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CONDITIONAL COVARIANCE THEORY AND DETECT FOR POLYTOMOUS ITEMS
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This paper extends the theory of conditional covariances to polytomous items. It has been proven
that under some mild conditions, commonly assumed in the analysis of response data, the conditional
covariance of two items, dichotomously or polytomously scored, given an appropriately chosen composite
is positive if, and only if, the two items measure similar constructs besides the composite. The theory
provides a theoretical foundation for dimensionality assessment procedures based on conditional covari-
ances or correlations, such as DETECT and DIMTEST, so that the performance of these procedures is
theoretically justified when applied to response data with polytomous items. Various estimators of con-
ditional covariances are constructed, and special attention is paid to the case of complex sampling data,
such as those from the National Assessment of Educational Progress (NAEP). As such, the new version
of DETECT can be applied to response data sets not only with polytomous items but also with missing
values, either by design or at random. DETECT is then applied to analyze the dimensional structure of
the 2002 NAEP reading samples of grades 4 and 8. The DETECT results show that the substantive test
structure based on the purposes for reading is consistent with the statistical dimensional structure for either
grade.

Key words: item response theory (IRT), multidimensional item response theory (MIRT), dimensionality,
multidimensionality, PolyDETECT.

1. Introduction

Given a response data set, it is essential to identify its dimensional structure correctly
since this is the basis of statistical analysis of the data. The simplest dimensional structure is
unidimensional, which requires only one ability to explain the performance of examinees on items.
Although it is the most common assumption in the analysis of response data, the unidimensionality
of a set of items usually cannot be met and most tests are actually multidimensional to some
extent. Many test frameworks or blueprints often stipulate that their test items measure several
subscales (content strands or content areas). For instance, the current mathematics assessment
of the National Assessment of Educational Progress (NAEP) measures five content strands of
mathematics: numbers and operations, measurement, geometry, data analysis, and algebra (see
Allen, Carlson, & Zelenak, 1999). In operational analysis, items are classified according to their
predominant strands, such as algebra items, geometry items, and so forth, and each content-based
subset of items is regarded as unidimensional. From the perspective of multidimensional item
response theory (MIRT), this is equivalent to assuming that the test is multidimensional with
simple structure. Although this classification according to the five content strands is commonly
accepted by mathematics education experts, mathematics items can also be classified according to
mathematical abilities: conceptual understanding, procedural knowledge, and problem solving;
or according to mathematical power: reasoning, connections, and communication (see National
Assessment Governing Board, 2002). Thus, one may obtain three different partitions of items
according to content strands, mathematical abilities, or mathematical power. These partitions

This research was supported by the Educational Testing Service and the National Assessment of Educational
Progress (Grant R902F980001), US Department of Education. The opinions expressed herein are solely those of the
author and do not necessarily represent those of the Educational Testing Service. The author would like to thank Ting
Lu, Paul Holland, Shelby Haberman, and Feng Yu for their comments and suggestions.

Requests for reprints should be sent to Jinming Zhang, Educational Testing Service, MS 02-T, Rosedale Road,
Princeton, NJ 08541, USA. E-mail: jzhang@ets.org

69
c© 2006 The Psychometric Society



70 PSYCHOMETRIKA

of items into several substantively meaningful clusters are determined by test developers and
subject experts. The statistical analysis of response data is usually based on such a substantive
test structure as if it is the dimensional structure of the response data. However, the statistical
dimensional structure results from the interaction between test items and examinees. Therefore,
a substantive test structure is conceptually different from the dimensional structure. Now, the
question is whether they match each other, or which substantive test structure is best in concert
with the statistical dimensional structure of response data. In general, there is a great need for a
procedure to identify the statistical dimensional structure of response data, specifically to identify
the number of (dominant) dimensions and dimensionally homogeneous clusters of items and to
verify if a target substantive test structure (approximately) matches the statistical dimensional
structure. The concept of a dimensionally homogeneous cluster was rigorously defined by Zhang
and Stout (1999b).

Several statistical methods are available for dimensionality analysis: multidimensional scal-
ing, cluster analysis, and factor analysis. Multidimensional scaling is a technique for the analysis
of similarity or dissimilarity among a set of objects. Given a set of similarities or distances between
every pair of objects, multidimensional scaling tries to construct a configuration of the objects
in a low-dimensional space such that the interpoint proximities match the original similarities
or distances to the greatest extent. Oltman, Stricker, and Barrows (1990) use multidimensional
scaling to analyze the test structure for the Test of English as a Foreign LanguageTM (TOEFL R©).
Cluster analysis attempts to discover natural groupings of objects (items). Grouping is done on
the basis of similarities or dissimilarities (distances). Thus, a measure of similarity between ob-
jects is crucial in both cluster analysis and multidimensional scaling. Correlation coefficients or
like measures of association are widely used as similarities. The purpose of factor analysis is to
describe and explain the correlation among a large set of variables in terms of a small number
of underlying factors. When directly applied to response data, factor analysis, cluster analy-
sis, and multidimensional scaling are usually based on the item-pair covariances cov(Xi1 , Xi2 ).
Typically, any two items are nonnegatively correlated in a well-designed test since examinees
who earn higher scores on one item tend to earn higher scores on another. The intuitive idea of
most dimensionality assessment procedures is that all items within a particular cluster are highly
correlated (or have high similarities) among themselves but have relatively low correlations (or
similarities) with items in a different cluster. The difficulties of grouping items into clusters are
how to distinguish between high and low correlations and how to choose the number of clusters
if all correlations are positive.

Many researchers use (expected) conditional covariances given an appropriately chosen
subtest score to develop procedures for dimensionality assessment (Holland & Rosenbaum, 1986;
Junker, 1993; Douglas, Kim, & Stout, 1994; Stout, Habing, Douglas, Kim, Roussos, & Zhang,
1996; Zhang & Stout, 1999a; Habing & Roussos, 2003). The expected conditional covariance is

E[cov(Xi1 , Xi2 | Y )] = E(Xi1Xi2 ) − E[E(Xi1 | Y )E(Xi2 | Y )],

where Y is an observed score (e.g., the total raw score). Since cov(Xi1 , Xi2 ) = E(Xi1Xi2 ) −
E(Xi1 )E(Xi2 ), the expected conditional covariance and the unconditional covariance are differ-
ent from each other. Instead of directly studying E[cov(Xi1 , Xi2 | Y )], Zhang and Stout (1999a)
investigated the structure and properties of E[cov(Xi,Xj | �Y )] for dichotomously scored items,
where �Y , called the test composite, is an appropriately chosen composite best measured by score
Y . A composite is a linear combination of the latent trait variables. Zhang and Stout (1999b)
showed that the conditional covariance, given �Y , will be positive if, and only if, two items
measure similar constructs besides the composite �Y . Hence, items can be grouped into several
clusters by assigning items into the same cluster if they are positively conditionally correlated
and into different clusters if they are negatively conditionally correlated. The theory of condi-
tional covariances of dichotomous items provides a solid theoretical foundation for conditional



JINMING ZHANG 71

covariance-based dimensionality assessment procedures such as DETECT (Kim, 1994; Zhang,
1996) and DIMTEST (Stout, 1987; Nandakumar & Stout, 1993). The theory also suggests that
conditional covariances or conditional correlations are more appropriate and effective similarity
measures than unconditional ones for use in cluster analysis and multidimensional scaling. Van
Abswoude, Van der Ark, and Sijtsma (2004) did a simulation study comparing several dimen-
sionality assessment procedures based on conditional or unconditional covariances. They found
that the methods using conditional covariances were superior in finding the simulated structure
to the method using unconditional covariances. However, the results of Zhang and Stout (1999a,
1999b) can only be applied to dichotomous items so far.

