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Abstract
In this paper we describe an Agile model-driven engineering (MDE) approach, AMDRE, for the re-engineering of legacy
systems. The objective is to support the reuse of business-critical functionality from such systems and the porting of legacy
code to modernised platforms, together with technical debt reduction to improve the system maintainability and extend
its useful life. AMDRE uses a lightweight MDE process which involves the automated abstraction of software systems
to UML specifications and the interactive application of refactoring and rearchitecting transformations to remove quality
flaws and architectural flaws. We demonstrate the approach on Visual Basic, COBOL and Python legacy codes, including a
finance industry case. Significant quality improvements are achieved, and translation accuracy over 80% is demonstrated. In
comparison to other MDE re-engineering approaches, AMDRE does not require high MDE skills and should be usable by
mainstream software practitioners.

Keywords Program abstraction · Model-driven engineering · Refactoring · Re-engineering

1 Introduction

Legacy code systems can cause significant business costs
to organisations which depend upon these often poorly-
maintained and poorly-documented software assets [34, 54,
68]. Apart from the direct maintenance costs of legacy
systems, dependence on these systems can block business
growth and evolution [16, 67], reduce developer morale

1 https://vfunction.com/blog/how-much-does-it-cost-to-maintain-
legacy-software-systems/.
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and reduce the resources available for business innovation.1

There can also be negative consequences for wider society.
For example, during the COVID pandemic, legacy software
issues caused delays to economic response measures in the
US [2]. Legacy code platforms are typically less energy
efficient than modern platforms,2 leading to poor environ-
mental sustainability. Flaws in legacy code can also result in
wasted energy resources, due to inefficient coding practices,
or increased binary size, due to dead code [16, 54, 67]. Even
for relatively recent machine learning (ML) systems, a range
of design flaws may be present, reducing performance and
causing significant maintenance costs and excessive energy
use in operation [63]. The high carbon footprint of ML sys-
tems means that improvements to their energy efficiency
could produce significant reductions in CO2 emissions [51].

Thus an effective re-engineering approach to support soft-
ware asset recovery andmodernisation could be a key enabler
for businesses. There have been three main obstacles to the
use of re-engineering in practice:

1. The manual effort required for re-engineering processes
2. The need to assure semantic preservation of the original

code functionality by the new system

2 https://www.mavensolutions.tech/blog/cost-of-legacy-systems/.
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3. The high degree of variability in re-engineering tasks, due
to the large number of different programming languages
and environments in use.

To address these challenges we propose: (i) increased
automation via the use of model-driven engineering (MDE)
tools; (ii) verification of re-engineering steps in certain cases
(such as numerical computations) and model-based testing
(MBT) for automated testing in other cases; (iii) increased
flexibility via the use of agile methods, and the use of
lightweight tools which can be directly customised by end-
users to rapidly construct new re-engineering solutions.

From the mid 1980s–early 1990s, various model and
specification-based approaches were proposed for reverse-
engineering legacy systems, to create precise documentation
from code, and to restructure and improve system quality,
as a means of prolonging the life of a system or as a step
towards the production of a modernised system in a new pro-
gramming language or platform [7, 47, 66]. These concepts
of model-driven modernisation (MDM) were formalised by
the ObjectManagement Group (OMG) in their Architecture-
drivenmodernisation (ADM) framework [60]. The envisaged
MDM/ADM however uses heavyweight and strictly staged
MDE processes, involving multiple models at multiple lev-
els of abstraction, elaborate metamodels, andmultiple model
transformations [15]. Since the publication of the Agile man-
ifesto [4] in 2001, the software industry has been moving to a
more agile development approach for new system construc-
tion in many software application areas, and consequently
there is also increasing interest in more agile and lightweight
approaches to re-engineering [35, 68]. Use of ADM also
requires significant expertise in MDE techniques, and there
are limited numbers of software practitionerswith such skills.

Based on our experience with the recovery and moderni-
sation of legacy applications [38, 41], we evolved an agile
MDE re-engineering approach (AMDRE), using iterations
of steps 1 to 4 of Fig. 1 on parts of a source system. This
approach uses grammar-based techniques requiring only a
basic level of MDE knowledge.

Step 1 (Sect. 3) uses a combination of the ANTLR parser
engine3 and the Concrete Syntax Transformation Language
(CST L) of [40] to represent system abstractions in UML
and the Object Constraint Language (OCL) [55]. We use
UML/OCL to represent system abstractions because these
languages are widely-used in the software industry, are inter-
national standards, and are supported by large numbers of
tools both for analysis and code generation/forward engineer-
ing. Thus producing system models in UML/OCL enables
organisations to have confidence that these models will have
lastingvalue andwill not themselves becomeunusable legacy
artifacts.

3 https://antlr.org.

In step 2, re-engineering specialists perform refactor-
ing operations on the abstracted specification, to remove or
reduce quality flaws (Sect. 4). The system architecture can
also be restructured in this step in order to satisfy clean
architecture principles [49] such as the Interface Segregation
Principle (ISP) and Acyclic Dependencies Principle (ADP)
(Sect. 4.3).

