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This paper studies three models for cognitive diagnosis, each illustrated with an application to frac-
tion subtraction data. The objective of each of these models is to classify examinees according to their
mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA
model, and a new model that extends the DINA model to allow for multiple strategies of problem solving.
For each of these models the joint distribution of the indicators of skill mastery is modeled using a single
continuous higher-order latent trait, to explain the dependence in the mastery of distinct skills. This ap-
proach stems from viewing the skills as the specific states of knowledge required for exam performance,
and viewing these skills as arising from a broadly defined latent trait resembling the θ of item response
models. We discuss several techniques for comparing models and assessing goodness of fit. We then im-
plement these methods using the fraction subtraction data with the aim of selecting the best of the three
models for this application. We employ Markov chain Monte Carlo algorithms to fit the models, and we
present simulation results to examine the performance of these algorithms.

Key words: cognitive diagnosis, item response theory, latent class model, Markov chain Monte Carlo,
goodness-of-fit.

1. Introduction

Latent variable models for cognitive diagnosis have been developed with the aim of diag-
nosing the presence or absence of multiple fine-grained skills required for solving problems on
an examination. In the literature, the presence of a skill is often synonymous with “mastery” of
the skill and the absence of a skill is referred to as “nonmastery”. One motivation for fitting these
multiple classification latent class models is that they may provide more diagnostic value than
lower-dimensional item response models, and may lead to more efficient remediation. In these
models mastery of particular skills can be represented by a vector of binary latent variables, in-
dicating presence or absence of each element of a set of skills under diagnosis. A generic term
for a skill or knowledge state is an “attribute”, and we use this terminology. In this paper we
consider several cognitive diagnosis models for analyzing fraction subtraction data. One of the
models acknowledges the possibility that different strategies might be used to solve a problem.
Different strategies might require different attributes to successfully respond, and we propose a
model that addresses this situation. Because accurate classification of the attribute vector would
be of interest, and because the probability of making a correct classification is likely to depend on
the fit of the model, we also focus on methods for comparing the goodness of fit of these models.
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FIGURE 1.
Solving a fraction subtraction problem using Strategy A.

Attribute required

4 4
12 − 2 7

12

= 2 4
12 − 7

12 (3) separating whole number from fraction

= 1 16
12 − 7

12 (4) borrowing one from whole number to fraction

= 1 9
12 (1) performing basic fraction subtraction operation

= 1 3
4 (2) simplifying/reducing

FIGURE 2.
Solving a fraction subtraction problem using Strategy B.

Attribute required

4 4
12 − 2 7

12

= 52
12 − 31

12 (6) converting mixed number to fraction

= 21
12 (1) performing basic fraction subtraction operation

= 1 9
12 = 1 3

4 (2) simplifying/reducing

The main objectives of this paper are to introduce a model for multiple strategies and consider
ways to compare and contrast models for cognitive diagnosis based on competing assumptions.
To illustrate these ideas we provide a thorough data analysis of fraction subtraction data. The
goodness-of-fit measures we consider will apply to various cognitive diagnosis model, not just
those used this paper.

The data we analyze include responses of 2144 examinees to 15 fraction subtraction items,
and are a subset of the original data described by Tatsuoka (1990), and recently analyzed by
Tatsuoka (2002) and de la Torre and Douglas (2004). Mislevy (1996) analyzed similar data using
multiple strategies, and we define the attributes required for fraction subtraction as in his paper,
albeit with some minor modifications. These attributes are defined as follows: (1) performing
basic fraction subtraction operation; (2) simplifying/reducing; (3) separating whole number from
fraction; (4) borrowing one from whole number to fraction; (5) converting whole number to
fraction; (6) converting mixed number to fraction; and (7) column borrowing in subtraction.

According to Mislevy (1996), two alternative strategies each requiring five attributes can be
culled from these attributes. One strategy, Strategy A, requires examinees to perform fraction
subtraction with mixed numbers and involves attributes 1, 2, 3, 4, and 5. The other strategy,
Strategy B, requires subtraction of fractions where mixed numbers are first changed to improper
fractions and involves attributes 1, 2, 5, 6, and 7. For example, the correct answer for 4 4

12 − 2 7
12

can be obtained in two ways. Using the first strategy, which requires attributes 1, 2, 3 and 4 for the
problem, arriving at the correct answer would involve the steps given in Fig. 1. Alternatively, the
second strategy, which requires attributes 1, 2, and 6 for this problem, involves the steps outlined
in Fig. 2.

Let Y denote a vector of binary item responses for the J items of an examination. Consistent
with traditional latent variable models in psychometrics, the components of Y are modeled as sta-
tistically independent given the latent variable, which is an attribute vector α = (α1, α2, . . . , αK)′.
The kth element, αk , of α is a binary indicator of an examinee’s classification with regard to the
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kth attribute. For instance, in the case of fraction subtraction αk might denote mastery of con-
verting a whole number to a fraction. Models for item responses in cognitive diagnosis often
arise from constructing a sequence of unobservable responses to subtasks that must all be cor-
rect in order to correctly answer the item (Embretson, 1984, 1997; Maris, 1999). By recognizing
that the performances of examinees cannot be precisely predicted from their attribute vectors,
stochastic models allow for the possibility of “slips” and “guesses”. A slip occurs when an ex-
aminee who possesses the required attributes fails to correctly perform a subtask, or fails to
answer the item correctly. A guess refers to correctly answering an item or completing a sub-
task in the absence of one or more required attributes. The models we consider are largely de-
fined by whether slips and guesses are allowed to take place at the subtask level or at the item
level. These models are briefly introduced in the following, using the nomenclature for these
models in Junker and Sijtsma (2001), with more mathematical descriptions given in the next
section.

In the deterministic inputs, noisy “and” gate (DINA) model, slips and guesses occur at the
item level (Junker & Sijtsma, 2001). Each item divides the population into two classes such that
examinees within the same class have equal probabilities of answering correctly. The two classes
are those who have all of the required attributes for the item and those who do not. Members of
the class having the required attributes may still slip, and this occurs with a probability that is es-
timated from the data. Also, a parameter that indicates the probability of correctly answering the
item for members of the class who lack at least one of the required attributes must be estimated.
These slip and guessing parameters are allowed to change item by item.

In contrast with the DINA model, slipping and guessing in the noisy inputs, deterministic,
“and” gate (NIDA) model, occur at the subtask level. In the NIDA model, introduced by Maris
(1999), an item is answered correctly provided all subtasks are correctly performed. However,
slips and guesses may take place for each subtask, depending on the examinee’s attribute profile.
If an item requires an attribute, an examinee who possesses that attribute will perform the subtask
correctly provided the examinee does not slip, and an examinee who lacks that attribute still
may guess correctly to complete the subtask. Thus, the model parameters are slip and guessing
parameters that pertain to each attribute, rather than to each item.

Neither the DINA model nor the NIDA model consider the possibility that examinees may
solve a problem in different ways. In his analysis of fraction subtraction data, Mislevy (1996)
considered the notion of multiple strategies, in which a strategy refers to the set of required at-
tributes. A straightforward extension of the DINA model allows for the incorporation of multiple
strategies. The basic idea is to note whether an examinee’s attribute pattern satisfies either strat-
egy or not. In this way, an item still divides the population into two equivalence classes, but in a
different manner than in the single-strategy DINA model described earlier.

