
Innovations in Systems and Software Engineering
https://doi.org/10.1007/s11334-024-00581-2

ORIG INAL ART ICLE

SENSE: software effort estimation using novel stacking ensemble
learning

Anupama Kaushik1 · Kavita Sheoran2 · Ritvik Kapur1 · Nikhil Bhutani2 · Bhavesh Singh2 · Harsh Sharma1

Received: 29 May 2023 / Accepted: 28 August 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
The volatile factors involved in software cost estimation have long been an occlusion for the software development life cycle.
The inaccuracy they lead to during the estimation process has had an implacable effect on the stakeholders concerned. This
can be mitigated by using machine learning algorithms to estimate the cost, which significantly reduces the volatility of the
process and has more reliable results. Thus, implementing stacking on various datasets with SVR, LightGBM, K-nearest
neighbours and Random Forest in level-0 and Ridge Regression in level-1 has given highly accurate results. The SENSE-
Software Effort Estimation using Novel Stacking and Ensemble learning- model proposed in this study is substantiated on
six datasets China, Kemerer, Albrecht, Nasa93, ISBSG and Maxwell and evaluated using MAE, RMSE, R2, PRED and
MMRE as evaluation metrics. We find that the proposed model displays competent performance in experimental evaluation
and statistical analysis in comparison to the other studies used in the work.

Keywords Software cost estimation · Ensemble learning · Stacked generalisation · Bayesian optimization · Random forest ·
LightGBM · K-nearest neighbours

1 Introduction

Software cost estimation is an effective technique to compile
all the expenses related to software development.

Without a precise cost estimate, the resources needed
will either be underestimated, which will require more time,
involve fewer developers, and result in inadequate training
and study, or theywill be overestimated,whichwill be expen-
sive for the customer and wasteful for the software company.
However, the failure of the project will occur in either situ-
ation. Software cost planning is, therefore, one of the most
critical phases of software development. Due to numerous
factors that must be considered, it is a challenging process
[1], leading to multiple models and approaches for software
cost estimation [2].

B Anupama Kaushik
anupama@msit.in

B Kavita Sheoran
kavita.sheoran@msit.in

1 Department of IT, Maharaja Surajmal Institute of
Technology, New Delhi, India

2 Department of Computer Science, Maharaja Surajmal
Institute of Technology, New Delhi, India

Software cost estimation is challenging due to many rea-
sons: highly changing nature of software due to changes in
requirements; lack of historical data which can serve as the
basis of estimation; dependencies on new technologies and
platforms making software complex; lack of standardization
in cost estimation techniques; and reliance on human factors
leading to biases and errors. Thus, by handling complicated
factors, lowering human bias, saving time, and enhancing
accuracy through data-driven predictions, machine learning
improves software cost estimation. In order to facilitate more
informed decision-making and improved project manage-
ment, it provides scalability, predictive analytics, real-time
updates, and configurablemodels. It integrates smoothlywith
contemporary technologies.

In order to overcome these challenges researchers are con-
tinuouslyworking and enhancing their estimation techniques
which can provide more accurate estimations.

So, the objective of the current study is to find a soft-
ware cost estimation model with maximum efficiency and
accuracy. The suggested solution is through the proposed
technique “SENSE”. This technique uses stacking as its base
and it combines the strength of the techniques random forest,
K-nearest neighbors, SVR, Light GBM and ridge regression.
Due to variety of techniques the stackingmodel is able to cap-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-024-00581-2&domain=pdf

A. Kaushik et al.

ture the diversity existing in software project data. It enhances
robustness by lowering the impact of weaknesses of various
models individually. Stacking also enables to handle the com-
plex relationships and dependencies present in the project
data which is difficult for an individual model.

Initially software cost estimation started with algorith-
mic models which comprises of COCOMO [3], SLIM [4],
SEER-SEM [5], Function Point [6] and COSMIC [7]. But
these models did not stand for a longer time due to various
limitations [8]. These models were not successful as they
required definite inputs which was difficult to receive during
initial stages of software development. They were unable
to handle the categorical inputs and were deficit in reason-
ing capabilities. So, non-algorithmic models took over based
on soft computing techniques comprising of Fuzzy Logic,
Artificial Neural Networks, Evolutionary Computation and
manymore. A vast amount of workwas done in this direction
[9–12].

Now-a-days researchers are moving towards ensembling
models as they have their own unique strength by combining
multiple models. All the techniques given for software cost
estimation in the past have their own strengths and weak-
nesses. There is no standard technique present, so the search
for new technique continues for more accurate predictions.

This paper is organized as follows: In Sect. 2 a brief
description of related work is given which motivated the
framework of this study. Section 3 highlights and describes
all the background techniques used in this study, followed
by Dataset Description and preprocessing in Sect. 4. Pro-
posed Work is explained in detail in Sect. 5 with all the steps
involved in the SENSE framework. In Sect. 6, the Evaluation
Criteria which are used to compare and analyze the accuracy
of the SENSE model are described. In Sect. 7 Experimental
Evaluation is presented which provides tabular and graphical
representation of the results, followed by Statistical Analysis
in Sect. 8. Threats to validity are discussed in Sect. 9. The
study is finally concluded in Sect. 10.

2 Related work

For the goal of estimating software costs, there has been
a lot of prior research, and various machine learning mod-
els have also been put forward. The SABE model, proposed
by Kaushik et al. [13], puts forward an analogy-based
estimation (ABE) method using stacking, which is a solu-
tion function aimed to ameliorate analogy-based estimation
prediction. It is evaluated on standard accuracy (SA) and
median magnitude of relative error (MdMRE) among other
evaluationmetrics. InRandomForest-BasedStackedEnsem-
ble Approach by Priya Varshini et al. [14], the first-level
classifiers considered were, Random Forest (RF), decision
tree, Lasso and Elastic-Net Regularized Generalized Linear

Models (Glmnet), and SVMRadial. Second level classifier
used was Random Forest and resulted in proposed stacking
model providing better results than single models. Sam-
path Kumar and Venkatesan [15] utilised the Base Learners-
Neural Network, Linear Regression, Random Forest Regres-
sion and for meta learners the Support Vector Regression
was used. Using PRED and the mean magnitude of rela-
tive error (MMRE) they observed an improved error score.
Sakhrawi et al. [16] used projects based on the scrum frame-
work for their publication upon which the first model uses
three ML techniques-Random Forest Regressor (RFR), Lin-
earSVR, and Decision Tree Regressor (DTRegr), and the
second model uses StackingRegressor. This study achieved
the following results- Mean Square Error (MSE) � 0.406,
MAE (Mean Absolute Error) � 0.206, and Root Mean
Square Error (RMSE) � 0.595. In Software enhancement
effort estimation using correlation-based feature selection
and stacking ensemble method Sakhrawi et al. [17] incor-
porated two models. The first model uses GBReg (Gradient
Boosting Regressor), Linear SVR, M5P and RFR. The sec-
ond model uses all algorithms in the first model with the
exception of M5P. They used the same evaluation metrics
as used in their previous study [16] but this time results
show that the software estimation using Correlation-based
feature selection is improved and the second has better
accuracy than the first one with M5P. Chukhray et al. [18]
selected and trainedweak predictors in the first stage- support
vector machine, K-nearest neighbour classifier and multival-
ued linear regression models. Random forest was employed
in the boosting ensemble, which uses the boosting algo-
rithm to integrate these inconsistent results across several
iterations into a single strong prediction result. They used
R-squared error, MAE, and RMSE as evaluation metrics.
The new stacking model, which is built on machine learning
techniques and uses random forest as a meta-algorithm, is
demonstrated through this experimental study to have a min-
imum of 1.03 times greater RMSE than competing models.
Suresh et al. [19] proposed a pragmatic ensemble learning
approach for effective software effort estimation where the
performance is compared to regression models such as K-
nearest neighbour, stochastic gradient descent, decision tree,
random forest regressor, bagging regressor, gradient boost-
ing and Ada-boost regressor. MAE, MSE, RMSE, and R2

were used as evaluation metrics. Their findings show that
the gradient boosting regressor model is effective, as proven
by its accuracy of 98% with the COCOMO’81 dataset and
93% with the China dataset. The research by Alzahami and
Khan [20] uses BestFit and Genetic Algorithm for feature
selection and bagging with base learners- SMOReg, Lin-
ear regression, MLP, REPTree, random forest, and M5Rule.
They use MMRE and PRED (25), (50) and (75) as eval-
uation metrics. According to the results, the bagging M5
rule feature selection using a genetic algorithm is the best

