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Nonparametric item response models have been developed as alternatives to the relatively inflexible
parametric item response models. An open question is whether it is possible and practical to administer
computerized adaptive testing with nonparametric models. This paper explores the possibility of com-
puterized adaptive testing when using nonparametric item response models. A central issue is that the
derivatives of item characteristic Curves may not be estimated well, which eliminates the availability of
the standard maximum Fisher information criterion. As alternatives, procedures based on Shannon entropy
and Kullback–Leibler information are proposed. For a long test, these procedures, which do not require
the derivatives of the item characteristic eurves, become equivalent to the maximum Fisher information
criterion. A simulation study is conducted to study the behavior of these two procedures, compared with
random item selection. The study shows that the procedures based on Shannon entropy and Kullback–
Leibler information perform similarly in terms of root mean square error, and perform much better than
random item selection. The study also shows that item exposure rates need to be addressed for these
methods to be practical.

Key words: Shannon entropy, Kullback–Leibler information, nonparametric item response models, item
response theory.

1. Introduction

Under the item response theory (IRT) framework, each examinee is indexed by a value of
the latent variable θ . This latent variable is usually taken as undimensional. In addition, each item
in the test is associated with an item characteristic curve (ICC), which specifies the probability of
a correct response to the item as a nondecreasing function of θ . Nonparametric models have been
developed to address the fact that the parametric models do not always fit the data adequately.
Unlike parametric models with a limited number of parameters, nonparametric models allow
much more flexibility to describe the probability of correct responses to items as a function of
latent ability.

Whether nonparametric models should be used is a matter of assessing the trade-off between
bias and variance. Nonparametric estimation can help reduce the bias that would result from
fitting a misspecified parametric model. However, the cost will be increased variance at each
point in the ICC estimate. This is because nonparametric estimation techniques rely primarily
on local averaging, which essentially only utilizes a fraction of the observations for fitting the
model at a single point. This is in contrast with parametric models which use more global criteria
for determining the best estimate of a relatively small number of parameters. Nonparametric
regression techniques, and nonparametric ICC estimation, are sometimes mistakenly thought of
as techniques for use with small samples. In fact, nonparametric estimation is not suited for small
samples, but can be quite beneficial in large sample situations. This is because the nonparametric
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nature of the fit allows for dramatically reducing bias, and when large enough samples are
available the variance can also be controlled.

Methods of nonparametric ICC estimation include kernel smoothing with a selected scale
for the latent trait (Ramsay, 1991; Douglas, 1997), monotone splines (Ramsay & Abrahamowicz,
1989), and penalized maximum likelihood estimation (Rossi,Wang, & Ramsay, 2002). The kernel
smoothed ICC estimator is introduced in detail. Suppose N examinees are randomly sampled and
take a test of length n. Let Yij be the binary response of examinee i to item j. The kernel smoothing
estimator of Pj (θ ) is a weighted average of the examinees’ responses to item j,

P̂j (θ ) =
N∑

i=1

wi(θ − θi)Yij ,

where the weights wi(θ − θi) are defined so that they are nonnegative and reach a maximum when
θ = θi and will approach or equal zero as |θ − θi | increases. The weights wi(θ − θi) are defined
by a kernel function K(·), with the properties mentioned above. Also, two additional conditions
should be satisfied to make the kernel smoothing estimator meaningful. These two conditions are
wi(θ − θi) ≥ 0 and

∑
i wi(θ − θi) = 1. A popular choice of weights are given by Nadaraya and

Watson (Nadaraya, 1964; Watson, 1964):

wi(θ − θi) = K
(

θ−θi

h

)
∑

i K
(

θ−θi

h

) ,

where K(·) denotes the kernel function, and h refers to a bandwidth which governs the degree
of smoothing. The kernel smoothing estimator of Pj (θ ) is consistent when θi can be estimated
without error. However, the latent trait values of θi are not observable. The Nadaraya–Watson
weights can still be used after substituting the true θi with θ̂i . A common and appropriate way
to construct θ̂i is to rank the summed scores and transform to the corresponding quantile of the
chosen distribution F (θ ). This leads to the kernel smoothing estimator

P̂j (θ ) =
∑N

i=1 K
(

θ−θ̂i

h

)
Yij∑N

i=1 K
(

θ−θ̂i

h

) ,

proposed by Ramsay (1991) and implemented in TestGraf (Ramsay, 2000). The consistency of
this estimator was proved by Douglas (1997). The use of summed scores in this way is justified
for long exams by the asymptotic results of Douglas (1997) that θ̂ is consistent for θ . Large
deviation theorems are given as well as convergence rates. A finite test length justification is
seen in Grayson’s (1988) work on the monotone likelihood ratio property of summed scores for
general monotone IRT models with binary items. This result implies the stochastic ordering of
the latent trait for different summed scores.

