal point addi-
tive parameter shows higher uncertainty (mean = 16.04, standard deviation = 5.08).
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TABLE 3.
Summary of posterior estimates of hyperparameters.

τ2
x τ2

b
τ2
d

τ2
v τ2

w φ2

Mean 9.20 0.04 300.29 5.77 1.73 0.62
Standard deviation 8.19 0.00 30.06 0.37 0.13 0.03

FIGURE 2.
Derived joint space for the two-dimensional Model 2. Note: individuals with only vector utility are represented as solid
black vectors, and individuals with only ideal point utility are represented as black circles while individuals with both
vector and ideal point utility are represented as gray vectors and circles.

Parameters of focal interest (e.g., brand, vector, and ideal point locations) can be better un-
derstood visually as is commonly done in most Multidimensional Scaling methods. Figure 2
shows the derived joint space for the two-dimensional, situation-level structural heterogeneity
MDS model. The derived two-dimensional joint space map shows that the five brands are distrib-
uted throughout the four quadrants. Dimension I (horizontal) represents interactions with other
medications where brands on the right-hand side have high interaction with a large class of other
medications as opposed to those brands on the left-hand side. Dimension II (vertical) represents
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TABLE 4.
Characteristics of the three groups of physicians in average number of prescription.

Brand A Brand B Brand C Brand D Brand E Overall

Vector utility only physicans 26.2 18.5 16.5 13.1 28.7 19.2
Ideal point utility only physicans 9.4 10.8 12.5 13.7 11.0 10.5
Mixture physicans 20.4 20.0 15.8 16.3 21.8 17.3

FIGURE 3.
Distribution of mean-centered prescriptions across the three groups of physicians.

age or order of entry of the brand into this market. In particular, brands on the top of this figure
are older brands, whereas those located at the bottom of this dimension are newer brands.

Recall that an individual can have both vector and ideal point representations in the situation-
level structural heterogeneity model (Model 2). In Figure 2, individuals whose observations are
classified only to the vector model are represented with solid black vector termini, individuals
whose observations are classified only to the ideal-point model are represented as black circles,
while individuals with mixtures of vector and ideal point representations are depicted as gray
vectors and circles. Note that 33 physicians (13.2%) comprise individuals with vector-only utility,
and 13 physicians (5.2%) comprise individuals with ideal point-only utility. The clear majority of
physicians (81.6%) turn out to have both vector and ideal point representations. Table 4 illustrates
how these three groups of physicians can be best distinguished from each other by an examination
of average prescription rates by brand (as well as overall) for each of the three derived groups.
First, vector-utility-only physicians show the highest average prescription rates across brands,
followed by physicians with mixture of vector and ideal-point utility. Physicians with ideal point-
only utility show the lowest average prescription rates. Thus, physicians with ideal point-only
utility can be described as low-volume physicians, while physicians with vector-only utility can
be described as high-volume physicians. As shown in Table 4 vector-only utility physicians’
number of prescriptions is almost two times higher than that of ideal point-only utility physicians
in most brands.

A second distinguishing aspect concerning these group differences can also be gleaned from
Figures 3 and 4. From Figures 3 and 4, it appears that the largest mixture group displays the
most variation in overall prescription rates as compared to the other two groups, followed closely
by the vector-only group. Notice how the physicians designated as the ideal point-only group
have a much tighter concentration of prescriptions when viewing the distribution of either the
raw or doubly centered prescriptions in these two figures. This contrast of variation also extends
to characterizing the differences in prescriptions across the five brands. As aptly portrayed in
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FIGURE 4.
Distribution of prescription volume across the three groups of physicians.

TABLE 5.
Structural change in prescription behavior for an illustrative physician.

(a) Number of prescription

Brand A Brand B Brand C Brand D Brand E

17 22 30 19 16
18 18 24 9 25
18 25 23 11 19
24 28 10 17 19
24 24 14 13 22
23 24 13 12 26

(b) Mean-centered data

Brand A Brand B Brand C Brand D Brand E

−5.81 0.02 12.69 1.53 −8.43
−2.81 −1.98 8.69 −6.47 2.57
−3.21 4.62 7.29 −4.87 −3.83

2.39 7.22 −6.11 0.73 −4.23
2.59 3.42 −1.91 −3.07 −1.03
1.39 3.22 −3.11 −4.27 2.77

Table 4, the vector-only group shows considerably more variation in prescription rates across
all five brands of antidepressants compared to the other two groups. The ideal point-only group
displays nearly the same prescription rates across the five brands.