The purposes of this paper are to study structure and the properties of conditional covariances
for polytomously scored items and to extend Zhang and Stout’s (1999a, 1999b) results to tests
that incorporate polytomous items. The remainder of the paper is organized as follows: Section 2
presents some theoretical results concerning the structure of (expected) conditional covariance of
two items, dichotomously or polytomously scored. In Section 3 two types of sample conditional
covariances are proposed for different situations. In Section 4 the theory of conditional covariances
developed in Section 2 is used to theoretically justify the DETECT procedure for a test with
polytomous items. Section 5 shows some simulation results using PolyDETECT, a computer
program based on the procedure developed in this paper. In Section 6 PolyDETECT is applied
to analyze the 2002 NAEP reading data. Finally, Section 7 summarizes the results and provides
further discussion.

2. Theory of Conditional Covariances

Suppose there is a test with n items and examinees’ responses to item i can be classified into
mi + 1 ordered categories (mi ≥ 1), scored 0, 1, . . . , mi , respectively. Let Xi be the score on item
i for a randomly selected examinee from a certain population. When mi = 1, then Xi is a binary
variable. MIRT assumes that the performance of an examinee on a test can be explained by a
latent trait (ability) vector. The underlying latent trait vector is denoted as � = (�1,�2, . . . , �d )

′
,

where � is a column vector and d is the number of dimensions. The kth item category response
function (ICRF) is defined as the probability of getting score k on an item for a randomly selected
examinee with ability vector θ = (θ1, θ2, . . . , θd )

′
. That is,

Pik(θ ) = P (Xi = k | � = θ), k = 0, 1, . . . , mi. (1)

Pik(θ ) is also called the item category characteristic function. The item response function (IRF)
is defined as the expected item score given the ability vector θ , that is,

µi(θ ) ≡ E[Xi | � = θ ] =
mi∑

k=1

kPik(θ ). (2)

When the item is dichotomously scored, µi(θ ) = Pi1(θ ) = P (Xi = 1 | θ ). The IRF is assumed to
be (monotone) increasing, that is, the expected score of an item increases monotonically when at
least one of the abilities increases. Usually, it is also assumed that local independence holds, that
is, X1, X2, . . . , Xn are independent given �. Some researchers (McDonald, 1994; Stout et al.,
1996) suggest using a weak version of local independence,

cov(Xi1 , Xi2 | � = θ) = 0

for all θ and 1 ≤ i1 < i2 ≤ n; that is, items are pairwise locally uncorrelated.
In this paper, a test is said to be d-dimensional if d is the minimal number of abilities

required to produce a pairwise locally uncorrelated, monotone IRF model. When d = 1, the test
is called unidimensional. Here, the pairwise locally uncorrelated condition is assumed instead
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of the local independence. Note that if the local independence is required instead in the above
definition, the number of dimensions under such an alternative definition should be larger than
or equal to the number of dimensions defined in this paper because the local independence
is stronger than the pairwise locally uncorrelated condition. However, these two numbers of
dimensions should be the same in most cases of real test data since the local independence is
expected to hold in practice if items are pairwise locally uncorrelated. Further research is needed
to find conditions under which the pairwise locally uncorrelated condition is equivalent to local
independence or the two definitions of dimensionality are the same.

A composite, �α , of the latent vector � is defined to be a linear combination of �, that
is, �α = α

′
� = ∑d

j=1 αj�j , where α = (α1, α2, . . . , αd )
′

is any fixed constant vector and the
standardized vector of α is called the direction of the composite �α . The elements, α1, . . . , αd ,
are also called the weights of the composite. Theoretically, it is convenient to assume that �α is
standardized such that its variance is one. In practice, it is usually assumed that the summation
of weights is one. Nevertheless, composites used as conditioning variables are equivalent as long
as they have the same direction.

To prove the properties of (expected) conditional covariances, this paper makes two assump-
tions, which are either the same as, or parallel to, the corresponding assumptions for dichotomous
items in Zhang and Stout (1999a).

2.1. Two Assumptions

The first assumption is that the latent trait vector � has a multivariate normal distribution,
� ∼ N (0, �), where � = (ρij ) is a d × d positive definite matrix with ρij ≥ 0. Without loss
of generality, one may assume ρjj = 1 for j = 1, 2, . . . , d and � is the correlation matrix. The
second assumption is that each item is modeled by a generalized multidimensional (polytomous)
compensatory model defined below.

An item is said to be modeled by a generalized multidimensional (polytomous) compensatory
model if its IRF can be written as

µi(θ ) = Hi(a
′
iθ ) ≡ Hi

⎛

⎝
d∑

j=1

aij θj

⎞

⎠ , (3)

where ai = (ai1, ai2, . . . , aid )
′
, ai1, ai2, . . . , aid are nonnegative and not all zero, and Hi(x) is

any nondecreasing differentiable function (i.e., H ′
i (x) ≥ 0). The ai is called the discrimination

parameter vector, and Hi(·) the link function. According to (3), the ability change in a dimension
with a larger discrimination parameter has larger impact on the expected item score than the
change in another dimension with a smaller discrimination parameter. This model is considered
to be compensatory because through

∑d
j=1 aij θj high ability values on some dimensions can

compensate for low values on other dimensions. This is an extension of the generalized com-
pensatory model for a dichotomous item proposed by Zhang and Stout (1999a). As discussed
there, the generalized compensatory model includes many currently used latent trait models for
dichotomous items such as the multidimensional two-parameter logistic (2PL) model (Reckase,
1985; Reckase & McKinley, 1991) and the multidimensional compensatory normal ogive model.
As shown later, the family of generalized compensatory models also includes the multidimen-
sional compensatory versions of the generalized partial credit model and the graded response
model.

The ICRF of a generalized partial credit model for a unidimensional case (Muraki, 1992)
can be written as

Pik(θ ) = exp{(k + 1)aiθ − bik}∑mi

j=0 exp{(j + 1)aiθ − bij } for k = 0, 1, . . . , mi, (4)
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where ai and bik are unknown item parameters, and bimi
= (mi + 1)bi0. The ICRF of a multidi-

mensional compensatory generalized partial credit model is defined as

Pik(θ ) = P (Xi = k | θ ) = exp{(k + 1)a
′
iθ − bik}∑m

j=0 exp{(j + 1)a′
iθ − bij }

for k = 0, 1, . . . , mi, (5)

where ai = (ai1, ai2, . . . , aid )
′
is the discrimination parameter vector. The corresponding IRF can

be written as

µi(θ) = Hi1(a
′
iθ ),

where Hi1(z) is a link function and

Hi1(z) =
∑mi

k=1 k exp{(k + 1)z − bik}∑mi

k=0 exp{(k + 1)z − bik} .

It is not difficult to verify that Hi1(z) is a smooth increasing function of z. This shows that the
multidimensional compensatory generalized partial credit model defined in (5) is a special case
of a generalized compensatory model with link function Hi1(·).

The graded response model (homogeneous 2PL case; see Samejima, 1969, 1972) is defined
in the form of a reversed cumulative function,

P ∗
ik(θ ) = Prob{Xi ≥ k | θ} = exp[aiθ − dik]

1 + exp[aiθ − dik]
, k = 1, 2, . . . , mi,

where ai and dik (k = 1, 2, . . . , mi) are parameters. The multidimensional extension of the graded
response model is defined as

P ∗
ik(θ) = Prob{Xi ≥ k | θ} = exp[a

′
iθ − dik]

1 + exp[a′
iθ − dik]

, k = 1, 2, . . . , mi.

The corresponding IRF can be obtained

µi(θ) =
mi∑

k=1

P ∗
ik(θ) = Hi2(a

′
iθ ),

where Hi2(z) is a link function and

Hi2(z) =
mi∑

k=1

exp[z − dik]

1 + exp[z − dik]
.

It is obvious that Hi2(·) is a smooth increasing function. Thus, the multidimensional graded
response model defined here also belongs to the family of generalized compensatory models.

2.2. Properties of Conditional Covariances

Under the two assumptions of Section 2.1, all of the results in Zhang and Stout (1999a,
1999b) for dichotomous items still hold for polytomous items. Their proofs are also similar. For
a given composite �α = α

′
� (i.e., fixed α), define

λi1i2 (α) = cov(a
′
i1
�, a

′
i2
� | �α), (6)

where ai1 and ai2 are the discrimination parameter vectors of items i1 and i2, respectively. By
Lemma 1 of Zhang and Stout (1999a), which can be derived from Theorem 2.5.1 of Anderson
(1984),

λi1i2 (α) = a
′
i1
� ai2 − (a

′
i1
� α)(a

′
i2
� α)

α
′
� α

. (7)
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The following theorem extends Theorem 1 in Zhang and Stout (1999a) to polytomously
scored items.

