
Innovations in Systems and Software Engineering
https://doi.org/10.1007/s11334-024-00570-5

SPEC IAL ISSUE ON MODEL-DR IVEN ENGINEER ING AND SYSTEM ANALYS IS
AND MODELL ING

Distributed Petri nets for model-driven verifiable robotic applications
in ROS

Sebastian Ebert1,3 · Johannes Mey2,3 · René Schöne2,3 · Sebastian Götz3 · Uwe Aßmann1,2,3

Received: 17 January 2024 / Accepted: 27 May 2024
© The Author(s) 2024

Abstract
Verifying industrial robotic systems is a complex task because those systems are distributed and solely defined by their
implementation instead of models of the system to be verified. Some technologies mitigate parts of this problem, e.g., robotic
middleware such as the Robotic Operating System (ROS) or concrete solutions such as automata-based specification of robot
behavior. However, they all lack the required modeling depth to describe the structure, behavior, and communication of the
system. We introduce an improved version of our previous model-driven approach based on Petri nets, integrating these
three aspects of ROS-based systems. Using a formal modeling language enables verification of the described system and
the generation of complete system parts in the form of ROS nodes. This reduces testing effort because the specification of
componentworkflows and interfaces remains formally proven,while only changed implementations have to be revalidated.We
extended our previous approach with novel model transformations, which considerably improved our approach’s performance
and memory requirements. We evaluate our approach in a case study involving multiple industrial robotic arms and show that
the structure of and communication between ROS nodes can be described and verified.

Keywords Petri nets · Model-driven engineering · Robotic software engineering · Robot operating system

1 Introduction

Developing and extending robotic software in industrial or
end-user applications, especially with human interaction, is
an intensive task. Such software comprises physically dis-
tributed communicating components, which need to adapt

B Sebastian Ebert
sebastian.ebert@tu-dresden.de

Johannes Mey
johannes.mey@tu-dresden.de

René Schöne
rene.schoene@tu-dresden.de

Sebastian Götz
sebastian.goetz1@tu-dresden.de

Uwe Aßmann
uwe.assmann@tu-dresden.de

1 Centre for Tactile Internet with Human-in-the-Loop (CeTI),
Dresden, Germany

2 6G-life, Dresden, Germany

3 Technische Universität Dresden, Chair of Software
Technology, Dresden, Germany

to varying environments and tasks. Hence, these robotic sys-
tems are complex and safety-critical and require a huge effort
to test, develop, and extend them.

The creation and evolution of robotic systems are often
realized ad hoc, resulting in unstructured systems defined
entirely by their implementation[1], complicating validation
and preventing verification. On the contrary, constructing
these systems upon formal models allows the automatic
addressing of properties such as safety and reliability before
the actual implementation, during and after runtime. An
instance of this is defining a safety model and examining its
state transitions. The de-facto standard robotic middleware,
the Robot Operating System (ROS)[2], also does not pro-
vide a formal foundation for creating and verifying models
to guarantee the global and concurrent behavior of dis-
tributed applications. Furthermore, the verification should
reflect the influence of other applications andmodels to check
mission-critical reactions to changing environments. Exist-
ing approaches building on top of ROS either enable the
modeling of infrastructural aspects of ROS, verify parts of
ROSapplications, or dealwith the influence of external appli-
cations [3–22]. Our approach, Distributed Petri Nets for ROS

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-024-00570-5&domain=pdf
http://orcid.org/0000-0001-6504-9233
http://orcid.org/0000-0001-5778-4019
http://orcid.org/0000-0002-3247-0264
http://orcid.org/0000-0003-1537-7815
http://orcid.org/0000-0002-3513-6448

S. Ebert et al.

(DiNeROS), aims to address all three aspects by using Petri
nets to realize a model-driven toolchain for ROS applica-
tions generating stubs as an integration target for user-defined
implementations.

Petri nets were chosen for this work because they provide
advantageous features for the field of robotics compared to
other formalisms. Firstly, they allow modeling concurrency,
a common characteristic in robotics where multiple actions
occur simultaneously on possibly distributed devices. Sec-
ondly, Petri nets are nondeterministic, which matches the
aspect that robotic environments contain uncertainties, such
as changing environmental conditions and unpredictable
events. Thirdly, Petri nets offer high expressiveness, allowing
themodeling ofmore system states within a smaller structure
compared to, for example, automata. Robotic applications
typically provide a large state space due to interactions with
their environment. Finally, Petri nets offer a graphical rep-
resentation allowing to visualize the behavior of robotic
systems, aiding understanding interactions and dependen-
cies.

Communication of ROS applications quickly becomes
complex, even for small applications. For example, changing
communication channel capacities generates side effects on
other indirectly connected components. Formally describ-
ing the coordination of distributed actions, e.g., multiple
moving robots working in the same environment, enables
their verification and improves extensibility compared to a
hand-crafted implementation. Therefore, the models need to
include not only behavior but also communication and struc-
tural aspects of ROS and provide a formal underpinning to
develop and verify ROS applications efficiently, leading to
the first research question RQ1: How to enable the develop-
ment of verified ROS applications using Petri nets as formal
underpinning? ROS-based applications may communicate
with external components, such as sensor interfaces or pro-
priatory software components, whose interfaces are often not
formally modeled, leading to RQ2: How to enable the inte-
gration of other formalisms and non-formal components?We
use Petri nets as a formalmodeling language, leveraging their
non-determinism to control the application’s behavior. This
leads to RQ3: How to use Petri nets as runtime models [23]
in ROS applications?

This paper is an extendedversionof a previously published
workshop paper [24]. We extended the original approach
with novel model transformationson signaling and ROS
topics, which are considerably more performant and less
memory-demanding. Moreover, we provide a much more
detailed description of the analysis features provided by
our approach. This includes firstly new state space analysis
algorithms reasoning about communication behavior, dead
application parts and effects of external components. Sec-
ondly, we present a new tool to visualize traces at modeling
time and runtime.

We evaluate our approach using a case study, where mul-
tiple industrial robotic arms are coordinated to sort objects
within a shared workspace based on their properties. Using
our model-driven approach, we can verify the resulting ROS
application and identify incorrect system constructions, such
as an unrealizable condition.

This paper is structured according to the following out-
line: Sect. 2 introduces the Robot Operating System and the
Petri net formalism, Sect. 4 describes the case study, followed
by Sect. 5 describing the model-driven development chain,
as well as the integrated models and their transformations.
Section6 models the case study, and Sect. 7 analyzes the
constructed model. Section8 treats the performance aspects
of analyzing the model, while Sect. 9 shows how to debug
the model and the resulting application using traces. Finally,
Sect. 10 discusses the feasibility of our approach, andSect. 11
concludes the paper.

2 Background and terminology

Our approach is based on Petri nets as defined in ISO/IEC
15909, where a Petri net (PN) is a directed bipartite graph
PN = 〈P, T , F, RP , RT , PG〉 consisting of a set of places
P , depicted with circles, and transitions T , depicted with
bars, connected by arcs defined as the incidence flow rela-
tion F ⊆ (P × T) ∪ (T × P), where SA(a) and TA(a) are
source and target of an arc a ∈ F . Places, drawn as cir-
cles, contain a discrete number of tokens represented by dots
or their number in places. The distribution of tokens within
the places is called a marking Mi = [m1 (i) , ...,mn (i)]
for a Petri net at time i with n places. A transition, repre-
sented by a bar is enabled and thus can fire if there is at
least one token in each input place, hence ∀Mi (s) ≥ 1.
If a transition, fires, tokens from each input-place of the
transition are destroyed and newly created inside every
output-place of the firing transition, creating a new mark-
ing Mi+1 [25]. The number of tokens to be destroyed and
created depends on the weight of the respective arc between
place and transition. An essential characteristic of Petri nets
is that transitions fire non-deterministically, i.e., if multi-
ple transitions can fire, no precedence is given to any of
them. An inhibitor arc, marked by a circle at the arc tar-
get, enables a transition if the source place is empty [26].
In the following, we refer to all objects in a Petri net as
O = T ∪ P ∪ RT ∪ RP ∪ PG , which is the set of all non-arc
elements and to a labeling assigning objects to pages as a
function l : O → PG ∪ �, o → pG ∪ �, where � defines
that no page is assigned.

Structuring Petri nets is done with a set of pages PG ,
reference transitions RT , and reference places RP . A page
may contain other pages, defining a hierarchy of sub-pages,
where arcs must connect transitions, places, and references

123

Distributed Petri nets for ROS…

Fig. 1 A nondeterministic
safety controller modeled by a
Petri net

on them within the same page, defining an assignment for
page i as Si = {o|o ∈ O ∧ l(o) = i}. Thus, pages do
not add semantics but facilitate the partitioning of Petri
nets. Connecting pages is done by selecting a representa-
tive place or transition in one page and integrating it into
the other pages as respective references, which are attached
as a property to referencing elements. Reference places or
transitions may be connected with other places or transitions
within the same page by arcs, but cyclic references are not
allowed [27].

The Petri Net Markup Language (PNML) provides an
XML-based interchange format for Petri nets. PNML sup-
ports Petri nets with references and high-level Petri nets [28].
Moreover, PNML is modular and provides generic extension
points for additional information for each element. TINA [29]
is a toolbox providing the abilities for editing and analyzing
Petri nets.

Petri nets have special properties, making them a great
candidate for modeling robotic systems. First, their non-
deterministic [25] nature reflects the non-determinism of
distributed robotic environments and enables modeling syn-
chronous and asynchronous control. An example of this, a
simple safety model, is shown in Fig. 1, where TSafe and
TUnsafe represent the results of a sensor detecting humans
within a robots range.Depending on the fired transition either
the currently performed task is continued (TContinue) or the
robot needs to wait (TWait). Second, the state of a PN is rep-
resented by its marking, i.e., the distribution of tokens to
places depicted by dots within places. This enables mod-
eling concurrent control flow, an inherent characteristic of
robotic applications.

Third, PNs provide various analyzable properties,
enabling automated verification over concurrent systems.
Most importantly, building state spaces based on a PN spec-
ification to reason about the reachability of system states is
possible. Furthermore, it is possible to analyze the bound-
edness, liveness, and deadlocks of a Petri nets marking [25,
26].

The Robot Operating System (ROS) is an open-source
middleware providing tools and libraries facilitating the
development of robotic applications. ROS enables the cre-
ation of components structured within packages and nodes,
providing control of robotic hardware and pure software
functionalities. Nodes themselves are communicating based
on topics and services. A ROS-based process called node is

registered at theROSmaster. Libraries andnodes are grouped
within packages, enabling reuse and loose coupling [2]. An
example of such a package is displayed in Fig. 2, where
nodes are depicted as ellipses, topics as blue boxes, and ser-
vices as green boxes.Within the example, objects are selected
in an according node and sent to a node logging the selected
objects and a controller executing actions on selected objects
by accessing a robot controlling node.