Step 3 involves input from system experts to link sys-
tem requirements to the abstracted system model, with the
assistance of program summarisation tools. A high-level
requirements specification can be produced (Sect. 6).

Step4generates an executable versionof the re-engineered
system for a new platform, together with a test suite for
the system (Sect. 7). For forward engineering we use the
AgileUML MDE toolset [18].

Because of the high variability of legacy re-engineering
tasks and projects, close customer liaison is essential as part
of this agile process, in order to receive rapid feedback and
build understanding of the specific legacy system context
across the re-engineering team [68]. In particular, steps 2
and 3 are interactive and iterative, whilst steps 1 and 4 can
be entirely automated.

Automation of process steps helps to accelerate re-
engineering, and is important to ensure the consistent cor-
rectness of re-engineering processes, that is, to ensure that
the semantics of the source application is accurately trans-
lated to the target. An initial ‘sprint 0’ iterationwill usually be
performed to assess the requirements of the re-engineering
project, and to prioritise specific re-engineering actions. This
results in a ‘project backlog’ of re-engineering tasks, subsets
of which will be handled as the ‘iteration backlogs’ of spe-
cificAMDRE iterations. The highest priority tasks remaining
in the product backlog are generally selected for the iteration
backlog of the next iteration.

The research questions are:

• RQ1 : Can effective and reliable re-engineering pro-
cesses be supported using ANTLR and CST L?

• RQ2 : Does the AMDRE approach significantly reduce
the manual workload of re-engineering tasks?

The overall aim is to reduce the human effort and resources
needed for re-engineering and to enable businesses to incor-
porate rapid re-engineering and reuse into agile development
processes.

Section 2 looks at the specific challenges of BASIC,
COBOL and Python re-engineering, and Sect. 3 details how
we address these challenges using semantic abstraction of
source code. Section4 describes how abstracted source code
can be analysed and improved. Section5 addresses the issue
of semantic preservation, Sect. 6 considers the extraction of
specifications, and Sect. 7 describes target code and test case
synthesis. Section8 gives a detailed evaluation, Sect. 9 con-
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Fig. 1 AMDRE iteration
process steps

siders threats to validity, and Sect. 10 gives a comparisonwith
related work. Finally, Sect. 11 gives conclusions and poten-
tial future work.

2 Challenges of legacy code abstraction

Legacy code can be of recent vintage [5, 62], including
Python-based machine learning systems [63], however code
in old languages such as versions of COBOL [61], BASIC
[36] or PL/I [26] cause particular problems because of the
antiquated aspects and features of these languages. Here
we focus on Visual Basic (VB) and COBOL, because of
the widespread use of these languages for business-critical
finance and banking systems [33]. Translation of VB to
Python is relevant as thefinance industry is increasingly using
machine learning, natural language processing (NLP) and
other artificial intelligence (AI) techniques, for which there
is strong Python support. Translation of COBOL to Java or
C# facilitates the integration of legacy systems into modern
software environments and platforms. We also apply reverse
and re-engineering to analyse and remove quality flaws from
legacy Python systems.

2.1 BASIC and variants

BASIC4 was intended, as its name suggests, as a language
for inexperienced programmers to use for relatively simple
programming problems. It became popularwith the advent of

4 Beginner’s All Purpose Symbolic Instruction Code.

home PCs in the 1970s, and as Visual Basic (VB) and Visual
Basic for Applications (VBA) became the main language
for defining auxiliary code modules within Microsoft (MS)
applications such as Excel [50]. The last version of VB was
VB6 in 1998.

Keychallenges for softwaremodernisation and re-engineering
of VB/VBA are:

• The use of implicit typing for data items
• GOTO statements
• The large number of different kinds of statements (there
are 67 statement kinds in VB6)

• The complexity of MS applications such as Excel, with
complex spreadsheet data and hundreds of application
functions, which can be called from VBA code.

As a case study inVB6/VBAanalysiswe consider a legacy
bond pricing system,which originated in the 1990s and is still
in use. The dependence of VBA code onMS application data
and functionality means that the code cannot be understood
in isolation from the host application. For example, the bond
case study includes the code:

B1 = Sheets("FBU").Range("m20")
B2 = Sheets("FBU").Range("m27") -

Sheets("FBU").Range("m20")

whose meaning depends upon the semantic denotation of
cells M20 and M27 in the referenced worksheet. In this case
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there was also insufficient documentation in the worksheet
regarding the semantics.

2.2 COBOL

COBOL (c. 1959) predates BASIC, and was specifically
intended as a language for commercial data-processing appli-
cations. Themain standard versions are COBOL ‘74 and ‘85.
Legacy COBOL presents a wide range of challenges for soft-
ware modernisation/re-engineering:

• No general data types—instead data items are assigned
a specific format at the byte level

• Extensive use of aliasing and redefinition of data items
• GO TO and ALTER statements (an ALTER statement
changes the destination of a GO TO at runtime)

• A primitive procedure call mechanism, PERFORM,
which is vulnerable to many control flow anomalies [14]

• Multiple variants and formats of statements.