123

SENSE: software effort estimation using novel stacking ensemble…

approach for forecasting attempts with an MMRE value of
10%. PRED (25), (50) and (75) correspondingly have values
of 97%, 98%, and 99%. Pospieszny et al. [21] utilised Neural
Networks, Support VectorMachines, andGeneralised Linear
Models for their software project effort and duration estima-
tion research. They used various evaluation metrics such as
MAE, MSE, RMSE, R2, MMRE, PRED among others and
came to the conclusion that the results of the ensemble mod-
els are promising and accurate in comparison to other models
and these ensemble models are appropriate for deployment.
Research by Rijwani and Jain [22] use Artificial Neural Net-
works, Back Propagation training and Multi Layered Feed
Forward Neural Network. They use MSE and MMRE as
evaluation metrics. It was noted that the effort estimates pro-
duced by the neural network model were noticeably better
than those produced by the widely used algorithmic model
COCOMOII. The capacity to combine traditional mathemat-
ical models and expert knowledge in a common architecture,
which has broad applicability in software cost estimation,
was another excellent advancement of employing neural net-
work models. Sree and Rao [23] use Adaptive Neuro Fuzzy
Inference System (ANFIS), Fuzzy Logic, Neural Networks
(NN), Support Vector Machines (SVM) and Random For-
est in their research. The ANFIS Model provided better
results compared to other models. Hidmi and Sakar [24]
apply the algorithm on desharnais and maxwell datasets and
use K-nearest neighbours and support vector machine get-
ting an accuracy of 91.35% on desharnais and 85.48% on
maxwell dataset. Kaushik et al. [25] applied deep belief net-
work (DBN) with antlion optimization (ALO) technique for
effort estimation in both agile as well as non-agile software
development environments. Their approach is validated on
four non-agile datasets and three agile datasets. They con-
cluded that DBN-ALO provided good results for both agile
and non-agile development projects. Also, Kaushik et al. [26]
used whale optimization algorithm (WOA) for fine tuning
the parameters of deep belief networks (DBN). They applied
their technique on four software effort estimation datasets.
Their technique provided better results in comparison to the
technique, where DBN is fine-tuned with back propagation.

Jose Thiago H. de A. Cabral and Adriano L.I. Oliveira
[27], propose dynamic ensemble selection (DES) models
for software effort estimation which is heterogeneous and
composed of regressors and classifiers. In the study, the
regression models are trained using training data. The appro-
priate regression model is chosen by the trained classifier.
The final prediction is given by merging chosen regressors
chosen by the classifiers. The results demonstrated that the
combination of regressors outperforms the individual regres-
sors.

Jose Thiago H. de Cabral et al. [28] presented a liter-
ature review for ensemble effort estimation from 2016 to
2020. They concluded that machine learning is widely used

in constructing ensemble effort estimation models. Also, the
ensemble models outperform the individual models. They
explored the research opportunities and found that the ensem-
ble dynamic selection models have wider scope.

Abnane et al. [29] propose ensemble imputation technique
for missing data in software effort estimation dataset. This
technique highly improved estimation accuracy. The study
proposes 11 heterogeneous imputation techniques which are
evaluated over 6 datasets. The authors use K-nearest neigh-
bors, expectation maximization, support vector regression
(SVR) and decision trees (DTs) techniques to construct
ensembled imputation techniques. The authors concluded
that the ensembled imputation demonstrated at par perfor-
mance than the single imputation technique.

Syed Sarmad Ali et al. [30], frame an ensembled effort
estimation model by combining Use Case Point, Expert
Judgment (EJ), and Artificial Neural Network (ANN). They
used linear combination rule to combine these models. Their
model is evaluated on International Software Benchmarking
Standards Group (ISBSG) dataset. The authors concluded
that ensembled technique provided better results than stan-
dalone techniques.

Wasiur Rhmann et al. [31], propose weighted ensemble
of hybrid search-based algorithms using firefly algorithm,
black hole optimization, and genetic algorithm. The authors
compared their techniques with commonly known ML algo-
rithms and ML based ensemble techniques. They found that
weighted ensembles of hybrid search-based algorithms based
on metaheuristic techniques performed at par.

Rhmann [32] provided four hybrid ensembled techniques
for effort estimation. The techniques used are fuzzy and
random sets-based modeling (FRSBM-R), symbolic fuzzy
learning based on genetic programming (GFS-GP-R), sym-
bolic fuzzy learning based on genetic programming grammar
operators and simulated annealing (GFS_GSP_R), and least
mean squares linear regression (LinearLMS_R). The author
concluded that the ensembled hybrid search-based algorithm
outperformed themachine learning-based ensemble bagging,
vote, and stacking.

Ajay Jaiswal et al. [33], proposeAHybridCost Estimation
Method for Planning Software Projects Using Fuzzy Logic
and Machine Learning. The study uses specific datasets
(Desharnais, Kitchenham, and Maxwell), which might not
represent the diverse range of software projects encountered
in practice. This could limit the generalizability of the results.
Additionaly, Combining fuzzy logic with machine learning
models can be computationally expensive. The Ensemble
model achieved amaximumR-squared error of 0.9307893 in
the Kitchenham dataset and had a Root Mean Squared Error
of 0.2707119. Akshay Jadhav et al. [34], propose Multi-Step
Dynamic Ensemble Selection to Estimate Software Effort. In
their first approach using KNORA, as the number of features
increases, the distance metrics used by K-nearest neighbor

123

A. Kaushik et al.

algorithms become less effective. This phenomenon, known
as the curse of dimensionality, can lead to poor performance
in high-dimensional spaces. In their second approach using
DES methods, there were two limitations. One, sensitivity to
parameter tuning wherein, a careful tuning of several param-
eters is requiredwhichmakes it more susceptible to improper
tuning and thus, can lead to suboptimal performance. Two,
DES methods assume that the local competence of models
around the new instance is indicative of their global compe-
tence. This locality assumption can fail in cases where the
data distribution is non-uniform or when there are abrupt
changes in the data characteristics.

Anca-Elena Iordan [35] proposed an optimized LSTM
neural network for estimation of software development
effort. The study has certain drawbacks, particularly for small
datasets with low dimensionality and few observations, as
Albrecht and Kemerer. Future research is required to deter-
mine the cause of this mismatch and the best optimization
strategy for searching tiny datasets. Wasiur Rhmann et al.
[36] proposedhybrid search-based ensemble techniquebased
on metaheuristic algorithm. The incorporation of several
project types in the datasets does not eliminate the low but
persistent threat to external validity. This implies that the
findings might not apply to all software projects, particu-
larly those that fall beyond the purview of the less number of
datasets that were used.

The above-mentioned studies posit the motivation behind
this paper, but the extent of possible studies is not just lim-
ited to these techniques. There is immense scope of new
techniques that can be developed in the future with higher
accuracies and better results. However, these improvements
are based on the current work being carried out which is, in
and of itself, an improvement with respect to the previous
works.

3 Background techniques

In this section all the techniques used in the SENSE model
are detailed. Stacking in subSect. 3.1, Ridge Regression,
Random Forest, LightGBM and K-nearest neighbours are
explained in subSect. 3.2, 3.3, 3.4 and 3.5 respectively.

3.1 Stacking

Stacking, sometimes called stacked generalisation, was first
posited in 1992 by Wolpert [37]. It is a method of passing
data from one group of generalisers to another beforemaking
the final prediction. Stacking is a technique wherein; various
models ofmachine learning are ensembled together. In stack-
ing, the various models of machine learning are not learning
the entire lexicon of the problem but rather only a certain
extent of it. These different models of machine learning are

applied to the sameproblem together. Eachmodel ofmachine
learning applied generates an intermediate prediction, and
upon adding another model, the latter learns from the inter-
mediate predictions of the former. The last model of machine
learning that learns from the intermediate predictions of the
previous models can be visualised as being stacked atop the
previous intermediate models.

3.2 Ridge regression

Linear regression [38] is a popular statistical machine-
learning model based on supervised learning. It is used for
the predictive analysis of quantifiable values. It is called lin-
ear regression since it depicts a linear correlation between a
dependent variable and more than one independent variable.
It shows how, in accordance with independent variables, the
dependent variable changes. In this study, the use of ridge
regression has beenmade for the purpose of tuning themodel
in order to examine data that suffer from multicollinearity.
Due to multicollinearity, we have more variance and unbi-
asedness, which leads the predictions to be farther away from
the values that are actual. Therefore, through ridge regression
[39], a minuscule amount of bias is introduced, resulting in
a notable reduction in variance, portending to improved pre-
dictions.

3.3 Random forest

One of the types of supervised machine learning algorithms
are tree-based algorithms. In these algorithms, the predic-
tions are usually made on a dataset that is in tabular form.
Random Forest is an example of a tree-based algorithm. In
Random Forest Regressor [40], the model of machine learn-
ing deploys the same algorithm on different subsets of the
data. RandomForest is the namegiven to the techniquewhere
the bagging method is implemented on Decision trees. This
technique lays the issue of overfitting to rest by devising a
‘forest’, gathering several decision trees together. The output
of every decision tree is considered, and the final prediction
results either from the predominant output of the decision
trees or an average of the outputs.