ROS provides a structured communication layer, letting
nodes communicate based onmessageswithin topics and ser-
vices. Topics, such as the /Objects-topic, are uniquely named
and based on the publish-subscribe pattern. Each publisher
has an outgoing message queue of a specific size, where new
messages get lost when it is exceeded, so selections of objects
within the example may get lost. For subscribers, dispatch-
ers and callbacks exist. When a node has subscribed to a
topic, it runs a dispatcher thread for that topic, collecting
messages within a queue with fixed capacity and distribut-
ing messages to callbacks listening to the topic within the
node, which again has its own bounded queue. Types of
messages are user-defined and vary between topics. Syn-
chronous communication is enabled by services, following
the request-response pattern, where each client can send
at most one request in parallel and blocks while waiting
for the response, which means the call to the /Execute-
service within the example is synchronous. The server side
is controlled by a thread pool, enabling handling requests
in parallel. On arrival within a server instance, the request
is processed, creating a single result returned to the calling
client, who may call other services [2]. These underlying
mechanisms vary between client library implementations.
The core of ROS is usable independently of any program-
ming language. Client libraries are provided for languages
like C++, Java, and Python. RosJava, developed at Google,
provides basic ROS functionalities such as topics, services,
and nodes within the Java environment [30]. Our focus
is the common subset of the Java and C++ implementa-
tion.

3 State of the art

Software development based on formal models for robotic
applications is already applied by various approaches, focus-
ing on ROS aspects, application models, or both. In this

123

S. Ebert et al.

Fig. 2 Visualization of a simple
ROS package

Table 1 Related ROS approaches, with full support denoted with �, partial support with �, and no support with �

ROS-based
approach

ROS
structure

ROS
communication

External
components

Model-driven
development

Modeling
approach

Formal
approach

Lesire [3] � � � � Petri nets �
Dondrup [4] � � � � Petri nets �
Pelletier [5] � � � � Petri nets �
dos Santos [6] � � � � Petri nets �
Figat [7] � � � � Petri nets �
Dal Zilio [8] � � � � Petri nets �
Halder [9] � � � � Automata �
Wang [10] � � � � Automata �
Cheng [11] � � � � GSN �
Kortik [12] � � � � Linear Logic �
Zander [13] � � � � Ontologies �
Estévez [14] � � � � RDIS �
Chaudhuri [15] � � � � CNL �
Kilgo [16] � � � � UML �
Beaulieu [17] � � � � UML �
Brugali [18] � � � � DSL �
El Baccouri [19] � � � � DSL �
Ramaswamy [20] � � � � DSL �
Baumgartl [21] � � � � DSL �
Heinzemann [22] � � � � DSL �
DiNeROS (this work) � � � � Petri nets �

section, we compare existing approaches and our approach
Distributed Petri Nets for ROS (DiNeROS) w.r.t. our three
modeling requirements (structure, communication, external
components) and usage of (formal) Model-driven devel-
opment (MDD). The analyzed approaches are compared
in Table 1, where full support in terms of communication
is about models specifying topics and services, while the
structure is about nodes and packages. Modeling topics and
services allows to reason about communication based behav-
ior, by refining the application describing models. Modeling
nodes and packages allows using the application’s distribu-
tion within reasoning, increasing its expressiveness. External
components treat formally defined (full support), program-
matic (partial support) and no interfaces. MDD can be either

supported or not. The following section takes a closer look
at ROS-based approaches.

3.1 Petri net based ROS approaches

ASPiC [3] introduces constrained Petri nets called control-
flow Petri nets modeling robotic skills, parameterized by
required resources (locks, inputs, outputs). The approach
models ROS action interfaces abstractly, not including the
underlying topics and services. Structural aspects are not
described and the constructed models are used to generate
state spaces and check well-formedness criteria. Dondrup
et al. [4] handles interactions between robots and humans
with interaction patterns modeled as Petri nets. Action inter-
faces are modeled even more abstractly then in [3], while

123

Distributed Petri nets for ROS…

the actual verification is not described. Within SkiNet by
Pelletier et al. [5], where the skill-based system architec-
tures are transformed into Petri nets. These Petri nets model
the state-machine-based behaviors of robotic skills used
resources. Regarding model-checking, user-defined tempo-
ral logic specifications are evaluated at runtime using the
TINA [29] tooling. Dos Santos et. al [6] introduces a soft-
ware framework allowing the execution of a robot task,
defined by Marked Petri nets, which e.g. extend places with
capacities. The framework is built on top of ROS and is capa-
ble of real-time execution of hierarchically structured tasks.
Furthermore, the framework provides structural verification
tooling for marked Petri nets, without considering any ROS
concepts. Figat et. al [7] provides a framework based on hier-
archically structured Petri nets allowing to model distributed
robotic systems. A specification language is used to con-
struct such systems. The languages instances are verified by
transformed them into a six layered Petri net, where further
analysis are not described. Additionally, controller code is
generated based on these models. The framework is ROS-
based, but the models do not contain ROS concepts in detail.
Dal Zilio et. al [8] defines a domain-specific language based
on an extended version of Time Petri nets. The approach
describes how these formal models can be executed and how
they provide the basis for monitoring and runtime verifica-
tion, aided by the TINA tooling [29]. No ROS concepts are
modeled.

All Petri net-based approaches introduce an MDD chain
for ROS applications to generate executable code. However,
no approach is available for extension or fully supports mod-
eling structural and communication aspects of ROS.

3.2 Model based ROS approaches

Halder et al. [9] use timed automata and verify ROS applica-
tions based on real-time properties with Uppaal [31]. The
approach enables modeling control flow concepts within
ROS nodes and topic-based messaging but no formal inter-
faces. Uppaal allows forward analysis based on extrapola-
tion, which is used in this work to vary combinations of
parameter values of ROS nodes. Wang et al. [10] propose
an MDD method based on timed automata, generating exe-
cutable ROS code. Their approach enables checking safety
requirements using theUppaal query language to detect dead-
locks. The expressiveness of themodels is comparable to [9].

Cheng et al. [11] focuses on guaranteeing safety require-
ments during runtime adaptation. Goal Structuring Notation
(GSN) models are used as a specification language for a
central adaptation node. Only structural aspects of ROS
are modeled. Kortik et al. [12] focus on verifying correct-
ness based on linear logic, where the correct behavior is
verified by analyzing the computational graphs consistency
(idle publishers/subscribers, type consistencies). Structural

aspects (nodes) and communication aspects (topics) aremod-
eled abstractly. The approach of Zander et al. [13] provides
an MDD toolchain built upon ontological semantics, where
developers create a local model including capabilities and
interfaces of robotic software components. The modeling
approach does not cover communication aspects. Verifi-
cation and validation algorithms are demarcated as future
work.Chaudhuri et al. [15] use a constrained natural lan-
guage and an ontology-based knowledge representation to
express robotic capabilities and workflows to generate ROS
code. No aspects of ROS are modeled, while external com-
ponents are included programmatically. Kilgo et al. [16]
define a metamodel describing ROS applications, including
topic interfaces combined with the Robot Device Inter-
face Specification (RDIS) describing hardware interfaces.
External components are only integrated when having RDIS
interfaces. Beaulieu et al. [17] uses UML and Finite State
Machines formultiple robotic application areas: localization,
mapping, and swarming. It was implemented in ROSwithout
modeling it or describing its verification.

Summarized, many approaches introduce an MDD chain.
No approach is available for extension or supports model-
ingROSstructure respectively communication.Additionally,
[11] and [12] provide formal interfaces for external applica-
tions.

3.3 DSL based ROS approaches

The ART2ool [14] provides a modeling mechanism for
UML-based taskmodels, where communication is abstractly
described and transformed to ROS code and other middle-
wares. The code is the only interface for external models.
HyperFlex [18] enables designing robotic software as a hier-
archical composition of functional subsystems. Variation
points for resources, algorithms, and control are modeled
and resolved by a feature model. A control system varies
these points. The approach models components and interfac-
ing of nodes, services, and topics. In [19], parameterization
and scenario-centralized modeling are used to evaluate dif-
ferent control settings and environmental contexts. Based
on their DSL, code is generated mapping to ROS packages,
nodes, and topics. Saferobots [20] divides software develop-
ment into problem, solution, and operational space, whereby
each space has a knowledge and application level. The mod-
eled solution space is used to generate ROS code. Problem
specific models can be simulated by an editor, providing a
simple formof verification.Baumgartl et al. [21] use aDSL to
specify tasks at a high abstraction level and encapsulate oper-
ations. TheDSL is transformed intoC++ code. ROS concepts
are not part of the DSL. The vTSLDSL [22] enables specify-
ing robotic tasks and verifying themagainst a set of safety and
integrity constraints by transforming the vTSL to Promela
models verified by the SPIN model checker [32]. Especially

123

S. Ebert et al.

Fig. 3 Architecture of our case
study. Services are green and
topics blue

the existence of deadlocks, temporal properties and satisfac-
tions of assertions is checked.The approach focuses on topics
and services.

In summary, all DSL-based approaches provide an MDD
chain, while [18] and [22] model communication aspects
of ROS. Furthermore only [22] is the formal approach of
[18, 22], but provides only code-based integration of external
applications. Again, no approach is available for extension.

3.4 Non ROS based approaches

Formal approaches are also used in non-ROS robotic applica-
tions. There, the majority of approaches use state-transition
systems todescribe systemstructure and applicationflow[33,
34]. Petri nets are used in modeling, where [35] proposes
distributed, locally synchronous Petri nets connected by
asynchronous channels and verified by provided tooling.
Bera [36] integrates interaction patterns with communicating
Petri nets within an architectural framework. Robotic Task
Models [37] run Petri nets with a central coordinator pro-
viding robotic workflows constructed upon primitive tasks.
Kotb et al. [38] enable distributed robotics to collaborate by
modeling their abilities with Petri nets.

4 Running example

To illustrate our approach, let us introduce our case study:
interactive, collaborative, and human-aware sorting of col-
ored objects by two robots in a shared space, where the
application parts are distributed among multiple ROS nodes.
Sorting is a key application for industrial tasks.

Conceptually, the case study shown in Fig. 3 consists of
six components, where each component is realized as a ROS
node and implemented by its developer team. The SELEC-
TOR-component represents the handling of user input, which
is about creating selection tasks for objects to be sorted
and implicitly the robot executing the sorting operation. The
selections are sent to the CONTROLLER-component con-
taining one robot controller for each robot, assigned to colors

of objects by the connected topic. These robot controllers rep-
resent the central workflow that describes the steps to sort an
object and coordinates the other components. The controller
component is connected to the SYNCHRONIZER compo-
nent, which acts as a semaphore for the shared workspace
of the two robots. To control the robot, the controller calls
pick and place services located within the executor compo-
nent, developed by robotics experts. These services let the
robot perform the trajectories for picking and placing but can
also abort the execution based on a safety model handling
human presence. These safety models obtain information
about human presence based on the SENSORICS compo-
nents service implemented by a sensor integration team.
The FEEDBACK component receives the results of a sorting
operation based on the subscription to the feedback topic and
displays the received information within a user interface. For
evaluation, the case study is subject tomultiple variations.We
change the number and types of objects and modify the con-
trol of the robots used for sorting, resulting in effects all over
the distributed system.