Another aspect of the model solution illustrates that if there is any structural change in pre-
scription behavior during the first six-month period, this change is captured by the structural
heterogeneity. As an illustration, Table 5 shows the prescription behavior (Panel (a)) and corre-
sponding mean-centered data (Panel (b)) for one specific physician. For the first three months,
this physician highly prescribes Brand C, but s/he has a relatively lower number of prescriptions
for this brand in the last three occasions. Notice that this pattern is reversed for Brand A. This
change of prescription behavior is now represented as the change of signs for brands A and C in
the mean-centered data (Panel (b)). It turns out that the situation-level structural heterogeneity
model classifies the first three observations as ideal point structures, and the last three observa-
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FIGURE 5.
Derived joint space for the mixture of vector and ideal point utility physicians. Note: only a subset of physicians’ ideal
points and vectors are labeled for illustration purposes. Ideal point and vector are labeled with the same number.

tions as vector structures. Figure 5 shows the derived two-dimensional joint space only for those
physicians with mixtures of vector and ideal-point utility. In order to avoid confusion and reduce
congestion, we label only an illustrative subset of the vector and ideal point values for a set of
physicians; and, in order to better illustrate the contrasts between their respective vectors and
ideal points, we placed them both on the same graph in Figure 5.

Here, the physician whose prescription behavior is described in Table 5 is labeled as 19.
One can find his/her vector (v = [−0.88,−0.47]) in the third quadrant and his/her ideal point
(w = [1.12,−0.96]) in the fourth quadrant. A quick inspection of these vector and ideal point
coordinates shows that this ideal point has the closest distance to Brand C, and the vector shows
that brands A and B have the highest preference. Similarly, one can find other physicians with
mixtures of vectors and ideal points have their vectors and ideal points located in different quad-
rants. As such, one can infer that the major driver for situation-level structural heterogeneity is the
change in prescription behavior over these time periods. Such changes in prescription behavior
may be due to the associated difficulties of attempting to cure depression and the dynamic process
physicians must go through in titrating various brands of antidepressants, changing brands due
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TABLE 6.
Number of structural changes.

Number of times Number of Percentage
switching physicians

0 59 24%
1 121 48%
2 48 19%
3 16 6%
4 4 2%
5 2 1%

250 100%

Note: 0 indicates no mixtures of utility functions.

TABLE 7.
Number of situations used with vector model.

Number of situations Number of Percentage
for vector model physicians

0 14 6%
1 23 9%
2 29 12%
3 39 16%
4 39 16%
5 61 24%
6 45 18%

250 100%

Note: Number of observations for ideal point model is 6 − the number
of observations for vector model with that revised quantity’s associated
frequencies and percentages.

to side effects experienced, experimenting with cocktails of multiple brands, trial-and-error pre-
scription behavior of physicians in response to patient feedback on treating their symptoms, etc.
Another possibility is that there could be an event that might change physicians’ prescription
behaviors in lieu of structural heterogeneity (e.g., an FTC warning about a particular drug that
affects certain types of patients).

So what does the proposed analysis reveal—above and beyond standard MDS models—that
is of managerial relevance? Table 6 illustrates how often physicians switch from one model to
the other (i.e., vector to ideal point model or vice versa) over the six months. As one can see,
a majority of physicians (48%) switched from one model to the other once. Table 7 shows the
number of situations where physicians used a vector model (note, the number of situations used
for the ideal-point model is just 6 − the number of observations used for the vector model, and
one would look up the corresponding number of physicians and percentages for that quantity in
this same table). Here, we see that the modal category appears to be five periods for which a
vector model is used. Finally, Table 8 demonstrates the managerial usefulness of the approach
which is not available in other MDS procedures for this type of data. We present a sample of
some 25 physicians of the estimated indicator function χir from (7) which indicates the particu-
lar type of response model employed by each physician for each situation/time period. This type
of information can be gainfully employed by pharmaceutical marketers in direct-physician cam-
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TABLE 8.
An illustrative sample of 25 physicians.