Theorem 1. For a given composite �α = α
′
�,

Sgn[Cov(Xi1 , Xi2 | �α)] = Sgn[λi1i2 (α)], (8)

where Sgn(x) is the sign function that gives the sign (+, −, or 0) of x. That is, for all θ , λi1i2 (α)
and Cov(Xi1 , Xi2 | �α = θ ) always have the same sign. Moreover, Cov(Xi1 , Xi2 | �α = θ ) is
a strictly increasing function of λi1i2 (α) when d > 2, and λi1i1 (α) and λi2i2 (α) are fixed. These
results also hold for the expected conditional covariance E[Cov(Xi1 , Xi2 | �α)].

Proof. First the conditional covariance can be decomposed as

cov(Xi1 , Xi2 | �α) = cov(E(Xi1 |�), E(Xi2 |�) | �α) + E(cov(Xi1 , Xi2 |�) | �α).

Then by the condition that items are pairwise locally uncorrelated, we obtain

cov(Xi1 , Xi2 | �α) = cov[µi1 (�), µi2 (�) | �α],

where µi1 (θ) and µi2 (θ ) are the item response functions for items i1 and i2, respectively. When
each item is modeled by a generalized compensatory model,

cov(Xi1 , Xi2 | �α) = cov[Hi1 (a
′
i1
�),Hi2 (a

′
i2
�) | �α],

where Hi1 (θ) and Hi2 (θ ) are the link functions of items i1 and i2, respectively. By Lemma 3 of
Zhang and Stout (1999a), (8) is obtained and cov(Xi1 , Xi2 | �α = θ ) for any given θ is a strictly
increasing function of λi1i2 (α) when d > 2, and λi1i1 (α) and λi2i2 (α) are fixed.

The expected conditional covariance of Xi1 and Xi2 given �α is given by

E[cov(Xi1 , Xi2 | �α)] =
∫ ∞

−∞
cov(Xi1 , Xi2 | �α = θ )fα(θ ) dθ, (9)

where fα(θ ) is the (normal) density function of the composite �α that is determined by the
composite direction α and the (normal) distribution of the latent vector �. Notice that (8) holds
for any given θ value. Therefore,

Sgn[E[cov(Xi1 , Xi2 | �α)]] = Sgn[λi1i2 (α)],

and E[cov(Xi1 , Xi2 | �α)] is a strictly increasing function of λi1i2 (α) when d > 2, and λi1i1 (α)
and λi2i2 (α) are fixed. �

Theorem 1 shows that the sign of the conditional covariance of two items is exactly the
same as that of the two composites with corresponding discrimination vectors as their directions.
Moreover, the (expected) conditional covariance of two items has a positive monotone relationship
with the conditional covariance of the two composites. When the number of dimensions is two,
the same result of Corollary 2 in Zhang and Stout (1999a) can be obtained for polytomous items
from Theorem 1.

Corollary 1. If a test is two dimensional, then for any given θ ,

Cov(Xi1 , Xi2 | �α = θ )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

> 0, if the discrimination parameter vectors of items
i1 and i2 are on the same side of vector α;

= 0, if at least one of the discrimination parameter
vectors is in the same direction as vector α;

< 0, if the discrimination parameter vectors of items
i1 and i2 are on different sides of vector α;

(10)
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and Sgn[E[Cov(Xi1 , Xi2 | �α)]] = Sgn[Cov(Xi1 , Xi2 | �α = θ )].

Corollary 1 indicates that the sign of (expected) conditional covariance is solely deter-
mined by two discrimination parameter vectors and the composite direction when a test is two
dimensional.

Let V = {a = (a1, a2, . . . , ad )
′
: all ai are real numbers}. The inner product in V is defined

by 〈ai , aj 〉 = a
′
i� aj for any ai , aj ∈ V , where � is the correlation matrix of the latent trait

vector �. Then V is a d-dimensional Euclidean space. The length of vector a is defined as
‖a‖ ≡ √〈a, a〉, and the angle β between ai and aj is defined as

β = cos−1

( 〈ai , aj 〉
‖ai‖ ‖aj‖

)
.

Let

V ⊥
α = {a ∈ V : 〈a,α〉 = 0}.

V ⊥
α is a (d−1)-dimensional subspace that is orthogonal to α. When d = 3, V ⊥

α is a plane
perpendicular to α. The following theorem extends Theorem 2 of Zhang and Stout (1999a) and
Lemma 3 of Zhang and Stout (1999b) to polytomously scored items.

Theorem 2. For a given composite �α = α
′
�,

λi1i2 (α) = ‖a⊥
i1
‖ ‖a⊥

i2
‖ cos βi1i2 , (11)

where a⊥
i is the projection of the discrimination parameter vector ai on the space V ⊥

α , and βi1i2 is
the angle between a⊥

i1
and a⊥

i2
(0 ≤ βi1i2 ≤ π ). Thus, if at least one of the discrimination parameter

vectors ai1 and ai2 is in the same direction as α, then, for any θ ,

Cov(Xi1 , Xi2 | �α = θ ) = 0, (12)

and

E[Cov(Xi1 , Xi2 | �α)] = 0. (13)

Otherwise,

cov(Xi1 , Xi2 | �α = θ )

⎧
⎪⎨

⎪⎩

> 0, if βi1i2 < π/2

= 0, if βi1i2 = π/2

< 0, if βi1i2 > π/2
(14)

and Sgn[E[cov(Xi1 , Xi2 | �α)]] = Sgn[cov(Xi1 , Xi2 | �α = θ )] for any θ . Moreover, the mag-
nitudes of cov(Xi1 , Xi2 | �α = θ ) for any θ and E[cov(Xi1 , Xi2 | �α)] are strictly decreasing
functions of βi1i2 for βi1i2 ∈ [0, π ] when d > 2, and ‖a⊥

i1
‖ and ‖a⊥

i2
‖ are fixed.

Proof. Similar to the proof of Lemma 3 of Zhang and Stout (1999b), ai1 and ai2 can be uniquely
decomposed into

ai1 = c1α + a⊥
i1

(15)

ai2 = c2α + a⊥
i2

(16)

where c1 and c2 are constants, and a⊥
i1

, a⊥
i2

∈ V ⊥
α . By (7), (15) and (16), one can obtain (11). By

Theorem 1 and (11), one obtains (12) and (14). Since λi1i1 (α) = ‖a⊥
i1
‖2 and λi2i2 (α) = ‖a⊥

i2
‖2,

by Theorem 1, cov(Xi1 , Xi2 | �α = θ ) is a strictly decreasing function of βi1i2 for βi1i2 ∈ [0, π ]
when d > 2, and ‖a⊥

i1
‖ and ‖a⊥

i2
‖ are fixed. By (9), the results for expected conditional covariance

are obtained. �
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When applied to practical cases, the composite used as a conditioning variable is typically the
test composite. Informally, the test composite is a common composite that all items try to measure,
at least partially. Thus, whether two items in a test measure similar constructs depends on what they
measure besides the test composite. This leads to the concept of dimensionally homogeneous or
heterogeneous items. As defined in Zhang and Stout (1999b), dimensionally homogeneous items
means that the items are close to each other in the subspace that is perpendicular to the direction
of the test composite. That is, we judge whether two items are dimensionally homogeneous or not
by examining whether the projections of their discrimination vectors on that subspace are close
to each other or not. The angle βi1i2 is the measure of the closeness or dimensional homogeneity
of two items. Specifically, two items are dimensionally homogeneous if the angle is less than
π/2, and dimensionally heterogeneous if the angle is larger than π/2. Theorem 2 shows that the
greater the degree of dimensional homogeneity of two items (i.e., the smaller the angle βi1i2 ), the
larger the positive conditional covariance is. Thus, high-dimensional homogeneity is associated
with large positive conditional covariance, and high-dimensional heterogeneity is associated with
negative conditional covariance with large magnitude. Hence, conditional covariances can be
used to group test items into clusters such that any two items in the same cluster are positively
conditionally correlated.