5 Model-driven development with DiNeROS

Model-driven development enables the creation of applica-
tions based on models representing them. Distributed Petri
Nets for ROS (DiNeROS) uses this concept and describes
an MDD toolchain in combination with multiple extensions
to the Petri net (PN) formalism supporting the construction
of efficiently verifiable ROS applications by generating ROS
package stubs from PN based specifications. These pack-
ages represent the border between verification and validation.
This is because the stubs follow the PN-based specifications,
while the actual actions, optionally attached to the model
transitions, are implemented by developers extending them
at the toolchain’s end, which are subject to testing. The next
sections describe the available MDD tooling,1 the modeling
approach, and how they interact.

1 https://dineros.pages.st.inf.tu-dresden.de

123

https://dineros.pages.st.inf.tu-dresden.de

Distributed Petri nets for ROS…

Fig. 4 Workflow within the
DiNeROS MDD

5.1 Overview

We differentiate three interacting roles in development as
shown in Fig. 4. A modeler, expert in system design, is
responsible for creating a Petri net based model defining and
controlling the system, while a developer, expert in compo-
nent construction, generates a ROS package based on this
model and implements the concrete actions either executing
the PN or being defined by the transitions of the PN. The
system engineer, expert in formal methods, is firstly respon-
sible for verifying the system defining model, and secondly
analysing the behavior of DiNeROS applications, based on
traces, and reporting detected issues to the modelers. Partic-
ipants in the development process take exactly one of these
roles, which are orthogonal aspects, allowing mutual control
of their results, improving the software quality.

Essentially, DiNeROS covers three Petri net based mod-
els, which are embedded within a toolchain shown in Fig. 5:
a System Model (SyM), a Runtime Model (RTM), and a
Petri Net Model (PNM). Each model describes a differ-
ent view within the MDD toolchain shown in Fig. 5. The
SyM describes a distributed ROS application within a sin-
gle model, containing communication channels (topics and
services) as first-class citizen modeling elements. Addition-
ally, signals are attached to transitions and combined to
clauses, providing an externally accessible enabling mech-
anism. Thus, those clauses model all possible states of an
input. An RTM is a PN describing exactly one ROS node
and, therefore, only covers inputs and outputs of topic- and
service-based communication. An PNM provides the same
concepts as a SyM but is transformed into a PN, as defined
in Sect. 2, modeling the internal mechanisms of ROS and
enabling analyzability through existing model checkers.

Fig. 5 MDD chain of DiNeROS

123

S. Ebert et al.

Additionally, we introduce the concept of node nets. One
node net defines the model contained in exactly one ROS
node. A node net itself is defined by an annotated page of a
PN, and therefore contained in all threemodels. A node net is
solely connected to other node nets through references from
communication channels representing topics and services. In
other words, all elements of a node net can only be connected
to elements being part of the same node net or by incoming
references from channels.

5.2 Model-driven development chain

Our MDD toolchain is visualized in Fig. 5, where all tools
but TINA are newly developed based on JastAdd [39] and
lip6 [40]. JastAdd is a compiler construction system based
on attribute grammars, transforming the latter to Java classes.
The process starts with the specification of a SyM based
on PNML extended with the previously described features,
where the extensions are domain-specific elements for topics,
etc. This specification is manually performed by modelers
based on given requirements. The chain is built on top of
a runtime model-based environment, the Petri Net Engine,
extending default PN execution in four ways: balloon tokens,
advanced transition logic, handlers, and signals. Balloon
Tokens, inspired by [41], replace the primitive tokens of PNs
to enable data transfer between nodes and model parts. The
data within these tokens is opaque concerning the execution
semantics of PNs by requiring the same data format for all
tokens.Bydoing so,we avoid the immense state spacegrowth
caused by heterogeneous tokens [42], but still allow data
transfer. Balloon tokens are objects containing data fields,
lists, andmaps. Transitions have also been extended to handle
balloon tokens and to attachdeveloper-defined logic. If a tran-
sition in DiNeROS fires, it consumes one balloon token from
each input place with possibly differing contents. Developers
can register handlers at transitions to specify the processing
of balloon tokens. The handlers attached to transitions own
a priority, allowing not just to exchange them at runtime, but
additionally to change their execution order based on. Han-
dlers are not allowed to modify the marking or structure of
a Petri net because this would break the execution semantics
of Petri nets. Handlers provide a programmatic interface for
the developers to write applications, extending the models
they are attached to. They serve as interfaces to loosely cou-
ple code and models, enabling efficient testing of individual
code contained in a handler without the need to re-test the
whole application after changing it. Listing 1 shows an exam-
ple of a handler attached to TFeedback in Fig. 14, 11 reporting
the result of an operation.

The engine also automatically handles pushing received
messages to input places of a receiving channel side. Vice
versa, the engine provides interfacing for pushing messages
from the sending side channel element to the receiving side.

Messages are received based on the specified names of top-
ics and services, and the respective subscriber and server-side
output places are automatically filled with a token containing
the message content. For this, the engine integrates PNs into
the lifecycle of ROS nodes as interpreted runtime models.
Whenever the marking or signals change within a node net,
and there are enabled transitions, the engine uses a function
provided by the developer to select up to one to fire. Such
a function is shown in Listing 2, where firing the transitions
TUnsafe and TSafe is prioritized over the others depending
on the input tokens content. Signals are connected to the
environment based on channels connected to transitions, real-
ized with RagConnect [43]. Moreover, the engine-integrated
trace generator creates a trace at runtime containing fired
transitions, signaling activity, and usages of communication
channels.

The engine treats RQ3 using RTMmodels directly within
ROS nodes as a runtime model controlling the application.
RQ1 is partly treated by providing a systematic approach
integrating formal modeling with PNs and writing applica-
tion code connected to them. The message-based interface
for input signals and clauses treats RQ2 as they enable inte-
gration of external applications through formally defined
interfaces.

Listing 1 User-defined handler for Tfeedback with priority 1

1 petrinet.registerHandler("T_Feedback", 1, (tokens) ->
{

2 SortingControllerToken result = tokens.get(0);
3 if (result.isPickPlaceSuccess()) {
4 print("Successfully sorted " + result.getObject())

;
5 } else {
6 print("Failed to sort " + result.getObject());
7 print(result.getErrorList());
8 }
9 return List.of(result); //last handler returns one

token
10 });

Listing 2 User-defined controller callback
1 @Override
2 FiringSelection onChange(Set<Transition> enabledTs) {
3 // check for prioritized enabled transitions
4 for (Transition t : enabledTs) {
5 if (t.getId().equals("T_Unsafe"))
6 if(t.getInputToken("P_SensorResponse")
7 .get("humanDetected") == true)
8 return new FiringSelectionSuccess(t);
9 for (Transition t : enabledTs) {

10 if (t.getId().equals("T_Safe"))
11 if(t.getInputToken("P_SensorResponse")
12 .get("humanDetected") == false)
13 return new FiringSelectionSuccess(t);
14 // if there is none, fire any other enabled

transition
15 return super.onChange(enabledTs);
16 }

The system model is used as input for the Petri Net Flattener
toolto a Petri net model, removing all special language fea-
tures of the SyM by applying the transformations described
in Sect. 5.5. Finally, the flattened model acts as input for

123

Distributed Petri nets for ROS…

the TINA tooling landscape, whose output is analyzed by
the system engineer. If the model fails to satisfy the initial
requirements, the SyM is revised, establishing a feedback
loop by restarting from the DiNeROS PNML. This loop is
run until the quality of the model meets the requirements.

The Trace Visualizer assists the system engineer in ana-
lyzing execution paths contained in the results of TINA and
the engines runtime traces. For this purpose, a graphical
representation is generated as depicted in Sect. 9, which is
continuously updated at runtime or can be used at modeling
time to visualize a selected TINA-generated trace.

The Net Analyzer provides algorithms for static model-
checking, which further analyze the results provided by
the TINA-provided tools. These algorithms are presented in
Sect. 7 and provide further insights on communication and
signal defects as well as unused application parts.

The Petri Net Splitter transforms the SyM to RTMs. It
splits the channels of both services and topics on the sending
and receiving sides and assigns the newly created elements
to node nets based on their inputs on the sending side and
outputs on the receiving side. In the second step, thesemodels
become a new RTM. Pages spanning multiple node nets are
copied to each PN with elements located within such a page.
Finally, each net is exported as a separate PNMLfile defining
the runtime models.

The Petri Net Package Generator takes the various gener-
atedRTMsandgeneratesROSnodes based on the description
having the RTMs as runtime models.The generated nodes
are automatically started up and configured. The generator
is integrated with the runtime engine to enable this, provid-
ing the execution logic interfacing with the developer. The
generated package contains extension points for message
handling, logic-to-transition bindings, and business logic.
Furthermore, these extensions, if needed, aremanually added
by the developer, based on callbacks and handlers.Within the
final stage of the chain, developers extend the generated ROS
nodes corresponding to the respective models, resulting in a
distributed deployable verified application.Whenever a ROS
package is newly generated because the SyMmodel changed,
all base classes and files are also newly generated. Thus, for
now, developers must separate their handwritten code and
call it from the generated classes to keep them. In summary,
the MDD toolchain provides the necessary features to treat
RQ1 by using PNs as a formal foundation to generate ROS
packages. The three models (SyM, RTM, and PNM) treat
RQ1 by providing a formal underpinning mapped to PNs
with inhibitor arcs and treating RQ2 by providing signals as
integration interfaces for other formalisms and components.

5.3 Systemmodel (SyM)

The SyM, the first artifact shown in Fig. 5, of a distributed
ROS application is a single model and introduces the con-

Fig. 6 Example topic model within a System Model

cepts of services, topics, signals and node nets to PNs. These
concepts are later transformed to a PN in Sect. 5.5. Intro-
ducing these concepts as new modeling elements instead of
using places and transitions simplifies the complexity of the
model and improves its readability and usability.

5.3.1 Topics

A topic is represented by a new named element, the topic
channel, shown as a blue box in Fig. 6, providing references
connected to places working as input- and output ports. Each
subscribing node has one subscriber for the topic, while the
directly subscriber-connected places represent entry points
of callbacks registered on subscribers. Each callback entry
modeling place is part of a callback-modeling pagewithin the
subscribing node net. In the example, SN2 has two callbacks
on a subscriber to the image1 topic. A topic channel sub-
mits tokens to its outputs when at least one of its connected
input places has a token. It removes exactly one token from
one input place–the message to be transported–and places
it as a token in each subscriber-side output place. For each
unique topic, there is exactly one responsible topic channel,
preventing ambiguity. Each topic channel assigns capacity
limits for each publisher and subscriber callback, as publish-
ers and subscribers are also parameterized in this way within
ROS to define the capacities of sender and receiver buffers.