In the next section the mathematical details of the NIDA model and the single-strategy
and multiple-strategy DINA models are discussed, and the method of de la Torre and Douglas
(2004) for parameterizing the joint distribution of a K-dimensional random attribute vector is
described. The third section introduces several methods of assessing fit both globally and at
the item level, which may be used for model selection. The fourth section includes results of
simulation studies to examine the performance of the MCMC algorithms for parameter estima-
tion. The fifth section provides an extensive study of the fraction subtraction data, and compares
the three models using the proposed goodness-of-fit measures. The paper concludes with a dis-
cussion of the utility of the proposed models and recommendations for assessing goodness of
fit.
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2. Model Specification and Estimation

This section gives the mathematical details by which the NIDA model and the single-strategy
and multiple-strategy DINA models relate the item response vector Y to the attribute vector α. All
of these models require construction of a Q-matrix (Embretson, 1984; Tatsuoka, 1985), which
indicates the attributes needed for each item. Q is a J × K matrix with the j, k entry qjk = 1
if the correct application of attribute k influences the probability of correctly answering the j th
item, and equals 0 otherwise. A distinguishing feature of the multiple-strategy DINA model is
that it incorporates multiple Q-matrices in order to specify the different strategies that suffice to
solve the examination problems.

2.1. Single-Strategy DINA Model

As previously discussed, the DINA model allows each item to divide the population into
those who possess all the required attributes and those who do not. It can be viewed as a latent
response model in which slips and guesses occur at the item level, rather than at the subtask level.
Let ηij denote whether the ith examinee possesses the attributes required for the j th item. This
can be expressed by the equation ηij = ∏K

k=1 α
qjk

ik .
The parameters for a correct response to item j are denoted by sj and gj . The parameter sj

refers to the probability of slipping and incorrectly answering the item when ηij = 1, and gj is
the probability of correctly guessing the answer when ηij = 0. The item response function for
the j th item may then be written as

P(Yij = 1 | α) = (1 − sj )
ηij g

1−ηij

j . (1)

Assuming conditional independence as well as independence among N subjects, the joint
likelihood function of the DINA model is

L(s,g;α) =
N∏

i=1

J∏

j=1

[
(1 − sj )

yij s
1−yij

j

]ηij
[
g

yij

j (1 − gj )
1−yij

]1−ηij . (2)

The DINA model requires only two parameters for each item, and offers a clear interpre-
tation. It is most appropriate when the conjunction of several equally important attributes is re-
quired. Applications of the DINA model along with MCMC algorithms for estimation are given
in Junker and Sijtsma (2001), Tatsuoka (2002), and de la Torre and Douglas (2004). The DINA
model is also discussed in Macready and Dayton (1977), Haertel (1989), and Doignon and Fal-
magne (1999).

2.2. Multiple-Strategy DINA Model

The multiple-strategy DINA model is a straightforward extension of the single-strategy
DINA model. Suppose that each item has as many as M distinct strategies that would suffice to
solve it. A strategy is defined as a subset of the K attributes which could be used in conjunction to
solve the problem. This may be coded by constructing M different matrices, Q1,Q2, . . . ,QM .
For examinee i and item j we modify the definition of ηij to consider the M different strategies.

Let ηijm = ∏K
k=1 α

qjkm

ik , for m = 1,2, . . . ,M , where qjkm denotes the element in the j th row
and kth column of Qm. The variable ηijm denotes if examinee i has the attributes to apply the
mth strategy to the j th item. Then we check if at least one of the M strategies is satisfied by
setting

ηij = max{ηij1, ηij2, . . . , ηijM}. (3)
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FIGURE 3.
Directed acylic graphs of the higher-order single- and multiple-strategy DINA model.

Once ηij has been determined, the item response function is precisely the same as in (1), and the
likelihood function is the same as in (2). This same approach of checking if any strategies may
be satisfied by an examinee’s attribute pattern and dividing the population into two equivalence
classes accordingly has been applied in the POSET model in Tatsuoka (2002). A schematic dif-
ferentiation of the single- and multiple-strategy DINA models is given in Fig. 3. The parameters
θ and λ will be defined in Sect. 2.4.

The simplicity of the multiple-strategy DINA model is appealing, but it makes the assump-
tion that a student will be able to identify a strategy to use successfully. Also, because the s and



600 PSYCHOMETRIKA

g parameters are the same for different strategies, it assumes that the application of each strategy
is equally difficult. Both of these points are in contrast to Mislevy’s (1996) approach to modeling
multiple strategies in mixed-number subtraction.

Although Mislevy (1996) mentioned extensions in which examinees may switch strategies,
he focused more on a mixture modeling approach in which a student typically uses one strategy
over the other, and allows for different strategies to be associated with different levels of dif-
ficulty. To make these distinctions clearer, one could consider how the multiple-strategy DINA
model can be extended to allow for the strategies to have different s and g for each item. In
addition to the current model, we associate each examinee with a particular strategy defined by
a latent variable ω.

Suppose that each item can be described in terms of M strategies. To simplify the discussion
we will assume that M is the same for all items although this approach can easily be generalized
so that different items can be associated with different numbers of strategies. The attributes re-
quired for the j th item using strategy m are given in the j th row of Qm. Now suppose that for
the ith examinee, the latent variable ωi takes a value in the set {1,2, . . . ,M} indicating which
type of strategy the ith examinee uses. Then the item response function for the j th item is given
by

P [Yij = 1 | αi ,ωi] =
M∑

m=1

I [ωi = m](1 − sjm)ηijmg
1−ηijm

jm , (4)

where I [ωi = m] is the indicator function that the ith examinee favors the mth strategy. In order
to model the item response function as a function of α alone, we need to mix over the conditional
distribution of ω given αi which would require either assuming independence of ω and α, or
modeling their joint distribution. We may then write

P [Yij = 1 | αi] =
M∑

m=1

P [ωij = m | αi](1 − sjm)ηijmg
1−ηijm

jm . (5)

Compared to this mixture model, the multiple-strategy DINA model we have proposed does
not allow for estimating a latent strategy being used. On the other hand, it does not constrain
examinees to use a particular strategy throughout an examination (i.e., examinees can change
their strategy from item to item).

As more strategies are involved, some confounding and loss of information can be expected
for certain components of α. The degree of confounding and loss of information depend largely
on the structure of the Q-matrix. That is, for fixed test length and item quality, some Q-matrices
may allow better discrimination of the attributes patterns than others. As a practical matter, this
issue should be addressed by examining the equivalence classes of α patterns under the assump-
tion of a deterministic multiple-strategy model in which all the guessing and slip parameters are
assumed to be 0. If this deterministic model leads to the same theoretical response patterns for
many distinct values of α, a simpler model might be required, using fewer strategies, or even a
single strategy.

Following is an example of how different Q-matrices can result in tests that have varying
discrimination power. This example involves five attributes and two strategies, A and B. Strat-
egy B is given in two alternative formulations, B1 and B2, and their rows are permutations of one
another (see Table 1). Although the structure of the Q-matrices of the two alternative strategies
are identical, they produce Q-matrices with different structures when used in conjunction with
Strategy A. Using Strategies A and B1 produces 16 equivalent classes, whereas using Strategies A
and B2 results in 23 equivalent classes. Thus, for this example, A and B1 cannot discriminate be-
tween the attribute patterns (1,0,0,0,1)′, (0,0,0,1,1)′, and (1,0,0,1,1)′, but A and B2 can.
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TABLE 1.
Q-matrices with two formulations of Strategy B.

Item Strategy

A B1 B2

1 2 3 3 4 5 3 4 5

1 1 0 0 0 1 0 1 0 1
2 0 1 0 1 0 0 1 1 0
3 0 0 1 0 0 1 0 0 1
4 1 1 0 1 0 1 0 1 0
5 1 0 1 1 1 0 1 0 0
6 0 1 1 0 0 1 0 0 1
7 1 1 1 1 1 1 1 1 1

This example underscores the fact that despite the limitations of the current formulation of the
multiple-strategy DINA model, it can be used to effectively estimate α in situations where the
Q-matrices can be well designed to ensure identification of most of the α patterns.