Because of the long history of use of COBOL, legacy
COBOL systems may bear the imprint of archaic coding
practices based on assembly programming and primitive
editing facilities, with GOTO-based control flow and many
embedded literals [67]. The industrial billing system which
we considered in [38] had already been modernised to
COBOL ’85 and the use of PERFORM calls prior to our
re-engineering work, but it still retained essentially the same
GOTO-based control flow of an earlier COBOL ’74 version.

A COBOL program is structured into four main parts: (i)
an identification division, (ii) an environment division (defin-
ing in particular the link between data storage devices and
logical files), (iii) a data division (defining all program data)
and (iv) a procedure division (defining program behaviour).
In turn, each division is divided into sections, and in the pro-
cedure division, further divided into paragraphs, sentences
and statements. Paragraphs are a key programunit, consisting
of a name label and a sequence of sentences. Paragraphs may
be both the target of a GOTO, and invoked via a PERFORM.
Thus at least two separate semantics need to be expressed for
each paragraph P:

1. The semantics encounteredby invoking P by PERFORM P
2. The semantics encountered by aGO T O P , or by ‘falling

through’ into P from a preceding paragraph.

2.3 Python 2 and Python 3

Python has become one of the most popular programming
languages both for general use and for machine learning and
otherAI applications. Its relative simplicity compared to Java
and C# has enabled its use by a wide range of people, without
needing specialised programming skills, indeed it plays a

similar role to the original BASIC language in this respect.
However this simplicity comes at a cost, in particular the lack
of explicit variable typing and explicit variable declarations
can lead to unclear and difficult-to-maintain programs.

The main problem areas with the maintenance of Python
applications are:

• Implicit typing: the type of a variable is not fixed, and
depends on the data that is held in the variable. Data of
different types can be held in one variable at different
times, leading to error-prone and confusing code.

• Implicit declarations: local variables are implicitly declared
by the first assignment to them (at runtime). Moreover
declarations persist from an inner scope to an outer scope,
contrary to block-structured languages such as Java. For
example, the declarations of y in the following code are
valid in Python:

def f(x) :
if x < 0 :

y = -x
else :

y = x
return y

• No interfaces: Only classes can be defined.
• Procedural programming: the language can be used in the
same procedural manner as VB, with programs coded as
a monolithic list of functions. Thus similar flaws such as
excessive parameter lists (EPL), Table 4, can arise due to
a lack of encapsulation of data in objects.Ad-hoc lists and
tuples of heterogeneous data itemsmay be used instead of
objects to pass and return groups of data from functions.

• Multiple/non-standard inheritance: The Python version
of inheritance differs from standard OO inheritance as
found in languages such as Java and C#, in particular a
form of multiple inheritance with prioritised overriding
is supported.

• Language evolution: Python changed substantially from
Version 2 toVersion 3, and these versions have incompat-
ible syntax and semantics. For example, the print , raise
and except statements have different syntax in the two
versions, and integer division is denoted differently. It is
a non-trivial task to migrate large systems from Python
2 to Python 3 [62].

3 Program abstraction using ANTLR and
CST L

ANTLR is a parser generator which takes as input a grammar
file LParser .g4 for a software language L , and produces an
executable parser for L . It has been widely-used for the def-
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inition and processing of diverse software languages, and
has an active support community. Here we utilise the Visual-
Basic6.g4, Cobol85.g4 and Python.g4gmars from antlr.org.
ANTLR grammar rules have forms such as

tag:
tag1 sym tag2

whereby a grammar non-terminal category tag is defined
based on other non-terminals tag1, tag2 and terminal sym-
bols sym, etc. ANTLR parsers produce parse trees with the
textual form (tag t1 ... tn)where tag is the name of the gram-
mar rulewhich produced the tree, and the ti are the immediate
subterms/subtrees.

CST L is a text-to-text (T2T) transformation language,
based on pattern-matching and text substitution. It has been
used for specifying code generators and other language-to-
language mappings [41, 43]. In this paper we use CST L to
abstract COBOL, VB6 and Python programs to UML/OCL.

CST L uses concrete syntax templates for matching
source elements, in addition to concrete syntax templates
for constructing target text. The left hand side (LHS) of a
CST L rule

LHS |--> RHS

is written in a schematic concrete syntax for the source
language, and the right hand side (RHS) is expressed in
schematic concrete syntax of the target language. Metavari-
ables _i for i : 1..99 can be used on both the LHS and RHS,
on the LHS they denote some source language item (a term
in a parse tree according to the source language grammar)
and on the RHS they denote the concrete textual syntax of
the translation of that item. For example, the rule:

if _1 then _2 else _3 endif
|-->(_1)?_2:_3

defines translation of OCL conditional expressions to Java.
Rules may have conditions <when> Cond, and actions
<action> Act , written after the RHS. Rules are grouped
into rulesets, corresponding to grammar rules for the source
language.