5.3.2 Services

Synchronous and bidirectional communication is provided
by services, which have a pair of service channels, shown
as green boxes in Fig. 7. A service channel models both
the request and the response part of service communication.
Again, references are provided, connecting the input and out-
put places of clients and servers, represented as input and
output ports. A service channel element has per-client sub-
elements representing the individual connections from each
client to the according server. Each server element, defined
within its �server� page, e.g., on the right side of Fig. 7, is
a prototype, which means that for each client, there will be
a runtime instance of it, executing requests independently. A
client-wise channel is enabled if the request port of the chan-
nel contains a token, which was submitted to the connected
server as shown on the left of Fig. 7. After this, and when a

123

S. Ebert et al.

Fig. 7 Example service model within a System Model

token is placed accessible for the channel via the server-side
response place (for example, PS4 in Fig. 7), it is sent back
to the calling client based on the client-side response port.
The calling direction is blocked as long as a client has not
received a response from the previous request.

5.3.3 Signals

Integrating external components, which are not based on
PNs, is realized through signals. Formally describing signals
enables the integration of all possible signal configurations
into model-checking. Binary valued and arc indicated input
signals (IS) are an extension of the enabling mechanism of
transitions shown in the upper part of Fig. 11. Input sig-
nals can be linked by the logical operators ∧ or ∨, and
inverted by ¬, within a conjunctive normal form, enabling
arbitrarily complex logical named expressions, referred to
as input signal clause (IC). Input signals can be applied to
multiple transitions, but only within the same node, so top-
ics and services remain the only interaction mechanism for
nodes. Multiple occurrences of input signals cause interac-
tions. Modeling ICs with Petri nets makes these interactions
analyzeable. Input signals extract a formally sound subset,
extending existing works such as [44, 45].

5.3.4 Metamodel of the systemmodel

Each System Model is based in fixed metamodel where an
extract of it as anAST -model is shown in Listing 3, extending
the ISO defined metamodel.

First, on lines 1 and 2, we extend transitions and places by
subclasses, adding additional information. A TransitionInfo
defined on line 7 has three subclasses which are integrating
signal clauses to transitions (line 14), or integrate service-
and topic channels. The connection of these channels to the
places of publishers, subscribers, clients, and services is then
defined in ports starting at line 16. Therefore, we have dif-
ferent port types, where topic ports provide capacities and
service channel ports define the connection between request-
ing and responding places. Hence, a topic always provides
multiple subscribers and publishers, while a service provides
one server and multiple clients. The modeler configures all

of this information using our extended PNML format, which
is then parsed by DiNeROS.

Listing 3 Grammer extension for System Models
1 DinerosTransition:Transition ::= [Ti:TransitionInfo];
2 DinerosPlace:Place ::= [Pi:PlaceInfo];
3

4 abstract PnObjectInfo;
5 PlaceInformation:PnObjectInfo;
6

7 abstract TransitionInfo:PnObjectInfo;
8 TopicInfo:TransitionInfo ::= <TopicName:String>
9 SuPort:SubscriberPort*

10 PuPort:PublisherPort*;
11 ServiceInfo:TransitionInfo ::= <ServiceName:String>
12 ServerChannel:ServiceChannel
13 ClientChannel:ServiceChannel*;
14 SignalInfo:TransitionInfo ::= /Clause:

InputSignalClause/;
15

16 abstract Port;
17 abstract TopicPort:Port ::= <PlaceId:String> <Limit:

int>;
18 SubscriberPort:TopicPort;
19 PublisherPort:TopicPort;
20 ServiceChannel:Port ::= <RequestPlaceId:String>
21 <ResponsePlaceId:String> <Id:String>;

5.4 Runtimemodel (RTM)

The RTM is a runtime model of the distributed ROS appli-
cation, ensuring that it follows the SyM-modeled workflows
(RQ3). An RTM is a subset of a SyM describing the behavior
of one ROS node, while multiple RTMs describe the whole
application and are generated automatically based on one
SyM. Thus, the RTM differs only w.r.t. the service and topic
elements from a SyM. All channel elements are removed
except the input and output ports of senders and receivers
which are added to the according places as additional infor-
mation. Furthermore, tokens in ports of sending nets are
automatically sent via ROS. Vice versa, ports of receiving
nets are automatically filled, by the later presented runtime
environment, while ROS handles the actual communication.
No other transformations are needed because topics and ser-
vices are the only connections between node nets.

5.5 Petri net model (PNM)

The PNM describes the ROS application using a Petri net
as defined in Sect. 2, but with additional inhibitor arcs intro-
ducedwithin the transformations in Fig. 8. Each PNM results
frommultiple transformations replacing all newly introduced
modeling features from a SyM by PN elements, including
inhibitor arcs, enabling model checking with TINA [29]. We
analyzed the ROS client library implementations of Java and
C++ to enable a correct transformation of the SyM to anPNM
model covering the internal communication mechanisms of
ROS. Those implementations vary with regard to subscriber
and server-side queuing features. Therefore, we modeled the

123

Distributed Petri nets for ROS…

common subset of both, covering all RosJava features and a
usable configuration of the C++ library.

In the following, we describe the transformations for each
concept. They are additive, i.e., only add elements to the PN
and do not remove or modify existing Petri net objects. The
graphical representation of these transformations follows a
rule matching pattern. The left hand side (LHS) defines the
matched pattern, and the right hand side (RHS) the rule on
how to replace foundmatches. Additionally, elements, which
are underlined on LHS and RHS, refer to each other.

5.5.1 Topics

Communication requires integrating models for publisher-
queuing, dispatchers, and callbacks to transform it. Those
transformation rules are shown in Fig. 8. Rule T 1 inserts for
each topic element a connected place Ptopic and transition
Ttopic representing the channel between ROS nodes. Rule
T 2 treats the input of the topic by connecting a model frag-
ment for each publisher representing the overflowing sending
queue to the publisher’s output place and the channel. The
queue itself has a capacity lpub defined as a parameter of the
SyMs topic input matched in the LHS, set as the initial mark-
ing of the capacity, which is reduced by inserting a new token
into the queue via Tpin and increased by pushing a token to the
actual communication channel by firing Tpout. If no capacity
is remaining, then newly incoming tokens (i.e., messages) are
trashed by firing the inhibitor arc. The rules T 3 and T 4 are
transforming the outputs of topic elements by firstly inserting
in T 3 for each subscribing node NS a receiving overflowing
dispatcher queue, with a capacity ln , which can be altered
by the modeler. Within rule T 4, for each subscribing place
Psub, another overflowing queue is created, whose capacity
is defined within the associated topic element’s input. This
callback queue is attached to its corresponding dispatcher
output transition Tsubs,i and to the subscribing node’s place
Psub.

The rules T 5a and T 5b are the two options on how to
define the actual overflow-mechanism of the inserted queues.
The first option uses inhibitor arcs, which improves the
resulting PNMs readability, by checking for the exhaus-
tion of PCapacity . The second option uses normal arcs and
checks against PLoad . We introduced the second option as it
allows the use of optimization techniques in model checking
tools like TINAs reduce, which does not support inhibitor
arcs. We will show in Sect. 8 that this leads to consider-
able improvements concerning the performance andmemory
requirements of the model checker.

5.5.2 Transforming a example

Figure 9 illustrates how a fragment of the running example is
transformed into an PNM.More in detail, as shown in Fig. 9a,

the selected fragment contains two publishers PSortRed and
PSortBlue, originating from the selector component, publish-
ing to theLeftCellObjects topic towhich the controller
component PReqControlL subscribes to.

Figure 9b illustrates which rules are applied and how.
More in detail, first T 1 is utilized once for the topic channel
between the nodes, followed by applying rule T 2 for both
publishers, creating the publisher queues for red and blue
objects and connecting them via references to the channel.
Both inserted queues provide a capacity of 10, defined by the
example-defined publisher limits. Then, rule T 3 creates the
subscriber’s side dispatcher queue equipped with a capac-
ity ln set to 16. We used 16 here, as an example as it is the
default capacity in the ROS-Java implementation. Next, the
dispatcher queue is referenced by applying rule T 4, provid-
ing again a capacity of 10, defined by the example-defined
subscriber limits. Finally, rule T 5b is used four times to cre-
ate the connections between the places PLoad and PDrop of
the various inserted queues.

The final result, shown in Fig. 9c, no longer has refer-
ences and pages. This is because references are not supported
by the complete TINA tooling. Therefore, the Petri Net
Flattener removes the pages and resolves all references.
Thus, the resulting net contains the directly publisher-
connected publisher queues, connected to the channel, mod-
eled by PLeftCellTopic and TLeftCellTopic. This channel transmits
tokens representing selections to the dispatcher and sub-
scriber queues, delivering the tokens to the subscribing place
PReqControlL .

5.5.3 Services

Flattening service communication requires modeling the
server-side thread pool and connections between requesting
clients and their respective server instances. The correspond-
ing transformation rules are depicted in Fig. 10. Rule S1
covers the communication between server instances and
clients, which are attached through place references to
clients. Service clients perform blocking calls, represented
by a client-side place Pready marked with one token removed
when a request is sent and added when a corresponding
response is received. The transitions Treq,c and Tres,c model
the channel c between client and server. The SyM models a
server prototype, which is replicated for each required server
instance, defined by instance count Ci via rule S4, where the
number of needed instances is computed by attributes based
on a service’s total number of clients. This knowledge enables
fixing the connection between client and server by explicitly
modeling a client’s server instances. Additionally, rule S4
describes the interfaces of each service instance with Pentry,i
consuming requests and Pexit,i providing the result, which is
sent back to the connected client. The server side in rule S1
has two purple marked places, referenced in the RHS of rule

123

S. Ebert et al.

Fig. 8 Transformation rules for
topic-based communication

S2, acting as a cross-product connecting each client to all
server instance’s interfaces and therefore looping over each
channel c and server instances i . Each server instance com-
municates its status based on Pactive,i and Pinactive,i, which are
referenced within S2 and included for each server instance in
S3. Similarly, PinUse,c,i provides the usage status of a client-
to-server connection.

5.5.4 Signals

An input signal clause (IC) on a transition Tx requires
its transformation to preserve its semantics within the PN,

enabled by the clause in conjunctive normal form and addi-
tive transformation rules depicted in Fig. 11. Rule I1 creates
a place PDi=true for each disjunction term and connects it
to Tx. The signal usages, the ICs literals, are combined into
these disjunctions by the rules I2fully-enabled and I3fully-enabled
referencing the signal value changing transitions TtoTrue,s and
TtoFalse,s on their RHS. The decision of applying either rule
I2fully-enabled or I3fully-enabled depends on the negation of a
literals value within a clause, i.e., a non-negated signal usage
triggers rule I2fully-enabled and a negated rule triggers I3. This
decision is reflected in the LHS of rules I2fully-enabled and
I3fully-enabled by matching against the literal or its negated

123

Distributed Petri nets for ROS…

Fig. 9 Flattening of a topic with two publishers and a subscriber

123

S. Ebert et al.

Fig. 10 Transformation rules
for service-based
communication

version. Rule I4 is applied for each input signal s and inserts
places for both states of an IS: PS for true and P¬S for false,
representing literals of a clause. The rule I5fully-enabled con-
nect these places, allowing a signals value change. The rule
I5fully-enabled connects these places, allowing a signal value
change.

The results of the previously described transformations are
referred to in the following as fully enabled signals, because
they can change their value at any time, justified by the fact
that TtoTrue,s and TtoFalse,s just depend on the signals current
state. This increases the state space by two to the power of
signal usages. Thus, we introduce two optimizations here.