3.4 LightGBM

By training a series ofweakmodels that successively improve
on the shortcomings of the one before it, boosting algorithm
[41] aims to increase the predictive capability. Several base
machine learning algorithms are utilised to create predictive
models which are weak. The weak models are merged, after
many successive repetitions by the boosting algorithm, into
a predictive model which is strong. Gradient Boosting is one
of the types of boosting algorithms. The primary concept
underlying this method is to create models in succession

123

SENSE: software effort estimation using novel stacking ensemble…

while attempting to minimise the flaws of the prior model
accomplished by establishing a new model on the mistakes
of the prior one. Gradient boosting technique [42] involv-
ing the use of decision trees for weak learners is termed as
LightGBM. By using an autonomous feature selection and
concentrating on boosting instances with greater gradients,
LightGBM expands the gradient boosting technique. Light-
GBMis applied basedonGradient-basedOne-SideSampling
(GOSS) and Exclusive Feature Bundling (EFB) [43].

Gradient-based One-Side Sampling considers the training
samples whose gradients are large to heighten the accuracy
and decrease the complexity. Exclusive Feature Bundling
bundles the mutually exclusive feature with a sparse value
changing the complexity of histogram thereby the speed is
increasedwithout compromising the accuracy. Together, they
enable themodel to functionwell and provide it an advantage
over competing gradient boosting algorithms.

3.5 K- nearest neighbour

In this study, the K-nearest neighbour algorithm [44] is used
as a classification algorithm. K-nearest neighbours (KNN)
is a supervised learning technique that may be utilised for
classification and regression.KNN tries to forecast the appro-
priate class for the test data by calculating the distance
between all the training points and the test data. The KNN
classifies newly input data based on its similarity to pre-
viously trained data and organises the data into clusters or
subsets.

4 Dataset description and preprocessing

Section 4 describes the datasets used in this study in sub-
Sect. 4.1 and the data preprocessing methods in subSect. 4.2.

4.1 Dataset description

The use of six datasets has beenmade for the purpose of eval-
uating the SENSE model. The datasets are China, Maxwell,
ISBSG, Nasa93, Albrecht and Kemerer as shown in Table 1.

The China dataset [45] contains records of 499 projects
and has 18 attributes. In this paper 9 out of 18 attributes have
been selected. The Albrecht dataset [46] has the records of
24 projects in an 8-attribute table.

Out of these 8 attributes 6 have been selected. The
Maxwell dataset [47] incorporates 62 projects’ records and
has a total of 27 attributes and 9 have been selected among
them. The Kemerer dataset [48] has records from 15 projects
and 7 attributes. 5 attributes were selected among them. The
ISBSG dataset [49] contains more than 1000 samples and 5
out of 130 attributes have been selected for further process-
ing. The Nasa93 dataset has records from various across 93

projects of NASA. It has 17 attributes, out of which 5 have
been selected.

4.2 Preprocessing

Machine learning povides learning and developing an under-
standing on a machine or computer level by various algo-
rithms. This happens when the algorithms extract certain
attributes or characteristics of the data from which ‘learn-
ing’ has to be done. For the computer to be able to understand
these characteristics, they must be within the lexicon of
computer understanding, which is numbers. Therefore, data
preprocessing inmachine learning is the conversion of unpro-
cessed characteristics of data into a form which enables
learning and understanding by the algorithm. Data prepro-
cessing involves multiple tasks such as exploratory data
analysis, feature engineering and hyperparameter tuning.
Preprocessing in this study is detailed in below subsections.

4.2.1 Exploratory data analysis

Exploratory data analysis is the procedure used to interpret
the available raw data. Understanding the intuition behind
the data, what it represents, checking for the presence of
aberrations and studying the basic premise of the data and
thereafter, putting forward graphical and statistical analysis.

For this study, first the data is checked whether it con-
tains any null and/or missing values using the Pandas library
[50] in python [51]. It is observed that out of all the
datasets used in the study the ISBSG dataset contained
a few null/missing values in some features. These were
then categorized on the basis of their feature definition,
feature correlation/importance and type of data in these
columns. Resultantly, the null/missing values in least impor-
tant columns were simply dropped. And the null/missing
values in relevant columns were imputed by computing the
average(median) of non- null values.

Second, the df.describe() function is used which provides
a statistical insight into the data showing the count, minima,
maxima, mean, standard deviation and the 25th, 50th and
75th percentile points in the data. This statistical information
helps in understanding the range of outliers for the particular
dataset. Third, for further visualisation, seaborn library [52,
53] provides a means for feature correlation in the form of
a heatmap. Correlation is a tool which further informs about
which features can be dropped. Darker shades represent a
stronger or positive correlation and lighter shades represent
weaker or negative correlations. The stronger shades are usu-
ally kept, and the weaker ones are dropped.

123

A. Kaushik et al.

Table 1 Description of dataset
records Data set name Features Count of projects Effort data

Min Max Mean Median Std deviation

China 18 499 26 54620 3921.05 1829 6480.36

Albreeht 8 24 0.5 105.2 21.875 11.45 28.42

Maxwell 27 62 583 63694 3223.21 5139.5 10499.9

Ke merer 7 15 23.2 1107.31 219.25 130.3 263.06

Nasa93 17 93 8.4 8211 624.41 252 1135.93

ISBSG 130 6760 8 150040 4963.67 193S 10413.32

4.2.2 Feature engineering

After exploratory data analysis, feature engineering is carried
out. Any tangible input that may be employed in a predictive
model is referred to as a ‘feature’. The power of an engine,
number of lines of code, duration required to complete a
task et cetera, are all instances of a ‘feature’. The procedure
of choosing, altering, and converting original data into fea-
tures that may be utilised in the model’s learning is known as
feature engineering. To enable machine learning to operate
effectively on tasks that are new, better features may need
to be developed and trained. It has the potential to generate
new features with the objective of streamlining and acceler-
ating data transformations while simultaneously improving
accuracy of the model. Transformation, Scaling and Feature
Selection are the procedures involved in feature engineering.

• Transformation—The skewness of the data is eliminated
via log transformation [54]. Data that deviates from the
symmetric bell—shaped curve are said to be skewed.
Right-skewed data are frequently transformed using log
transformation. We apply transformation to the portions
of our dataset with skew values greater than 1.0.

• Scaling—By subtracting themedian and afterwards divid-
ing by the inter—quartile (75% value–25% value), a tool
in the Sci-Kit Learn library [55], Robust Scaler [56] mod-
ifies the feature vector. Unlike MinMaxScaler, the data is
not scaled into a specified interval by Robust Scaler. The
exact definition of the scale is not met. After Robust Scaler
is used, the range for each feature is greater than it was
with MinMaxScaler. Compared to MinMaxScaler, Robust
Scaler was employed to decrease the impact of outliers.

• Feature selection—Features in a project ofmachine learn-
ing are the variables that have been input in the project. The
dataset’s columns each represent a feature. The process
of picking just the characteristics that have a substan-
tial impact on the output of the machine learning model
and discarding the features that have little or no impact
is known as feature selection. This is a process which
involves Feature Correlation, Feature Importance and Fea-
ture Selection [57]. Feature Correlation heatmap in Fig. 3

has been used to draw out the relation between a pair of
characteristics of data items within the dataset. Feature
Importance using Random Forest algorithm, as shown in
Eq. (1), considers the relevancy of features. Random forest
has a couple hundred decision trees that have a few obser-
vations of data items achieved randomly. In Eq. (1), the
value of feature importance in a random forest is calcu-
lated by averaging it over T, the total trees’ number. In the
equation, RF f j j is the significance of feature j deliberated
from the trees in randomforestmodel andnorm f j jk ,in tree
k is normalized feature importance for j.

RF f j j �
∑

k∈alltrees norm f j jk
T

(1)

4.2.3 Hyperparameter tuning

After concluding the feature engineering process, hyperpa-
rameter tuning is done. The information that controls the
training process itself is included in hyperparameters. These
hyperparameters have no direct relationship with the train-
ing data. Determining the hyperparameters of an algorithm
in order to procure a level of performance which works in
the most efficient way on a validation set is the objective of
hyperparameter tuning.

In order to select the most promising hyperparameters to
evaluate the objective function, which is the validation error
of a model utilizing hyperparameters, Bayesian hyperparam-
eter tuning [58] is an effective tool for optimization of costly
or expensive functions. Either the maximized value is to be
found for a costly function or the minimized objective func-
tion score, such as for RMSE. As opposed to grid or random
search, Bayesian techniques retain note of previous assess-
ment outcomes, which they use to build a probabilistic model
linking hyperparameters to a probability of a score on the
objective function [59]. Bayesian hyperparameter optimiza-
tion is based on Bayes’ rule which helps in predicting an
event Y , given an event X denoted as P(Y|X). Application of

123

SENSE: software effort estimation using novel stacking ensemble…

Bayes’ rule for optimization of hyperparameters is depicted
in Eq. (2),

P(V |H) � P(H |V)P(V)

P(H)
(2)

where P(V|H) is the probability of the value to be maxi-
mized/minimized given the set of hyperparameters, P(H|V)
is the probability of a particular set of hyperparameter when
the given value is maximized/minimized. P(V) is the initial
value and P(H) is the probability of receiving that particular
set of hyperparameters.