A test has an approximate simple structure if it consists of several clusters with each
cluster consisting of dimensionally homogeneous items while items from different clusters are
dimensionally heterogeneous. By Theorem 2 and the definitions of dimensionally homogeneous
and heterogeneous items, a test has an approximate simple structure if, and only if, there exists a
partition P∗ = {A1, A2, . . . , AK} such that

βi1i2

{
< π

2 , if items i1 and i2 come from the same Ak;

> π
2 , if items i1 and i2 come from two different Ak ,s;

(17)

where βi1i2 is the angle between a⊥
i1

and a⊥
i2

(0 ≤ βi1i2 ≤ π ), 1 ≤ i1 �= i2 ≤ n, whereas a⊥
i1

and
a⊥

i2
are the projections of the discrimination parameter vectors ai1 and ai2 on the space V ⊥

α ,
respectively. In other words, a test has an approximate simple structure if, and only if, there exists
a partition such that the conditional covariances given a test composite are positive for every item
pair from the same cluster, and negative for every item pair from the different clusters. This type
of tests will be discussed further in Section 4.

3. Sample Expected Conditional Covariance

The previous section presented some important properties of (expected) conditional co-
variances given a composite that can be utilized to analyze the dimensional structure of a test.
However, a composite is a latent variable, which cannot be used in practice. This section dis-
cusses how to choose appropriately a manifest variable as a conditioning variable to form sample
expected conditional covariances.

3.1. A Composite Scale Score as a Conditioning Variable

In this approach, an appropriate composite score is estimated for each examinee. The idea
is that a unidimensional calibration program, such as PARSCALE (Muraki & Bock, 1997), is
used to produce composite scale scores for all examinees. Then examinees are partitioned into
homogeneous ability groups according to their composite scale scores.

There are two ways to produce composite scale scores for the conditioning purpose: the
unidimensional approximation approach and the simple structure approach. The unidimensional
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approximation approach treats the whole response data as unidimensional to produce ability
estimates. These ability estimates are actually the estimates of a reference composite (see Wang,
1986). The simple structure approach regards the whole response data as multidimensional with
simple structure. Since an educational test usually has several target subscales to measure, the
simple structure assumption is widely used in practice, as mentioned in Section 1. Under the
simple structure assumption, each item is regarded as measuring only one subscale, and each
content-based subtest (items measuring the same subscale) is considered to be unidimensional
and is calibrated separately using a unidimensional calibration program. Then a composite score,
formed using appropriately chosen weights, can be used as a conditioning variable. Users may
choose these weights to be proportional to the perfect raw scores of subtests or to be inversely
proportional to the average measurement error variance on each subscale.

Examinees are then stratified into groups according to their composite scores. The percentiles
of composite scores may be used as cut-points in forming groups. Generally speaking, the more
the groups (cut-points), the more homogeneous examinees’s composite abilities within each
group are. However, when there are too many groups, the number of examinees in a group will
be too small and consequently damage the accuracy of conditional covariance estimation. Thus,
the number of groups and the number of examinees in each group should be chosen in a balanced
way such that the composite scores of examinees in the same group are similar enough and the
number of examinees in each group is large enough to achieve optimal conditional covariance
estimation.

Let Jk be the number of students in the kth stratum. Denote J = ∑
k Jk as the total number

of students. Within Group k, calculate sample covariances of any item pairs

ĉov(Xi1 , Xi2 | Group k) = 1

Jk

Jk∑

j=1

(xi1jk − xi1k)(xi2jk − xi2k),

where xijk is the score on item i for the j th examinee in the kth stratum (Group k), and xik =
(1/Jk)

∑Jk

j=1 xijk . Then, one may construct an estimator of E[cov(Xi1 , Xi2 | �α)],

Êcovi1i2 (α) =
∑

k

Jk

J
ĉov(Xi1 , Xi2 | Group k), (18)

where the α are the weights that are used in forming the composite in the simple structure approach
or the weights of the reference composite in the unidimensional approximation approach. The
estimator of expected conditional correlation is

ÊCori1i2 (α) = Êcovi1i2 (α)√
Êcovi1i1 (α)Êcovi2i2 (α)

. (19)

3.2. An Observed Raw Score as a Conditioning Variable

In practice, observed raw scores are usually more ready to be used than composite scale
scores. When the test length is long enough, the conditional covariance given an observed score
can be regarded as an approximation to conditional covariance given an appropriate value of the
test composite, which is best measured by the observed score in the sense that the observed score
has maximum discriminating power in the direction of this composite. For details, see Zhang and
Stout (1999a).

First, the total score, T = ∑n
i=1 Xi , can be used as a conditioning variable. Examinees are

stratified into several groups according to their total scores. If the perfect (highest) total score is
N (Nn), then initially there are (N + 1) groups of examinees. However, some groups (typically
with extremely low or high scores) may be too small to accurately estimate covariance within
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groups. Usually, a lower bound is selected to eliminate such groups. If the number of examinees
in a group is fewer than the lower bound, then this group merges to its adjacent higher ability
group. Note that these small groups were excluded from the calculation of conditional covariance
estimates used in Zhang and Stout (1999a). This process repeats until the number of examinees in
the merged group exceeds the lower bound. It is recommended that this lower bound be at least 10.
After that, the sample covariance of two items, denoted as ĉov(Xi1 , Xi2 | Group k), is computed
using response data from Group k only. Then, a sample expected conditional covariance can be
constructed as

Êcovi1i2 (T ) =
∑

k

Jk

J
ĉov(Xi1 , Xi2 | Group k),

where J is the total number of examinees, Jk is the number of examinees in group k for
k = 1, 2, . . . , K , and K is the number of final valid examinees’ groups.

Similarly, the remaining score or rest score can also be used as a conditioning variable to
estimate conditional covariances. For a fixed item pair (i1, i2), the remaining score is Si1i2 =∑n

i=1,i �=i1,i2
Xi . The sample expected conditional covariance, using the remaining score as a

conditioning variable, can be constructed as

Êcovi1i2 (S) =
∑

k

Ji1i2k

J
ĉov(Xi1 , Xi2 | Group k based on Si1i2 ),

where Ji1i2k is the number of examinees of Group k based on the remaining score Si1i2 , and
ĉov(Xi1 , Xi2 | Group k based on Si1i2 ) is the sample covariance of Group k.

The final estimator of expected conditional covariance used in this paper is in the same form
as that used by Zhang and Stout (1999a) for dichotomous items. That is,

Êcov
∗
i1i2

= 1
2

[
Êcovi1i2 (S) + Êcovi1i2 (T )

]
. (20)

The purpose of using the average of the two estimators is to reduce the bias (see Zhang & Stout,
1999a). Generally, one may optimally choose a combination weight w between 0 and 1 such that
wÊcovi1i2 (S) + (1 − w) Êcovi1i2 (T ) has minimal bias. Yang and Zhang (2001) investigated this
issue. Their results show that the estimator (20) with w = 0.5 is near-optimal.

The estimators of expected conditional correlation may calculated as

ÊCori1i2 (S) = Êcovi1i2 (S)√
Êcovi1i1 (S) Êcovi2i2 (S)

and ÊCori1i2 (T ) = Êcovi1i2 (T )√
Êcovi1i1 (T ) Êcovi2i2 (T )

.

Then, the final estimator of expected conditional correlation is

ÊCor
∗
i1i2

= 1

2

[
ÊCori1i2 (S) + ÊCori1i2 (T )

]
. (21)

The major advantage of the use of an observed score as a conditional variable is that a
composite score does not need to be estimated. However, when total raw scores are not available
because of missing data by design, this approach may not be applicable and a composite score
should be used instead as a conditioning variable.