The input-enabled variant is described in Fig. 12, where rule
I5input-enabled, creates for each signal usage new transitions
TtoTrue,s,Tx and TtoFalse,s,Tx , and links them to the signal state
defining places. The new rule I6input-enabled bidirectionally
connects the input places of Tx to the aforementioned tran-
sitions, whereby the corresponding signal model fragment
marking now only changes when the inputs of at least one of
this signal using transitions are enabled, reducing the result-
ing state space. The original rules I2 and I3 are alsomodified
for the input-enabled variant to reflect the per-signal usage
included in rule I5input-enabled.

123

Distributed Petri nets for ROS…

Fig. 11 Transformation rules
for input signal clauses using
fully-enabled signaling

The io-enabled variant, extends the input-enabled vari-
ant by additionally creating transitions TtoTrueOut,s,Tx and
TtoFalseOut,s,Tx . These transitions are additionally bidirection-
ally linked to the output places of Tx. Although this variant
allows more changes to the signal value, it describes the
actual behavior of a signal more closely, as it can reset its
value after it has been introduced into the system.

5.5.5 Distribution

In DiNeROS, communicating node nets are independently
executed. The firing of transitions in different node nets is
performed in parallel, potentially creating race conditions.
However, no such conflicts can happen since node nets are
decoupled using only topics and services.

6 Modeling the running example

To evaluate that our proposed approach is feasible and
enables the detection of bugs, we first describe the SyM

of our case study, followed by scenarios in which we used
path analyzes to detect erroneous behavior introduced by
unaligned changes of different developers. Finally, we ana-
lyze the use of the resulting runtime models, which are
obtained by removing the SyM-introduced channel elements
as described in Sect. 5.4.

The physical representation of the case study involves two
industrial robot arms, shown inFig. 13.Both arms collaborate
within a fixed zone to sort objects, while a human operator
can interrupt the robots. The corresponding SyM is shown
in Fig. 14. It represents node nets modeling the components
described in Sect. 4. We use balloon tokens to capture infor-
mation about the color, pose, and name of objects and for
status information, namely if picking and placing succeeded.
The flag humanDetected, used in Listing 2, stores sensor
information. If a token goes through the sensor component, it
is enriched with sensor information. The selector component
provides places 1 for each color with tokens for the objects.
These tokens are consumedwhen the attached transitionfires,
which are controlled by individual ICs representing the user

123

S. Ebert et al.

Fig. 12 Transformation rules
for input signal clauses using
input-enabled signaling

Fig. 13 Physical setup of our
case study

123

Distributed Petri nets for ROS…

Fig. 14 Running example as SyM, where e.g. ICPickSuccess := (RobotIsIdle ∨ RobotHasFinished) ∧ ObjectIsPicked

123

S. Ebert et al.

input. Depending on the color, the selector net sends objects
via topics to the controller, where two identical robot con-
trollers 2 are sorting the objects based on the topic they
listen on. These controllers represent the central workflow
describing the steps to sort an object and coordinate the
other components. A robot-controller’s workflow starts with
requesting access to the robots’ shared workspace, picking
objects, placing them intobins, leaving the sharedworkspace,
and releasing the control over it after the PObjPlaced place
indicates that this pick-place process has finished. Request-
ing and releasing control is done based on two services
3 / 5 within the node net of the synchronizer component.
The exclusive access to the workspace is represented by the
place PGet within the control state page 4 , connected to
the instances of the control requesting and releasing services
based on references. This resource can only be acquired by a
single GetControl server instance at a time because there
is only a single token within PStateGet.

The actual picking and placing actions are realized by
service calls in the controller nets, where the correspond-
ing servers represent the executor component within a ROS
node. This component consists of the application logic 6

and a shared safety model 7 . Sharing the safety model is
realized by letting the pick and place services access it with
place references. The first transitions TPick and TPlace of the
executor’s services access the safety model based on refer-
ences and lets a robot pick respectively place an object by its
attached callbackwhen it is safe 8 . The result-tokens of pick
and place operations are output in a respective place. These
tokens are processed further depending on whether signals
indicate failure or success, or the state of the safety model.

The safety model queries the sensor component 9 to
check if the current environment is safe, which can either
result in a token in PSafe or PUnsafe, aborting execution within
the referencing pick and place services. The sensor compo-
nent is represented by a node net retrieving data if a detecting
sensor is active. The availability of newdata itself is indicated
by the attached signal clause ICSensor 10, solely defined by
a single signal named Sensor . Finally, the controller node
nets sends the result of their workflow execution via the topic
UITopic to the node net controlling the user interface 11.
For our evaluation, the previously defined application was
developed with DiNeROS by a team of developers splitting
responsibility for the different application components.

7 Analyzing DiNeROS applications

Various analyzes can be carried out on the basis of a PNM
and its statespace. TINA [29] provides basic algorithms, such
as (partial) state space generation and path search, which aid
in analyzing PNMs. The Net Analyzer uses these algorithms

for domain-specific analysis methods in DiNeROS. These
analysis methods are presented below.

7.1 Analyzing state spaces

Whenever a message, represented as a token, is lost within
a PN-based ROS application, this affects all dependent Petri
net parts. Detecting erroneous communication constructs for
topics is possible by a path analyzis when looking at the over-
flow transitions of publishers, dispatchers, and subscribers
of an PNM. Every time one of these transitions (TDrop in
Fig. 8, rules T2–T4) is enabled, a queue will overflow. In
Algorithm 1, we generate the state space of an PNM until
a state satisfies this overflow condition. This is done for all
topic channels (Line 2) and their containing overflow transi-
tions (Line 3) on the publisher and subscriber side. Thus, the
algorithm covers all potentially overflowing transitions.

Algorithm 1 Analyzing topic channels
1: procedure AnalyzeOverflows(model)
2: for channel in TopicChannels(model) do
3: for t_overflow in FindOverflowTransitions(channel) do
4: violating_state ← sift -R -k -f "- ({$t_overflow});" -df $model

5: partial_space ← sift -R -k -c $violating_state -df $model

6: trace ← pathto -p $violating_state $partial_space

7: VisualizeTrace(trace)
8: end for
9: end for
10: end procedure

Within the first step on Line 4, we use sift, which is part
of TINA and enables the construction of reachability graphs
(i.e., state space) and on-the-fly verification of reachability
properties. More in detail, the -f option is used to specify
in the following a stopping condition for the state space gen-
eration, where we stop if an overflow transition is enabled.
The -df option uses a depth-first approach in our exam-
ple, but depending on a Petri nets structure, a breadth-first
approach could result in a faster termination. Additionally,
the TINA tool selt can be used to check any linear temporal
logic (LTL) formula. The second step on Line 5 creates a
partial state space contain the previously identified invalid
application state, by using the -c option. This partial space
is used by TINA’s sift tool, creating a trace from the ini-
tial marking to the violating state. The trace is analyzed and
visualized by the Trace Visualizer, simplifying development
using Petri nets as formalism (RQ1). By this, we avoid gen-
erating the complete state space, which gets impractical for
growing Petri net sizes.

Within Algorithm 2, the state space of an PNM is exam-
ined to find and analyze unused parts of it, allowing it to
either repair or minimize the net afterward. The algorithm
assumes the satisfiability of all signal clauses defined within
the net. Therefore, all model fragments defining the signals
and their bindings are removed on Lines 5 to 7. Additionally,

123

Distributed Petri nets for ROS…

Algorithm 2 Analyzing dead transitions
1: procedure AnalyzeDeadTransitions(model)
2:
3: problems ← []
4:
5: for signal_fragment in GetSignalFragments(model) do
6: RemoveSignal(signal_fragment)
7: end for
8:
9: deadTransitions ← GetDeadTransitions(tina -s 0 $model)
10:
11: for t in deadTransitions do
12: if IsServiceCallTransition(t) then
13: problems ← (GetService(t) is never called)
14: else if IsServiceRespTransition(t) then
15: problems ← (GetService(t) never returns)
16: else if IsTopicChannelTransition(t) then
17: problems ← (GetTopicChannel(t) is never used)
18: end if
19: end for
20: return problems
21: end procedure

it is assumed that, based on the results of Algorithm 1, over-
flows on topic channels have been detected and resolved. On
Line 9, the output of TINA, which is the state space of an
PNM, is used to get the list of all dead transitions. This list is
iterated over (Lines 11–19), and based on the contained tran-
sitions and types, it is determined whether a topic is used, a
service is never returned, or a service is getting called.

Algorithm 3 also examines the TINA-generated state
space (Line 2), but checks whether a node defined by a
given model_fragment is ever used (autonomously or
by call). This involves checking whether all transitions in the
model_fragment, i.e., including communication inter-
faces, are dead (Line 4–10). If a node is dead, it will either
never be called, or its transitions will not fire on their own.
This is an indication of either a modeling error or an obsolete
node.

Algorithm 3 Checking of node usage
1: procedure IsNodeDead(node_fragment)
2: deadTransitions ← GetDeadTransitions(tina -s 0 $model)
3: matchCount ← 0
4: for deadTransition in deadTransitions do
5: for transition in TransitionsInNode(node_fragment) do
6: if transition equals deadTransition then
7: matchCount ← matchCount + 1
8: end if
9: end for
10: end for
11: return matchCount == NumTransitions(node_fragment)
12: end procedure

7.2 Signal-caused effects

The satisfiability of signal clauses has a major effect on
the accessibility of net parts. When examining Fig. 14, a

first example can be created by defining the clause ICSTOP

in 7 asDanger∧¬Danger. This clearly disables the bound
transition permanently, where Danger is initially f alse and
updated at runtime. This would make the application unsafe
because, when having the response token of the sensor com-
ponents service in PSafe, it is impossible to reach PUnsafe
again. Additionally, the SensorService is thereby also called
a maximum of once. This defect was detected by analyzing
the sift-generated reachability graph of 8 and 10, showing
that the ICSTOP transition is never, and transitions in 10 are
only enabled once. Detecting such erroneous constructs is
done by iterating over all signal clauses and investigating
their satisfiability, by using a SAT-solver, and reporting not
satisfiable clauses as list.

A second example is defining the clause ICPickSuccess as
constantly evaluating to false, preventing the pick service
from returning, essentially blocking all robots. Such proper-
ties can be expressed as LTL formulas and checked with selt,
where the only content of the formula is the identifier of the
services Pexit (see Fig. 10). Hence, this formula checks if the
transition is ever enabled, which is not the case if the service
ever responds. Thus, the influence of signal-based attached
components and models is analyzable (RQ2).