For COBOL ‘85 the CST L rules for abstraction of ADD
statements include:

addStatement::
ADD _1 END-ADD |-->_1<when> _1 addToStatement
ADD _1 |-->_1<when> _1 addToStatement

addToStatement::

_1 TO _2 |-->
_2 := (_2 + _1)_2‘roundFunction ;\n

_1 _* TO _3 |-->
_3 := (_3 + _1 + _*‘sum)_3‘roundFunction ;\n

addFrom::
_1 |-->_1

addTo::
_1 ROUNDED |-->_1
_1 |-->_1

roundFunction::
_1 ROUNDED |-->->roundTo(_1‘fractionWidth)
_1 |-->->truncateTo(_1‘fractionWidth)

addStatement , addFrom, addTo and addToStatement
are grammar rulenames (non-terminals) of theCobol85.g4gmar.
sum is a built-in CST L function to produce a + sum of
a list of terms, and roundFunction is a custom function
defined by the final ruleset above. The rule condition _1
addToStatement restricts the rule to apply only in the case
that the _1 metavariable is bound to a parse tree with tag
addToStatement .

Metavariables _i can match against a single source term,
and _∗ can match a list of one or more terms. The nota-
tion _i‘f denotes the application of ruleset or function
f to the item bound to variable _i , likewise for _*‘f.
f ractionWidth is the number of fractional digits in the
assigned variable, which is determined when processing its
declaration. roundFunction is also used for other COBOL
arithmetic statements.

A COBOL statement ADD P Q R TO VX ROUNDED
will match against the LHS templates of the CST L rules for
addStatement and addToStatement (the second rules in
each ruleset). P will be assigned to_1 in theaddToStatement
rule, the list [Q, R] to _∗, and the parse tree term
(addTo V X ROUNDED) to _3.

The addToStatement rule then produces the output text

VX := (VX + P + Q + R)->roundTo(N) ;

expressing the semantics of the COBOL statement, where
N is the number of fraction digits in the data format of
V X , by applying the rules for addFrom, addTo, sum and
roundFunction and substituting the results into the RHS
template of the rule.

A key advantage of using CST L is that the abstraction
and code-generation scripts can be directly modified and
extended by end-users to customise scripts to address spe-
cific aspects of their legacy code recovery task. Specialised
MDE knowledge is not needed, only an understanding of the
source language grammar and of text matching/substitution.
Scripts can be executed from the command line by using the
‘cgtl’ command. No compilation of scripts is necessary.
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Representation of program semantics in AgileUML uses
extensions of the OCL 2.4 standard [55], in particular a pro-
cedural extension of OCL with a Pascal-like syntax, similar
to the SOIL formalism [9], is used to represent procedural
statements. The extended OCL statements can be used to
define the effect of an operation by an operation activity in
addition to or instead of an operation postcondition.

LibrariesOclFile,OclDate,Ocl Process,OclRandom,
OclT ype and MathLib for common programming data
types and facilities have also been defined for AgileUML
[42]. These libraries can be directly edited or extended by
users of our approach.

For COBOL, VB6 and Python we added further library
operations, types and components:

• The FinanceLib library component containing opera-
tions for financial functions such as (net) present value,
annuity, internal rate of return, etc.

• Operators →roundTo and →truncateT o generalising
→round and →ocl AsT ype(int).

• AnOrderedMap data structure,which enables access to
values both bykey andby a positional index. This can also
be simulatedby the type Sequence(Map(String, Ocl Any)).

• For VB, a library class Excel to represent the data and
functions of Excel spreadsheets.

• For Python, specific string formatting operations and
matrix operations, in libraries StringLib andMatri x Lib.

3.1 VB6/VBA

Table 1 summarises the program abstraction strategy for
VB6/VBA code.

In general the structure of the source code is retained in
the abstraction, facilitating traceability.

In the cases of typeless variable declarations

DIM Var

type inference based on the values assigned to Var and the
processing performed on it are usedwhere possible to deduce
the specific type of Var . In the absence of specific typing
knowledge, the ‘universal’ OCL type Ocl Any is used for
Var .

3.2 COBOL ‘85

Table 2 summarises the abstraction strategy for COBOL ‘85.
The data parts of a COBOL program Prog are abstracted

as follows:

• Data declarations in the file section, linkage section and
working storage section are represented as attributes of a
class Prog_Class representing the COBOL program.

• The OCL type of a data item is obtained from its COBOL
format (the PIC/PICTURE format specifier). For exam-
ple, format 9(4) is represented as int , 9(14) as long,
and 99V99 as double. Composite items do not have an
explicit PIC/PICTURE, and are given a String type.