4. Justification of DETECT for Polytomous Items

DETECT, short for dimensionality evaluation to enumerate contributing traits, is a statistical
procedure that is used to identify the number of dominant latent dimensions and to estimate the
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degree of multidimensionality (see Zhang & Stout, 1999b). DETECT can correctly assign items
to dimensionally homogeneous clusters when approximate simple structure exists.

4.1. The Theoretical DETECT Index

The definition of the theoretical DETECT index is derived from the properties of expected
conditional covariances presented in Section 2. If a test is split into K nonempty and disjoint sets
of items, say, A1, A2, . . . , AK , then P = {A1, A2, . . . , AK} is called a K-subset partition of the
test. The DETECT index (Zhang & Stout, 1999b) is defined as

D(P) = 2

n(n − 1)

∑

1≤i1<i2≤n

δi1i2 (P)E[cov(Xi1 , Xi2 | �α)], (22)

where P is any partition of a test, �α is a given composite, especially the test composite, and

δi1i2 (P) =
{

1, if items Xi1 and Xi2 are in the same subset,
−1, otherwise.

(23)

Although originally defined for dichotomous items, the theoretical DETECT index remains
exactly the same in form for polytomous items (including dichotomous items as special cases).
There are n(n − 1)/2 terms in the summation of (22). Hence, the index is, in fact, an algebraic
average of all expected conditional covariances of item pairs. Note that the expected conditional
covariances may be replaced by the expected conditional correlation coefficients so that different
types of items have relatively even contributions to the index. Here, the expected conditional
correlation is defined as

ECor(Xi1 , Xi2 | α) = E[cov(Xi1 , Xi2 | �α)]√
E[Var(Xi1 |�α)]E[Var(Xi2 |�α)]

. (24)

Given a partition P , the expected conditional covariance, E[cov(Xi1 , Xi2 | �α)], is either
added or subtracted in (22) depending on whether items Xi1 and Xi2 come from the same subset
in the partition P or not. Let

M∗ = 2

n(n − 1)

∑

1≤i1<i2≤n

|E[cov(Xi1 , Xi2 | �α)]|.

M∗ is an upper bound of the theoretical DETECT index by its definition. Suppose a mul-
tidimensional test has an approximate simple structure. Let P∗ be the dimensionality-based
cluster partition (i.e., the partition that matches the existing approximate simple structure). Then,
D(P∗) = M∗, that is, D(·) achieves its maximum value M∗ at P∗. Moreover, P∗ is the unique
partition that maximizes the index D(·) because any other partitions of the test will reduce
the magnitude of D(·). The main idea of the DETECT procedure is to search for the partition
that maximizes an estimate of the theoretical DETECT index. This partition is regarded as the
dimensionality-based cluster partition P∗. It can be expected that a well-estimated DETECT
index will also be maximized at P∗ if there is sufficient examinee data to guarantee its statistical
accuracy. In Section 6 simulation studies will be conducted to check the performance of an
estimated DETECT index defined in Section 4.3.

As discussed after Theorem 2 in Section 2, if two items are dimensionally homogeneous,
the magnitude of the expected conditional covariance of these two items indicates the degree of
dimensional homogeneity of these two items; that is, the larger the magnitude, the greater the
degree of dimensional homogeneity. Otherwise, if two items are dimensionally heterogeneous,
the magnitude of the expected conditional covariance indicates the degree of dimensional het-
erogeneity of these two items; that is, the larger the absolute value of the expected conditional
covariance, the greater the degree of dimensional heterogeneity. Therefore, the magnitude of the
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maximum DETECT value indicates the degree of multidimensionality the test displays (i.e., the
size of the departure from being perfectly fitted by a unidimensional model). As Zhang and Stout
(1999b) pointed out, this index will often be useful from the perspective of statistical robustness,
for example, when assessing the appropriateness of using BILOG (Mislevy & Bock, 1982) or
PARSCALE, which presumes unidimensionality.

4.2. The Performance of the Theoretical DETECT for Polytomous Items

For dichotomously scored items, the theoretical DETECT index has been proven to be
maximized at the correct cluster partition of a test with approximate simple structure, where each
cluster in this partition corresponds to a distinct dominant dimension under certain reasonable
conditions (Zhang & Stout, 1999b). Since the same conditional covariance results have been
established for polytomous items as for dichotomous items in Section 2, all results of DETECT
for dichotomous items also hold for polytomous items under the two assumptions given in
Section 2, which are also assumed in the remainder of this section. The proofs of theorems for
polytomous items are similar to those for dichotomous items. Thus, this paper presents below
theorems without detailed proofs.

When a test is unidimensional, any composite is the latent trait variable � itself. Be-
cause items are pairwise locally uncorrelated, cov(Xi1 , Xi2 | �) = 0 for all 1 ≤ i1 < i2 ≤ n. Thus,
D(P) = 0 for any partition P . Conversely, when D(P) = 0 for any partition P , it is not diffi-
cult to prove that E[cov(Xi1 , Xi2 | �α)] = 0 for all 1 ≤ i1 < i2 ≤ n. According to Theorem 1,
cov(Xi1 , Xi2 |�α = θ ) = 0 for all θ . That is, these items are pairwise locally uncorrelated with
respect to �α and hence are unidimensional. Therefore, a test is unidimensional if, and only if,
D(P) = 0 for any partition P .

If a test is two dimensional, according to Corollary 1, the theoretical DETECT D(P) will be
maximized at a two-cluster partition of the test. Further, each of the two clusters will be composed
of the items on the same side of the composite direction, and every item will be uniquely in one
of two clusters except those items whose discrimination parameter vectors have exactly the same
direction as the composite �α . The conditional covariances involving those items are zero, and
hence, those items can be in either cluster since they have no contribution to the DETECT value.
Those items should be few in real operational situations. Hence we have the following results.

Theorem 3. When the number of dimensions of a test is one or two, the theoretical DETECT
index can always count the dimensions correctly and identify a two-cluster solution for a two-
dimensional case.

When the number of dimensions exceeds two, this paper mainly considers tests with ap-
proximate simple structure.

Theorem 4. If a d-dimensional test has approximate simple structure, then the theoretical
DETECT will be maximized uniquely at the K-cluster partition P∗ satisfying (17) with K ≤ d.

Note that d is the number of dimensions according to the mathematical definition of dimen-
sionality. Zhang and Stout (1999b) argued that the K < d situation is likely to happen, and in
such cases the K is a more appropriate number than d to describe the dimensional structure of a
test; that is, in some heuristic sense, K is the number of dominant dimensions.

In practice, simple structure is widely assumed in the analysis of response data. Mathe-
matically, a test is called a simple structure test if there exists a d-dimensional latent coordinate
system such that all the items lie along the coordinate axes and there is at least one item along
each axis. Tests are often designed to display such simple structures approximately when their
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frameworks require that each item simply measure one of several separate subscales. It should
be noted that the simple structure coordinate system is allowed to be oblique in the sense that
any two subscales are correlated, that is, cov(�i,�j ) > 0 for all 1 ≤ i < j ≤ d. Clearly, there
are d distinct clusters corresponding to the d subscales in such a simple structure test. Let Aj

be the j th cluster (one-scale subtest) and suppose there are nj items in Aj . Thus,
∑d

j=1 nj = n.
Clearly, P∗ = {A1, A2, . . . , Ad} is the correct d-cluster partition of the test. One needs to know
when the theoretical DETECT is maximized at the partition P∗. Note that a simple structure test
is a special case of approximate simple structure except when there exists two items such that
βi1i2 = π/2, that is, (17) does not hold.

The regularity condition defined by Zhang and Stout (1999b) is needed in the following
theorem. The intuitive meaning of the regularity condition is that there are no overly dominant
correlation coefficients between any two subscales relative to the correlation coefficients between
all subscale pairs. Note that the regularity condition always holds for any two-dimensional simple
structure test.

Theorem 5. For a simple structure test, the theoretical DETECT is maximized uniquely at
the dimensionally correct d-cluster partition P∗ if, and only if, the regularity condition holds.
Otherwise, it will be maximized at a K-cluster partition P0 = {B1, B2, . . . , BK}, where K < d

and each Bk is the union of some Aj ’s for k = 1, 2, . . . , K .