8 Scalability of analyzing DiNeROS nets

One of the advantages of Petri nets is that they can specify a
large state space in comparison to the model size. However,
this also implies that the generation of state spaces consumes
more time andmemory as the model size increases. The state
space of a PNM grows even faster. This is firstly because of
the usage of signals. When using the fully enabled version
of signals, we increase the number of states by 2su where
su is the number of signal usages on transitions. Secondly,
the usage of queues within topic channels increases the state
space. Therefore, we performed an evaluation of the scala-
bility of the state space generations in relation to the signal
flattening variations. Within the evaluation, the results of the
three types of signal transformations were compared with a
model not using signals (without signals).Wemeasured each
of these types both with and without reduction by TINAs
reduce tooling. Especially, as shown in Algorithm 4, we
use a two-stage approach. First, in Line 2, a reduction is
performed that preserves the reachability set and removes
duplicate places and transitions as well as identity transi-
tions [46]. Within the second stage on Line 3, we use the tr
algorithm to compute clusters, reducing the net even more.
This algorithm always reduces the input nets of our running
example in less than one second. We use a desktop PC with
a Ryzen 9 3900X and 64 gigabytes of RAM running Ubuntu
20.04 as the measurement system. The measurement of time
and memory consumption values was conducted with the

123

S. Ebert et al.

Unix Time tool. More specifically, the Non-Bash-integrated
version of this tool was taken, as this allows more accurate
measurements ofmemory usage.Unfortunately, the accuracy
of time measurements is limited to 10−2 seconds. The rea-
son for using an external tool for measuring is that the TINA
source code is not publicly available.

Algorithm 4 Reduction of a PNM with TINA
1: procedure Reduce(pn_model)
2: rg_reduced ← reduce -rg,redundant,compact $pn_model
3: tr_reduced ← reduce -tr,cluster,4ti2 $rg_reduced
4: return tr_reduced
5: end procedure

Figure 15 shows the number of states and transitions of
the generated state space depending on the number of tokens
used in the object pool places from our running example
(i.e., the number of colored objects subject to sorting). The
diagram shows two variants of four alternative approaches.
The default case (fully-enabled) was introduced in our pre-
vious work [24]. Next, we introduced two optimizations to
reduce the state space of signals by modifying the result of
the signal translation shown in Fig. 11. The first, called io-
enabled, restricts the transitions of signals to be only enabled
when there is a token in either an input or an output place of
the original transition. That is, each transition TtoTrue,L j and
TtoFalse,L j gets each input and output place of Tx as input
place. This reduces the state space of the overall net. The
second optimization is called input-enabled and restricts the
signal transitions further by just enabling them when there is
a token in an input place of Tx . The rationale behind these two
optimizations is that a signal typically does not change when
the respective part of the net is not currently active. Addition-
ally, we added without signals as a reference version of the
case studywithout signals. For each of these four approaches,
we show the variant with and without TINA reduction as
shown in Algorithm 4. Some measurement sequences do not
capture the whole range of objects to be sorted, because in
these cases the measurements could not be completed as the
measuring systems RAM was exceeded.

The first insight that can be observed is that – compared to
the fully enabled and not reduced version proposed in the pre-
ceding work – the io-enabled version reduces the state space
by onemagnitude and the input-enabled by an additional one.
This is possible, becausewith thesemodifications signal tran-
sitions are not always enabled, but only if there are tokens in
the inputs and/or outputs of the connected transitions of the
model. Reducing the io- and input-enabled version based on
Algorithm 4 reduces the size of the state space successfully.
Both are not as performant as the fully-enabled reduced vari-
ant, because the reduction step for the fully-enabled variant
completely removes the signals. The additional arcs to enable

Fig. 15 State space size (states) dependent on used approach

Fig. 16 Time consumption of the state space generation

signal switches for in- and output places prohibits this opti-
mization.

The second interesting insight is about comparing the fully
enabled approaches result with its reduced version and the
model that does not use signals. It can be observed that both,
reducing the fully enabled approach, and the version without
signals generate spaces of the same size. This is because the
reduction removes signals in the fully enabled model, as they
can always fire there and only introduce redundancy in terms
of the state space. Therefore, after the removal of signals
the non-signal and fully enabled version can be reduced in
the same way, resulting both in a four magnitudes less large
number of states and transitions.

In addition to examining the number of transitions and
places in the state space, the memory consumption and the
time required to generate the state space were also consid-
ered, within Figs. 17 and 16.Whenmeasuring the times, they
are limited to 10−2. because they are below the measurement
accuracy of the used tooling.

123

Distributed Petri nets for ROS…

Fig. 17 Memory usage of the state space generation

Both diagrams show that we can observe a trend in mem-
ory and time consumption,where in both cases, the additional
memory or time required increases as the number of objects
to be sorted increases, especially when considering signal-
less and reduced models. Thus, if a transformation reduces
the state space by several magnitudes, more tokens can be
included in the state space generation. Nevertheless, the
increase in time and memory consumption is exponential.
Reduced fully-enabled and signal-less models have nearly
the same memory consumption clearly justified therein that
their state space shares the same number of places and
transitions, and the models themselves follow a nearly iden-
tical structure. In terms of memory consumption, there is
a noticeable aspect related to the fully enabled and signal-
less reduced variants, both sharing the lowest memory usage.
Both variants have a strong increase in memory usage from
two to three objects to be sorted, compared to the directly
following measurements. This is because the reduction has
a stronger effect on the first two scalings, as the first two
tokens only flow into the LeftCellObjects topic, and
therefore, a significant part of the selector component can
be reduced away, which is not the case for the third scaling
anymore. This effect is still visible even in the unreduced
variant without signals, as the signal-less state space grows
more slowly, due to the non-use of a topic. By not reduc-
ing and using input- or io-signals, this effect is not present
in the other measurement series. A second noticeable aspect,
shared by the four right-handmemorymeasurement series, is
about their respective two last scalings, in which the increase
in memory growth decreases. This is because less memory
is allocated by TINA when the RAM is close to exhaustion,
while more optimistic allocations can be made in the other
scalings.

Generalization of findings

The results of analyzing the scalability of the individual mea-
surement series are specific to the running example.However,
somefindings canbegeneralized. First, the input-enabled and
io-enabled versions always reduce the state space, regardless
of the model used. This is important, because the improve-
ments of the reduce tool might only work that well for the
example shown in this paper. Other Petri nets might not ben-
efit that heavily from using the reduce tool, but will benefit
from using the input- or io-enabled versions. In our exam-
ple, the signals are recognized by the optimizer as irrelevant
to the state space in the reduction, while in general, the sig-
nals could be considered relevant. Second, the location of
signal usages is important. When signals are used in front
of communication channels or more complex sub-networks,
the state space increases considerably more compared to the
case where signals are used in less complex sub-networks.
Finally, the distribution of the Petri net to node nets and their
internal net structure influences the efficiency of the reduce
tool.

9 Debugging the running example

The detection of erroneous models can take place in
DiNeROS at modeling time on the one hand and at applica-
tion runtime on the other. This is illustrated below using the
running example, wherewe use the io-based flattening of sig-
nals, reducing the potential number of signal value changes
and thus improving the readability of traces to be analyzed.

9.1 Analysis of traces

An important tool for detecting errors in a DiNeROS appli-
cation is the analysis of traces as introduced in Sect. 5.2.
These traces are always only one possible run-through and,
therefore, only represent a part of the overall picture. Within
DiNeROS, we are able to analyze two kinds of traces: TINA-
generatedmodeling-time traces and runtime execution traces
generated by the Petri Net Engine. The following section
takes a closer look at the analysis of modeling time traces.

A modeling-time trace is generated as shown in Algo-
rithm 5 by searching a goal state where a given transition
is enabled with sift, generating the partial state space and
building a trace to the goal state with pathto. In the use case,
if we want to know when an object has passed through the
workflow, the goal state corresponds to the last transition
TShowResult . The complete PNM of an application is used for
this, as signals are necessary to obtain a complete understand-
ing. As already determined, the state space grows strongly.
Therefore, partial state spaces are used for modeling-time
traces.

123

S. Ebert et al.

Algorithm 5 Creating a trace for a sorting operation.
1: procedure CreateTrace(model, goal_transition)
2: goal_state ← sift -R -k -f "- ({$goal_transition});" -df $model

3: partial_space ← sift -R -k -c $goal_state -df $model

4: return pathto -p $violating_state $partial_space

5: end procedure

A modeling-time trace of our running example is shown
in Fig. 18, where a first (red) object was sorted and the pro-
cess for a second (green) initiated. First, on the x-axis, we
can observe the number of fired transitions, while the y-axis
is used to indicate information about the state of signals.
Second, below the x-axis, additional information about topic
usages and selected transitions with attached handlers are
displayed. Third, the use of services is indicated by curly
brackets, which provide information about a services name
and the identifier of communicating service instance (I) and
client (C). The brackets start at the service call and end when
the service returns.

This visualized trace of the running example starts on the
left-hand side with the first execution of the sensor service,
called by the safetymodel. This call is repeated over the entire
trace, because the trace is built using depth-first search.More-
over, in principle the sensor is always allowed to be called,
when having a token within the safety models calling place,
because only the pick-and-place workflow is dependent on
the safety model, not vice versa. More in detail, the sen-
sor signal marked in yellow changes its state several times,
e.g., when the sensor is called up for the first time. This
is possible because with the io-enabled approach a signal’s
state is allowed to change before and after firing the attached
transition, i.e., when there are tokens in the transition’s in-
or output places. TINA exploits all possible traces, i.e., all
allowed sequences of signal states, service calls, and so on.
The visualization shows one of many possible traces. Next,
the sorting signal forRed objects is activated, followed by the
signal for Green objects. The Blue signal is never activated
because no blue object is included in the example. Selec-
tions of objects are sent using the LeftCellTopic and
RightCellTopic to the controllers, where a controller
acquires control via the according service and calls the Pick
service. After thePick transition fired, thePickSuccess signal
indicates the operation’s success. Two callbacks are called.
One for the Pick transition and one for PickSuccess. Both
callbacks are called relatively late in the pick-services call,
as transitions of safety model and sensor service are fired
beforehand.

This is followed equally for the place operation and by
releasing control over the shared space via theEndControl
service call, which allows the second GetControl call to
proceed. The trace ends with reporting the result of sorting
the red object to the UI-component via the UITopic.

9.2 Analysis of the state space

In the following, we look at analyzes of the state space using
the analysis algorithms fromSect. 7.1, for two scenarios. Fur-
thermore, the model used permanently enabled signals to
reduce the size growth of the state space.

9.2.1 Scenario 1: Sorting more types of objects

We start with one type of object to be sorted and have
a detailed look at the topic-based communication between
the selector and one of the robot controllers of the initial
model. Because the Petri net is 10-bounded, we do not gen-
erate an overflow when assigning capacity 10 to input and
output of the selector topic and a maximum of 10 tokens
to the source place of the selector. Assume a new devel-
oper extends the selector component with two more types
of objects, setting the number of objects for each type and
the topic’s input capacities to five. However, the robot con-
troller’s developer does notmodify the output capacity,which
is high enough individually, but not in total. This scenario
leads to a state where the corresponding overflow transition
is enabled. We can detect these potential overflows by using
Algorithm 1,without the Trace Visualizer, because the visu-
alization does not contain useful information in this context.

9.2.2 Scenario 2: Changing signal-clauses

The second scenario deals with the effect of changing the
clause ICSensor within the sensorics component to an unsat-
isfiable variant by the developer of this component without
using an SAT solver to detect the unsatisfiability. This causes
the sensor service to never return again and, thus, to never
reinsert a token into the safetymodel,which again leads to the
effect that the pick operation never returns to the controller
component, ultimately blocking the complete application.
We can detect this by using Algorithm 2. The algorithm’s
result lists the Sensor service and Pick service as never
returning, the Place service as never called, and further-
more, the UITopic channel as unused.