5 Proposed work

In this section, the proposed SENSEmodel is explained. Fig-
ure 1 depicts the block diagram of the steps involved in this
study, along with a detailed overview in Table 2, and further
explanation mentioned below. As mentioned, in Table 2, we
have configured the stackingmodel uponK-fold cross valida-
tion, using SVR, LightGBM, Random Forest and K- nearest
neighbours as base (level-0) models and Ridge Regression
as meta (level-1) models. The reason for this selection is to
create each layer having a specific purpose and adding to
the overall functionality and strength of the structure. Base
models in this study are particularly diverse, ranging from
classification to regression. Each base model algorithm has
a distinct and nuanced way of interpreting the patterns in the
data and thus, forwarding these results as inputs to the next
level. Meta model acts as the aggregator which combines the
inputs received from the diverse basemodels and learning the
weaknesses and strengths of predictions of the base models
leading to better final outputs.

For the purpose of explaining the methodology of this
study in a detailed and quantitative manner, the China dataset
[45] has been taken as a suitable example. When the China
dataset was loaded into the pandas [50] dataframe, it con-
sisted of 18 features (columns).

Out of the 18 columns, ‘ID’ and ‘Dev.type’ were redun-
dant and removed at the beginning of exploratory data
analysis.Before removing the skewness of featureswith skew
values greater than two, there were some significant features
with exceptionally high skewness like– ‘AFP’ with a skew
value of 9.80, ‘Input’ with skew value 14.38 and ‘File’ with
7.47 skew value.

Upon the removal of skewness using log transformation
[54] there was a drastic reduction in the skew values, somuch
so that all the features in the dataset had a skewness between
− 1 and 1. Ideally, the range of skewness should lie between
− 0.5 and 0.5. In this study, because of the use of log transfor-
mation, a substantial majority of features in the China dataset

Fig. 1 Representation of methodology

had skew values in the ideal range thus, effectively removing
outliers in the data.

To normalise the features, scaling was performed using
the RobustScaler() function [56] bringing all values of the

123

A. Kaushik et al.

Table 2 Proposed SENSE framework

Step: 1 Data is extracted from a file with.arff format and loaded
into the dataframe of pandas library

Step: 2 To interpret and understand raw data Exploratory data
analysis is performed in the following steps:

Step: 2.1 Checking and handling null values in the entire
dataframe

Step: 2.2 Eliminating the skewness with value>1, if the need
exists, via log transformation

Step: 2.3 Establishing whether a need to normalise the data exists,
performing scaling to normalise the data and deciding
which scaling algorithm should be used

Step: 2.4 Using df.describe() to delineate the following statistics
regarding the dataset- count, minima, maxima, mean,
standard deviation and the 25th, 50th and 75th
percentile points in the data

Step: 3 Depicting correlation between various pairs of
characteristics of the dataset using heatmap as means
to visualise the data

Step: 4 Considering the relevance of the characteristics of the
dataset using random forest for feature importance

Step: 5 Selecting characteristics or columns of the dataset which
have a substantial impact on the output and discarding
redundant or insignificant columns for the purpose of
feature selection

Step: 6 Splitting the dataset in training data and testing data in
80:20 ratio respectively

Step: 7 Hyperparameter tuning of the base and meta models of
the stacking algorithm using BayesSearchCV()
function [46] as shown in Table 3

Step: 8 Configuring the stacking model upon K-fold cross
validation, using SVR, LightGBM, Random Forest
and K- nearest neighbours as base (level-0) models
and Ridge Regression as meta (level-1) models

Step: 9 The proposed model is evaluated on MMRE, R2, MAE,
PRED and RMSE evaluation metrics

features in the desired range. The data is scaled between its
25th and 75th percentile, i.e., the interquartile range, remov-
ing the median.

Statistical description of the dataset was obtained using
the df.describe() function. Random forest enabled fea-
ture importance in Fig. 2 is used to understand the rel-
evance of the dataset’s features. A feature correlation
heatmap in Fig. 3 depicts the correlation between differ-
ent features of the dataset. Feature correlation and feature
importance [57] selected the final, most impactful fea-
tures in the dataset. These features were– ‘AFP’, ’Input’,
’File’, ’Added’, ’PDR_AFP’, ’PDR_UFP’, ’NPDR_AFP’
and ’NPDU_UFP’.

After feature selection, hyperparameter tuning was per-
formed in order to determine those parameters of an algo-
rithm which have the highest level of performance. The
hyperparameter tuning is performed using BayesSearchCV()
function [60]. This function has parameters- ‘estimator’,

Fig. 2 Feature importance

and ‘search_spaces’. The ‘estimator’ refers to an object or
instance of a machine learning algorithm. The ‘search space’
specifies the range or possible values that each hyperparam-
eter can take during the optimization process.

Hyperparameter tuning using BayesSearchCV() function
[60] also gives the value of the selected parameter from the
predefined range, as depicted in Table 3. In the base layer of
the stackingmodel in this study, SVR,RandomForest regres-
sor, K-neighbours neighbours andLightGBMalgorithms are
used, and Ridge Regression in meta layer.

Parameters for Random Forest Regressor [61] were,
max_features set at a value 8– which, when finding the most
appropriate split, gives information about the number of fea-
tures; min_samples_leaf set at the default value 1– giving
the least number of samples needed in order to be present
at the leaf node and has a smoothening effect on the model;
min_samples_split with the default value 2– which gives the
very minimum of samples needed to separate the internal
nodes; criterion– it is the function to assess a split’s quality,
for the mean squared error ‘squared_error’ is the criteria that
is supported which reduces the L2 loss, and n_estimators set
at the default value 100, is nothing but the least number of
trees in the forest.

The max_depth parameter is set at 16. It is the paramount
depth of the tree for base learners,which,when set at less than
or equal to 0 has no limit; learning_rate set at 0.05071, is the
rate of learning for boosting algorithm; n_estimatorswith the
value 309 defines the quantity of boosted trees to be fitted,
and num_leaves set at 2090, specify the greatest number of
tree leaves for the base learners. All these parameters were
used as a part of the Light GBM algorithm [62].

In the SVR algorithm [62], the parameters determined
were, C with a value of 41.19– a regularisation parameter,
which has a positive value only and regularisation’s strength
happens to be inversely proportional to C; epsilon with a
0 value– which establishes a tolerance margin without any
penalty in relation to the training loss function and it is also
definitely positive, and kernel – which defines the type of

123

SENSE: software effort estimation using novel stacking ensemble…

Fig. 3 Feature correlation
Heatmap

kernel deemed appropriate for use in the algorithm, in this
study the default ‘rbf’ kernel was used.

The n_neighbours parameter set at the value of 5 was
used in the K-nearest neighbours [64] algorithm. For K-
neighbours queries, this parameter describes the number of
neighbours to be used by default.

In themeta layer, for the Ridge Regression algorithm [65],
parameters determined were- alpha with value of 0.00494–
which, while controlling the strength of regularisation, must
be a positive float; fit_intercept with boolean value True–
dictating that the intercept is to be fitted for the model in
this study, and solver set as ‘lsqr’, which makes use of iter-
ative procedures and it is the quickest to use in routines for
computation.

When hyperparameter tuning is complete, these parame-
ters are put in the stacking regressor function. K-fold cross
validation [66] is performed in the stacking regressor. K-fold
cross validation is when the dataset is split into K equal sized
groups. These groups are used to train and test the model K
number of times. The portions used to train and test the mod-
els are changed once during each iteration until you reach
the Kth-iteration. In stacking regressor K � 3 is used. Each
time, the portions of the dataset are changed while train-
ing and testing during each one of the K iterations. After the
stacking model is run, the output is evaluated onMMRE, R2,

MAE, PRED and RMSE evaluation metrics detailed below
in Sect. 6.

6 Evaluation criteria

The following extensively used evaluation criteria have been
employed to analyse and compare the accuracy of the SENSE
model.

The difference between a quantity’s estimated value and
its actual value is known as the absolute error (AE). Absolute
error, in Eq. (3), is insufficient when used as a standalone
quantity because it provides no information about the sig-
nificance of the error. But it is still extensively used in the
calculation of various other evaluation metrics.

AE j � ∣
∣γ j − γ̂ j

∣
∣ (3)

In the above equation,AE j is the absolute error, γ j is the
estimated value and γ̂ j is the actual or original value.