ID\replication 1 2 3 4 5 6

1 0 0 0 0 0 1
3 1 1 1 0 0 0
8 1 1 1 0 0 0
9 0 0 0 1 1 1

19 0 0 0 1 1 1
37 0 0 0 1 0 0
38 1 1 1 1 1 0
47 0 0 1 1 1 1
54 0 1 0 1 0 1
55 0 0 0 1 1 1
56 0 1 1 1 1 1
63 0 0 0 0 0 1
69 0 0 1 1 0 0
71 0 0 1 1 1 1
88 1 1 0 0 0 0
89 1 0 0 0 0 0

116 0 0 0 1 1 1
146 0 0 0 0 1 1
167 0 1 0 1 0 1
176 0 1 0 1 1 0
192 0 1 1 1 1 1
193 1 1 1 1 1 0
194 0 1 0 0 0 0
207 0 1 1 1 0 1
234 0 0 0 0 1 1

Note: 1 indicates vector utility and 0 indicates ideal point utility structures.

paigns which meet the specific needs of each physician, especially since syndicated data sources
are available on prescription behavior for each and every physician in the US.

4. Discussion

Over the past two decades, numerous multidimensional scaling methods (MDS) have been
developed to analyze dominance judgments. Two distinct types of MDS procedures (i.e., the
vector and ideal point model) have been predominantly used to represent subjects’ judgments.
However, little attention has been given to structural heterogeneity for such spatial models in
contrast to the large body of literature on preference heterogeneity in such MDS models. We fo-
cused on the possibility that a sample of subjects may exhibit heterogeneous utility formulation
and can be explained better by mixtures of the vector and the ideal point model. We introduced
a new Bayesian MDS model that explicitly incorporates both structural heterogeneity and pref-
erence heterogeneity in a generalized framework. Specifically, we model mixtures of the vector
and the ideal point model to represent structural heterogeneity, and accommodate preference het-
erogeneity at the individual level as well as at the situation level. We presented the details of the
priors, likelihood, and posterior joint density, as well as the description of the full conditional
distributions. An MCMC estimation procedure was presented as well.

We then applied the proposed approach to a pharmaceutical marketing application con-
cerning doctors’ prescriptions of the five leading brands of antidepressant medications. The
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results demonstrate that a model that incorporates both structural and preference hetero-
geneity outperforms models without structural heterogeneity. This finding is quite consis-
tent with existing literature that considers structural heterogeneity (Gilbride & Allenby, 2004;
Jedidi & Kohli, 2005) in other model types. Our approach produces a parsimonious represen-
tation of preference structures via vector and ideal point representations. Furthermore, we can
infer how a change in prescription behavior can be represented in the joint space map. No other
MDS procedure exists to be able to perform this type of analysis.

Opportunities for future research merit discussion. Direct utilization of count data (e.g., the
number of prescriptions) via a Poisson distribution or Negative Binomial distribution would be
interesting, although extreme care needs to be given here due to problems of zero inflation (ex-
cessive zero prescriptions) as well as overdispersion. Also, we showed that a change in the pre-
scription behavior is the major driver for situation-specific structural heterogeneity. The explicit
incorporation of marketing activity (e.g., detailing) and background information (e.g., sociode-
mographic information and/or specialty) can aid in understanding why physicians show such
structural heterogeneity. Finally, our current research is restricted by the assumption of a station-
ary joint space. Researchers have shown that the incorporation of nonstationary preference can
enhance the understanding of subjects’ behaviors (DeSarbo, Fong, Liechty, & Coupland, 2005;
Liechty, Fong, & DeSarbo, 2005). Future research needs to incorporate nonstationary preference
via a change-point models or dynamic state-space models, and the comparison with structural
heterogeneity model with stationary space would be fruitful.

Appendix

Markov Chain Monte Carlo Algorithm for the Proposed Model

The estimation of the model parameters proceeds by recursively sampling from the follow-
ing full conditional distributions. Because of limited space, we show only the full conditional
distributions of Model 2.

1. Generate the individual structural heterogeneity indicator I (χir = V ) and I (χir = IP).
I (χir = V ) ∼ Bin(1,P (χir = V | ∼)) and I (χir = IP) = 1 − I (χir = V ), where the full
conditional probability of structural heterogeneity parameter P(χir = V | ∼) is computed
by: P(χir = V | ∼) = Lir|V φ2

Lir|V φ2+Lir|IP(1−φ2)
, and P(χir = IP| ∼) = 1 − P(χir = V | ∼). Here,

P(χir = IP| ∼) indicates the full conditional distribution of the structural heterogeneity para-
meter given all other parameters.

