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ARE UNSHIFTED DISTRIBUTIONAL MODELS APPROPRIATE FOR RESPONSE TIME?

Jeffrey N. Rouder

university of missouri-columbia

Van Breukelen (this issue) provides an approach to using both response time (RT) and accu-
racy for (1) measuring latent abilities of participants even when they may trade speed for accuracy,
and for (2) providing insight into the psychological processes underlying task performance. In
this commentary, I focus on the second of these aims and assess how useful this approach is
for exploring cognition. The approach is based on formulating statistical rather than substantive
models on accuracy and RT. I focus here on the appropriateness of the RT component model. This
RT model joins a family of recent statistical approaches to RT including those of Glickman, Gray,
and Morales (in press); Peruggia, Van Zandt, and Chen (2002); Rouder, Lu, Speckman, Sun, and
Jiang (in press); Schnipke and Scrams (1997); and Wenger and Gibson (2004). The advantage of
these statistical rather than substantive models is robust estimation and sound inference when data
are collected across disparate individuals and items. It is not hard to see how these statistical devel-
opments will lead to better substantive theory testing and development in cognitive psychology.

Van Breukelen’s model for the ith participant’s RT to the j th item is given by:

log(RTij ) ∼ Normal(X′
ij�j , σ

2), (1)

where �j is an unknown parameter vector and Xij is a known covariate vector. Because the model
is linear on log(RT ), conventional mixed model techniques may be used to estimate the unknown
parameters. Of particular value is that participant effects, item effects, and their interactions may
be assessed within the framework.

My colleagues and I advocate that researchers consider attributes of shift, scale, and shape1

when analyzing RT (Rouder, Sun, Speckman, Lu, and Dzhou, 2003; Rouder et al., in press).
Examples of these attributes are given in Figure 1. We argue changes in distributional attributes
may imply certain cognitive loci for effects as follows: Changes in shape are paramount and may
indicate that the manipulation affects architecture or strategy. If shapes are consistent across a
manipulation, then changes in scale may index processing speed. Changes in shift correspond to
changes in more peripheral aspects of processing such as encoding stimuli or motor execution of
responses. Even if this mapping is incomplete or in error, the disentangling of the distributional
loci of effects leads to a natural method of testing cognitive theories. Van Breukelen’s lognormal
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1Concepts of shift, scale and shape can be given precise meaning. Let the density of a random variable exist every-
where and be expressed as f (t |�1, . . . , �n), where �1, . . . , �n are the parameters. Let z = (t − �1)/�2. We refer to
the density as being in location-scale form if there exists some function g such that

f (t |�1, . . . , �n) = �−1
2 g(z|�3, . . . , �n). (2)

If Equation 2 holds, then �1 is referred to as the location parameter and �2 as the scale parameter; parameters �3, ..., �n

are shape parameters. When the location parameter indicates the lower bound of support, it is termed the shift parameter.
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Figure 1.
Lognormal densities that vary in shift, scale and shape, respectively.

model fits well within this shift-scale-shape taxonomy.2 The model is unshifted, or more precisely,
has a shift of value zero. There are scale and shape parameters. The effects of covariates, however,
are assumed to occur in scale alone. From the vantage of the shift-scale-shape taxonomy, the Van
Breukelen model is restrictive. It posits that all effects are on scale. Manipulations can neither
change the shape nor shift of a distribution.

How plausible are these restrictions? Consider the empirical evidence about the presence of
shifts in RT distributions. Figure 2 shows an analysis from a task in which participants reported the
location of a stimulus.3 The task was trivially easy; performance was nearly perfect and response
times were relatively rapid. Eighty observations from each of eighty participants were analyzed.
The top panel of Figure 2 shows histograms from two participants who have about the same shape
and scale. The difference is in the shift, which is about 0.2 s. This difference is sizeable given that
the vast majority of RTs are within 0.6 s of the shift. The bottom-left panel shows the results of
fitting an unshifted lognormal (two parameters per participant) vs. fitting one with shift4 (three
parameters per participant). The plot is the empirical cumulative distribution function of partic-
ipants’ log-likelihood test statistics5 (G2, Read and Cressie, 1988). If the unshifted model were
reasonable, this cumulative distribution function would approximate that of a chi-square with 1
degree of freedom (solid line). It does not. To gain insight into this relatively poor performance, I
plotted each individual’s G2 as a function of that individual’s estimated shift (bottom-right). The
horizontal line indicateds G2 = 3.84, the .05 criterion for the test. Twenty-three of the eighty
participants have G2 higher than criterion; twenty of these participants also have large positive
shifts. The poor fit, therefore, is being driven by statistically significant positive shifts.

2The two-parameter log-normal in (1) is given by θ1 = 0, θ2 = X′
ij�j , θ3 = σ 2 and g(z|θ3) =

(
z
√

2πθ3
)−1

exp(−((log z)2(2θ3)
−1)).