• Implicit or explicit aliasing relations between data items
are expressed as invariantsof Prog_Class. For example,
the declaration

01 REC.
02 FLD1 PIC XX.
02 FLD2 PIC 9999.

is expressed as:

attribute REC : String;
attribute FLD1 : String;
attribute FLD2 : int;

invariant REC = "" +
StringLib.leftAlignInto(FLD1, 2) +
StringLib.padLeftWithInto(FLD2, "0", 4);

invariant FLD1 = REC.subrange(1,2);
invariant FLD2 =
REC.subrange(3,6)->toInteger(10);

invariant 0 <= FLD2 & FLD2 <= 9999;

Thus the field data FLD1 = "T" and FLD2 = 100
corresponds toREC = "T 0100"with a spacebetween
T and 0100.
As noted in Sect. 1, we use the AgileUML toolset to pro-
duce code in target programming languages. A feature of
AgileUML is that its inbuilt code generation strategy (for
Java, C# and C++) enforces invariants P ⇒ Q, by syn-
thesising update code for Q where possible so that any
event which makes P true also establishes Q [39]. Thus
the use of invariants enables the source code semantics
of data relations to be correctly expressed in the abstrac-
tion, in a manner that can be implemented in forward
engineering.

• Files are abstracted as sequences together with a file posi-
tion pointer. Indexed files also have an index map from
file key values to file positions.

The procedure division of program Prog is abstracted as
follows:

• Each paragraph P is represented by two separate oper-
ations P_Call(), P() of Prog_Class. P_Call() repre-
sents the functionality of a PERFORM P statement,
whilst P() represents the fall-through/GO T O P func-
tionality. P() invokes P_Call():

operation P()
pre: true post: true
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Table 1 Abstraction mapping
from VB6/VBA to UML/OCL

VB6/VBA construct Abstraction

module
record
record field
function, subroutine
enum definitions

package and main class
class with �struct� stereotype
attribute
operation
enumerated types

assignment, sequencing
blocks
calls of functions subroutines/if, while, return
do, for-next
for each in select
error
exit loop

assignment, sequencing
blocks
operation calls if, while, return
while
for
if
error break

Integer, Byte, Long
LongLong
Single, Double String
Array types
Collection

int
long
double
String
Sequence typesSequence(Map(String,OclAny))

Table 2 Abstraction mapping
from COBOL ‘85 to UML/OCL

COBOL ‘85 construct Abstraction

Program suite package

Program class

record class + invariants

record field/program variable attribute

section, paragraph, subprogram operation(s)

arithmetic statements, move, set assignment

sequencing, in-line performs sequencing, blocks

calls of subprograms, simple operation calls

PERFORM, PERFORM THRU
GO TO
IF, EVALUATE

if

PERFORM UNTIL/varying, exit while, return

simple PERFORM TIMES for

GO TO DEPENDING ON if + calls

on size error tests for overflow conditions

inspect, string, unstring String/regex operations

Merge/Sort sorting operations

stop run OclProcess.exit(0)

Numeric/computational data formats int/long/double

Alphabetic/alphanumeric formats String

Array (table) types Sequence types

Files OclFile, sequences, maps

activity:
self.P_Call() ;
self.Q() ;

where Q is the next paragraph following paragraph P , if
any.

• A section is also represented by two operations in the
same manner.

Additional paragraph representationsmay be necessary if the
PERFORM A T HRU B variant of PERFORM is used:
each paragraph P from A down to B would also have a
version P_thru_B:

operation P_thru_B()
pre: true post: true
activity:
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self.P_Call();
self.Q_thru_B();

where B_thru_B is simply B_Call.

3.3 Python 2/Python 3

Table 3 summarises the abstraction strategy for Python ver-
sions 2 and 3.

Python programs are a list of items, which may either be
statements, function definitions or class definitions. Function
definitions contain a list of statements, and class definitions
contain a list of statements and functions. This organisation
can be mapped to a UML specification which has a class
for each Python class, and in addition a class FromPython
containing the top-level functions as its operations and the
top-level statements as its initialisation code.

Explicit declarations of variables are inferred from the
implicit Python declarations, and type inference is used to
identify variable and parameter types where possible. For
example, if a parameter p is used in a numeric computation
math.pow(p, x), then its type can be inferred as double.

4 Quality analysis and quality improvement

Once a source application has been abstracted to UML/OCL,
it can be analysed for quality flaws (Sect. 4.1) and restruc-
tured to improve its quality. Performing restructuring at
the specification level avoids the need to define multiple
language-specific restructuring tools, and means that the
improved structure applies to every target platform. Both
localised restructuring of individual operations and classes
(refactoring, Sect. 4.2) and global restructuring of a system
at the architectural design level (rearchitecting, Sect. 4.3) can
be carried out.

Other kinds of restructuring could also be applied, such
as transforming procedural code patterns such as Sieve into
object-oriented design patterns such as Chain of responsi-
bility [38]. However such transformations involve extensive
structural changes, which can impact on traceability and on
testing effort, and we do not currently support these.

4.1 Quality analysis

AgileUML provides analysis of UML/OCL specifications
and designs to detect flaws analogous to ‘code smells’ in the
sense of [19, 25]. These can also be regarded as technical debt
indicators [10, 48, 69]. Table 4 shows the flaws we detect and
the corresponding refactorings that can be used to address
these flaws.