In kernel smoothing, the bandwidth h is used to control the balance between the bias
and variance of estimation. At this point, there is no theorem on an optimal bandwidth for
ICC estimation. However, we can use results from simpler models where the covariate is mea-
sured without error as a guideline. For example, Ramsay (1991) suggested that h = N−1/5

works well when using a Gaussian kernel. In nonparametric regression problems with con-
stant error variance, which is not satisfied in ICC estimation with binary response variables,
it can be shown that the bandwidth that minimizes the mean squared error is a multiple of
N−1/5 (Eubank, 1988). This can be expected to hold in the binary case as well, but the opti-
mal constant by which N−1/5 is multiplied would be more difficult to determine. In our ap-
plication, this bandwidth appeared to recover the true curve well for the given experimental
conditions.
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FIGURE 1.
A true ICC and its estimate.

One application of item response models is test assembly. Here we consider one aim of
educational testing, which is to estimate the latent ability of an examinee on the studied domain.
Traditional paper and pencil tests present a sample of examinees with the same set of items. A pos-
sible consequence is that neither high ability groups nor low ability groups may simultaneously
be measured with high reliability. One remedy for this is adaptive testing. For each examinee,
adaptive testing selects future items adapted to the current ability estimate. With the develop-
ment of item response models and the increasing power of computers, computerized adaptive
testing (CAT) has become feasible. Though there are many psychometrically challenging issues
associated with CAT (van der Linden & Glas, 2000), this paper only focuses on item selection
algorithms for CAT.

The most popular method used in CAT practice is the maximum information criterion
(MIC). For a latent variable θ , let Ln(θ ) be the log-likelihood function of θ after n items have
been administered. Denote the Fisher information of θ by

In(θ ) = E([∂Ln(θ )/∂θ ]2).

Let θ̂n be the maximum likelihood estimator of the true θ . Then it is well known that θ̂n has
limiting distribution N (θ, 1/In(θ )) as n → ∞. This property of θ̂n motivated Birnbaum’s (1968)
development of MIC. In the MIC, the next item is selected from the items remaining in the item
bank to maximize the Fisher information at the present estimate θ̂n.

Notice that Ij (θ ) involves taking the derivative of P̂j (θ ). This can be very problematic
when using nonparametrically estimated ICCs. Even methods that provide good estimates of the
ICCs may not yield acceptable derivative estimates. For instance, consider kernel smoothed ICC
estimates. The derivative of the estimate will be negative at some values of θ . This can be seen
in Figures 1 and 2. Even monotone splines will result in quite jagged derivative estimates. For
this reason, the MIC cannot be reliably used with an item bank of nonparametrically estimated
ICCs. Consequently, new methods that do not involve derivatives will be better choices. In the
following sections, a procedure based on Shannon entropy and a procedure based on Kullback–
Leibler information are introduced and a simulation study is conducted.

2. Kullback–Leibler Procedure

This procedure is inspired by Chang and Ying’s (1996) “global information criterion”
(GIC). Generally, the Kullback–Leibler (K–L) information is a discrepancy measure between
two probability distributions. Let K(f (x), g(x)) be the K–L information, where f (x) and g(x)
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FIGURE 2.
First derivative of a true ICC and its estimate.

are two probability density functions with f (x) being the true density. Then the K–L information
is defined as

K(f, g) =
∫

f (x) ln
f (x)

g(x)
µ (dx).

In the expression above, µ denotes the dominating measure for densities f and g. In item response
models where X is discrete, µ will be counting measure, and the integral sign is replaced with the
summation sign. In the context of IRT, f (x) and g(x) are replaced with the likelihood functions
evaluated at different values of θ that are induced by a candidate item. Chang and Ying (1996)
defined the K–L information for the jth item as

Kj (θ̂n, θ ) = E

[
ln

L(θ̂n|Yj )

L(θ |Yj )

]
,

where θ̂n is the maximum likelihood estimate of θ after n items have been administered, and the
expectation is taken with respect to the future item response Yj for a candidate item j . This can
be written as

Kj (θ̂n, θ ) = Pj (θ̂n) log

[
Pj (θ̂n)

Pj (θ )

]
+ [1 − Pj (θ̂n)] log

[
1 − Pj (θ̂n)

1 − Pj (θ )

]
.