As another critical point concerning the multiple-strategy DINA model, notice that a strategy
is merely defined by the set of attributes required by a particular approach to solving a problem.
One can imagine that a strategy might instead be determined by a set of attributes as well as a
procedure and sequence for using them. In the example of fraction subtraction, one can think of
the attributes as steps in solving the problem, making the set of attributes more or less equivalent
with a strategy. However, depending on how the attributes are defined, this will not always be the
case, and one must consider different methods of using the same attributes.

Finally, the within-person mixture feature of the multiple-strategy DINA model is consistent
with the overlapping waves theory in cognitive science literature which states that individuals
possess and adaptively use competing strategies that vary with situational demands (Opfer &
Siegler, 2008). The presence of multiple strategies and their adaptive use are evident across dif-
ferent age groups (Siegler, 1988; Siegler et al., 1996), and have been found in diverse domains
such as addition and subtraction (Siegler & Shrager, 1984), single-digit multiplication (LeFevre
et al., 1996), question answering (Reder, 1987), and selection of causal rules (Shultz et al., 1986).
However, adapting the multiple-strategy DINA model to these domains would require additional
work. For example, to model the phenomenon that Siegler and Shrager (1984) found (i.e., differ-
ent percentage of errors are associated with different strategies), the slip and guessing parameters
of an item should be allowed to vary across the different strategies.

2.3. NIDA Model

The NIDA model, introduced in Maris (1999), considers slips and guesses at the subtask
level (refer to Fig. 4). Let ηijk indicate whether the ith subject correctly applied the kth attribute
in completing the j th item. Slip and guessing parameters are indexed by attribute rather than
by item and are defined by sk = P(ηijk = 0 | αik = 1, qjk = 1) and gk = P(ηijk = 1 | αik = 0,

qjk = 1). As a technical device, we set P(ηijk = 1 | qjk = 0) equal to 1, regardless of the value
of αik . In the NIDA model an item response Yij will be equal to 1 if all ηijk’s are equal to one,
which can be expressed by the product Yij = ∏K

k=1 ηijk. By assuming the ηijk’s are indepen-
dent conditional on αi , the item response function which relates the probability of a successful
response to the latent attribute pattern has the form

P(Yij = 1 | αi , s,g) =
K∏

k=1

P(ηijk = 1 | αik, sk, gk) =
K∏

k=1

[
(1 − sk)

αik g
1−αik

k

]qjk .
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FIGURE 4.
Directed acylic graph of the higher-order NIDA model.

By assuming conditional independence and independence among subjects, the likelihood
function is

L(s,g;α) =
N∏

i=1

J∏

j=1

{
K∏

k=1

[
(1 − sk)

αik g
1−αik

k

]qjk

}Yij
{

1 −
K∏

k=1

[
(1 − sk)

αik g
1−αik

k

]qjk

}1−Yij

. (6)

This version of the NIDA model, also given in Junker and Sijtsma (2001) and de la Torre
and Douglas (2004), is a simplified version of the conjunctive model introduced in Maris (1999).
Maris allows slip and guessing parameters for each attribute to vary across the items. A further
extension of the NIDA model is the Unified Model of DiBello et al. (1995). In the Unified
Model s and g are allowed to vary across the items, and a unidimensional continuous latent
trait is incorporated into the conditional distribution to account for attributes that the items have
in common, which were not included in coding the Q-matrix.

2.4. Joint Distribution of Attributes

After specifying the conditional distribution of Y given α, using the NIDA model or the
single-strategy or multiple-strategy DINA models, an additional step in specifying the model is
to consider the probability distribution of α. In this paper we use the higher-order latent trait
structure introduced by de la Torre and Douglas (2004). This approach derives from the obser-
vation that despite the aim of obtaining specific cognitive diagnostic information, many of the
examinations used for skills diagnosis could also be seen as primarily measuring a small number
of general abilities. In these situations, the choice to use a diagnostic model or a unidimensional
IRT model indicates the desire for formative or summative assessment, respectively. The higher-
order latent trait model combines these approaches by assuming conditional independence of Y

given α, and also by assuming that the components of α are independent conditional on θ , a
unidimensional latent trait representing general ability in the studied domain. This latent trait
could be assumed to have any distribution, but de la Torre and Douglas (2004) used the standard
normal distribution as its prior.
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In the example of fraction subtraction given in a later section, specific rules for manipulating
fractions and whole numbers and subtracting them are identified, and are used to define the
attribute vector α. The probability model for α conditional on θ is

P(α | θ) =
K∏

k=1

P(αk | θ), (7)

where the probability of mastery is given by

P(αk = 1 | θ) = exp[1.7λ1k(θ − λ0k)]
1 + exp[1.7λ1k(θ − λ0k)] , (8)

where λ0k and λ1k represent the parameters in regressing the latent mastery or nonmastery of
attribute k on the higher-order proficiency θ . The constant 1.7 was used to give the λs simi-
lar interpretations as the difficulty and discrimination parameters of item response models. The
original formulation given by de la Torre and Douglas (2004) allows the joint distribution of the
attributes to take other forms (e.g., multidimensional).

Modeling the joint distribution of α in this way reduces the complexity of the saturated
model for α and is reasonable in applications in which the examination can be seen as measuring
a general ability in addition to the specific skills that are indicated by α. The estimated value of λ
relating α to the higher-order latent trait θ may be used to estimate the population proportion for
each of the 2K possible attribute patterns. Finally, the higher-order model enables one to classify
each αk and obtain an estimate of θ in the same analysis.

2.5. Parameter Estimation

A fully Bayesian framework was adopted in estimating the parameters of the model. Samples
from the joint posterior distribution were obtained using Markov chain Monte Carlo (MCMC)
simulation. More specifically, samples from the full conditional distributions were iteratively
drawn using the Metropolis–Hastings algorithm (Casella & George, 1992; Chib & Greenberg,
1995; Geman & Geman, 1984; Patz & Junker, 1999a, 1999b).

3. Model Assessment

Model fit was evaluated using various indices. Three indices were computed by compar-
ing the expected and observed characteristics of the marginal and pairwise joint distributions
of the items. Four other indices, Bayes factor, Bayesian Information Criterion (BIC; Schwarz,
1978) and Akaike Information Criterion (AIC; Akaike, 1973), and Deviance Information Cri-
terion (DIC; Spiegelhalter et al., 2002) were also computed to provide global measures of the
relative fit of the models.

For the marginal distributions of the items, the proportion of examinees correctly respond-
ing to each item was obtained and compared to the expected proportion computed under the
estimated model. The pairwise relationships were assessed by comparing observed and expected
product-moment correlations and the log-odds ratios. For items j and j ′, the log-odds ratio is
computed as

log

[
P(Yj = 1, Yj ′ = 1)P (Yj = 0, Yj ′ = 0)

P (Yj = 1, Yj ′ = 0)P (Yj = 0, Yj ′ = 1)

]

. (9)

To compute the expected values of these indices under the estimated model, the Monte Carlo
method was used. This was done by generating responses for 100,000 examinees under the esti-
mated model parameters, and computing the sample values of the indices. Determining that item
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pair associations are modeled correctly is a necessary, but not sufficient, condition for determin-
ing whether or not the association of the entire response vector is adequately modeled.

The Bayes factor is analogous to the likelihood ratio, but is used in a Bayesian context, and
can be used in comparing models that may not be nested. The Bayes factor, which is the ratio
of the marginal likelihoods of two competing models MH and MI (i.e., the likelihoods after
integrating over the model parameters), is computed as

BHI = P(Y |MH )

P (Y |MI)
. (10)

In (10),

P(Y |Mm) =
∫

P(Y |λm, sm,gm,Mm)P (λm, sm,gm|Mm)dλm dsm dgm, (11)

where λm, sm, and gm are the parameters under Model m, P(λm, sm,gm|Mm) is the prior den-
sity. The marginal likelihoods required for the Bayes factor were computed for the three models
in the analysis of fraction subtraction data. In each case, the marginal likelihood was approxi-
mated using the Laplace–Metropolis estimator proposed by Raftery (1996). In addition, because
the interest is in the structural parameters when choosing a model, the incidental parameters
were integrated out of the marginal likelihood. Moreover, the posterior mode and variance were
approximated by the posterior mean and sample covariance matrix of the simulation output.
Finally, integration of continuous functions was approximated using quadrature nodes. For the
computational details of the marginal likelihood, see de la Torre and Douglas (2004).