2. Generate the vector model additive parameter bi |τ 2
b , χir , xjt, vit

P(bi | ∼) ∼
{

N(b̄i,Vbi
) if

∑R
r=1 I (χir = V ) ≥ 1,

N(0, τ 2
b ) otherwise,

where Vbi
=

[
R∑

r=1

J∑

j=1

I (χir = V ) + 1

τ 2
b

]−1

,

b̄i =
[

R∑

r=1

J∑

j=1

(
�ijr −

T∑

t=1

xjtvit

)
I (χir = V )

]
Vbi

.
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3. Generate the vector parameter vit|τ 2
v ,χir, xjt, bi

P (vit| ∼) ∼
{

N(v̄i,Vvi
) if

∑R
r=1 I (χir = V ) ≥ 1,

N(0, τ 2
v ) otherwise,

where Vvi
=

[
R∑

r=1

J∑

j=1

x2
jtI (χir = V ) + 1

τ 2
v

]−1

,

v̄i =
[

R∑

r=1

J∑

j=1

(
xjt

(
�ijr −

T∑

l �=t

xjlvil − bi

)
I (χir = V )

)]
Vv.

4. Generate the ideal point model additive parameter di|τ 2
d ,χir, xjt,wit, ci

P (di | ∼) ∼
{

N(d̄i,Vdi
) if

∑R
r=1 I (χir = IP) ≥ 1,

N(0, τ 2
d ) otherwise,

where Vdi
=

(
R∑

r=1

J∑

j=1

I (χir = IP) + 1

τ 2
d

)−1

,

d̄i =
(

R∑

r=1

J∑

j=1

(
�ijr − ci

T∑

t=1

(xjt − wit)
2

)
I (χir = IP )

)
Vdi

.

5. Generate the ideal point model scale parameter ci |τ 2
c , χir, xjt,wit, di

P (ci | ∼) ∼
{

N(c̄i,Vci
)I (ci < 0) if

∑R
r=1 I (χir = IP) ≥ 1,

N(0, τ 2
c )I (ci < 0) otherwise,

where Vci
=

(
R∑

r=1

J∑

j=1

I (χir = IP)

(
T∑

t=1

(xjt − wit)
2

)2

+ 1

τ 2
c

)−1

,

c̄i =
(

R∑

r=1

J∑

j=1

I (χir = IP)(�ijr − di)

(
T∑

t=1

(xjt − wit)
2

))
Vci

.

6. Generate the ideal point parameter wit|τ 2
w,χir, xjt, ci, di .

A random-walk Metropolis–Hastings algorithm is used to generate ideal point parame-
ter wit. Let w

(n)
it denote a new candidate and w

(o)
it represent the old value from the previous

iteration of the chain. Draw a random vector (scalar) w
(n)
it = w

(o)
it + κe, where κe is a draw

from a candidate generating density N(0, κ). Accept new vector w
(n)
it with probability:

αw

(
w

(n)
it ,w

(o)
it

) = min

(
P(w

(n)
it )

P (w
(o)
it )

,1

)
, and

P(w
(n)
it )

P (w
(o)
it )

=
∏R

r=1[Lir|IP(�ijr|w(n)
it , rest)]I (χir=IP)

∏R
r=1[Lir|IP(�ijr|w(o)

it , rest)]I (χir=IP)

(
e
− 1

2τ2
w

(w
(n)
it )2

e
− 1

2τ2
w

(w
(o)
it )2

)
,

where rest means other parameters in the likelihood.
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7. Generate the brand parameter xjt|τ 2
x ,χir, vit, bi,wit, ci , di .

As discussed in the identification section, brand coordinates can be separated into two
parts: one with a constraint such that parameters need to be confined on the positive space
and the other without this constraint. Let xjt(nc) be unconstrained brand coordinates and xjt(c)
be constrained brand coordinates. For the proposed model, xjt(nc) and xjt(c) are randomly
drawn from the respective posterior distribution iteratively and recursively as follows. First,
a random-walk Metropolis–Hastings algorithm with a normal prior P(xjt(nc)) ∼ N(0, τ 2

x ) is

used to generate the unconstrained parameter xjt(nc). Let x
(n)
jt(nc) denote a new candidate of

the unconstrained parameter and x
(o)
jt(nc) be previous draw of xjt(nc). A new candidate x