An index of global information is defined by integrating Kj (θ̂n, θ ) over an interval centered at
θ̂n. Denote this integral by

Gj (θ̂n) =
∫ θ̂n+δn

θ̂n−δn

Kj (θ̂n, θ ) dθ,

where δn is an approximate margin-of-error in the estimation of θ that decreases at a rate of
n−1/2. Then the GIC is to select the (n+1)st item among the remaining items in the item bank
that maximizes Gj (θ̂n), where j indexes the items remaining in the item bank.

Chang and Ying (1996) noted that the MIC and GIC are asymptotically equivalent. Thus, as
n becomes quite large, the MIC and GIC will select nearly identical (if not identical) items. They
also demonstrate with simulation studies that the GIC is superior to the MIC for a short test.

Notice that Kj (θ̂n, θ ) does not involve any derivatives of the ICCs. An implication of this is
that the GIC may easily be used with nonparametrically estimated item response models as well
as with parametric item response models.
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3. Shannon Entropy Procedure

Shannon entropy (Shannon, 1948; Cover & Thomas, 1991) was first proposed as a measure
of the complexity of discrete probability distributions. It can be extended to the case where the
random variable is continuous. Let f (x) be the density function of a random variable x, then the
Shannon entropy is defined as

SH (f ) = E[−ln f (x)].

For a discrete random variable, the Shannon entropy will reach its maximum value when all
the points in sample space are of equal probability. It reaches a minimum of zero when all the
probability is concentrated at a single point. In the case of continuous probability distributions,
Shannon entropy will be small when the distribution of the random variable is concentrated in
a smaller interval, and becomes even smaller when the distribution vanishes to a single point.
This property of Shannon entropy serves our purpose for CAT with nonparametric item response
models. The basic aim of sequential item selection is to make the posterior distribution of the
ability parameter become as concentrated as possible at the true value. By selecting an item that
minimizes the expected Shannon entropy of the posterior distribution we can achieve this. This
idea was introduced by DeGroot (1962) and was applied as the “Shannon entropy procedure”
in Tatsuoka and Ferguson (2003) and Tatsuoka (2002) for their partially ordered set model for
cognitive diagnosis, and was also studied for application in cognitive diagnosis by Xu, Chang,
and Douglas (2003).

Let j index the items remaining in the item bank after n items have been administered,
and let πn,j denote the posterior distribution after administering n items and this future item j .
Depending on the value of the item response Yj , we may compute the expected Shannon entropy
of πn,j , given the current posterior distribution πn. This is given by

ESH (πn,j ) =
∑

yj =0,1

SH (πn,j )p(Yj = yj | y1, . . . , yn),

where the expectation is taken over the density of Yj given the current posterior distribution
of θ . The Shannon entropy procedure is to select the next item from the remaining items in
the item bank to minimize ESH (πn,j ). Note that an alternative criterion would be to select the
next item to minimize the expected posterior variance. In some related work, the authors have
found that selecting items in this manner is not as efficient as the criterion based on Shannon
entropy.

Let In(θ0) be the Fisher information at the true value of θ , after the first n items have been
administered. The following theorem shows the asymptotic equivalence of In(θ0) and SH (πn,j ).

Theorem 1. Given the regularity conditions stated in Assumptions 1 through 5 of Appendix A,
SH (πn) − (−ln In(θ0)1/2) converges to 1/2 + ln

√
2π as n → ∞, with probability equal to 1.

Theorem 1 suggests that the Shannon entropy procedure and the Fisher information computed
at true ability carry precisely the same information as n becomes large. A proof of Theorem 1
is given in Appendix A along with a heuristic argument that the MIC and the Shannon entropy
procedure should result in the same items in a fairly large item bank.

4. Simulation Study

The performance of the Shannon entropy procedure and the K–L procedure as well as
random item selection are compared in a simulation study. It involves calibrating an item bank
with kernel smoothed ICC estimates when data are simulated from a 2PL model.
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4.1. Simulation Study

4.1.1. Item bank description. An item bank was generated by first simulating responses of
1000 subjects with N(0, 1) distributed abilities to 500 items from a two-parameter logistic model
with ICCs given by

Pj (θ ) = exp[aj (θ − bj )]

1 + exp[aj (θ − bj )]
.

For the 500 items, the discrimination parameters were drawn from a uniform distribution on
(0.75, 2.5) and the difficulty parameters were drawn from a standard normal distribution. Then
the item bank was constructed based on kernel smoothed estimates of the ICCs using a Gaussian
kernel with a bandwidth of 0.25, which is 1000−1/5. When fitting the kernel smoothed ICCs,
the distribution of the latent ability was assumed to be uniform on (0, 1). Despite the fact that a
N(0, 1) ability distribution was used to generate the item responses, this uniform (0, 1) scale may
be used when items are estimated nonparametrically, -because the functional form of the ICCs is
not constrained to have a particular form after a change of variables. In evaluating CAT methods,
we retain this scale for the latent ability.