The thresholds for these flaws (e.g., a minimum size for
clones) can be varied depending on the practices and internal
standards of the client organisation. The flaw density of a
software artefact is the count of flaws, divided by the size of
the artefact, typically given in lines of code (LOC).

Commented-out code lines and self-declared technical
debt can also be indicators of maintenance problems [17,
70].

4.2 Refactoring

Some detected flaws can be removed or reduced by refac-
toring the specification, for example by splitting a large
operation into parts to reduce EFS and EFO. EPL can be
reduced by factoring out a group of 2 or more related param-
eters as a ‘value object’ class V O and replacing the group by
a single vox : V O parameter. If several operations have the
same V O parameter class after this step then these operations
can be moved into the V O class.

The abstraction process described in Sect. 3 replaces GO
TO jumps by function/operation calls, resulting in structured
code which however may use recursion (introducing a CBR2

flaw). Tail recursion can be removed by the ‘replace recur-
sion by iteration’ code transformation, which applies both to
operations defined by OCL expressions and those defined by
statements.

Expressed in CST L, the restructuring rules for this trans-
formation include:

operation _1 ( )\n
activity: _* ; self._1 ( ) ; |-->
operation _1()\n
activity: while true do ( _* );\n\n

Mutual recursion can be reduced to self-recursion by using
the ‘Replace call by definition’ refactoring.

CBR1 without CBR2 indicates that there are more non-
cyclic dependencies between operations than the number of
operations. In this situation it is possible to partition the set
of operations into groups where operations in a ‘higher level’
group call operations of a ‘lower level’ group but not vice-
versa.5 The partitions then form the basis for splitting the
original class into new client/supplier classes. Likewise if
there are excessive numbers of operations in a class (ENO)
the class should be split where possible based on operation
calling relations or on a conceptual basis.

DC can be reduced by factoring out the cloned code into
a new operation, replacing the duplicate occurrences by a
call to this operation. DE can be addressed by introducing a

5 Select any operation op with outgoing calls. The set G1 of operations
called directly or indirectly fromop is disjoint from the setG2 consisting
of op and its direct/indirect callers. No operation in G1 can call an
operation of G2.
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Table 3 Abstraction mapping
from Python 2/3 to UML/OCL

Python construct Abstraction

program package and main class

class class

single inheritance inheritance

multiple inheritance inheritance + overriding

global variable attribute of main class

local variable local variable

async function run operation of �active� class

function operation

assignment assignment/declaration

sequencing, blocks blocks

function calls operation calls

object creation x = C() Call x := C .newC()

if if

for for

yield defines next for OclIterator representing the generator

raise, try, except error, try, catch

assert assert

with try/catch

int/float int/double

str/bool String/boolean

list, tuple types Sequence types

matrix types Nested sequences

dict type Map type

set type Set type

files OclFile

new local variable, initialised to the cloned expression, and
replacing other occurrences of the expression by the newvari-
able. UOP and UVA can be reduced by removing the unused
elements. MGN is addressed by defining new constants with
the literal value and replacing occurrences of the literal value
by the constant name.

PMV and MDV typically arise in Python coding because
of the absence of explicit local variable declarations in
Python. Instead variables are implicitly declared by the first
assignment to them encountered during execution. This can
lead to code that is unclear and difficult to debug or main-
tain.We relocate andmerge declarations using the ‘hoist local
declarations’ refactoring to remove multiple declarations of
a variable where possible. For example, the code:

def f(x) :
if x < 0 :

y = -x
else :

y = x
return y

is abstracted and refactored to:

operation f(x : double) : double
pre: true post: true
activity:
var y : double := 0.0;
if x < 0 then y := -x
else y := x;
return y;

The refactorings supported by the current version (2.3) of
AgileUML are given in Table 5.

Some of these refactorings (Split class, Move operation to
parameter class, Extract value object) are particularly rele-
vant for transforming a procedural program structure into an
object-oriented specification. Classes are also introduced by
the rearchitecting process described in the following section.

4.3 Rearchitecting

Rearchitecting attempts to produce an improved software
architecture for a legacy system. This can involve segre-
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Table 5 Design refactorings

Name Effects

Extract interface Defines new interface for class, with declarations of its operations

Extract operation Defines new operation for cloned statements

Extract local variable Defines new local variable for duplicated expression evaluations

Replace literal by named constant Replace duplicate literal value expressions by new named constant

Split class Splits class into clients/suppliers

Remove multiple inheritance Combines multiple superclasses into single superclass

Move operation to parameter class Moves operation to class of first class-typed parameter

Replace call by definition Inlines operation definition at point of call

Replace recursion by iteration Changes tail-recursive operation to iterative version

Split operation Creates new operation for subsection of operation activity

Hoist local declarations Moves all declarations of one variable to start of activity

Reduce code nesting Replace nested conditional statements by a sequence of conditionals

Extract value object Create class for group of parameters used by multiple operations

gating platform-specific code from business logic code, and
replacing direct calling dependencies between components
by indirect connections via interfaces.