For the BIC and AIC, the maximized conditional log-likelihood given the structural pa-
rameters, log(P (Y |λ̃, s̃, g̃)), was approximated by using the posterior means in place of the
maximum likelihood estimates. In addition, similar to the marginal likelihood, the conditional
log-likelihood was computed by integrating out the incidental parameters, θ and α. Finally, the
DIC was computed based on DIC4 for missing data models proposed by Celeux et al. (2006).

4. Simulation Studies

The primary objective of the simulation studies is to demonstrate that the MCMC algo-
rithms for parameter estimation discussed in this paper can effectively recover model parameters.
De la Torre and Douglas (2004) showed that the parameters of the higher-order, single-strategy
DINA model can be estimated accurately using MCMC. This paper aims to show that the para-
meters of the higher-order, multiple-strategy DINA model and the higher-order NIDA model can
also be accurately estimated. In particular, in the case of the multiple-strategy DINA model, we
wish to see if parameters can be accurately estimated in scenarios similar to that of the real data
analysis covered in the following section. A secondary objective of this section is to investigate
the impact of model misspecification on parameter estimation and attribute classification.

4.1. Simulation Study I: The Higher-Order NIDA and Single-Strategy DINA Models

4.1.1. Method For the first simulation study, 25 data sets with five attributes, 20 items and
2000 examinees were simulated using the higher-order NIDA model. The structural parameters
(i.e., λ, s, and g) were fixed across the 25 replications, whereas the incidental parameters θi and
αik were sampled from Normal(0,1) and Bernoulli({1+exp[−1.7λ1(θi −λ0k)]}−1), respectively,
for each replication. Table 2 gives the Q-matrix used in this simulation study. This Q-matrix was
constructed to be balanced in that each attribute appears in a pair, or in a triple the same number
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TABLE 2.
The Q-matrix for simulation study I.

Item Attribute Item Attribute

1 2 3 4 5 1 2 3 4 5

1 1 1 0 0 0 11 1 1 1 0 0
2 1 0 1 0 0 12 1 1 0 1 0
3 1 0 0 1 0 13 1 1 0 0 1
4 1 0 0 0 1 14 1 0 1 1 0
5 0 1 1 0 0 15 1 0 1 0 1
6 0 1 0 1 0 16 1 0 0 1 1
7 0 1 0 0 1 17 0 1 1 1 0
8 0 0 1 1 0 18 0 1 1 0 1
9 0 0 1 0 1 19 0 1 0 1 1

10 0 0 0 1 1 20 0 0 1 1 1

TABLE 3.
Mean and SD of λ estimates (over 25 replications).

Parameter Fitted model

NIDA DINA

λ01: −2.00 −1.98 (0.10) −1.81 (0.12)

λ02: −1.50 −1.46 (0.08) −1.37 (0.08)

λ03: −1.00 −0.97 (0.06) −0.95 (0.06)

λ04: −0.50 −0.50 (0.05) −0.54 (0.05)

λ05: 0.00 0.01 (0.04) −0.09 (0.04)

λ1: 1.00 1.02 (0.04) 1.11 (0.05)

of times as other attributes. The simulated data were fitted using the higher-order NIDA model
and the higher-order single-strategy DINA model.

The same prior distributions were used for both models. For λ and θ , the parameters μ and
σ 2 of the prior distributions were set to 0 and 1, and for the guessing and slip parameters, a
4-Beta(0,0.9,1.5,2) prior was used. (The four-parameter beta distribution 4-Beta(ν,ω, a, b) is
a generalization of the beta distribution Beta(ν,ω), and has the interval (a, b), rather than (0,1),
as its support.) The multivariate potential scale reduction factor (MPSRF; Brooks and Gelman,
1998) was used as the criterion to verify stationarity of the chains for all structural parameters.
By running five parallel chains with a burn-in of 1000 iterations, followed by 4000 iterations
for the first simulated data set, the MPSRFs for the NIDA and DINA models were computed as
R̂16 = 1.17, R̂46 = 1.14.

4.1.2. Results For this simulation study, a common discrimination parameter (λ1k = λ1,
for all k) was used to model the joint distribution of the attributes. Table 3 gives the mean and
standard deviation of the parameter estimates using the NIDA and single-strategy DINA models
across the 25 replications. Results show that in estimating λ, using the correct model, in this case,
NIDA model, provided estimates that are both more accurate and less variable. Nonetheless,
differences in estimates of λ had little effect on estimating the higher-order latent trait θ . The
mean correlation and RMSE between the true and estimated abilities in Table 4 indicate that
although the correct model gave better estimates of θ (i.e., higher correlation and lower RMSE),
the differences from estimates given by the misspecified model are very slight.

Table 5 provides the percent of the attributes correctly classified using the NIDA and DINA
models. Results show that correct classifications using the correct model were consistently higher
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TABLE 4.
Mean correlation and RMSE between θ and θ̂ (over 25 replications).

Model Correlation RMSE

NIDA 0.75 0.66
DINA 0.74 0.67

TABLE 5.
Percent of correct attribute classification (over 25 replications).

Model Attribute

α1 α2 α3 α4 α5

NIDA 96.47 94.78 94.43 94.29 94.88
DINA 95.19 93.53 93.20 92.86 93.34

TABLE 6.
Estimation of the parameters of the NIDA model (over 25 replications).

Attribute g 1 − s ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ)

1 0.15 0.88 0.16 (0.03) 0.88 (0.00)
2 0.20 0.90 0.21 (0.02) 0.90 (0.01)
3 0.25 0.93 0.25 (0.01) 0.92 (0.01)
4 0.30 0.95 0.30 (0.01) 0.95 (0.01)
5 0.35 0.98 0.35 (0.01) 0.98 (0.01)

across the five attributes. However, for the particular example, attribute classification using the
DINA model was not substantially inferior to the correct model. Finally, Table 6 shows that
following the MCMC algorithm developed for this paper, efficient estimates of the guessing and
slip parameters of the NIDA model can be obtained.

4.2. Simulation Study II: The Higher-Order, Single-Strategy and Higher-Order,
Multiple-Strategy DINA Models

4.2.1. Method This two-part simulation study is a comparison between the higher-order,
single-strategy and higher-order, multiple-strategy DINA models. For the first part, 25 data sets
were generated using the single-strategy DINA model. For the second part, another 25 data sets
were generated using the multiple-strategy DINA model. All the data sets were analyzed using
the two models. The Q-matrix corresponding to Strategy A in Table 7 was used for part one,
whereas the Q-matrices corresponding to Strategies A and B were used for part 2. Although each
strategy requires five attributes, three common attributes are present in both strategies. Hence,
the multiple-strategy DINA model involved seven distinct attributes, with attributes 6 and 7 used
only for the multiple-strategy DINA model. For this simulation study, in addition to a common
discrimination parameter a common intercept (λ0k = −1.00, for all k), was used for the seven
attributes, and the guessing and slip parameters were set at 0.20. Except for the specific models,
and the numbers of iterations and burn-in (which were twice as long for the multiple-strategy
DINA model), the remaining steps (i.e., the data generation, parameter estimation, convergence
verification) proceeded in the same manner as the above simulation study. For data generated
using the single-strategy DINA model, the MPSRFs for the single- and multiple-strategy DINA
models R̂46 and R̂48, were 1.20 and 1.19. These factors were equal to 1.14 and 1.16 for the data
generated under the multiple-strategy DINA model.
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TABLE 7.
The Q-matrices for simulation study II.