4.1.2. Simulation Design. Three approaches, the Shannon entropy procedure, the K–L
procedure, and random item selection, were compared with respect to root mean squared
error(RMSE),bias and exposure rates across the simulations. They are defined in the follow-
ing. RMSES is the RMSE of latent ability estimates given a certain length of subtest, while
RMSEθ is the RMSE of latent ability estimates given certain value of θ ,

RMSES =
√√√√ N∑

i=1

(θ̂i,S − θi)2/N,

RMSEθ =
√ ∑

i:θi=θ

(θ̂i − θ )2/#I (θi = θ ).

The bias, given a certain stage of the test, and the bias given a certain value of θ are denoted by
biasS and biasθ , respectively,

biasS =
N∑

i=1

(θ̂i,S − θi)/N,

biasθ =
∑

i:θi=θ

(θ̂i − θ )/#I (θi = θ ).

In each simulation, the test length was fixed at 50 items. However, the performance of these
procedures could be evaluated at any length of subtest. For each procedure a total of 10,000
examinees was generated from a uniform (0, 1) ability distribution. Each examinee was given
exactly the same five items to begin the test, then the maximum likelihood estimate was obtained.
The next item was selected sequentially according to different strategies until the final test length
was reached. After each stage of administering an item, the maximum likelihood ability estimate
was obtained.

4.1.3. Results. The upper part of Figure 3 shows the RMSE and bias comparisons for these
three methods as a function of the length of the exam. The two proposed methods outperform
random item selection in both aspects, and they have very similar results. The same pattern is
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FIGURE 3.
Root mean square error and bias comparison among approaches.

shown in the lower part of Figure 3, which presents an RMSE and bias comparison as a function
of θ . Let’s look at one aspect of the results. Table 1 gives the RMSE at different lengths of the
subtest. After 40 items, both the K–L procedure and the Shannon entropy procedure result in
sufficient accuracy in estimating the latent ability.

In addition, both methods result in high proportions of items that are not frequently used.
Figures 4 through 7 present the exposure rate of items. Figure 4 summarizes the item exposure
rates for the whole range ability under three approaches. If the ability can be divided into three
categories: low (0.01–0.33), medium (0.34–0.66), and high (0.67–0.99), then Figures 5 through 7
present us with the item exposure rate for these three ability intervals. Compared with the random
item selection, both the K–L procedure and the Shannon entropy procedure result in a relatively

TABLE 1.
The average root mean square error for the three methods.

Number of items

Selection rule 20 30 40 50

Random 0.118 0.096 0.083 0.074
K–L 0.072 0.057 0.049 0.045

Shannon 0.071 0.056 0.049 0.044
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FIGURE 4.
Item exposure rates.

high proportion of low-exposure items and high-exposure items. These numbers are not good
enough if we want to make full use of the item bank. Further research on how to use these two
methods, while balancing item exposure control, will be needed.

Concerning computing time, the K–L procedure is much faster than the Shannon entropy
procedure due to the calculation of the posterior distribution required for Shannon entropy. For
example, for a test fixed at 50 items, it took only 6 seconds to finish the test for 100 examinees,
while it took 231 seconds to finish the test using the Shannon entropy procedure.

5. Discussion

This paper concerns the possibility of computerized adaptive testing under nonparametric
IRT models. Two algorithms, the K–L procedure and the Shannon entropy procedure were
proposed as candidate algorithms. Neither procedure involves computing of the derivatives of
ICCs, which is difficult for nonparametrically estimated ICCs. Both procedures lead to fast
convergence of ability estimation. The K–L distance procedure is noted to be equivalent to the
MIC (Chang & Ying, 1996) and Shannon entropy is proved to be equivalent to the MIC in this
paper. The simulation study shows that these two methods perform similarly in terms of the
RMSE of the latent ability estimation. The simulation study also shows that after 30 items have
been administered, their selection of the very next item is identical 85.4% of the time. In addition,
both methods lead to high exposure rates for some items, and to a high proportion of items that
are not frequently used. This should be addressed in applications.