Once again, K can be interpreted as the number of dominant dimensions because if the
regularity condition does not hold, some Aj ’s must be very close (i.e., the respective abilities they
load on are highly correlated); these Aj ’s form a large cluster Bk that measures one dominant
dimension. In such a case, the partition P0 = {B1, B2, . . . , BK} satisfies (17).

To better understand Theorem 5, consider a three-dimensional simple structure test with
approximately the same number of items in each subscale (so that the test composite has equal
weights on all three subscales). If one subscale is only moderately correlated with the other
two subscales, then the regularity condition holds when the other two subscales are not too
highly correlated. For example, if ρ12 = ρ13 = 0.70, then the regularity condition holds when
ρ23 < 0.88, but will not hold when ρ23 > 0.88 (see Table 2 in Zhang & Stout, 1999b). In the
former case, the theoretical DETECT is maximized uniquely at P∗ = {A1, A2, A3}, while in
the latter case, it is maximized uniquely at P0 = {A1, B2} with B2 = A2 ∪ A3, according to
Theorem 5. Readers may consider the above example as a verbal and math test with 20 verbal,
20 algebra, and 20 geometry items. If the correlation between algebra and geometry turns out to
be too high, then the theoretical DETECT will be maximized at the two-cluster partition with 20
verbal and 40 math items as its two clusters. In some sense, it is a reasonable solution. Of course,
the DETECT may be further applied to the 40-item math subtest, and theoretically it will find the
partition with algebra and geometry clusters.

Zhang and Stout (1999b) proposed two theoretical indexes: One is called the approximate
simple structure index and the other is the ratio index, denoted as ASSI(P) and R(P), respectively.
Both can be developed into statistical indexes for judging whether a response data set displays
approximate simple structure or not. For any partition P of a test, define

ASSI(P) = 2

n(n − 1)

∑

1≤i1<i2≤n

δi1i2 (P) Sgn(E[cov(Xi1 , Xi2 | �T )]) (25)

and

R(P) =
∑

1≤i1<i2≤n δi1i2 (P)E[cov(Xi1 , Xi2 | �T )]
∑

1≤i1<i2≤n

∣∣E[cov(Xi1 , Xi2 | �T )]
∣∣ , (26)
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where �T is a test composite and δi1i2 (P) is defined by (23). These two indexes range from −1
to +1. Hence, they may be regarded as standardized versions of the DETECT index. Like the
DETECT index, they have the same form for both dichotomous and polytomous items.

Theorem 6.

(1) A test has approximate simple structure if, and only if, maxP ASSI(P) = 1.
(2) A test has approximate simple structure if, and only if, maxP R(P) = 1.

Therefore, the magnitudes of both indexes are the indicators of the presence of approximate
simple structure. One can also define these two indexes based on the conditional correlation
coefficients. Note that the ASSI(P) based on conditional correlation coefficients is exactly the
same as that based on conditional covariances according to (24).

4.3. Estimation of DETECT and the DETECT Procedure

Section 3 discussed how to estimate the expected conditional covariance, and two types of
estimators were presented there. After obtaining an estimator Êcovi1i2 , either Êcovi1i2 (α) in (18)
or Êcov

∗
i1i2

in (20), it is easy to construct an estimator of the theoretical DETECT by substituting
the expected conditional covariances with their corresponding estimators, that is,

D̂(P) = 2

n(n − 1)

∑

1≤i1<i2≤n

δi1i2 (P) Êcovi1i2 ,

where δi1i2 (P) is defined by (23). Similarly, one can construct estimators for ASSI(P) and R(P),
that is,

ÂSSI(P) = 2

n(n − 1)

∑

1≤i1<i2≤n

δi1i2 (P) Sgn(Êcovi1i2 )

and

R̂(P) =

∑

1≤i1<i2≤n

δi1i2 (P) Êcovi1i2

∑

1≤i1<i2≤n

∣∣Êcovi1i2

∣∣
.

Similarly, one can use an estimator of conditional correlation ÊCori1i2 given by (19) or (21) to
construct estimators of DETECT indexes.

A computer program, called PolyDETECT, was developed based on the procedure proposed
in this paper. PolyDETECT reports two separate parts of results: one is based on conditional
covariances and the other on conditional correlations. Depending on the nature of the test, one
of the two parts, or both, may be used to determine the dimensional structure of response data.
Currently, the estimates given by (20) and (21) are used in PolyDETECT by default. Note that
the original DETECT software only used an old version of conditional covariances (20) for
dichotomous items.

The operating rule of PolyDETECT, which remains almost the same as the original DETECT
program, is to search for a partition that maximizes an estimated DETECT index and judge that
partition, called the optimal partition, to be the dimensional-based cluster partition. The search
engine for the optimal partition is a genetic algorithm (Zhang & Stout, 1999b), which remains
exactly the same for response data with polytomous items. When forming the optimal partition
on the basis of estimated conditional covariances/correlations, it is possible that statistical noise
dominates the searching process, especially in unidimensional cases where the optimal partition is
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formed solely due to statistical noise. To prevent the error of failure to detect the unidimensionality
of a test, an additional sample of examinees is needed to perform cross-validation. In practice,
response data are usually randomly divided into two parts with roughly the same size (e.g., a
40 × 1000 data set with 40 items and 1000 examinees is randomly divided into two 40 × 500 data
sets) whenever possible. Both half-data sets are used to calculate the estimated DETECT indexes,
D̂1(·) and D̂2(·), and to search for their respective optimal partitions, P∗

1 and P∗
2 , independently.

If P∗
1 and P∗

2 are approximately the same, then these optimal partitions are considered to be
formed due to the intrinsic dimensional structure of the response data. Otherwise, the two optimal
partitions are regarded to be formed by capitalization upon chance. In PolyDETECT, this is
accomplished by comparing the reference DETECT value with the maximum DETECT value.
Here, the maximum and reference DETECT values refer to the DETECT values using the first half
data at P∗

1 and P∗
2 . That is, D̂max = D̂1(P∗

1 ) and D̂ref = D̂1(P∗
2 ). Theoretically, D̂ref is less than

or equal to D̂max. If P∗
1 and P∗

2 are exactly the same, then D̂ref equals D̂max. If D̂ref is significantly
smaller than D̂max (i.e., P∗

1 and P∗
2 are quite different from each other), one may suspect that the

optimal partitions P∗
1 and P∗

2 are not formed due to the test’s intrinsic multidimensional structure,
but by statistical noise. If D̂ref is near zero, or even negative, then the test under investigation can
be inferred to be essentially unidimensional.

When determining the dimensional structure, the other two indexes are also used. Only when
ÂSSI1(P∗

2 ) or R̂1(P∗
2 ) is larger than a critical value will PolyDETECT declare that the data set is

multidimensional. The critical values currently selected as default are 0.3 and 0.4 for these two
indexes, respectively. When both ÂSSI1(P∗

2 ) and R̂1(P∗
2 ) are smaller than some critical values

(default values are 0.25 and 0.36, respectively), the program may declare the data set essentially
unidimensional. Otherwise, PolyDETECT will ask its user to use other information to determine
the dimensional structure of response data.

When PolyDETECT declares a data set multidimensional, the number of sizable clusters in
the partition P∗

1 is judged as the number of dominant dimensions present in the test as Zhang and
Stout (1999b) proposed. The sizable clusters are those that contain at least a certain number of
items or a certain proportion of the test. The current default for the lower bound in PolyDETECT
is n/13 truncated to be between 3 and 9, where n is the number of items in the test.

As pointed out before, many tests, such as the Graduate Record Examinations R© (GRE R©)
General Test, TOEFL R©, NAEP main assessments, and so forth, are composed of several sections
or subsets of items measuring different subscales. It is important to know whether or not the
statistical dimensional structure is in concert with the substantive test structure. One way to check
that is to calculate the DETECT value at the content-based partition and then compare this value
with the maximum DETECT value. If they are relatively close to each other, then one would say
the content-based partition is near-optimal. The PolyDETECT program lets its user provide such
a partition for a confirmatory analysis.