Item Attribute

Strategy A Strategy B

1 2 3 4 5 3 4 5 6 7

1 1 1 0 0 0 0 1 0 1 1
2 1 0 1 0 0 0 0 1 1 1
3 1 0 0 1 0 0 1 1 0 1
4 1 0 0 0 1 0 1 1 1 0
5 0 1 1 0 0 1 0 0 1 1
6 0 1 0 1 0 1 1 0 0 1
7 0 1 0 0 1 1 1 0 1 0
8 0 0 1 1 0 1 0 1 0 1
9 0 0 1 0 1 1 0 1 1 0

10 0 0 0 1 1 1 1 1 0 0
11 1 1 1 0 0 0 0 0 1 1
12 1 1 0 1 0 0 1 0 0 1
13 1 1 0 0 1 0 1 0 1 0
14 1 0 1 1 0 0 0 1 0 1
15 1 0 1 0 1 0 0 1 1 0
16 1 0 0 1 1 0 1 1 0 0
17 0 1 1 1 0 1 0 0 0 1
18 0 1 1 0 1 1 0 0 1 0
19 0 1 0 1 1 1 1 0 0 0
20 0 0 1 1 1 1 0 1 0 0

4.2.2. Results Table 8 gives the estimates of λ using the correct and misspecified models.
For both parts, using the correct model yielded estimates that are less biased. Other impacts of
model misspecification depend on the generating model used. For the data generated using the
single-strategy DINA model, misspecification resulted in overestimation of the intercepts of the
attributes. However, the biases for the attributes common to both strategies (i.e., those used in
generating the data) are much smaller compared to the biases for attributes unique to Strategy B
which were ignored in the data generation. In addition to larger biases, estimates of these unique
attributes have high variabilities. The high estimates for intercepts of attributes not used in the
test indicate a very low prevalence of these attributes in the population. This implies that for
items requiring either α6 or α7, η is largely determined by Strategy A.

For data generated using the multiple-strategy DINA model, intercepts of attributes unique
to Strategy A were underestimated, whereas intercepts of attributes shared by the two strategies
were overestimated using the misspecified model. In addition, misspecification and use of the
single-strategy DINA model resulted in a high estimate of the discrimination parameter. This
demonstrates the need to evaluate goodness of fit to determine the more appropriate model.

The impact of model misspecification on θ estimation and attribute classification is presented
in Tables 9 and 10. For θ estimates, using the correct model generally provided estimates that
correlated more highly with the true θ , and have lower RMSE. However, as in the previous
section, the results obtained using misspecified models were not considerably inferior. Similarly,
better attribute classification rates can be obtained using the correct model across all the relevant
attributes. It can be noted because the multiple-strategy DINA model has higher complexity,
the percent of correct attribute classification is generally lower when data are generated using
this model. When data are generated using the single-strategy model, attributes common to both
strategies have slightly lower correct classification using the multiple-strategy model. In contrast,
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TABLE 8.
Mean and SD of λ estimates for data generated using the single- and multiple-strategy DINA models (over 25 replica-
tions; fitted model in braces).

Parameter Generating model

Single-strategy Multiple-strategy

Single Multiple Single Multiple

λ01 −0.99 (0.06) −0.92 (0.06) −1.18 (0.10) −1.01 (0.10)

λ02 −1.01 (0.08) −0.92 (0.07) −1.14 (0.09) −1.03 (0.11)

λ03 −1.00 (0.07) −0.79 (0.06) −0.76 (0.07) −1.02 (0.07)

λ04 −0.99 (0.06) −0.81 (0.05) −0.93 (0.06) −1.01 (0.05)

λ05 −1.01 (0.05) −0.83 (0.04) −0.86 (0.07) −1.04 (0.08)

λ06 – 3.31 (2.99) – −1.01 (0.07)

λ07 – 2.90 (2.78) – −1.02 (0.10)

λ1 1.01 (0.06) 1.18 (0.08) 1.67 (0.13) 0.97 (0.06)

TABLE 9.
Mean correlation and RMSE between θ and θ̂ (over 25 replications).

Fitted model Generating model

Single Multiple

Correlation RMSE Correlation RMSE

Single 0.73 0.69 0.70 0.71
Multiple 0.72 0.69 0.72 0.69

TABLE 10.
Percent of correct attribute classification (over 25 replications).

Generating Fitted Attribute

model model α1 α2 α3 α4 α5 α6 α7

Single Single 91.34 91.28 90.91 91.23 91.16 – –
Multiple 90.62 90.54 89.08 89.52 89.93 – –

Multiple Single 83.81 83.66 89.08 89.76 89.04 – –
Multiple 86.02 85.44 92.87 92.97 92.80 85.85 86.00

attributes common to both strategies can be classified with higher accuracy when the data are
generated using the multiple-strategy model. This is so because these attributes are measured by
more items.

The estimates of the DINA model parameters are given in Tables 11 and 12. Note that the
parameter estimates using the correct model are consistently more accurate for both generating
models. When the data are generated from the multiple-strategy DINA model and fitted using the
single-strategy DINA model, a large number of guessing parameters are overestimated, and when
the data are generated from the single-strategy DINA model and fitted using the multiple-strategy
DINA model, estimates are generally close to the generating parameters except for a few slip
parameters that are overestimated. Overestimation of the guessing parameter is a consequence of
treating alternative strategies as a part of the guessing mechanism, whereas overestimation of the
slip parameter is due to attributing skills to examinees that they do not possess.
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TABLE 11.
DINA model parameter estimates for data generated using the single-strategy DINA model (over 25 replications).

Item Fitted DINA model

Single Multiple

ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ) ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ)

1 0.20 (0.02) 0.80 (0.01) 0.20 (0.02) 0.80 0.01
2 0.20 (0.02) 0.80 (0.01) 0.22 (0.02) 0.80 0.01
3 0.20 (0.02) 0.80 (0.01) 0.21 (0.02) 0.80 0.01
4 0.20 (0.02) 0.80 (0.01) 0.21 (0.02) 0.81 0.01
5 0.21 (0.02) 0.80 (0.01) 0.23 (0.02) 0.81 0.01
6 0.20 (0.02) 0.80 (0.01) 0.22 (0.02) 0.80 0.01
7 0.20 (0.02) 0.80 (0.01) 0.21 (0.02) 0.80 0.01
8 0.20 (0.02) 0.80 (0.01) 0.24 (0.02) 0.81 0.01
9 0.20 (0.02) 0.79 (0.01) 0.24 (0.02) 0.80 0.01

10 0.20 (0.02) 0.80 (0.01) 0.23 (0.02) 0.80 0.01
11 0.20 (0.01) 0.80 (0.01) 0.20 (0.01) 0.81 0.01
12 0.20 (0.01) 0.80 (0.01) 0.19 (0.01) 0.80 0.01
13 0.20 (0.01) 0.80 (0.01) 0.20 (0.01) 0.80 0.01
14 0.20 (0.01) 0.80 (0.01) 0.21 (0.01) 0.80 0.01
15 0.20 (0.01) 0.80 (0.01) 0.21 (0.01) 0.80 0.01
16 0.20 (0.01) 0.80 (0.01) 0.18 (0.02) 0.75 0.01
17 0.21 (0.01) 0.80 (0.01) 0.21 (0.01) 0.80 0.01
18 0.20 (0.01) 0.80 (0.01) 0.21 (0.01) 0.81 0.01
19 0.20 (0.01) 0.80 (0.01) 0.18 (0.02) 0.71 0.01

TABLE 12.
DINA model parameter estimates for data generated using the multiple-strategy DINA model (over 25 replications).