6. Appendix

6.1. Asymptotic Equivalence of the Shannon Entropy Procedure and the MIC

In this appendix it will be shown that the MIC and the Shannon entropy procedure can be
expected to result in selecting the same item in a finite item bank when the test length n becomes
large provided that the derivatives of ICCs could be computed for the information function used
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FIGURE 5.
Item exposure rates.

in the MIC. First, an important property of the Shannon entropy of the posterior distribution is
stated as Theorem 1. Theorem 1 makes use of the notation and assumptions used in Chang and
Stout (1993), in their proof of the asymptotic posterior normality of the latent ability.
Basic notation:
Pj (θ ): the ICC for item j given θ .
θ0: the true latent ability. Let Yj be a binary random variable, it is assumed that Yj has the density
Pj (θ0)yj [1 − Pj (θ0)]1−yj , yj = 0, 1.

θ̂n: the maximum likelihood estimator (MLE) of θ .
In(θ ): the Fisher information of θ accumulated after n items have been administered.
σ̂n: defined as [In(θ̂n)]−1/2.
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FIGURE 6.
Item exposure rates.
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FIGURE 7.
Item exposure rates.

Ln(θ ): the log-likelihood function of latent ability θ after n items have been administered.
Sometimes we write it as ln P (Y1, . . . , Yn|θ ).
λj (θ ): the logit function of item j , λj (θ ) = ln(Pj (θ )/(1 − Pj (θ ))).
π0(θ ): the prior density function of θ .
πn(θ ): the posterior density function of θ . It has the form

πn(θ ) = P (Y1, . . . , Yn|θ )π0(θ )∫
P (Y1, . . . , Yn|θ )π0(θ ) dθ

.

Assumption 1. Let θ ∈ �, where � is (−∞,∞) or a bounded or unbounded interval in
(−∞,∞). Let the prior density π0(θ ) be Lipschitz continuous and positive at θ0, where θ0 is
assumed to be the true value of θ . Further, assume that E[ln(π0(θ ))] < ∞.

Assumption 2. Pj (θ ) is twice continuously differentiable and the first and second derivatives
are bounded in absolute value uniformly with respect to θ in some closed interval |θ − θ0| < δ.

Assumption 3. For every fixed θ �= θ0, assume, for some given c(θ ) > 0,

lim sup n−1Eθ0 (Ln(θ ) − Ln(θ0)) ≤ −c(θ ),

and

sup
j

|λj (θ )| < ∞.

Assumption 4. The information function for each item has a first derivative, and λj (θ ) has
second and third derivatives. All these derivatives are bounded in absolute value uniformly in j

and in |θ − θ0| < δ.
Assumption 5.

lim inf
n→∞

In(θ0)

n
> c(θ0) > 0,

where c(θ0) is a constant.
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The proof of Theorem 1 uses three lemmas that are similar to those in Chang and
Stout (1993). These lemmas are somewhat stronger and require slight modifications of
Chang and Stout’s proof. These details are not given here, but are available upon
request.

Lemma 1. Suppose the assumptions hold. For any sequence δn > c
√

ln n/n, for some constant
c, there exists a k(δn) > 0 such that

Pθ0{ lim sup
n→∞,|θ−θ0|>δn

n−1[Ln(θ ) − Ln(θ0)] < −k(δn)} = 1.

Lemma 2. Suppose the assumptions hold. Then

Ln(θ ) − Ln(θ̂n) = (θ − θ̂n)2L′′
n(θ̂∗

n )/2 = − (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn),

where θ̂∗
n is a point between θ and θ̂n, and Rn is defined as Rn = 1 + σ̂ 2

n L
′′
n(θ̂∗

n ). Let εn =
2
√

2 ln n/nC ′, then with probability 1,

sup
|θ−θ0|<δn

|Rn| < εn,

where C ′ = c2/8ζλ2 and ζλ2 is the bound for the second derivative of λj , δn = Cεn for some
constant C.

Lemma 3. (Chang and Stout, 1993). Given the assumptions above,

(P (Y1, . . . , Yn|θ̂n)σ̂n)−1
∫

P (Y1, . . . , Yn|θ )π0(θ ) dθ →
√

2ππ0(θ0)

with probability 1.

The proof of Theorem 1 uses techniques similar to those used in the proof of the posterior
normality of the latent trait in Chang and Stout (1993).