3I thank Michael Stadler for use of this data. Observations with RTs greater than 1.2 sec were discarded in the
analysis. See Rouder et al. (2003) for methodological details.

4Estimation was done by maximizing log-likelihood with the Simplex algorithm (Nelder and Mead, 1965) in the R
package.

5Strictly speaking, the three-parameter lognormal model is irregular as the bound of lower support is a free parameter.
The loglikelihood test may not be distributed asymptotically as a chi-square distribution with a single degree of freedom.
A small simulation study revealed that the chi-square distribution with 1 df is an excellent approximation of G2 for the
shapes and scales estimated from the data.
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Figure 2.
Analysis of shift. Top panels show histograms from two participants that vary noticeably in shift. Bottom-left panel shows a
test of the zero-shift model. Log-likelihood test statistic G2 is larger than the appropriate chi-square distribution implying
a rejection of the model. Bottom-right panel shows that the poor performance of the zero-shift model comes about from
a preponderance of participants with evidence for shifts greater than zero.

The models in the above analysis are more flexible thanVan Breukelen’s model—participants
were allowed their own shape rather than a single, common shape. As an alternative, I tested the
lack of shift for models with common shape. The unshifted, common shape model has a scale
parameter for each participant and a single shape parameter; the shifted, common shape model has
a scale and shift parameter for each participant and a single shape parameter. The resulting log-
likelihood test statistics is G2(80) = 377; which exceeds any reasonable significance criterion.
Hence, there is evidence for shifted distributions.

Although I have examined a single data set in detail, the finding of shifted distributions seems
to be ubiquitous in the literature. Minimum RT tend to be a sizable fraction of mean RT. For exam-
ple, minimum RT for auditory detection tends to be about 0.130 s, whereas the mean is about 0.180
s and the standard deviation is about 0.025 s (Luce, 1986). For more complex tasks, e.g., reading
words, minimum RT is typically half that of the mean. Many researchers have fit distributional
models similar to the shifted lognormal such as the shiftedWeibull and the shifted distribution from
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the first passage time of a diffusion process. In these cases, estimates of the shift range from 0.25
to 0.75 s (see, for example, Logan, 1992; Ratcliff and Rouder, 1998, 2000; Rouder et al., in press).

The cited evidence shows that shifts are nonzero and vary across participants. Overall, shifts
tend not to vary with experimental manipulation, but there are notable exceptions. Balota and
Spieler (1999), Hockley (1984), and Hohle (1965) document various manipulations that affect
only shift. Shifts may also vary systematically across population classes (e.g., Ratcliff, Thapar,
and McKoon, 2001). What happens if distributions are shifted and analyzed with an unshifted
lognormal? Estimates of scale artifactually increase, and shape (σ 2) artifactually decrease with
increasing shift. Such artifacts will certainly influence conclusions about processing.

The presence of shifts greatly complicates the RT lognormal model. Without a shift param-
eter, the lognormal model can be analyzed with extensions of conventional generalized linear
model techniques as documented by Van Breukelen. Unfortunately, these techniques are simply
not applicable to shifted models; the shifted lognormal is outside the class of generalized linear
models. Van Breukelen’s model is not the only one that assumes unshifted distributions. Peruggia
et al. (2002) use an unshifted Weibull. Wenger and Gibson’s (2004) proportional hazard model
implicitly assumes no variability in shifts across participants or conditions. Glickman et al.’s (in
press) competing risks model assumes a common shift across covariates. My colleagues and I
consider a priori shift restrictions to be tenuous. Consequently, our approach is to allow each item-
by-participant combination its own shift (Rouder et al., in press). We find estimation tractable
within a hierarchical Bayesian approach (Rouder et al., 2003).

I have not assessed whether the assumption of a common shape (σ 2) is warranted. The evi-
dence about how shape varies across manipulations or participants is not systematically explored
in the RT literature. Perhaps the biggest reason for this omission is that it takes thousands of inde-
pendent and identically distributed trials to estimate shape accurately. My colleagues and I have
not assumed constant shape in our Weibull model (Rouder et al., in press). It is unclear, however,
whether this flexibility is warranted and a constant shape assumption may be more appropriate
in many contexts. We are currently developing Bayes factors for shape parameters to assess this
possibility.

In sum, Van Breukelen’s general approach of linking statistical models of RT and accu-
racy will undoubtably be valuable and informative for future substantive development in cogni-
tion. I have provided a critique that the two-parameter lognormal is too restrictive to adequately
model response times. Instead, shifted versions need be developed, albeit such development is
not straightforward as the shifted three-parameter distributional models are outside the general-
ized linear model family. As shifted models are developed, it will be productive to link them to
psychometric models of accuracy.
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