Item Fitted DINA model

Single Multiple

ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ) ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ)

1 0.21 (0.03) 0.78 (0.01) 0.21 (0.03) 0.80 0.01
2 0.31 (0.02) 0.80 (0.01) 0.21 (0.02) 0.80 0.01
3 0.19 (0.02) 0.77 (0.01) 0.20 (0.02) 0.80 0.01
4 0.21 (0.02) 0.78 (0.01) 0.20 (0.02) 0.80 0.01
5 0.24 (0.02) 0.78 (0.01) 0.20 (0.02) 0.80 0.01
6 0.21 (0.02) 0.77 (0.01) 0.21 (0.02) 0.80 0.01
7 0.28 (0.02) 0.79 (0.01) 0.20 (0.02) 0.80 0.01
8 0.27 (0.02) 0.79 (0.01) 0.21 (0.02) 0.80 0.01
9 0.21 (0.02) 0.77 (0.01) 0.20 (0.02) 0.80 0.01

10 0.19 (0.02) 0.76 (0.01) 0.20 (0.02) 0.80 0.01
11 0.35 (0.02) 0.79 (0.01) 0.21 (0.02) 0.80 0.01
12 0.25 (0.02) 0.78 (0.01) 0.20 (0.02) 0.80 0.01
13 0.32 (0.02) 0.79 (0.01) 0.20 (0.02) 0.80 0.01
14 0.37 (0.02) 0.80 (0.01) 0.20 (0.02) 0.80 0.01
15 0.32 (0.02) 0.79 (0.01) 0.20 (0.02) 0.80 0.01
16 0.22 (0.02) 0.77 (0.01) 0.20 (0.02) 0.80 0.01
17 0.31 (0.02) 0.79 (0.01) 0.20 (0.02) 0.80 0.01
18 0.32 (0.02) 0.79 (0.01) 0.21 (0.02) 0.80 0.01
19 0.30 (0.02) 0.78 (0.01) 0.20 (0.02) 0.80 0.01
20 0.27 (0.02) 0.78 (0.01) 0.20 (0.02) 0.80 0.01
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5. Fraction Subtraction Data

5.1. Data

The data we considered include responses by 2144 middle school students to 15 fraction
subtraction items. The data set is a subset of the data originally used and described by Tatsuoka
(1990), and recently analyzed by Tatsuoka (2002) and de la Torre and Douglas (2004). Stout et
al. (2003) and Yan et al. (2003) analyzed a similar data set, using the Fusion model and Bayesian
network, respectively. The three models, the higher-order NIDA, and the single- and multiple-
strategy DINA models, were used to analyze the data. The Q-matrices, given in Table 13 were
adapted by the authors from a similar analysis by Mislevy (1996). Strategies A and B described
earlier were considered for the multiple-strategy DINA model. With the two alternative strategies
measuring three common attributes, the multiple-strategy DINA model measured seven unique
attributes. Only the first five attributes were needed for the NIDA and single-strategy DINA
models.

5.2. Results

The prior distributions used to analyze the fraction subtraction data were the same as those
used in the simulation studies. To verify convergence, five chains with random starting points
over a broad range of reasonable values were run for the three models. For all the NIDA and
single-strategy DINA and models, chains with burn-ins of 5000 iterations and total iterations of
25,000 were used. Using these chain lengths and burn-ins, the MPSRFs for the NIDA, single-
strategy DINA models were R̂16 = 1.13 and R̂36 = 1.12, respectively. For the multiple-strategy
DINA model, the burn-in and total iterations were 25,000 and 250,000, and the corresponding
MPSRF was R̂38 = 1.17. The MPSRFs indicate that the chains have reached approximate sta-
tionarity. Finally, parameter estimates were based on the mean estimates across the five parallel
chains, and the corresponding posterior standard deviations were obtained by taking the root of
the mean posterior variances across the five separate chains.

TABLE 13.
The Q-matrices for the analysis of fraction subtraction data.

Item Attribute

Strategy A Strategy B

1 2 3 4 5 2 5 6 7

1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 1 0
3 1 0 0 0 0 0 0 0 0
4 1 1 1 1 1 0 1 1 0
5 0 0 1 0 0 1 1 1 1
6 1 1 1 1 0 1 0 1 0
7 1 1 1 1 0 1 0 1 0
8 1 1 0 0 0 1 0 0 0
9 1 0 1 0 0 0 0 1 0

10 1 0 1 1 1 1 1 0 0
11 1 0 1 0 0 1 0 1 0
12 1 0 1 1 0 1 0 1 0
13 1 1 1 1 0 1 0 1 1
14 1 1 1 1 1 1 1 1 1
15 1 1 1 1 0 1 0 1 1
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Estimates of the higher-order structural parameters for the three models are given in
Table 14. The estimates of λ0 for the NIDA model show that attribute 1 is the most prevalent
attribute in the examinee population, whereas attribute 3 is the least prevalent. In addition, the
negative coefficients of the location parameters indicate that each of the attributes is possessed
by more than half of the population. The guessing parameter estimates of the NIDA model in
Table 15 indicate that examinees lacking attributes 2 and 3 are able to guess correctly more than
60% of the time. The small slip parameter estimates indicate that examinees who possess the
required attributes are able to apply the attributes correctly almost all the time, particularly for
attributes 2, 4, and 5.

For λ parameters common to the single- and multiple-strategy DINA models, the estimates
indicate that more than half of the population possess attributes 1, 2, and 3, and less than half
possess attributes 4 and 5. The guessing and slip parameter estimates listed in Table 16 for the
two models are quite similar for all items except for the guessing parameter of item 10. Whereas
similarity in parameter estimates favor the simpler model (i.e., single-strategy DINA model) in
that increased model complexity by introducing additional attributes does not result in markedly
different estimates, the higher estimate of the guessing parameter using the single-strategy DINA
model indicates that examinees may have used the alternative strategy in responding to this item.

The observed indices (proportion correct, log-odds ratio, and correlation) for the 15 items are
given in Table 17. The residuals between the observed and predicted indices provided by the three
models and the corresponding standard errors are given in Tables 18–20 and 21–23, respectively.
The residuals were obtained by comparing the observed indices and the predicted indices, where
the latter were computed from a simulated response matrix using a large number of generated
examinees (i.e., 100,000) and the means of the chains of the structural parameters. The standard
errors of the residuals were computed using the standard deviations of the residuals obtained from
generating response matrices of simulated examinees and 100 randomly selected draws from the
chains. We have verified for the NIDA model that randomly sampling 20 draws from each of the
five chains yielded residuals with means and variances that are almost identical to those obtained

TABLE 14.
Mean and posterior standard deviation of λ̂ for the fraction subtraction data.

Parameter Fitted model

NIDA Single-DINA Multiple-DINA

λ01 −0.76 (0.05) −0.89 (0.04) −0.91 (0.04)

λ02 −0.88 (0.54) −0.76 (0.06) −0.83 (0.06)

λ03 −0.02 (0.07) −0.88 (0.06) −0.91 (0.06)

λ04 −0.10 (0.05) 0.04 (0.03) 0.22 (0.10)

λ05 −0.33 (0.08) 0.22 (0.05) 0.11 (0.04)

λ06 – – 0.35 (0.12)

λ07 – – −0.42 (0.28)

λ1 1.57 (0.10) 2.99 (0.38) 2.49 (0.20)

TABLE 15.
NIDA model parameter estimates for the fraction subtraction data.

Attribute ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ)

1 0.23 (0.02) 0.93 (0.00)
2 0.76 (0.12) 0.99 (0.00)
3 0.62 (0.02) 0.96 (0.01)
4 0.21 (0.01) 1.00 (0.00)
5 0.13 (0.04) 0.99 (0.01)
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TABLE 16.
DINA model parameter estimates for the fraction subtraction data.