123

A. Kaushik et al.

Table 3 Obtained Hyperparameter values

Models used China Albreeht Maxwell Kemerer Nasa93 ISBSG

Random forest criterion squared_error squared_error squared_error squared_error squared_error absolute_error

max features 8 1 5 2 4 4

min_samples_leaf 1 1 1 1 2 1

min_samples_split 2 2 2 3 2 2

n estimators 100 200 163 200 1640 2000

Light GBM learning_rate 0.05 071 0.0S405 0.01947 0.61079 1.30099 0.03179

maxdepth I6 39 36 42 46 25

min_data_in_leaf 13 3 4 3 18 0

nestimators 309 37 450 31 461 2000

num leaves 2090 2031 2363 1099 1445 20

SVR C 41.19937 3.23919 39.24395 43.69557 100.00000 S.4035S

epsilon 0 0 0.94164 0.0S373 0.60867 0.42375

kernel rbf rbf poly poly rbf rbf

KNN nneighbors 3 2 2 2 6 3

Ridge alpha 0.00494 1.533S6 0.00494 0.04597 0.04597 0.00494

fitintercept True True True True True True

normalize True True True True True True

solver Isqr saga Isqr Isqr Isqr Isqr

The average of absolute errors of every test sample is given
the name of Mean Absolute Error (MAE) [67]. In Eq. (4), k
is the number of test samples and j is the iteration number.

MAE � 1

k
×

k∑

j�1

AE j (4)

Root Mean Square Error (RMSE) is measured by consid-
ering the residuals (distance between actual or real value and
estimated values) and the standard deviation (how the values
are disseminated across the model). Therefore, the residuals
replace the variance in the formula of standard deviation in
order to calculate RMSE shown in Eq. (5). However, using
the MAE is more advantageous than using RMSE [68].

RMSE �
√∑k

j�1 (γ j − γ̂)

k
(5)

R-squared [69] measure is a quantity which informs about
the appropriateness of the model’s fitting by comparing the
sum of squares of the differences between estimated value
and original or actual value with the sum of squares of the
differences between the estimated value and the average of
actual values. The former is called Residual Sum of Squares
(RSS) and the latter is called Total Sum of Squares (TSS) as
depicted in Eq. (6). R-squared error has the most ideal value

of 1. Themodel is better fitted if the R-squared value is closer
to 1.

R2 � 1 − RSS

T SS
(6)

MRE is kenned as the magnitude of relative error. It mea-
sures the percentage of total error to the original or actual
value of effort. It is calculated by the dividing AE with the
actual or original value of effort γ j in Eq. (7).

MRE j � AE j

γ j
(7)

PRED provides the prediction of the output. Quantised by
the prediction percentage that lies within the original known
value of the effort L. If,MRE is less than or equal to 0.25 then
its PRED is always 100%. The formula for discerning L j is
given in Eq. (8) and k is number of test samples in Eq. (9).

L j �
{
1 if MRE j ≤ 0.25

0 otherwise
(8)

PRED(g) � 100

k

k∑

j�1

L j (9)

MMRE is the average ofMRE for k test samples as shown
in Eq. (10).

MMRE � 1

k

k∑

j�1

MRE j (10)

123

SENSE: software effort estimation using novel stacking ensemble…

Table 4 Results of the proposed
approach SENSE DATASET MAE RMSE MMRE R2 PRED (%)

China 0.043774 0.0125316 0.00516793 0.9391 100

Albreeht 0.0299979 0.0329386 0.135391003 0.9037 95.33

Maxwell 0.0405917 0.0487294 0.03105203 0.3199 100

KemerEr 0.0215404 0.0243463 0.051326434 0.3366 100

Nasa93 0.0466537 0.0642637 0.053351945 0.7055 96.77

ISBSG 1.010623 0.0137205 0.006003036 0.9399 100

7 Experimental evaluation

In this section experimental results of the study are discussed.
Table 4 lists the results of the technique proposed by the
SENSE model of this study on the datasets China, Albrecht,
Maxwell, Kemerer, Nasa93 and ISBSG. These results are
compared with the earlier results of ensembling methods
by the authors [14, 15, 17, 19, 21]. All the earlier studies
referenced are not using all the datasets. Few authors have
evaluated the results on China and Cocomo81 datasets and
few others only onNASA93 and so on. Table 5 depicts results
of the China dataset on three evaluation criteriaMAE, RMSE
and R2. It contains the results of ensemble approaches, aver-
aging, weighted averaging, bagging, boosting, and stacking
using RF presented in the work of Priya Varshini et al. [14].
The results are also equated with regression models such as
bagging regressor (BR), decision tree (DT), stochastic gra-
dient descent (SGD), K-nearest neighbour (KNN), random
forest regressor (RFR), gradient boosting regressor (GBR),
and Ada-boost regression (ABR) given by Suresh Kumar
et al. [19]. The results of the authors [19] are normalised
between (0–1) in order to have a clearer understanding and
comparison of the techniques. Ahmad and Ibrahim [70] pro-
posed Long Short TermMemory (LSTM)model for software
development effort estimation. Their results are also listed
along with other results.

Tables 6, 7, 8 are demonstrating results on Albrecht,
Kemerer and Maxwell datasets. These tables contain results
contributed by Priya Varshini et al. [14] and SENSE model.
When these results are compared, the results of the SENSE
model are found to be more promising.

Table 9 shows results of the ISBSG dataset on five eval-
uation criteria– MAE, RMSE, R2, MMRE and PRED. All
the studies [15, 17, 21] in this table are not evaluated on all
these five metrics but, rather, different studies use different
combinations of the evaluation metrics as listed in Table 9.

The study conducted by Kumar and Venkatesan [15] pre-
sented a model based on linear regression, random forest,
neural networks and stacking algorithm, with results eval-
uated on MAE, MMRE and PRED. Sakhvari et al. [17]
evaluated the results of M5P [71] and stacking algorithms
on MAE, RMSE and R2. Support Vector Machine (SVM),
Multilayer Perceptron (MLP), Generalised Linear Model

Table 5 Results on China dataset

Approach Evaluation criteria

MAE RMSE R2

Averaging [14] 0.0199 0.0611 0.S263

Weighted Averaging [14] 0.0530 0.1214 0.3153

Bagging [14] 0.0120 0.0412 0.9211

Boosting [14] 0.0105 0.0361 0.9478

Stacked Random Forest [14] 0.0040 0.0156 0.9839

SGD[19] 0.0385 0.0828 0.6000

KNN [19] 0.0415 0.0816 0.6100

DT[19] 0.0232 0.0460 0.8700

BR [19] 0.0165 0.0440 0.8800

RFR[19] 0.0148 0.0419 0.8900

ABR[19] 0.0271 0.0499 0.S500

GBR [19] 0.0124 0.0330 0.9300

LSTM [70] 0.0160 0.0190 0.9720

SENSE (Proposed Approach) 0.0437 0.0125 0.9891

Table 6 Results on Albrecht dataset

Approach Evaluation criteria

MAE RMSE R2

Averaging [14] 0.2133 0.2403 0.4109

Weighted Averaging [14] 0.165S 0.2789 0.2066

Bagging [14] 0.1784 0.2264 0.4773

Boasting [14] 0.1237 0.1843 0.6855

Stacked random forest [14] 0.0288 0.0370 0.9357

SENSE [Proposed Approach) 0.02939 0.03293 0.9087

(GLM) and ensemble algorithms have been evaluated on
MAE, RMSE, MMRE and PRED by Pospieszny et al. [21].

In Figs. 4 and 5, ISBSG and China dataset results are
shown, respectively, with next-to-no deviation in predicted
values as compared to the actual values. Further compar-
ing the actual and predicted values for Kemerer, Nasa93,
Maxwell and Albrecht datasets, there was diminutive devia-
tion, if any, from the actual values.