9.3 Examining the runtime behavior

Beside using Petri nets within our approach at modeling time
for verification purposes, Petri nets are also used as models
at runtime, enabling systemmonitoring. In the following, we
provide a detailed answer to research question 3.

First, the non-determinism of Petri nets must be handled,
which is done using a handler, as shown in Listing 2, and
defaults to an eager firing logic, firing a random enabled
transition whenever possible. This eagerness is essential for
safety in robotic applications, e.g., in Fig. 14 7 , where the
execution logic ensures the safety mode is adapted as soon

123

Distributed Petri nets for ROS…

Fig. 18 Trace of picking and
placing an object, based on a
generated state space

as possible, and the non-determinism is resolved as shown
in Listing 2. Second, the data flow modeled with balloon
tokens is specified in the transition handlers (as shown in
Listing 1), computing the output token balloons based on
the input tokens. Third, the causal connection to other ROS
components, a defining feature for models at runtime [23], is
established using callback handlers for outgoing and signals
for incoming communication.

Fourth, at runtime, the execution of the RTMs of each
node is handled by a node controller responsible for firing
transitions and calling handlers. In conclusion, the runtime
behavior is derived from the Petri net, with non-determinism,
data flow, and connection with other systems defined by the
user.

Finally, a runtime execution trace, the second type of trace,
is generated by saving the transitions fired by the applica-
tion as well as the originating and resulting states within a
trace file, which is continuously evaluated at runtime by the
Trace Visualizer. Runtime execution traces are displayed in
a similar way as modeling-traces, which is shown in Fig. 19.
However, the x-axis now displays information about the
actual time spent by the application. Additionally, informa-
tion about the usage of service instances is already partially

shown when a token is still active within an instance and
updated at each new generation of the visualization. The
exemplary trace inFig. 19 shows again the sorting of a red and
a green object. Similar to the modeling-time trace the sensor
service is called at a certain interval. However, the sensor
signal does not flicker as much because we have implicit
priorities due to the handler and callback connected code.
Another difference is that a user chooses the time of object
color selection and does so with a greater time interval. Con-
sequently, it can be seen how after the value change of the
red signal, and the sending of the selection to the controller
via the LeftCellTopic, control is acquired and the picking
starts, resulting in the PickingSuccess signals value change
and the returning of the Pick service. During the place oper-
ation of the red object, the sorting of green objects is finally
started by the user, which is submitted to the right cell’s con-
troller via the according topic. The place services node net,
receives the new value of the PlacingSuccess signal after the
robot has successfully finished placing and after executing
the bound transition, returns to the controller. Just like the
modeling-time trace, the runtime trace ends with the first
picking controller ending the control over the shared space
and reporting the results using the UITopic.

123

S. Ebert et al.

Fig. 19 Trace of picking and
placing an object, based on an
application execution

10 Discussion

In the following, we discuss the practical and theoretical
implications of the proposed approach, as well as consid-
erations regarding its feasibility and generalizability.

There is always the possibility of introducing faults
through hand-inserted code on the levels of handlers and call-
backs despite correct model verification. Thus, a solid testing
method is crucial for any additions of handwritten code. Nev-
ertheless, the overall control is always correct with respect
to its Petri net-based specification. The correctness of the
model-based specification relies on the expertise and knowl-
edge of the modeler. Hence, despite the model checking
methods in DiNeROS there exists a risk of incompleteness
or ambiguity in the specification.

The growing model complexity and size is a challenge in
our research framework. As the model evolves and expands
in scope, driven by the requirements of the system subject
to modeling. That’s why we use pages as means to separate
concerns such as nodes, groups of nodes and net parts of
nodes, enabling switching between abstractions. Neverthe-
less, the complexity of the system model specification itself
is a barrier, especially without graphical modeling. Hence,
we are currently developing a visual editor to circumvent this
barrier.

The learning curve associated with our modeling frame-
work is steep. The concepts of Petri nets and the Robot
Operating System (ROS) required by modelers and devel-
opers can be learned relatively quickly. The challenging part
of the learning curve lies in analyzing the Petri net model.
This analysis requires detailed knowledge of Petri net-based
model checking. For this reason, we introduced the separate
role of the system engineer. Additionally the proposed tools
within DiNeROS, such as Petri Net Splitter or Package Gen-
erator are automated, allowing users to focus on modeling,
implementation and model checking.

Looking at the formal analysis methods and the growth
of the state space, the resulting limitations become apparent.
Successful generation of the complete state space of a model
becomes increasingly unlikely with increasing model size
and complexity. This is the reason why we only generate
partial state spaces in this work, even if this limits the amount
of guaranteed properties, such as invariants.

Regarding the engine, no guarantees can be made regard-
ing real-time properties because the Java client library for
ROS does not support them. Therefore, these are not imple-
mented in the engine. However, ROS allows DiNeROS to be
used for any robotic platform, as robotic components can be
attached based on handlers and signals.

123

Distributed Petri nets for ROS…

The case study reflects essential aspects contained in
ROS applications: chained topic and service calls, distributed
coordination and access to hardware (robots, sensor). How-
ever, the case study’s scale may not fully reflect large-scale
ROS applications because it operates within a simplified sce-
nario that focuses on the investigated aspects. Furthermore,
the controlled nature of the case studies environment may
lack the unpredictability of real-world ROS applications. In
other words, our small-scaled case study is beneficial for
internal validity as we eliminate external influencing factors,
but it diminishes our external validity in terms of generaliz-
ability.

11 Conclusion and future work

In this paper, we introduced a novel model-driven toolchain
to develop robotic applications based on the Robot Oper-
ating System. In our approach, first, modelers design the
application using an extended Petri net language, the System
Model (SyM), which offers dedicated language constructs
for ROS-based applications. This answers RQ1, i.e., how
to develop ROS applications, which can be formally veri-
fied in terms of communication defects, influence of external
applications, unused parts and the node internal workflows
based onTINA. Input signals can be specifiedwithin the SyM
to enable integration with other formalisms, which answers
RQ2. Second, system engineers use these models to verify
the formal properties of the designed applications. To enable
using off-the-shelf verification tools, the extended Petri nets
are transformed into basic Petri nets. Finally, the SyM is split
into Runtime Models (RTMs) for each ROS node, of which
each is used to generate ROS code with dedicated exten-
sion points to be used by developers. The final application
uses these RTMs at runtime and invokes the code provided
by developers, which answers RQ3. We showed the feasi-
bility of our approach using an industrial case study where
two robot arms collaboratively sort objects in a shared work
environment. To show the usefulness of Petri net verifica-
tion, we presented three scenarios. In summary, our approach
improves the development of safe ROS applications due to
the integration of verification activities and MDD with code
generation combined with runtime models.

The presented work offers the opportunity for numerous
extensions in connection to the ROS landscape. Firstly, for
scope reasons, ROS actions were not addressed in this work,
as these are based on topics and are, therefore, implicitly
supported by DiNeROS. Furthermore, the states of an action
server can be modeled with Petri nets. Secondly, a central
extension of this work will be the modeling of the ROS
successor system ROS 2, which provides quality of service
(QoS) properties in the area of communication. For this rea-
son, the use of Time Petri Nets will be necessary.

Acknowledgements Funded by the German Research Foundation
(DFG) as part of Germany’s Excellence Strategy - EXC 2050/1 - Project
ID 390696704 - Cluster of Excellence “Centre for Tactile Internet with
Human-in-the-Loop”(CeTI) of Technische Universität Dresden, and by
the Federal Ministry of Education and Research of Germany in the pro-
gramme of “Souverän. Digital. Vernetzt.”. Joint project 6G-life, Project
ID: 16KISK001K.

Author contributions Sebastian Ebert. and Johannes Mey. developed
the main concepts and wrote most of the main manuscript text and
prepared the figures.Measurementswere conducted by Sebastian Ebert.
The implementation was done by Sebastian Ebert with contributions
from Johannes Mey. and René Schöne. Sebastian Götz. wrote parts
of the abstract, introduction and conclusion sections. Uwe Aßmann.
and Sebastian Götz. and R.S. contributed to the concepts and design
decisions. All authors reviewed the manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ciccozzi F, Di Ruscio D, Malavolta I, Pelliccione P, Tumova
J (2017) Engineering the software of robotic systems. In: 2017
IEEE/ACM 39th International conference on software engineering
companion (ICSE-C), pp 507–508. IEEE

2. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J et al
(2009) ROS: an open-source Robot Operating System. In: ICRA
Workshop on open source software, vol 3, p 5. Kobe, Japan

3. Lesire C, Pommereau F (2018) ASPiC: an acting system based on
skill petri net composition. In: International conference on intel-
ligent robots and systems (IROS), pp. 6952–6958. https://doi.org/
10.1109/IROS.2018.8594328 . IEEE

4. Dondrup C, Papaioannou I, Lemon O (2019) Petri Net machines
for human-agent interaction . https://doi.org/10.48550/arXiv.1909.
06174

5. Pelletier B, Lesire C, Grand C, Doose D, Rognant M (2023) Pre-
dictive runtime verification of skill-based robotic systems using
Petri Nets. In: 2023 IEEE International conference on robotics and
automation (ICRA), pp 10580–10586. IEEE

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/IROS.2018.8594328
https://doi.org/10.1109/IROS.2018.8594328
https://doi.org/10.48550/arXiv.1909.06174
https://doi.org/10.48550/arXiv.1909.06174

S. Ebert et al.

6. Santos PMP (2016) PN-RTE, petri net robot task execution. Mas-
ter’s thesis, Tecnico Lisboa

7. FigatM, Zieliński C (2022) Synthesis of robotic system controllers
using robotic system specification language. IEEE Robot Autom
Lett 8(2):688–695

8. Dal Zilio S, Hladik P-E, Ingrand F, Mallet A (2023) A formal
toolchain for offline and run-time verification of robotic systems.
Robot Auton Syst 159:104301

9. Halder R, Proença J, Macedo N, Santos A (2017) Formal verifi-
cation of ROS-based robotic applications using timed-automata.
In: 2017 IEEE/ACM 5th International FME workshop on formal
methods in software engineering (FormaliSE). https://doi.org/10.
1109/FormaliSE.2017.9. IEEE

10. Wang R, Guan Y, Song H, Li X, Li X, Shi Z, Song X (2018) A
formal model-based design method for robotic systems. IEEE Syst
J 13(1):1096–1107. https://doi.org/10.1109/JSYST.2018.2867285

11. Cheng BH, Clark RJ, Fleck JE, Langford MA, et al.: (2020)
AC-ROS: assurance case driven adaptation for the robot operat-
ing system. In: Proceedings of the 23rd ACM/IEEE international
conference on model driven engineering languages and systems.
https://doi.org/10.1145/3365438.3410952

12. Kortik S, Shastha TK (2021) Formal verification of ROS based
systems using a linear logic theorem prover. In: International con-
ference on robotics and automation (ICRA), pp 9368–9374. https://
doi.org/10.1109/ICRA48506.2021.9561191. IEEE