Typically, legacy VB6 and COBOL programs are defined
in a monolithic architectural style, with a single mod-
ule/program unit containing all code elements as a collection
of operations/functions, together with global scope data defi-
nitions. Legacy Python programsmay also have a procedural
structure as a list of global functions and statements, without
class definitions. In order to identify meaningful subcompo-
nents of these programs, we analyse the calling dependencies
of operations on each other (the program call graph) and the
dependencies of operations on global data items.

This information can be used to automatically modularise
a system according to metrics of cohesion and coupling
between components, using an optimisation procedure [8].
There are two main measures: of coupling and cohesion.
Couplingi, j measures how many data and calling depen-
dencies exist between different components Ci , C j , whilst
Cohesioni measures how many dependencies exist within
an individual component Ci . Here we only consider direct
calling dependencies between operations:

(1) Cohesioni = Calling dependencies in Ci

Ni ∗ (Ni − 1)

where Ni > 1 is the number of operations in Ci .

(2) Couplingi, j

= Calling dependencies between Ci , C j

Ni ∗ (N j − 1)

for Ni > 0, N j > 1.
The optimisation process tries to maximise the class

responsibility assignment index (CRA-Index)measure defined

as:

CRA−I ndex = �i Cohesioni − �
i �= j
i, j Couplingi, j

We implement CRA optimisation and component identi-
fication via a set of heuristic rules:

1. An operation f is placed in the same component as oper-
ation g if g is the only caller of f and g is itself called
by some operation.

2. Operations with no caller remain in the parent/original
component.

3. Operations in the same cycle of call dependencies are
placed in the same component.

4. Other unallocated operations are placed in a component
which has a maximal number of calling dependences on
the operation.

5. Components with a common element are merged, as are
mutually-dependent components.

6. Data items which are only referenced by one compo-
nent C are placed in C , otherwise the item is placed
in a data layer component, which is depended-on by
all components that use global data. The data layer has
the responsibility to maintain data integrity constraints
such as the invariants derived by COBOL abstraction
(Sect. 3.2).

Figure2 shows an example of applying the heuristics to
create components C0 to C3 from an unstructured system
with 9 operations. An arrow e −→ f denotes that operation
e has a direct calling dependency on f . Identified compo-
nents are marked by red rectangles. The components will be
defined as UML classes containing the specifications of the
component operations. The CBR1 flaw of the original ver-
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Fig. 2 Rearchitecting example

sion (12 direct calling dependencies between 9 operations) is
then removed. Only C1 has this flaw in the restructured sys-
tem. CBR2 is also reduced from 6 in the original component
to a maximum of 4 in C1.

Each identified component C can be further transformed
by extracting an interface C I which declares the externally-
used operations of C . Client components then use C’s
operations via C I . For example, component C1 in Fig. 2 has
the provided interface C1I which declares the single opera-
tion p.

A significant hindrance to maintenance is the intermix-
ing of business logic code together with data management
code using a specific technology, e.g., direct invocation of
Excel or SQL commands within business logic [49]. This
design flaw leads to high maintenance effort/costs when
there is technology change, such as a move from a rela-
tional to a NoSQL database. As a result of the abstraction
process, file and database operations are represented by calls
of the library components OclFile and OclDatasource,
and internet/socket communications are also represented as
OclDatasource calls. Excel operation calls are expressed
by calls of the Excel library operations. It is therefore direct
to identify all such processing and to segregate the code by
defining new data access object (DAO) components, which
encapsulate the specific processing. The DAO operations are
then called from the business logic components. A required
interface C_DAO_Req of each business logic component
C is extracted, which expresses precisely which DAO oper-
ations are required by C .

The resulting architecture will normally satisfy the key
principles of the clean architecture [49]:

• No cyclic dependencies between components (i.e., the
ADP): this holds due to heuristic rules (3) and (5)

• Interface segregation principle (ISP) “Don’t depend on
things you don’t need”: this holds because each compo-
nent Ci only depends on another component C j if some
operation of Ci calls an operation of C j . This depen-
dency is restricted to a required interface Ci_C j_Req of
Ci , which may be a strict subset of the provided interface
C j I of C j .

• Dependency rule (DR) “Platform-independent compo-
nents should not depend on platform-specific compo-
nents”: as described above, required interfacesDAO_Req
of business tier components are introduced, which the
DAO components for technology-specific resource man-
agement then depend upon (their provided interfaces
must satisfy/extend the DAO_Req interfaces).

The Single responsibility principle (SRP) of [49] – that
each component is only used by one actor—is only ensured
if this holds for the original program.