Thus, the experimental results which have been calculated
on six datasets- Maxwell, China, Kemerer, Nasa93, Albrecht

123

A. Kaushik et al.

Table 7 Results on Kemerer
dataset Approach Evaluation criteria

MAE RMSE R2

Averaging [14] 0.2397 0.2719 0.4720

Weighted Averaging [14] 0.1811 0.3253 0.2444

Bagging [14] 0.2042 0.2399 0.5890

Boosting [14] 0.2345 0.2626 0.5907

Stacked random forest [14] 0.0703 0.1094 0.7520

SENSE (Proposed Approach) 0.02154 0.02434 0.S366

Table 8 Results on maxwell
dataset Approach Evaluation criteria

MAE RMSE R2

Averaging [14] 0.0900 0.1386 0.5942

Weighted Averaging [14] 0.1211 0.2096 0.0732

Bagging [14] 0.2356 0.3120 0.0962

Boosting [14] 0.0820 0.1215 0.6880

Stacked random forest [14] 0.0356 0.0637 0.8120

SENSE (Proposed Approach) 0.04059 0.04872 0.8199

Table 9 Results on ISBSG
dataset Approach Evaluation criteria

MAE RMSE R2 MMRE PRED

Linear_Regression [15] 0.1500 – – 0.1400 86% (PRED 25%)

RF [15] 0.1200 – – 0.1100 92% (PRED 25%)

Neural network [15] 0.1800 – – 0.1700 82% (PRED 25%)

Slacking [15] 0.1100 – – 0.1000 92.5% (PRED 25%)

MSP [17] 0.0612 0.2514 0.9350 – –

Stacking [17] 0.0383 0.1973 0.9370 – –

SVM [21] 0.1900 0.2700 – 0.1300 76.91%

MLP [21] 0.2600 0.3400 – 0.2100 64.65%

GLM [21] 0.2700 0.3500 – 0.1300 61.96%

Ensemble [21] 0.2300 0.3100 – 0.1700 69.44%

SENSE (Proposed Approach) 0.0106 0.0137 0.9399 0.0060 100.00%

Fig. 4 Representation of ISBSG dataset actual vs predicted values

123

SENSE: software effort estimation using novel stacking ensemble…

Fig. 5 Representation of China dataset actual vs predicted values

and ISBSG were subjected to MAE, RMSE and MMRE as
loss indicators andR2 andPREDas accuracy indicators, posit
a promising performance. From the tables above, Table 4
shows that the ISBSG dataset produces the best result for
SENSE model, for it has the highest R2 score followed by
the China dataset. Both Kemerer and ISBSG datasets have
exceptionallyminimal values ofMAE as depicted in Tables 7
and 9. RMSE value is minimum for China dataset as demon-
strated in Table 5. MMRE and RMSE values are minimum
for ISBSG dataset as shown in Table 9. Maxwell, Kemerer,
ISBSG and China datasets show cent percent accuracy on
PRED, while Albrecht and Nasa93 have more than 95 per-
cent accuracy on it. R2 is considered the most significant
of the evaluation metrics as it shows the extent of depen-
dent variable’s movement corresponding to the independent
variable i.e. the efficiency of model fitting and is more infor-
mative than other evaluation metrics as shown in study by
Chicco et al. [72]. For SENSE model, most of the datasets
have an R2 score above 90 percent, and none has an R2 score
below 70 percent reflecting the superior performance of this
model.

Error analysis is a vital step towards evaluating a model’s
performance. The SENSEmodel performed well for ISBSG,
China, Albrecht, and Kemerer datasets in comparison to
NASA93 and Maxwell datasets. Some overfitting may have
been caused due to a smaller number of samples in NASA93
and Maxwell datasets and low feature to size of sample ratio
in these. The datasets ISBSG, China, Albrecht, and Kemerer
often offer broader and more varied representations of soft-
ware projects across regions, industries or specific metrics.
They could offer a more thorough perspective for modeling
and analysis, taking into account a larger variety of vari-
ables and contexts in estimating software cost. NASA93 and
Maxwell datasets are comparatively older and lack, to some
extent, a current reflection of software development prac-
tices.

8 Statistical analysis

Statistical analysis is an important step to conclude the
research outcomes as it confirms whether we are moving in
right direction or not. The statistical tests used here are non-
parametric, as the effort estimation datasets do not belong
to any particular distribution [73]. The tests are performed
using KEEL tool [74, 75]. Initially, Friedman’s test is per-
formed to compare multiple techniques. The techniques used
for comparison are averaging, weighted averaging, bagging,
boosting, stacking using random forest [14] and the proposed
SENSE technique. The datasets used are China, Albrecht,
Kemerer andMaxwell datasets and the RMSEmetric is used
for conducting the test. The ISBSG dataset is not used by the
authors [14] for their model evaluation.

The Friedman test equation is given by:

FriedmanT �
(a − 1)

[
a∑

j�1
L̂2
j − (an

2

4)(an + 1)2
]

{[an(an + 1)(2an + 1)]/6} − (1/a)
n∑

i�1
L̂2
i

(11)

where, L̂ j is the total rank of jth technique, L̂i is the total
rank of the ith dataset, and a is the total number of techniques.
The best technique or procedure receives the lowest rank in
the test. To determine the statistical variances between the
techniques, the test statistic FriedmanT is generated. The
null hypothesis made the supposition that all techniques are
equivalent.

The results of Friedman test are given in Table 10. Here,
the degree of freedom (df) is 5 as we have six techniques to
compare, and n is the number of input datasetswhich is 4. The
standardχ2 valuewith 5 df and significance value α� 0.05 is
11.070. As the χ2 value listed in the test statistic (Table 10)
is more than 11.070 and the p value is less than 0.05, our
null hypothesis is rejected. So, the techniques are different.

123

A. Kaushik et al.

Fig. 6 Friedman rank test
comparison

0
1
2
3
4
5
6

Averaging Weighted
Averaging

Bagging Boosting Stacked
Random
Forest

SENSE

4.75
5.75

4.25
3.25

2
1

Average Ranking of Techniques

Table 10 Friedman rank test
statistics

N 4

χ2 18

Df 5

p value 0.002946

Table 11 Holm test statistics

Techniques Z Holm Hypothesis
(α � 0.05)

SENSE vs Weighted
averaging

3.590662 0.01 Rejected for SENSE

SENSE vs
Averaging

2.834734 0.0125 Rejected for SENSE

SENSE vs Bagging 2.456769 0.016667 Rejected for SENSE

SENSE vs Boosting 1.70084 0.025 Rejected for SENSE

SENSE vs Stacked
random forest

0.755929 0.05 Not rejected for
SENSE

Figure 6 depicts the average rankings of all the techniques
given by the Friedman rank test. As a result of the rejection
of our null hypothesis, the Holm post-hoc test [76] is used to
compare the techniques, with the SENSE model having rank
1 as the control method. Table 11 shows its test statistics.

The SENSE technique performed better than all other
techniques according to the Holm test statistics, except for
the Stacked Random Forest technique, where the Holm value
is equal to 0.05. Now, there is a need to perform a third statis-
tical test which will compare SENSE and Stacked Random
Forest technique. Wilcoxon Signed Rank Test [77] is the test
used to compare the two techniques based on positive and
negative rank differences. The null hypothesis presupposed
an equivalence of the two techniques. The alternate theory
proposed that the two methods are distinct. The test statistics
are provided in Table 12.

Here, R+ shows the sum of ranks in which the first tech-
nique SENSE performed better than the second technique
Stacked Random Forest and R− shows the sum of ranks
for the opposite. The p-value is less than 0.05, so the null

Table 12 Wilcoxon signed rank test statistics

Techniques Rank positive
(R+)

Rank negative
(R−)

p value

SENSE vs
Stacked
random forest

10.0 0.0 0.04461

hypotheses is rejected, and the first algorithm SENSE out-
performed Stacked Random Forest.

9 Threats to validity

The SENSE model used in the study is an ensembled
approach to software effort estimation. It poses few threats
to validity which are identified as below:

• The study used SVR, Random Forest, KNN, LightGBM
as base learners and Ridge Regression as the meta learner.
This choice of learner configuration provided us the best
results for maximum datasets. The model’s performance
may vary if we choose some other learner configuration.

• The datasets chosen to evaluate SENSE is not biased. They
were standard, open source and a conventional choice for
software effort estimation studies. These are chosen for
a comprehensive comparative analysis with other studies
and implemented models. But the datasets play an impor-
tant role in model’s evaluation. The SENSE model may
perform differently for the datasets other than those used
in the study. Model’s performance may vary if we choose
some other learner configuration.

• The datasets chosen to evaluate SENSE is not biased. They
were standard, open source and a conventional choice for
software effort estimation studies. These are chosen for
a comprehensive comparative analysis with other studies
and implemented models. But the datasets play an impor-
tant role in model’s evaluation. The SENSE model may

123

SENSE: software effort estimation using novel stacking ensemble…

perform differently for the datasets other than those used
in the study.

• There is an overfitting issue with NASA 93 and
MAXWELL datasets due to a smaller number of samples
and low Feature to Size of Sample ratio in these. Another
notable cause of overfitting is the Random Forest model
which is prone to overfit with a smaller number of samples
in data thus it performed well during training but not as
much during testing.

• Evaluation metrics confirms the validity of a model. The
evaluationmetrics used in the study are commonly used by
the effort estimation studies. Few other evaluation metrics
can also be tried to evaluate the model.

10 Conclusion

The SENSE- Software Effort Estimation using Novel Stack-
ing and Ensemble learning- framework proposed in this
study has quite a significant differentiating factor from other
stacking-based effort estimation techniques. This difference
is substantiated in the selection of level-0 algorithms for the
stacking model configuration. In this study, at least one algo-
rithm is selected from the available linear, boosting ensemble,
classification, and tree-based models, leading to diversifica-
tion of the stacking model. SVR [63] from linear model,
Random Forest regressor [61] from Tree based model, K-
nearest neighbours [64] from classification model and Light-
GBM [62] from the boosting ensemble model have been
utilized as base-models and Ridge Regression [65] which is
also a linear model constitutes the meta- model layer of our
proposed stacking framework. SVR and Ridge Regression
have been selected from within the linear model algorithms
which further evinces the diversified nature of this study.