(n)
jt(nc)

is given by x
(n)
jt(nc) = x

(n)
jt(nc) + ωe, where ωe is a draw from a candidate generating density

N(O,ω). Here, we calibrate ω needs so that the acceptance rate is around 30%, resulting in
acceptable mixing probabilities as suggested by Gelman, Gilks, & Roberts (1996). Accept the
new candidate x

(n)
jt(nc) with probability

αxnc

(
x

(n)
jt(nc), x

(o)
jt(nc)

) = min

(
P(x

(n)
jt(nc)

)

P (x
(o)
jt(nc))

,1

)
, and

P(x
(n)
jt(nc))

P (x
(o)
jt(nc)

)
=

∏I
i=1 Li(�ijr|x(n)

jt(nc), rest)
∏I

i=1 Li(�ijr|x(o)
jt(nc)

, rest)

(
e
− 1

2τ2
x

(x
(n)
jt(nc)

)2

e
− 1

2τ2
x

(x
(o)
jt(nc)

)2

)
,

where rest means other parameters in the likelihood.
Next, a random-walk Metropolis–Hastings algorithm with a Gamma prior P(xjt(c)) ∼

G(sh0, sc0) and a Gamma proposal are used to generate constrained parameters xjt(c). Let

x
(n)
jt(c) denote a new candidate of the constrained parameter and x

(o)
jt(c) be previous draw of xjt(c).

For the Gamma proposal, we reparameterize the shape parameter of the Gamma distribution
kernel as k(x

(o)
jt(c))

2 and the scale parameter as 1
kx

(o)
jt(c)

, so that the new candidate x
(n)
jt(c) as the

mean equal to the previous draw x
(o)
jt(c) and the variance 1

k
(Bradlow & Schmittlein, 2000).

Therefore, a new candidate x
(n)
jt(c) is generated from G(k(x

(o)
jt(c))

2, 1
kx

(o)
jt(c)

), and k needs to be

tuned to get an adequate acceptance rate. Accept the new candidate x
(n)
jt(c) with probability:

αxc

(
x

(n)
jt(c), x

(o)
jt(c)

) = min

(
P(x

(n)
jt(c))

P (x
(o)
jt(c))

,1

)
, and

P(x
(n)
jt(c))

P (x
(o)
jt(c)),1

=
∏I

i=1 Li(�ijr|x(n)
jt(c), rest)

∏I
i=1 Li(�ijr|x(o)

jt(c), rest)

⎛

⎜⎜⎝

1

�(sh2)sc
sh2
2

(x
(o)
jt(c))

sh2−sh0e
−x

(o)
jt(c)(

1
sc2

− 1
sc0

)

1

�(sh1)sc
sh1
1

(x
(n)
jt(c))

sh1−sh0e
−x

(n)
jt(c)(

1
sc1

− 1
sc0

)

⎞

⎟⎟⎠ ,

where sh1 = k
(
x

(o)
jt(c)

)2
, sc1 = 1

kx
(o)
jt(c)

, sh2 = k
(
x

(n)
jt(c)

)2
, and sc2 = 1

kx
(n)
jt(c)

.

8. Update the hyperparameter τ−2
x |kx,ux, xjt

P(τ−2
x | ∼) ∼ G

(
kx + JT − 2T

2
,

(
1

2

J∑

j=2T +1

T∑

t=1

x2
jt + u−1

x

)−1)
.
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Similarly,

P(τ−2
b | ∼) ∼ G

(
kb + I

2
,

(
1

2

I∑

i=1

b2
i + u−1

b

)−1)
,

P (τ−2
v | ∼) ∼ G

(
kv + IT

2
,

(
1

2

I∑

i=1

T∑

t=1

v2
it + u−1

v

)−1)
,

P (τ−2
c | ∼) ∼ G

(
kc + I

2
,

(
1

2

I∑

i=1

c2
i + u−1

c

)−1)
,

P (τ−2
d | ∼) ∼ G

(
kd + I

2
,

(
1

2

I∑

i=1

d2
i + u−1

d

)−1)
,

P (τ−2
w | ∼) ∼ G

(
kw + IT

2
,

(
1

2

I∑

i=1

T∑

t=1

w2
it + u−1

w

)−1)
.

9. Update the hyperparameter φ2|χir, a2, b2

P(φ−2| ∼) ∼ Beta

(
I∑

i=1

R∑

r=1

I (χir = V ) + a2,

I∑

i=1

R∑

r=1

I (χir = IP) + b2

)
.
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