13. Zander S, Heppner G, Neugschwandtner G, Awad R, Essinger
M, Ahmed N (2015) A model-driven engineering approach for
ROS using ontological semantics. In: 6th International workshop
on domain-specific languages and models for robotic systems
(DSLRob-15). https://doi.org/10.48550/arXiv.1601.03998

14. Estévez E, García A, García J, Ortega J (2018) ART2ool: a model-
driven framework to generate target code for robot handling tasks.
Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-
1976-z

15. Chaudhuri SR, Banerjee A, Swaminathan N, Choppella V, Pal A,
Balamurali P (2019) A knowledge centric approach to conceptu-
alizing robotic solutions. In: Proceedings of the 12th innovations
on software engineering conference, pp 1–11 . https://doi.org/10.
1145/3299771.3299782

16. Kilgo P, Syriani E,AndersonM (2012)A visualmodeling language
for RDIS and ROS nodes using AToM3. Lecture notes in computer
science 7628 LNAI, 125–136 https://doi.org/10.1007/978-3-642-
34327-8_14

17. Beaulieu A, Givigi SN, Ouellet D, Turner JT (2018) Model-driven
development architectures to solve complex autonomous robotics
problems. IEEE Syst J 12(2):1404–1413. https://doi.org/10.1109/
JSYST.2016.2583403

18. Brugali D, Gherardi L (2016) HyperFlex: a model driven toolchain
for designing and configuring software control systems for
autonomous robots. Stud Comput Intell 625 https://doi.org/10.
1007/978-3-319-26054-9_20

19. El Baccouri H, GuillouG, Babau J-P (2018) Robotic system testing
with AMSA framework. In: MoDELS (Workshops), pp 316–325

20. RamaswamyA,Monsuez B, Tapus A (2014) Saferobots: Amodel-
driven approach for designing robotic software architectures. In:
International conference on collaboration technologies and systems
.https://doi.org/10.1109/CTS.2014.6867554. IEEE

21. Baumgartl J, Buchmann T, Henrich D, Westfechtel B (2013)
Towards easy robot programming-using DSLS, code generators
and software product Lines. In: Proceedings of the 8th International
joint conference on software technologies - volume 1: ICSOFT-PT,
(ICSOFT 2013), pp 548–554

22. Heinzemann C, Lange R (2018) vTSL—a formally verifiable DSL
for specifying robot tasks. In: IEEE/RSJ International conference
on intelligent robots and systems (IROS), pp 8308–8314. https://
doi.org/10.1109/IROS.2018.8593559

23. Bencomo N, G"otz S, Song H, (2019) Models@run.time: a guided
tour of the state of the art and research challenges. Int J Softw Syst
Model https://doi.org/10.1007/s10270-018-00712-x

24. Ebert S, Mey J, Schöne R, Götz S, Aßmann U (2023) DiNeROS:
A model-driven framework for verifiable ros applications with
Petri Nets. In: 2023 ACM/IEEE International conference on model
driven engineering languages and systems companion (MODELS-
C), pp 791–800. IEEE

25. Reisig W (2012) Petri Nets: an introduction vol. 4. Springer, Hei-
delberg. https://doi.org/10.1007/978-3-642-69968-9

26. Peterson JL (1977) Petri Nets. ACM Comput Surveys (CSUR)
9(3):223–252. https://doi.org/10.1145/356698.356702

27. Hillah LM, Kindler E, Kordon F, Petrucci L, Trèves N (2009) A
primer on the Petri Net Markup Language and ISO/IEC 15909–2.
Petri Net Newsletter 76:9–28

28. Jensen K (1983) High-level Petri nets. In: applications and theory
of Petri Nets: selected papers from the 3rd European workshop
on applications and theory of Petri Nets Varenna, Italy, Septem-
ber 27–30, 1982 (under Auspices of AFCET, AICA, GI, and
EATCS), pp 166–180. https://doi.org/10.1007/978-3-642-69028-
0_12 . Springer

29. Berthomieu B, Vernadat F (2006) Time petri nets analysis with
TINA. In: Proceedings of the 3rd international conference on the
quantitative evaluation of systems, vol 6, pp 123–124.https://doi.
org/10.1109/QEST.2006.56

30. Rosjava. Accessed: 2023-01-30 (2017). http://wiki.ros.org/rosjava
31. Behrmann G, David A, Larsen KG (2004) A tutorial on Uppaal.

Formal methods for the design of real-time systems, 200–236
https://doi.org/10.1007/978-3-540-30080-9_7

32. Holzmann GJ (2004) The SPIN model checker: primer and refer-
ence manual vol 1003. Addison-Wesley, Reading

33. Luckcuck M, Farrell M, Dennis LA, Dixon C, Fisher M (2019)
Formal specification and verification of autonomous robotic sys-
tems: a survey. ACM Comput Surveys 52(5):1–41. https://doi.org/
10.1145/3342355

34. de Araújo Silva E, Valentin E, Carvalho JRH, da Silva Barreto R
(2021) A survey of model driven engineering in robotics. J Comput
Lang 62:1021. https://doi.org/10.1016/j.cola.2020.101021

35. Moutinho F, Gomes L (2014) Asynchronous-channels within
Petri net-based GALS distributed embedded systems modeling.
Trans Ind Inf 10(4):2024–2033. https://doi.org/10.1109/TII.2014.
2341933

36. Bera D et al.: (2014) Petri nets for modeling robots. PhD thesis,
Einhofen University of Technology

37. Milutinovic D, Lima P (2002) Petri net models of robotic tasks. In:
Proceedings 2002 IEEE international conference on robotics and
automation, vol 4, pp 4059–4064. https://doi.org/10.1109/ROBOT.
2002.1014376

38. Kotb YT, Beauchemin SS, Barron JL (2007) Petri net-based coop-
eration in multi-agent systems. In: Fourth Canadian conference on
computer and robot vision (CRV), pp 123–130. https://doi.org/10.
1109/CRV.2007.49. IEEE

39. Hedin G, Magnusson E (2003) JastAdd—an aspect-oriented com-
piler construction system. Sci. Comput. Progr. 47(1):37–58

40. Hillah L-M, Kordon F, Petrucci L, Treves N (2010) PNML frame-
work: an extendable reference implementation of the Petri Net
Markup Language. In: 31st International conference on applica-
tions and theory of petri nets, Braga, Portugal. Springer

41. Almeida PS (1997) Balloon types: controlling sharing of state
in data types. In: ECOOP’97–11th European conference object-
oriented programming Jyväskylä, Finland, pp 32–59. https://doi.
org/10.1007/BFb0053373 . Springer

42. Jensen K (1996) Coloured petri nets: basic concepts, analysis
methods and practical use. Springer, Heidelberg. https://doi.org/
10.1007/978-3-662-03241-1

123

https://doi.org/10.1109/FormaliSE.2017.9
https://doi.org/10.1109/FormaliSE.2017.9
https://doi.org/10.1109/JSYST.2018.2867285
https://doi.org/10.1145/3365438.3410952
https://doi.org/10.1109/ICRA48506.2021.9561191
https://doi.org/10.1109/ICRA48506.2021.9561191
https://doi.org/10.48550/arXiv.1601.03998
https://doi.org/10.1007/s00170-018-1976-z
https://doi.org/10.1007/s00170-018-1976-z
https://doi.org/10.1145/3299771.3299782
https://doi.org/10.1145/3299771.3299782
https://doi.org/10.1007/978-3-642-34327-8_14
https://doi.org/10.1007/978-3-642-34327-8_14
https://doi.org/10.1109/JSYST.2016.2583403
https://doi.org/10.1109/JSYST.2016.2583403
https://doi.org/10.1007/978-3-319-26054-9_20
https://doi.org/10.1007/978-3-319-26054-9_20
https://doi.org/10.1109/CTS.2014.6867554
https://doi.org/10.1109/IROS.2018.8593559
https://doi.org/10.1109/IROS.2018.8593559
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1145/356698.356702
https://doi.org/10.1007/978-3-642-69028-0_12
https://doi.org/10.1007/978-3-642-69028-0_12
https://doi.org/10.1109/QEST.2006.56
https://doi.org/10.1109/QEST.2006.56
http://wiki.ros.org/rosjava
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3342355
https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/10.1109/TII.2014.2341933
https://doi.org/10.1109/TII.2014.2341933
https://doi.org/10.1109/ROBOT.2002.1014376
https://doi.org/10.1109/ROBOT.2002.1014376
https://doi.org/10.1109/CRV.2007.49
https://doi.org/10.1109/CRV.2007.49
https://doi.org/10.1007/BFb0053373
https://doi.org/10.1007/BFb0053373
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-662-03241-1

Distributed Petri nets for ROS…

43. Schöne R, Mey J, Ebert S, Götz S, Aßmann U (2022) Incremen-
tal causal connection for self-adaptive systems based on relational
reference attribute grammars. In: Proceedings of the 25th inter-
national conference on model driven engineering languages and
systems, pp 1–12. https://doi.org/10.1145/3550355.3552460

44. Minas M, Frey G (2002) Visual PLC-programming using signal
interpreted Petri nets. In: Proceedings of the American control con-
ference, vol 6, pp 5019–5024. https://doi.org/10.1109/ACC.2002.
1025461. IEEE

45. Vyatkin V, Hanisch H (2000) Practice of modeling and verification
of distributed controllers using signal net systems. In: International
workshop on concurrency, specification and programming

46. Berthomieu B, Le Botlan D, Dal Zilio S (2020) Counting Petri
net markings from reduction equations. Int J Softw Tools Technol
Transfer 22:163–181

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/3550355.3552460
https://doi.org/10.1109/ACC.2002.1025461
https://doi.org/10.1109/ACC.2002.1025461

	Distributed Petri nets for model-driven verifiable robotic applications in ROS
	Abstract
	1 Introduction
	2 Background and terminology
	3 State of the art
	3.1 Petri net based ROS approaches
	3.2 Model based ROS approaches
	3.3 DSL based ROS approaches
	3.4 Non ROS based approaches

	4 Running example
	5 Model-driven development with DiNeROS
	5.1 Overview
	5.2 Model-driven development chain
	5.3 System model (SyM)
	5.3.1 Topics
	5.3.2 Services
	5.3.3 Signals
	5.3.4 Metamodel of the system model

	5.4 Runtime model (RTM)
	5.5 Petri net model (PNM)
	5.5.1 Topics
	5.5.2 Transforming a example
	5.5.3 Services
	5.5.4 Signals
	5.5.5 Distribution

	6 Modeling the running example
	7 Analyzing DiNeROS applications
	7.1 Analyzing state spaces
	7.2 Signal-caused effects

	8 Scalability of analyzing DiNeROS nets
	Generalization of findings

	9 Debugging the running example
	9.1 Analysis of traces
	9.2 Analysis of the state space
	9.2.1 Scenario 1: Sorting more types of objects
	9.2.2 Scenario 2: Changing signal-clauses

	9.3 Examining the runtime behavior

	10 Discussion
	11 Conclusion and future work
	Acknowledgements
	References