Various types of errors can happen in the applications of PolyDETECT. One type of possible
error is that PolyDETECT incorrectly enumerates the number of dimension(s). Another is that
PolyDETECT assigns some items to wrong clusters when it correctly identifies the number of
dimensions. In the next section, simulation studies will be conducted to check the error rates in
various cases.

5. Simulation Studies

In this section, simulation studies were conducted to check the performance of PolyDETECT
based on the estimators given by (20) and (21). In the simulation studies, response data sets
were generated to be either unidimensional or multidimensional with simple structure. Then
PolyDETECT was applied to these data sets in an effort to recover their dimensional structure.
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The estimated item parameters from the analysis of the 2002 NAEP Grades 4 and 8 reading
assessments were used as true item parameters to generate simulated data sets. According to
the contemporary definition of reading literacy, the NAEP reading items were developed in
accordance with three contexts for reading and four aspects of reading (see National Assessment
Governing Board, 1992). The three contexts for reading are reading for literary experience,
reading to gain information, and reading to perform a task. NAEP assesses all three contexts for
reading in Grade 8, but only the first two contexts in Grade 4. Each cognitive item belongs to
one, and only one, context for reading, and each context-based subtest (i.e., all items related to
the same context) is considered to be unidimensional.

The number of items in the 2002 NAEP Grade 4 reading assessment was 82; each con-
text for reading had 41 items. While for Grade 8, there were 111 items with 30, 48, and 33
items measuring the three contexts for reading, respectively. There are two types of items in
NAEP assessments: multiple-choice and constructed-response items. The multiple-choice items
are scored dichotomously, but some of the constructed-response items may be scored polyto-
mously if they require somewhat more elaborate responses. The test composition is listed in
Table 1.

There is a “bad” item in the second subscale for each grade. Both are multiple-choice items
with large difficulty and lower-asymptote parameters (e.g., Item 71 in Grade 4 with b = 3.025,
and c = 0.312). These two items were excluded from the simulation studies. Thus, the total
number of items for Grades 4 and 8 in the simulation is 81 and 110, respectively. The test length
considered in this simulation study is 20, 40, 60, or 81 for Grade 4 cases, and 45, 60, 90, or
110 for Grade 8 cases. A test with less than 81 items in Grade 4 cases, or less than 110 items in
Grade 8 cases, consists of an equal number of items in each subscale. For example, a 40-item
test for Grade 4 consists of 20 items from the first subscale and another 20 items from the second
subscale.

The total number of examinees in each PolyDETECT run with cross validation is 1000,
2000, 4000, 6000, 8000, or 10,000, with half as a target data set and the other half as refer-
ence. Examinees’ (true) ability scores were generated independently from a multivariate normal
distribution with means of 0, variances of 1, and a common correlation coefficient of 0.0, 0.3,
0.6, 0.8, 0.9, or 1.0. When the correlation is one, subscales are the same and the corresponding

TABLE 1.
NAEP reading test composition by subscale and item type.

Literary Gain information Perform a task Total

Grade 4
MC 18 19 NA 37

CR-D 16 11 NA 27
CR-P 7 11 NA 18
Total 41 41 NA 82

Grade 8
MC 12 19 11 42

CR-D 8 14 16 38
CR-P 10 15 6 31
Total 30 48 33 111

Note: MC stands for multiple-choice items, and CR-D and CR-P stand for
constructed-response items scored dichotomously and polytomously, respec-
tively.
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cases are unidimensional. Thus, simulated Grade 4 response data are either two dimensional or
unidimensional, and Grade 8 data are either three dimensional or unidimensional.

Given the three factors, the number of items, the number of examinees, and the correlation
coefficient between subscales, there are 144 combinations for each grade. For each combination,
the simulation and analysis process (generating a response data set and applying PolyDETECT
to identify its dimensional structure) was replicated 100 times.

The results of simulation studies are summarized in Tables 2 and 3 for Grades 4 and 8,
respectively. Because of length limitations, this paper only reports the number of times out of 100
replications that PolyDETECT correctly identified the number of dimension(s) and the number
of times that PolyDETECT further correctly assigned items into dimensionally based clusters
for multidimensional cases (i.e., the optimal partition of items found by PolyDETECT was
exactly the true dimensionally based one). Tables 2 and 3 present these two counts obtained by
PolyDETECT based on both (20) and (21) in order to compare the performance of PolyDETECT
based on conditional correlations with that based on conditional covariances. Hence, there are
four counts for a multidimensional case and two counts for a unidimensional case in Tables 2 and
3. When these four, or two for unidimensional cases, numbers happen to be the same in a cell,
only one number is presented. The first number in each cell is the count out of 100 replications
for which PolyDETECT correctly declared the number of dimensions based on (20), and the
second is the corresponding count based on (21). For multidimensional cases, the third number
is the count for which PolyDETECT not only correctly declared the number of dimensions, but
also identified the true dimensionally based partition based on (20), and the fourth number is the
corresponding count based on (21).

Tables 2 and 3 show that PolyDETECT found the true dimensionally based partition in every
replication when the correlation was low or moderate and the number of examinees was large.
PolyDETECT completely recovered the true dimensional structure of response data in all 100
replications in 98 (Grade 4) and 85 (Grade 8) cases out of the total of the 144 cases for each
grade in the simulation study. PolyDETECT successfully identified the unidimensional cases in
every replication in every case except for the cases of 20 items and 4000 or more examinees.
Generally, when the number of items is small, the statistical error of the estimate of conditional
covariance/correlation is relatively large since the classification of examinees into homogeneous
ability groups based on the total test score may not be very reliable. In this situation, if the number
of examinees is large, systematic errors (e.g., bias) driven by different item characteristics may
arise and dominate the magnitude of the estimate in unidimensional cases. Hence, PolyDETECT
based on the default estimates (20) and (21) can be used only when the test length is not too
short. When the correlation is 0.9 and the total number of examinees is 1000, PolyDETECT does
not seem to perform well: Most times PolyDETECT either could not determine the dimensional
structure or it incorrectly declared the test to be essentially unidimensional. For example, when
the number of items is 60, the number of examinees is 1000, and the correlation coefficient is
0.9, the frequency with which PolyDETECT based on conditional covariances or correlations
declared response data sets to be two dimensional is only 14 or 12 out of 100 replications (see
Table 2). In that case, it may be reasonable to claim the test to be essentially unidimensional
since the correlation is so high. Nevertheless, the overall rates from Tables 2 and 3 that Poly-
DETECT correctly declared the number of dimension(s) are 96% and 95% for grades 4 and 8,
respectively.

The results in Tables 2 and 3 also indicate that the performance of PolyDETECT based on
conditional correlations (21) is almost the same as that based on conditional covariances (20) in
the situations considered in this simulation study. Although not all DETECT statistics are reported
here, it should be noted that in unidimensional cases reference values are significantly smaller
than maximum values, and reference values are near zero or even negative except for the cases of
20 items and 4000 or more examinees. The maximum DETECT value has a negative association
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with the correlation coefficients between subscales. The smaller the correlation coefficients, the
larger the maximum DETECT value, implying greater departure from unidimensionality. This
suggests that the magnitude of the maximum DETECT value is informative in indicating the
degree of multidimensionality in the test displays, and the correlation of the underlying abilities
(subscales) is one of the important factors in determining the degree of multidimensionality.

6. Applying PolyDETECT to NAEP Reading Data

In this section, the PolyDETECT program is used to analyze the dimensional structure of
the 2002 NAEP reading Grades 4 and 8 operational data.

Because of the test time limitation, no one student takes all the items in the NAEP assess-
ments. A matrix-sampling design of test items, called the focused balanced incomplete block
(BIB) spiraling design, has been implemented in the main NAEP assessments (Beaton, Johnson,
& Ferris, 1987). Reading passages and accompanying items are divided into blocks. Each sam-
pled student is given a test booklet typically containing two 25-minute blocks of items or one
50-minute block. In the 2002 NAEP reading assessment of Grade 8, for example, there were a
total of 10 different blocks (one 50-minute and nine 25-minute blocks) and 37 different booklets
(36 booklets from the BIB design of nine 25-minute blocks plus the 50-minute block booklet).
Missing data are treated according to the NAEP conventions in this study (see Allen, Donoghue,
& Schoeps, 2001).