The challenging nature of software project management
and especially estimation of software effort cost will always
motivate further studies in the future. The studies involving
ensemble learning approaches are more accurate than others
[78], especially single models as shown by Idris et al. [79].
The SENSE model is another iteration of ensemble learning
methods used for software cost estimation. In the SENSE
model, all the datasets—China, Maxwell, ISBSG, Kemerer,
Albrecht, and Nasa93—have not only been evaluated on all
five-evaluation metrics but also display more efficient results
of the stacking model as compared to other studies.

Even though this study has achieved better results in soft-
ware effort estimation, it would be imperative to note that
scope of future work is always there to further streamline the
process of estimating software cost.

Amajor limitation discovered in SENSE is overfitting due
to Random Forest model because of which it accomplished
good results in training but not in testing. This limitation
can be solved using data augmentation, customizing ensem-

ble models by using different variations of models and data
regularization.

Furthermore, in addition to using conventional datasets,
some real time datasets can be gathered as per the current
scenario going on in software development industry to test
the proposed models.

Author contributions Dr. Anupama Kaushik, gave the idea and con-
tributed towards experimental evaluation and statistical analysis along
with the manuscript review process. Dr. Kavita Sheoran, contributed
towards the overall development in framing various sections and
detailed review of the manuscript. Ritvik Kapur, did the python imple-
mentation and contributed towards SENSE algorithm along with the
manuscript review process. Nikhil Bhutani, did the python imple-
mentation and contributed towards SENSE algorithm along with the
manuscript review process. Bhavesh Singh, contributed in manuscript
development framing various sections like: introduction, related work,
background techniques, dataset description, part of experimental evalu-
ation and reviewing themanuscript. Harsh Sharma, contributed towards
the review process of the manuscript.

Funding All the authors declare that there is no funding used and
received for the work.

Availability of data and materials The datasets used in the work are
available at https://github.com/danrodgar/DASE/tree/master/datasets/
effortEstimation

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval This article does not contain any studies with human
participants and/or animals performed by any of the authors.

References

1. Heemstra FJ (1992) Software cost estimation. Inf Softw Technol
34:627–639

2. Boehm B, Abts C, Chulani S (2000) Software development cost
estimation approaches—a survey. Ann Softw Eng 10:177–205

3. BoehmBW(1981) Software engineering economics. PrenticeHall,
Englewood Cliffs

4. Putnam LH (1978) A general empirical solution to the macro soft-
ware sizing and estimating problem. IEEE Trans Software Eng
4:345–361

5. Galorath DD, Evans MW (2006) Software sizing, estimation and
risk management. Auerbach Publications, Boston

6. Albrecht AJ (1979)Measuring application development productiv-
ity. In: Proceedings of IBMApplicationDevelopment Symposium,
Monterey, California, pp. 83–92

7. Abran A, Desharnais JM, Oligny S, St-Pierre D, Symons C (2007)
COSMIC- 3.0.1, Measurement Manual

8. Hodgkinson AC, Garratt PW (1999) A neuro fuzzy cost estima-
tor. In: Proceedings of the International Conference on Software
Engineering andApplications, IASTED/Acta Press,Anaheim,Cal-
ifornia, pp.401–406

9. Benala TR,Mall R (2018)DABE: differential evolution in analogy-
based software development effort estimation. Swarm Evol Com-
put 38:158–172

123

https://github.com/danrodgar/DASE/tree/master/datasets/effortEstimation

A. Kaushik et al.

10. Suresh Kumar P, Behera HS (2020) Estimating software effort
using neural network: an experimental investigation. In: Das A,
Nayak J, Naik B, Dutta S, Pelusi D (eds) Computational intelli-
gence in pattern recognition advances in intelligent systems and
computing. Springer, Berlin. https://doi.org/10.1007/978-981-15-
2449-3_14

11. Suresh Kumar P, Behera HS, Anisha Kumari K, Nayak J, Naik
B (2020) Advancement from neural networks to deep learning in
software effort estimation: Perspective of two decades. Comput Sci
Rev. https://doi.org/10.1016/j.cosrev.2020.100288

12. Rama Sree P, Ramesh SNSVSC (2016) Improving efficiency of
fuzzy models for effort estimation by cascading & clustering tech-
niques. Procedia Comput Sci 85:278–285

13. Kaushik A, Kaur P, Choudhary N, Priyanka (2022) Stacking regu-
larization in analogy-based software effort estimation. SoftComput
26:1197–1216

14. Priya Varshini AG, Anitha Kumari K, Varadarajan V (2021) Esti-
mating software development efforts using a random forest-based
stacked ensemble approach. Electronics 10:1195

15. Sampath Kumar P, Venkatesan R (2020) Improving accuracy of
software estimation using stacking ensemble method. Algorithms
Intell Syst. https://doi.org/10.1007/978-981-15-5243-4_18

16. Sakhrawi Z, SellamiA,BouassidaN (2022) Software enhancement
effort estimation using stacking ensemble model within the scrum
projects: A proposed web interface. In: Proceedings of the 17th
International Conference on Software Technologies, pp 91–100

17. Sakhrawi Z, Sellami A, Bouassida N (2021) Software enhance-
ment effort estimation using correlation-based feature selection and
stacking ensemble method. Clust Comput 25:2779–2792

18. Chukhray N, Shakhovska N, Mrykhina O, Lisovska L, Izonin I
(2022) Stacking machine learning model for the assessment of
R&D product’s readiness andmethod for its cost estimation.Math-
ematics 10:1466

19. Suresh Kumar P, Behera HS, Nayak J, Naik B (2021) A pragmatic
ensemble learning approach for effective software effort estima-
tion. Innovations Syst Softw Eng 18:283–299

20. Alhazmi OH, Khan MZ (2020) Software effort prediction using
ensemble learning methods. J Softw Eng Appl 13:143–160

21. Pospieszny P, Czarnacka-Chrobot B, Kobylinski A (2018) An
effective approach for software project effort and duration estima-
tion with machine learning algorithms. J Syst Softw 137:184–196

22. Rijwani P, Jain S (2016) Enhanced software effort estimation using
multi layered feed forward artificial neural network technique. Pro-
cedia Comput Sci 89:307–312

23. Sree SR, Rao CP (2020) A study on application of soft computing
techniques for software effort estimation. J Towards Bio-inspired
Techn Softw Eng Springer. https://doi.org/10.1007/978-3-030-
40928-9_8

24. Hidmi O, Sakar B (2017) Software development effort estimation
using ensemble machine learning. Int J Comput Commun Instru-
ment Eng 4:143–147

25. Kaushik A, Tayal DK, Yadav K (2019) A comparative analysis on
effort estimation for agile and non-agile software projects using
DBN-ALO. Arab J Sci Eng 45:2605–2618

26. Kaushik A, Singal N, Prasad M (2022) Incorporating whale
optimization algorithm with deep belief network for software
development effort estimation. Int J Syst Assurance Eng Manag
13:1637–1651

27. de Jose Thiago H, Cabral A, Oliveira ALI (2021) Ensemble Effort
Estimation using dynamic selection. J Syst Softw 175:110904.
https://doi.org/10.1016/j.jss.2021.110904

28. Cabral JT, Oliveira AL, da Silva FQ (2023) Ensemble effort esti-
mation: an updated and extended systematic literature review. J
Syst Softw 195:111542

29. Abnane I, Idri A, Chlioui I et al (2023) Evaluating ensemble impu-
tation in software effort estimation. Empirical Softw Eng 28:56.
https://doi.org/10.1007/s10664-022-0260-0

30. Ali SS, Ren J, ZhangK, JiWu, LiuC (2023)Heterogeneous ensem-
ble model to optimize software effort estimation accuracy. IEEE
Access. https://doi.org/10.1109/ACCESS.2023.3256533

31. Rhmann W, Pandey B, Ansari GA (2022) Software effort estima-
tion using ensemble of hybrid search-based algorithms based on
metaheuristic algorithms. Innovations Syst Softw Eng 18:309–319

32. Rhmann W (2021) An ensemble of hybrid search-based algo-
rithms for software effort prediction. Int J Softw Sci Comput Intell
13(3):28–37. https://doi.org/10.4018/IJSSCI.2021070103

33. Jaiswal A, Raikwal J, Raikwal P (2023) A hybrid cost estima-
tion method for planning software projects using fuzzy logic and
machine learning. Int J Intell Syst Appl Eng 12:696–707

34. Jadhav A, Shandilya SK, Izonin I, Muzyka R (2024) Multi-step
dynamic ensemble selection to estimate software effort. Appl Artif
Intell. https://doi.org/10.1080/08839514.2024.2351718