Proof of Theorem 1. Let An = (P (Y1, . . . , Yn|θ̂n)σ̂n)−1 and let P (Y1, . . . , Yn) = ∫
P

(Y1, . . . , Yn|θ )π0(θ ) dθ , then

Sh(πn) − (− ln In(θ0)1/2) = −
∫

πn(θ ) ln πn(θ )dθ − (− ln In(θ0)1/2)

= −
∫

An

P (Y1, . . . , Yn|θ )π0(θ )

AnP (Y1, . . . , Yn)
ln

[
AnP (Y1, . . . , Yn|θ )π0(θ )

AnP (Y1, . . . , Yn)

]
dθ

−(− ln In(θ0)1/2)

= − G1

AnP (Y1, . . . , Yn)
+ G2 − (− ln In(θ0)1/2),

where G1 = ∫
AnP (Y1, . . . , Yn|θ )π0(θ ) ln[AnP (Y1, . . . , Yn|θ )π0(θ )] dθ and G2 = ln[AnP (Y1,

. . . , Yn)]. From Lemma 3, we know that G2 → ln[
√

2ππ0(θ0)] with probability 1. For part G1,
we need to consider two different subsets of �, |θ − θ0| > δn and |θ − θ0| ≤ δn, where δn is
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defined as in Lemma 2,

G1 =
∫

AnP (Y1, . . . , Yn|θ )π0(θ ) ln[AnP (Y1, . . . , Yn|θ )π0(θ )] dθ

=
∫

|θ−θ0|>δn

AnP (Y1, . . . , Yn|θ )π0(θ ) ln[AnP (Y1, . . . , Yn|θ )π0(θ )] dθ

+
∫

|θ−θ0|≤δn

AnP (Y1, . . . , Yn|θ )π0(θ ) ln[AnP (Y1, . . . , Yn|θ )π0(θ )] dθ.

After plugging in An, the first part of the integral becomes∫
|θ−θ0|>δn

AnP (Y1, . . . , Yn|θ )π0(θ ) ln[AnP (Y1, . . . , Yn|θ )π0(θ )] dθ

=
∫

|θ−θ0|>δn

exp(Ln(θ ) − Ln(θ0) + Ln(θ0) − Ln(θ̂n))σ̂−1
n π0(θ ) ln[exp(Ln(θ )

−Ln(θ̂n))σ̂−1
n π0(θ )] dθ

≤
∫

|θ−θ0|>δn

exp(Ln(θ ) − Ln(θ0))π0(θ )σ̂−1
n ln[exp(Ln(θ ) − Ln(θ̂n))σ̂−1

n π0(θ )] dθ

=
∫

|θ−θ0|>δn

exp(Ln(θ ) − Ln(θ0))π0(θ )σ̂−1
n (Ln(θ ) − Ln(θ0)) dθ

+
∫

|θ−θ0|>δn

exp(Ln(θ ) − Ln(θ0))π0(θ )σ̂−1
n (Ln(θ0) − Ln(θ̂n)) dθ

+
∫

|θ−θ0|>δn

exp(Ln(θ ) − Ln(θ0))π0(θ )σ̂−1
n ln σ̂−1

n dθ

+
∫

|θ−θ0|>δn

exp(Ln(θ ) − Ln(θ0))π0(θ )σ̂−1
n ln(π0(θ )) dθ.

The inequality sign is due to the fact that exp(Ln(θ0) − Ln(θ̂n)) ≤ 1. By Lemma 1, the first part
of the integral of G1 converges to 0 with probability 1,∫

|θ−θ0|>δn

AnP (Y1, . . . , Yn|θ )π0(θ ) ln[AnP (Y1, . . . , Yn|θ )π0(θ )] dθ

≤ exp(−nk(δn))In(θ̂n)1/2(−nk(δn)) + (Ln(θ0) − Ln(θn)) exp(−nk(δn))In(θ̂n)1/2

+ exp(−nk(δn))In(θ̂n)1/2 ln(I (θ̂n)1/2)

+ exp(−nk(δn))In(θ̂n)1/2
∫

|θ−θ0|>δn

π0(θ ) ln(π0(θ )) dθ

→ 0.

Plugging in An and applying Lemma 2, the second part of the integral of G2 becomes∫
|θ−θ0|≤δn

AnP (Y1, . . . , Yn|θ )π0(θ ) ln[AnP (Y1, . . . , Yn|θ )π0(θ )] dθ

=
∫

|θ−θ0|≤δn

exp(Ln(θ ) − Ln(θn))σ−1
n π0(θ ) ln

[
(Ln(θ ) − Ln(θn))σ−1

n π0(θ )
]
dθ
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=
∫

|θ−θ0|≤δn

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
σ̂−1

n π0(θ )

×
[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn) + ln σ̂−1
n + ln π0(θ )

]
dθ

=
∫

|θ−θ0|≤δn

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
σ̂−1

n π0(θ )