Item Fitted DINA model

Single Multiple

ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ) ĝ SD(ĝ) 1 − ŝ SD(1 − ŝ)

1 0.00 (0.00) 0.72 (0.01) 0.00 (0.00) 0.72 (0.01)
2 0.21 (0.01) 0.88 (0.01) 0.21 (0.01) 0.88 (0.01)
3 0.13 (0.03) 0.96 (0.01) 0.13 (0.03) 0.96 (0.01)
4 0.13 (0.01) 0.87 (0.01) 0.12 (0.01) 0.83 (0.02)
5 0.23 (0.03) 0.75 (0.01) 0.22 (0.03) 0.76 (0.01)
6 0.03 (0.01) 0.77 (0.01) 0.03 (0.01) 0.77 (0.01)
7 0.07 (0.01) 0.92 (0.01) 0.07 (0.01) 0.93 (0.01)
8 0.15 (0.02) 0.95 (0.01) 0.15 (0.02) 0.95 (0.01)
9 0.09 (0.02) 0.94 (0.01) 0.09 (0.02) 0.94 (0.01)

10 0.17 (0.01) 0.93 (0.01) 0.06 (0.01) 0.93 (0.01)
11 0.11 (0.02) 0.89 (0.01) 0.12 (0.02) 0.90 (0.01)
12 0.04 (0.01) 0.87 (0.01) 0.04 (0.01) 0.87 (0.01)
13 0.13 (0.01) 0.84 (0.01) 0.14 (0.01) 0.85 (0.01)
14 0.02 (0.00) 0.80 (0.02) 0.02 (0.00) 0.77 (0.02)
15 0.01 (0.00) 0.82 (0.01) 0.01 (0.00) 0.83 (0.01)

using all the draws. In addition, for all the models, the residuals calculated using the mean of the
posterior distribution are highly similar to the mean of the residuals obtained by averaging the
residuals from the 100 draws. The absolute maximum differences for the NIDA, single-strategy
DINA, and multiple-strategy DINA models are 0.05, 0.06, and 0.07, respectively. Relative to
the expected log-odds ratio that produced these differences, 1.58, 2.10, and 3.46, the maximum
discrepancies between the two methods are deemed small, and do not alter the interpretation
of the results. In comparing the residuals and their standard errors, it can be noted that a large
proportion of the residuals are significantly different from zero because of the sample size (N =
2144), and the fact that no model can be entirely correct. In this light, the standard errors should
be used as a guide in evaluating the relative size and not in determining the significance of the
residuals.

In general, it can be said that the NIDA model poorly fits these data. The large absolute
residuals for the proportion correct given in Table 18 (maximum of 0.17 and greater than 0.05
for more than half of the items) indicate that the model does an inadequate job of predicting even
the first moment of the item responses. In addition, several large residuals for the log-odds ratio
and the correlation involving different items, most notably items 1 and 9, can also be found in
the same table. For these reasons, the NIDA model cannot be considered a viable model for these
data.

In contrast, both the single-strategy and multiple-strategy DINA models fit the first moment
quite accurately, as can be seen in Tables 19 and 20. In examining residuals for the log-odds
ratio and correlation, it can be seen that many of the worst fits involve item 1 for both models.
Item 1, 3

4 − 3
8 , which requires only attribute 1 (performing basic fraction subtraction operation)

for both strategies, is the only problem that requires the examinees to find the least common
denominator. Because this problem requires a more complex skill that cannot be subsumed under
attribute 1, item 1 cannot be fit adequately. To achieve better fit, either a new attribute (i.e.,
finding a common denominator) must be defined, or the item be discarded. The similarity in
parameter estimates obtained using the single- and multiple-strategy DINA models resulted in
similar residuals for both models except for item 10, where the multiple-strategy DINA model
provided smaller residuals. The overestimation of the guessing parameter for the single-strategy
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DINA model for item 10, 2 − 1
3 , can be traced to specification of more attributes than necessary

to solve this item (i.e., using only attributes 1, 4, and 5 without attribute 3 may be sufficient for
this item). Alternatively, this may be an indication that use of an alternative strategy may provide
a better fit for this item.

Further comparison of the single- and multiple-strategy DINA models is given in Table 24.
Essentially identical values (i.e., maximum difference is 0.01) were obtained when these statistics
were computed using posterior predictive checks. The table compares the different models using
all the 15 items. With all the items included, the mean and maximum absolute residuals for the
log-odds ratio and correlation show that the multiple-strategy DINA model provides a slightly
better fit than the single-strategy DINA model. This minor difference is due mainly to differences
in the parameter estimates of item 10. When this item is excluded in the computation, the mean
absolute residuals for both models are virtually identical. Although the NIDA model does not fit
the data adequately, its mean and maximum absolute residuals are not always inferior to those
of the DINA models. This can be attributed to the presence of item 1 that cannot be fit well by
any of the models using the current definitions of the attributes. Excluding this item dramatically
lowers the mean and maximum absolute residuals of the DINA models while keeping those of
the NIDA model relatively unchanged. Thus, the first- and second-moment statistics can be used
to unequivocally choose the DINA models over the NIDA model.

As previously noted, the standardized residuals obtained from dividing residuals in Tables 19
and 20 by their corresponding standard errors in Tables 22 and 23, respectively, indicate signifi-
cant departures from 0 in most cases. Nevertheless, the absolute magnitude of the unstandardized
residuals provide confidence that the relatively parsimonious versions of the higher-order DINA
model can do an adequate job of explaining first and second moments. By inspecting such resid-
uals one can distinguish between poor models and promising models in a very similar fashion
as is done in confirmatory factor analysis. Of course, with binary data, unlike data arising from
linear factor analysis models with normal errors, first and second moments are not sufficient
to describe the joint distribution of the item responses. One could consider residuals based on
higher moments. However, at this stage of model scrutiny, a more efficient approach is to use
tools developed for inference and model assessment using the full information available through
the likelihood function and posterior distribution.

Table 24 also shows the log-marginal likelihoods, BIC, AIC, and DIC of the three models.
The large differences between the log-marginal likelihood, BIC, AIC, and DIC of the NIDA
model and log-marginal likelihoods of the single- and multiple-strategy DINA models indicate
an overwhelming evidence for the DINA models over the NIDA model, validating the observa-
tion above. Although parameter estimates are similar for the single- and multiple-strategy DINA
models, a difference exists between the log-marginal likelihoods, BIC, AIC, and DIC of the two
models. Whereas comparison of the two models based on the parameter estimates alone resulted
in very similar log-conditional likelihoods (i.e., log-likelihoods when the incidental parameters
are integrated out), comparison of the models in their entirety (i.e., the joint posterior distribu-
tion of the parameters) or comparison of the models that accounts for their dimensionality and
complexity resulted in log-marginal likelihood difference and criteria that indicate a consistent
evidence for the single-strategy DINA model. It can be noted that the Bayes factor is found by
exponentiating the difference between the log-marginal likelihoods. This is consistent with the
results one would arrive at using the BIC and AIC where the dimensions of the models are taken
into account. The Schwarz criterion, which can be computed from the BIC, is one rough ap-
proximation of the Bayes factor (Kass, 1993; Kass & Raftery, 1995). In this example, the Bayes
factors computed using the approximate log-marginal likelihood or approximated by the Schwarz
criterion lead to the same conclusion. To the extent that BIC approximates the Bayes factor, the
difference of 15.42 in the BICs of the single- and multiple-strategy DINA models indicate a
strong evidence for the former based on the interpretation suggested by Raftery (1996).
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TABLE 24.
Log-marginal likelihood and residual summary statistics.