35. Iordan A-E (2024) An optimized LSTM neural network for
accurate estimation of software development effort. Mathematics
12(2):200. https://doi.org/10.3390/math12020200

36. Rhmann W, Pandey B, Ansari GA (2022) Software effort esti-
mation using ensemble of hybrid search-based algorithms based
on metaheuristic algorithms. Innov Syst Softw Eng 18:309–319.
https://doi.org/10.1007/s11334-020-00377-0

37. Wolpert DH (1992) Stacked generalization. Neural Netw
5:241–259

38. Su X, Yan X, Tsai CL (2012) Linear regression. Wiley Interdisci-
plinary Rev Comput Stat 4:275–294

39. Hoerl R (2020) Ridge regression: a historical context. Technomet-
rics 62:420–425

40. Breiman L (2001) Random forests. Mach Learn 45:5–32
41. Schapire RE (2003) The boosting approach to machine learning:

an overview. In: Denison DD, Hansen MH, Holmes CC, Mallick
B, Yu B (eds) Nonlinear estimation and classification lecture notes
in statistics. Springer, Berlin, pp 149–171

42. Korstanje J (2021) Gradient boosting with XGBoost and light-
gbm. Adv Forecasting Python. https://doi.org/10.1007/978-1-
4842-7150-6_15

43. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY
(2017) LightGBM: A Highly Efficient Gradient Boosting Deci-
sion Tree. In: 31st Conference on Neural Information Processing
Systems, pp 3149–3157

44. Taunk K, De S, Verma S, Swetapadma A (2019) A brief review of
nearest neighbor algorithm for learning and classification. In: Inter-
nationalConference on IntelligentComputing andControl Systems
(ICCS) pp 1255–1260, https://doi.org/10.1109/ICCS45141.2019.
9065747

45. Yun FH (2010) China: Effort estimation dataset. Zenodo, Switzer-
land, Tech.

46. Albrecht AJ, Gaffney JE (1983) Software function, source lines of
code, and development effort prediction: a software science vali-
dation. IEEE Trans Softw Eng 6:639–648

47. Maxwell KD, Forselius P (2000) Benchmarking software develop-
ment productivity. IEEE Softw 17:80–88

48. Kemerer CF (1987) An empirical validation of software cost esti-
mation models. Commun ACM 30:416–429

49. Unlu H, Yalcin AG, Ozturk D, Akkaya G, Kalecik M, Ekici NU,
Orhan O, Ciftci O, Yumlu S, Demirors O (2021) Software effort
estimation using ISBSG Dataset: Multiple case studies. In:15th
Turkish National Software Engineering Symposium pp 1–6

50. Pandas - Python Data Analysis Library. https://pandas.pydata.org/.
Accessed 20 January 2023

51. Welcome to Python.org. Python.org, https://www.python.org/.
Accessed 28 January 2023

123

https://doi.org/10.1007/978-981-15-2449-3_14
https://doi.org/10.1016/j.cosrev.2020.100288
https://doi.org/10.1007/978-981-15-5243-4_18
https://doi.org/10.1007/978-3-030-40928-9_8
https://doi.org/10.1016/j.jss.2021.110904
https://doi.org/10.1007/s10664-022-0260-0
https://doi.org/10.1109/ACCESS.2023.3256533
https://doi.org/10.4018/IJSSCI.2021070103
https://doi.org/10.1080/08839514.2024.2351718
https://doi.org/10.3390/math12020200
https://doi.org/10.1007/s11334-020-00377-0
https://doi.org/10.1007/978-1-4842-7150-6_15
https://doi.org/10.1109/ICCS45141.2019.9065747
https://pandas.pydata.org/
https://www.python.org/

SENSE: software effort estimation using novel stacking ensemble…

52. Waskom M (2021) Seaborn: statistical data visualization. J Open
Source Softw 6:3021

53. Seaborn: Statistical Data Visualization — Seaborn 0.12.2 Docu-
mentation, https://seaborn.pydata.org/. Accessed 5 Feb. 2023

54. Feng C, Wang H, Lu N, Chen T, He H, Lu Y, Tu XM (2014)
Log-transformation and its implications for data analysis. Shanghai
Arch Psychiatry 26:105–109

55. Pedregosa et al (2011) Scikit-learn: machine learning in python.
JMLR 12:2825–2830

56. Sklearn.preprocessing.RobustScaler, https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.RobustScaler.
html Accessed 20 December 2022

57. Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine
learning: a new perspective. Neurocomputing 300:70–79

58. Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH (2019)
Hyperparameter optimization for machine learning models based
on bayesian optimization. J Electronic Sci Technol 17:26–40

59. Koehrsen W (2023) A conceptual explanation of Bayesian
hyperparameter optimization for Machine Learning, https://
towardsdatascience.com/a-concep tual-explanation-of-
bayesian-model-bas ed-hyperparameter-optimization-for-mac
hine-learning-b8172278050f. Accessed 15 January 2023.

60. Skopt.BayesSearchCV, https://scikit-optimize.github.io/stable/
modules/generated/skopt.BayesSearchCV.html. Accessed 1
February 2023.

61. Sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/ gener-
ated/sklearn.ensemble.RandomForestRegressor.html. Accessed 1
February 2023.

62. Lightgbm.LGBMRegressor,https://lightgbm.readthedocs.io/en/
latest/pythonapi/lightgbm.LGBMRegressor.html. Accessed 1
February 2023.

63. Sklearn.svm.SVR,https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVR.html. Accessed 1 February 2023.

64. Sklearn.neighbors.KNeighborsClassifier,https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html. Accessed 1 February 2023.

65. Sklearn.linear_model.Ridge,https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.Ridge.html. Accessed 1
February 2023.

66. Nti IK, Nyarko-Boateng O, Aning J (2021) Performance of
machine learning algorithmswith differentKvalues inK-fold cross
validation. Int J Inf Technol Comput Sci 13:61–71

67. Gergonne JD (1974) The application of the method of least squares
to the interpolation of sequences. Hist Math 1:439–447

68. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute
error (mae) over the root mean square error (RMSE) in assessing
average model performance. Climate Res 30:79–82

69. Wright S (1921)Correlation and causation. JAgricRes 20:557–585
70. Ahmad FB, Ibrahim LM (2022) Software development effort

estimation techniques using Long short term memory. In: Inter-
national Conference on Computer Science and Software Engineer-
ing pp. 182–187, https://doi.org/10.1109/CSASE51777.2022.9759
751

71. Wang Y, Witten I H (1996) Induction of model trees for predict-
ing continuous classes. (Working paper 96/23). Hamilton, New
Zealand: University ofWaikato, Department of Computer Science.

72. Chicco D, Warrens MJ, Jurman G (2021) The coefficient of deter-
mination R-squared is more informative than SMAPE, MAE,
MAPE, MSE and RMSE in regression analysis evaluation. Peer
J Comput Sci. https://doi.org/10.7717/peerj-cs.623

73. Kaushik A, Tayal DK, Yadav K, Kaur A (2016) Integrating firefly
algorithm in artificial neural network models for accurate software
cost predictions. J of Softw Evolution Process 28:665–688

74. Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S, Sánchez
L, Herrera F (2011) KEEL data-mining software tool: data set
repository, integration of algorithms and experimental analysis
framework. J Multiple Valued Logic Soft Comput 17:255–287

75. Kaur P, Gossain A (2019) FF-SMOTE: A metaheuristic approach
to combat class imbalance in binary classification. J Appl Artif
Intell 33(5):420–439

76. Holm S (1979) A simple sequentially rejective multiple test proce-
dure. Scandinavian J Statist 6:65–70

77. Wilcoxon F (1945) Individual comparisons by ranking methods.
Biometrics Bull 1:80–83

78. Sheoran K, Tomar P, Mishra R (2020) A novel quality prediction
model for component based software system using ACO–NMopti-
mized extreme learning machine. Cogn Neurodyn 14:509–522

79. Idri A, Hosni M, Abran A (2016) Systematic literature review of
ensemble effort estimation. J Syst Softw 118:151–175

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://seaborn.pydata.org/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://towardsdatascience.com/a-concep
https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html
https://scikit-learn.org/stable/modules/
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://doi.org/10.1109/CSASE51777.2022.9759
https://doi.org/10.7717/peerj-cs.623

	SENSE: software effort estimation using novel stacking ensemble learning
	Abstract
	1 Introduction
	2 Related work
	3 Background techniques
	3.1 Stacking
	3.2 Ridge regression
	3.3 Random forest
	3.4 LightGBM
	3.5 K- nearest neighbour

	4 Dataset description and preprocessing
	4.1 Dataset description
	4.2 Preprocessing
	4.2.1 Exploratory data analysis
	4.2.2 Feature engineering
	4.2.3 Hyperparameter tuning

	5 Proposed work
	6 Evaluation criteria
	7 Experimental evaluation
	8 Statistical analysis
	9 Threats to validity
	10 Conclusion
	References