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
dθ

+
∫

|θ−θ0|≤δn

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
σ̂−1

n π0(θ ) ln σ̂−1
n dθ

+
∫

|θ−θ0|≤δn

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
σ̂−1

n π0(θ ) ln π0(θ ) dθ

= D1 + D2 + D3

We analyze the limiting behavior of G2 by using similar techniques as those in Walker (1969)
and Chang and Stout (1993). Assumption 1 states that π0(θ ) is Lipschitz continuous and positive
at θ = θ0. Hence, for |θ − θ0| ≤ δn, we have

1 − Kδn ≤ inf
|θ−θ0|≤δn

π0(θ )

π0(θ0)
≤ sup

|θ−θ0|≤δn

π0(θ )

π0(θ0)
≤ 1 + Kδn,

where K > 0 is a constant. Then

(1 + Kδn)D11 < π0(θ0)−1D1 < (1 − Kδn)D11,

where

D11 =
∫

|θ−θ0|≤δn

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
σ̂−1

n

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
dθ.

By Lemma 2, we know for |θ − θ0| < δn, we have sup |Rn| < εn. It is seen that D11 is bounded
above by

∫
|θ−θ0|≤δn

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 + εn)

]
σ̂−1

n

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − εn)

]
dθ,

and is bounded below by

∫
|θ−θ0|≤δn

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − εn)

]
σ̂−1

n

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 + εn)

]
dθ.

These upper and lower bounds can be viewed as multiples of the second central moments of
normal variables over an interval, provided that θ̂n is the mean and σ̂ 2

n is the variance. Since the
θ̂n is strongly consistent and σ̂n converges to 0 almost surely, these second central moments over
an interval will converge to the second central moments of normal variables. Thus,

Pθ0{ lim
n→∞ I [−1/2

√
2π (1 − εn)−3/2(1 + εn) < D11 < −1/2

√
2π (1 + εn)−3/2(1 − εn)] = 1} = 1.
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Since εn → 0 and δn → 0, we will find that D1 converges to −(1/2)π0(θ0)
√

2π with probability
1 as n → ∞.

Considering D3, for |θ − θ0| < δn, we can have, from Assumption 1, that π0(θ ) ln(π0(θ )) is
in an interval

(π0(θ0) ln π0(θ0) − h1(δn), π0(θ0) ln π0(θ0) + h2(δn)),

where h1(δn) > 0 and h2(δn) > 0 go to 0 as δn → 0. In fact, since

1 − Kδn ≤ π0(θ )

π0(θ0)
≤ 1 + Kδn,

and

ln(1 − Kδn) ≤ ln
π0(θ )

π0(θ0)
≤ ln(1 + Kδn),

h1(δn) and h2(δn) could be any absolute values of multiplication of these bounds as long as
h1(δn) ≤ h2(δn). Thus,

D3 < π0(θ0) ln π0(θ0)D31 + h2(δn)D31,

where D31 is

D31 =
∫

|θ−θ0|≤δn

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
σ̂−1

n dθ.

By Lemma 2,

Pθ0

{
lim

n→∞ I [
√

2π (1 + εn)−1/2 < D31 <
√

2π (1 − εn)−1/2] = 1
}

= 1.

Hence

(π0(θ0) ln π0(θ0) + h2(δn))D31 →
√

2ππ0(θ0) ln π0(θ0)

for large enough n, with probability 1, as εn → 0. By using the same argument,

D3 > (π0(θ0) ln π0(θ0) − h1(δn))D31,

and the right part of this inequality will converge to
√

2ππ0(θ0) ln π0(θ0) with probability 1, as
ε → 0. Therefore, D3 converges to

√
2ππ0(θ0) ln π0(θ0) for large n, with probability 1.

Now we move to the part D2. Let

B = −
√

2ππ0(θ0) ln In(θ0)1/2,

and let

B ′ = −
√

2π ln In(θ0)1/2
∫

|θ−θ0|≤δn

1√
2πσ̂n

exp

[
− (θ − θ̂n)2

2σ̂ 2
n

(1 − Rn)

]
π0(θ ) dθ.

First, we want to show the behavior of the integral. By Assumption 1, the Lipschitz continuity of
π0(θ ) and Lemma 2, for |θ − θn| ≤ δn, the integral is bounded above by

(1 + Kδn)(1 − εn)−1/2π0(θ0)

{



[(
θ0 − θ̂n + δn

σ̂n

)
(1 + εn)1/2

]

−


[(
θ0 − θ̂n − δ

σ̂n

)
(1 + εn)1/2

]}
,
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and is bounded below by

(1 − Kδn)(1 + εn)−1/2π0(θ0)

{



[(
θ0 − θ̂n + δn

σ̂n

)
(1 − εn)1/2

]

−


[(
θ0 − θ̂n − δ

σ̂n

)
(1 − εn)1/2

]}
,

where 
(·) is the distribution function of the standard normal distribution. Both the brackets in
the upper and lower bounds converge to unity with probability 1 as n → ∞. Hence the integral
part of B

′
converges to π0(θ0) with probability 1. Next, we show that

−D2 − B
′ → 0 almost surely,

and

B
′ − B → 0 almost surely.