NIDA DINA-S DINA-M

−Log-marginal likelihood 21333.47 20927.41 20930.16
BIC 42676.93 41873.38 41888.80
AIC 42586.20 41669.24 41673.32
DIC 39552.72 33367.15 35886.03

Proportion 0.07 0.00 0.00
Mean absolute residual Log-odds ratio 0.56 0.51 0.49

Correlation 0.08 0.08 0.07

Proportion 0.17 0.01 0.01
Maximum absolute residual Log-odds ratio 1.43 2.15 2.10

Correlation 0.26 0.41 0.37

6. Discussion

Applications of cognitive diagnosis, as in the case of the fraction subtraction data, are aimed
at diagnosing mastery of fine-grained skills rather than measuring general abilities. Cognitive
diagnosis models differ in how they describe the process by which skills are applied to respond
to items. These competing theories that define models suggest that some models may result in
a better model fit than other models. The goodness of fit of models for cognitive diagnosis has
not been adequately discussed in the literature. By viewing cognitive diagnosis models as analo-
gous to models for confirmatory factor analysis, with discrete latent variables and discrete latent
responses, we can employ simple techniques based on residuals of first and second moments to
investigate model adequacy. In addition, the Bayesian approach to model fitting with MCMC nat-
urally leads to straightforward computation of standard errors of residuals and global measures
of relative model fit such as the Bayes factor, AIC, BIC, and DIC. This paper illustrates how the
first and second moments can be used not only to identify items that cannot be fit adequately but,
in some instances, to also choose among several competing models. Models that provide very
disparate fits can be differentiated using the first moment alone, whereas models that provide
similar fits can be further differentiated using the second moment. However, because moments
are computed using solely the parameter estimates, equivocal results may be obtained for models
that provide similar estimates but differ in other respects. Hence, there is a need for more global
measures such as the Bayes factor, AIC, BIC, and DIC that take into account the models in their
entirety. As the example shows, despite the similar parameter estimates, the global measures dif-
ferentiated between the single- and multiple-strategy DINA models based on the differences in
their joint posterior distributions and dimensionality. It can be argued that for the example dis-
cussed here, even if the global measures do not provide any evidence for either DINA model that
the single-strategy DINA model is to be preferred over the multiple-strategy DINA model based
on principle of parsimony.

An interesting theoretical issue that arises in a Bayesian analysis is whether the AIC is
appropriate when the posterior-mean estimator derived from MCMC is plugged in, in place of
the marginal maximum likelihood estimator. Spiegelhalter et al. (2002), proposed the DIC as a
preferred criterion for expressing model complexity and fit when conducting a Bayesian MCMC
analysis. Like the AIC, the DIC includes a term for fidelity to the data and a penalty term for
model complexity. The goodness-of-fit term is simply the deviance measure integrated over the
posterior distribution of the model parameters. The penalty term is the difference between this
mean deviance and the deviance calculated at the posterior mean of the model parameters. In
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hierarchical Bayesian models both the goodness-of-fit and penalty terms of the DIC depend on
which parameters are considered focal to the model and which are integrated out of the posterior.

The dependence of the DIC on the choice of the focus has drawn some criticism, especially
when used with hierarchical models such as random effects models and models like those con-
sidered here. In the cognitive diagnosis model that we consider, estimation of the latent attribute
α can be considered a focus. Thus, in computing the DIC, all structural parameters, parameters
of the high-order latent trait model, and α are included. However, because the subject-specific
parameters can alternatively be viewed as missing data, and because viewing them as model pa-
rameters can lead to uncertain asymptotics, we employed a variation of the DIC proposed by
Celeux et al. (2006), which they labeled DIC4. The DIC4 computes the DIC for the complete
data, but integrates this over the posterior distribution of the missing data. Of the many variations
of the DIC they considered for missing data, this appeared to achieve the best performance.

The discussion following Spiegelhalter et al. (2002) was far from unanimous about the the-
oretical justification and interpretation of the DIC. However, no clear justification for plugging
in the posterior mean and using the AIC appears present in the literature, leaving the practitioner
with a couple of choices but no definite answers. A suggested interpretation is that marginal like-
lihood analysis with the AIC is appropriate when we are concerned primarily with the structural
parameters and predicting characteristics of the population. However, the DIC is more appropri-
ate when we are concerned with individuals and “random effects” such as α and θ , particularly
when making adjustments such as with the DIC4. An additional index, BIC, can also be used
and differs in interpretation from the DIC in that it is primarily concerned with identification
of the correct Bayesian model, but not in predictions concerning the incidental parameters. The
practice of plugging in the posterior mean estimator in the BIC is also not clearly justified in the
literature.

In this paper, we considered three models derived from different theories for responding
to items, and analyzed how appropriate they were for fitting the fraction subtraction data. The
higher-order NIDA model assumes that the probabilities of slipping and guessing are constant
across all items for each attribute. This assumption may be a reasonable approximation, but we
saw that it resulted in poor item fit statistics for a few items. The higher-order single-strategy
DINA model assumes deterministic latent responses, and slips and guesses at the item level with
probabilities of slipping and guessing allowed to vary across the items. In the fraction subtraction
data, this provided the best fit among the models considered. Despite the simplicity of the model,
its goodness of fit under the various indices was better than the two competing models.

The higher-order, multiple-strategy DINA model allows for several different methods of
solution for each item. This model has deterministic latent responses after it is checked whether
or not an examinee’s attribute pattern satisfies at least one of the strategies. Slipping and guessing
probabilities are constant for all strategies, but are allowed to vary across the items. Allowing for
multiple strategies in the fraction subtraction data did not improve the fit compared with the
single-strategy DINA model. This may indicate that a single dominant strategy suffices for this
problem, or the somewhat poorer fit of the multiple-strategy DINA model may indicate that the
assumption of equal slipping and guessing probabilities for each strategy is too restrictive.

A variant of the multiple-strategy DINA model is the mixture model given in (5). This ap-
proach has the advantage that, if the model parameters are identifiable, one can obtain posterior
probabilities in order to classify ω into a particular strategy. Although, we have considered this
approach, we have not yet resolved the necessary identifiability issues to be confident in fitting
it, especially when the slip and guessing parameters are allowed to vary for different strategies.

The higher-order latent trait approach to modeling the joint distribution of the attributes is
appropriate whenever it is reasonable to assume the existence of a general ability in addition to
fine-grained skills. This is arguably the case for the fraction subtraction data. We have developed
algorithms to fit the higher-order component for several cognitive diagnosis models. The sim-
ulation study given here and in de la Torre and Douglas (2004) indicate that these algorithms
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implemented with the software Ox (Doornik, 2003) can be used to obtain accurate parameter
estimates.

Finally, in our analyses we just considered fixed Q-matrices, rather than conduct an ex-
ploratory search for the correct one or consider a handful of other expert-chosen candidates. In
applications it is certainly possible that content experts who identify the attributes and the partic-
ular attributes or strategies employed by examinees on certain items may differ from one another.
This could yield a handful of choices that would need to be sorted through. Models correspond-
ing to each of the Q-matrices could be evaluated under precisely the same model fit statistics we
propose, and those that seem to fit could be evaluated under global statistics to arrive at a final
model and a corresponding Q-matrix.

However, there is one complication that concerns us when using such techniques to select
one among several Q-matrices. Indices such as the AIC and BIC penalize for complexity, though
the complexity might not be what it seems when a Q-matrix is seen as fixed and not a model
parameter. Different Q-matrices actually result in different levels of complexity because of the
way they define equivalence classes of attributes for different items. If some sort of Q-matrix
estimation is to be done rather formally, the issue of complexity of a Q-matrix would need to
be addressed so that its complexity could be quantified accurately. Notwithstanding this com-
plication, the Q-matrix, which is an integral component of a model specification in cognitive
diagnosis, cannot be assumed correct after its construction, and should be subjected to empirical
scrutiny (de la Torre, 2008). In future studies, it would be worthwhile to investigate how differ-
ent specifications of the Q-matrix interact with various CMDs, and the extent to which these
interactions affect different model-data fit indices.
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