The reporting scales of NAEP reading assessments are based on the contexts for reading in the
reading operational analysis conducted at the Educational Testing Service (ETS). Separate IRT-
based subscales have been developed for each of the contexts for reading, and the methodology of
multiple imputations (plausible values) is used to estimate key population features. A composite
that is a weighted average of the plausible values of all the subscales is then created as a
measure of overall proficiency. The weight for each reading subscale is the target proportion
of items measuring that context. For example, the weights of grade 8 for the three contexts for
reading are 0.4, 0.4, and 0.2, respectively. For details, see Allen et al. (2001). As discussed in
Section 3, this composite can be used as the conditioning variable when calculating conditional
covariances/correlations.

Although the classification of items into context-based subscales has substantive meaning,
statistical justification is needed for this analysis approach. One natural question is whether this
simple multiple-subscale structure based on the contexts for reading reflects well the structure
of the NAEP reading data. That is, is such a classification optimal in the sense that items in the
same cluster are relatively dimensionally homogenous while items from different clusters are
not? Or is there another classification of items that better matches the structure of the data than
the context-based one does? For example, does the reading-aspect-based or an item-type-based
partition better match the structure of the data than the context-based partition?

This study uses the reporting samples of the 2002 NAEP reading assessment of Grades 4
and 8 with sample sizes 139,383 and 114,681, respectively. Each sample is randomly split into
two parts of roughly the same size to run the PolyDETECT program with cross validation. Recall
that the PolyDETECT program reports both results based on conditional covariances and on
conditional correlations. The DETECT results based on conditional correlations turned out to be
the same as those based on conditional covariances for both grades. Therefore, only the results
based on conditional covariances are presented here.

The DETECT results show that the fourth-grade data set is two dimensional. The optimal
two-cluster partition of items provided by PolyDETECT is

{{1–41, 71}, {42–70, 72–82}},
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which is consistent with the substantive two-cluster partition determined by the NAEP reading
design,

{{1–41}, {42–82}},
except for one multiple-choice item, Item 71. The discrimination, difficulty, and lower-asymptote
parameter estimates of this item from the 2002 NAEP operational analysis are 0.597, 3.025, and
0.312, respectively, in the proficiency scale of mean zero and variance one. Clearly, this is a very
difficult item with a high lower-asymptote (guessing) parameter and is not a good item from the
psychometric point of view (low item information).

PolyDETECT concludes that the eighth-grade response data set is three dimensional; its
optimal three-cluster partition is

{{1–30, 40}, {31–39, 41–65}, {66–111}}.
This partition agrees with the substantive partition based on three contexts for reading,

{{1–30}, {31–78}, {79–111}},
except for item 40 and the 50-minute block (Items 66–78). Item 40 is a multiple-choice item with
large difficulty and lower-asymptote parameters (b = 2.151 and c = 0.319). It should be noted
that the booklet with the 50-minute block was separate/independent from the BIB design in the
NAEP assessment. For any item pair with one item from the 50-minute block and the other from
any other block, the conditional covariance is not estimable since no one student completed such
a pair of items. In cases where no students completed a pair of items, the PolyDETECT program
automatically assigns a zero value to the conditional covariance, which indicates that there is
no information about the degree of dimensional homogeneity of these two items. Therefore,
the 50-minute block can be moved among clusters without changing or affecting the value of
DETECT. That is, the 50-minute block as a whole can be put into any context-based cluster
without changing or affecting the value of DETECT, though all items in that block are related to
the context for reading to gain information. Consistently, PolyDETECT always keeps all of the
50-minute block items in the same cluster, indicating that these items are relatively dimensionally
homogeneous given the composite.

Table 4 presents the three index values at the three partitions from the PolyDETECT program.
The three indexes reported here are the DETECT index, the approximate simple structure index
(ASSI), and the ratio index (R). The three partitions presented here are the optimal partition
obtained from the target data set (labeled as Maxima), the optimal partition obtained from the
reference data set (labeled as Reference), and the context-based partition (labeled as Context-
based). For each grade, these three partitions are the same except for one or two items and for the
additional 50-minute block for Grade 8. For Grade 4, the DETECT values at the three partitions
are approximately the same, which indicates the outlier item has little contribution to the DETECT
value. For Grade 8, the values of the three indexes at the context-based partition are the same as
those at the reference partition (the last two rows of Table 4 for Grade 8). Their only difference is
the 50-minute block, which does not affect these index values at all. In addition, these values are
only slightly smaller than their corresponding values at the optimal partition. For both grades, the
values of ASSI are relatively small, which indicates that the 2002 NAEP reading data for Grades
4 and 8 are weakly multidimensional, which is most likely due to the high correlations between
subscales. Moreover, this fact may also indicate that the simple structure assumption is too strong
for these data sets. Overall, the index values are very close across three partitions for each grade,
indicating that the context-based partition of items is valid and optimal under the assumption of
approximate simple structure.
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TABLE 4.
DETECT results for the 2002 NAEP reading data for Grades 4 and 8.

Grade 4 Grade 8

Partition DETECT ASSI R DETECT ASSI R

Maxima 0.0173 0.2864 0.6258 0.0133 0.2039 0.6357
Reference 0.0173 0.2821 0.6235 0.0132 0.2033 0.6337
Context-based 0.0173 0.2809 0.6239 0.0132 0.2033 0.6337

7. Discussion

In this paper the theory of conditional covariances originally developed for dichotomous
items is extended to polytomous items. The theory provides a theoretical foundation for proce-
dures based on conditional covariances/correlations, such as DETECT and DIMTEST, so that
the performance of these procedures is theoretically justified when applied to response data with
polytomously scored items. Two types of estimators of conditional covariances are constructed
and discussed. With these estimators of conditional covariances, the DETECT procedure can
be applied not only to response data sets with polytomous items, but also to complex sampling
data sets with missing values, either by design or at random. PolyDETECT can be applied to
verify whether the content-based classification of items into clusters (subtests) is statistically
consistent with the dimensional structure of the data through exploratory and confirmatory anal-
ysis. Simulation studies show that PolyDETECT performs well with a large sample and with
balanced numbers of items in various dimensions. Further studies are still needed to investigate
the performance of PolyDETECT when the sample size is small, or when the numbers of items
in various dimensions are extremely unbalanced.

In this paper, PolyDETECT was applied to analyze the dimensional structure of the 2002
NAEP reading samples of Grades 4 and 8. Zwick (1987) assessed the dimensionality of the
1983–1984 NAEP reading data. Her conclusion is that “it is not unreasonable to treat that data as
unidimensional.” Although there have been great changes in the NAEP reading assessment since
then, PolyDETECT indicates that the 2002 NAEP reading data sets are weakly multidimensional.
At the same time, the DETECT results in this study also show that the context-based partition of
items into clusters is optimal if items need to be classified according to their multidimensional
structure. Yu and Nandakumar (2001) applied DETECT to analyze the 1992 NAEP eighth-grade
reading data and conclude that the data set has “at most moderate degree of multidimensionality.”
Their dimensionality analysis was carried out at test booklet and selected item-subset levels since
the early version of DETECT was not yet capable of handling whole BIB-designed data. The
composites corresponding to the conditional variables used in their analysis may be quite different
from each other in different booklet-level runs because of NAEP BIB design. Consequently, the
degree of multidimensionality might be overestimated.

Although the new version of PolyDETECT works well in the simulation studies, it is still an
open question as to how to construct a consistent unbiased estimator for E[cov(Xi,Xj | �T )] so
as to obtain a good estimator of the theoretical DETECT index, especially when the test length
is short. Another research topic is to establish a large sample distribution theory for DETECT.
That is, one needs to understand the statistical behavior of DETECT so that statistical hypothesis
testing can be carried out for testing whether a response data set is d-dimensional or not. All
these issues are still under investigation.
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