From Assumptions 4 and 5 and the strong consistency of θn under regularity conditions, it follows
that ln In(θ̂n)1/2 − ln In(θ0)1/2 is equal to I

′
n(θ0)/In(θ0) (θ̂n − θ∗), for some θ∗ between θ0 and θ̂n.

By the regularity conditions, I
′
n(θ∗)/In(θ∗) is continuous and bounded in a neighborhood of θ0.

Thus, the strong consistency of θ̂n implies that ln In(θ̂n)1/2 − ln In(θ1/2
0 ) will converge to 0 with

probability 1. Then,

−D2 − B ′ = −
√

2π [ln In(θ̂n)1/2 − ln In(θ0)1/2]

×
∫

|θ−θ0|≤δn

1√
2πσ̂n

exp

[
− (θ − θ̂n)2

σ̂ 2
n

(1 − Rn)

]
π0(θ ) dθ.

Since the integral in the expression above will go to π0(θ0) almost surely, we have that −D2 −
B

′ → 0 with probability 1.
Next we will prove that B

′ − B converges to 0 almost surely. Notice that

B
′ − B = −

√
2π ln In(θ0)

[∫
|θ−θ0|<δn

1√
2πσ̂n

exp

[
− (θ − θ̂n)2

2σ̂n
2 (1 − Rn)

]
π0(θ )dθ − π0(θ0)

]
.

By applying the upper bounds and lower bounds for the integral and the Lipschitz continuity of
π0(θ ), B

′ − B is bounded below by

−
√

2π ln In(θ0)π0(θ0)((1 + Kδn)(1 − εn)−1/2 − 1)

×
{




[(
θ0 − θ̂n + δn

σ̂n

)
(1 + εn)1/2

]
− 


[(
θ0 − θ̂n − δn

σ̂n

)
(1 + εn)1/2

]}
,

and is bounded above by

−
√

2π ln In(θ0)π0(θ0)((1 − Kδn)(1 + εn)−1/2 − 1)

×
{




[(
θ0 − θ̂n + δn

σ̂n

)
(1 − εn)1/2

]
− 


[(
θ0 − θ̂n − δn

σ̂n

)
(1 − εn)1/2

]}

The brackets in the upper and lower bounds will converge to 1 for large n with probabil-
ity 1. By L’Hôpital’s theorem, ((1 − Kδn)(1 + εn)−1/2 − 1)/1/ln n converges to 0. Similarly,
((1 + Kδn)(1 − εn)−1/2 − 1)/1/ ln n converges to 0. Since ln(In(θ0)) is O(ln n), then we have that
both the upper and lower bounds converge to 0 almost surely. Thus B

′ − B will converge to 0.
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Finally, combining all the results above,

SH (πn) − (− ln In(θ0)1/2) =

−
∫

πn(θ ) ln πn(θ )dθ − (− ln In(θ0)1/2)

= − G1

AnP (Y1, . . . , Yn)
+ G2 − (− ln In(θ0)1/2)

= G2 − D1 + D3

AnP (Y1, . . . , Yn)
− D2

AnP (Y1, . . . , Yn)
−

√
2ππ0(θ0)√
2ππ0(θ0)

(− ln In(θ0)1/2)

→a.s. ln[
√

2ππ0(θ0)] − −1/2
√

2ππ0(θ0) + √
2ππ0(θ0) ln π0(θ0)√

2ππ0(θ0)
+ 0

= 1/2 + ln
√

2π.

Theorem 1 shows that for any sequence of items, the difference between the Shannon entropy
and − ln In(θ0)1/2 converges to a constant with probability 1, as n → ∞. Because of the strong
convergence of ln In(θ̂n), combining Theorem 1,

SH (πn) − (−ln In(θ̂n)1/2) → 1/2 + ln
√

2π almost surely.

The only way to guarantee the difference as a constant is to optimize SH (πn, Yn) and −ln In(θ̂n)
in the same direction. Therefore minimizing the Shannon entropy means to maximize the In(θ̂n).
Hence, to minimize the ESHj (πn,j ) is to minimize SH (πn,j ), which is meant to maximize the
In+1(θ̂n).
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