5 Semantic preservation

A key requirement of businesses using re-engineering is that
the source program functionality should be retained accu-
rately in the target [16, 67]. Moreover, it should be direct to
confirm this by relating parts of the source and target. We
address these concerns by:

1. Showing that the abstraction process preserves system
semantic properties (Sect. 5.1).

2. Showing that refactoring steps also preserve semantics
(Sect. 5.2).

It is then the responsibility of the utilised forward engi-
neering technology to preserve semantics and code structure
from UML/OCL to the target. AgileUML has an established
track record of use for Java and C# code generation over 20
years, whilst for Python it has been used extensively for over
10 years. Thus there are good assurances of correctness for
generation of these target languages.

5.1 Semantic preservation by abstraction

The semantics of OCL 2.4 is defined by Annex A of [55]
in terms of the mathematics of Zermelo-Fraenkel set theory
(ZFC) [12]. OCL types T are given a mathematical denota-
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tion I (T ) as a set of elements, for example

I (I nteger) = Z ∪ {ε,�}

where ε is the denotation of the null OCL element, and �
the denotation of the invalid OCL element. AgileUML uses
computational subsets int , long and double of the mathe-
matical datatypes I nteger and Real of OCL. These can be
given denotations as follows:

I (int) = {x : Z • x ≥ −231 and x ≤ 231 − 1}
I (long) = {x : Z • x ≥ −263 and x ≤ 263 − 1}

I (boolean) = { f alse, true}

MAX I NT is the upper bound 231 − 1 of the int range. The
denotation of double is the IEEE 754 64-bit floating point
range. The denotation of String is all finite sequences of
characters from an alphabet A assumed to include the ASCII
characters numbered 0 to 127.

Similarly, expressions expr of OCL can be given a deno-
tation I (expr) in ZFC. Literal integer numeric values are
written without a decimal point, whereas literal doubles have
the decimal. However, corresponding integers and doubles
are considered equal, e.g.: 3 = 3.0. The relational operators
are otherwise given their standard denotations, with lexico-
graphic ordering used as the standard order relation < for
strings.

The definition of arithmetic operators +, −, ∗, /, div and
mod follows the usual mathematical interpretation of these
operators (subject to the IEEE754 approximations for double
computations), with the proviso that the result is considered
unspecified if the usual mathematical result would fall out-
side the numeric range concerned. Thus 1 + MAX I NT is
meaningless as an integer computation. Likewise, division
by zero is not specified.

As an example of semantic definition, integer addition on
int is defined as:

I (e1 + e2) = I (e1) + I (e2)

when I (e1) ∈ I (int), I (e2) ∈ I (int),

I (e1) + I (e2) ∈ I (int)

We can then argue that integer numeric computations in
the sourceprogram,whichdonot result in overflow/underflow
outside of their defined ranges, and do not involve division by
zero, are translated correctly to corresponding OCL expres-
sions. This assertion relies upon the source programming
language/environment correctly implementing such integer
computations.

Note that restricted program subtypes of int , such as Java
short or VB I nteger (16-bit integers), are abstracted to int
in OCL. In such a case there could be overflow within the

program type that would not occur in the abstracted type,
however such a case is not included in our correctness assur-
ance. Especially in the case of COBOL, all integer numeric
data has a specific length in terms of decimal digits, and we
only assure that computations that remain within the implied
restricted types are abstracted correctly toOCL. TheCOBOL
semantics in many cases of numeric overflow are unspecified
[13].

String and boolean operators such as toUpperCase and
xor have precise definitions in OCL and it is generally possi-
ble tomapprogramstring andbooleanoperators to equivalent
representations in OCL which use the OCL operators.

For real-number computations, provided the source lan-
guage/platform conforms to IEEE 754 floating point for
64-bit values, the arithmetic operators +,−, *, / will have the
same semantics on double values at source and abstraction
levels, provided that exceptions do not occur (e.g., evalu-
ating log(0.0)) and provided that no computation produces
values outside of the double range. The VB Double type
and Python f loat type conform to the IEEE 64-bit standard.
In contrast, COBOL uses fixed-point representations for real
numbers, where each numeric format has a fixed number of
fractional digits after the decimal point. In order to correctly
express COBOL real-number numeric semantics, we intro-
duced new OCL operators →roundTo and →truncateT o,
which round/truncate double values to a given number of
decimal places.

Examples of abstraction mappings for COBOL numeric
and string expressions include:

functionCall::
FUNCTION ACOS ( _1 ) |-->(_1)->acos()
FUNCTION EXP ( _1 ) |-->(_1)->exp()
FUNCTION FACTORIAL ( _1 ) |-->

MathLib.factorial(_1)
FUNCTION LOWER_CASE ( _1 ) |-->

(_1)->toLowerCase()
FUNCTION MAX ( _1 _* ) |-->

Set{_1_*‘arguments}->max()

As described in Sect. 3.2, COBOL data definitions also
imply the existence of invariant relations between differ-
ent variables, and these invariants must be maintained by
the abstracted version of the source code, and by any target
implementation.

Collection types and arrays are reference types in VB,
COBOL and Python: a value of such a type used as a param-
eter to a procedure will be passed by reference. In contrast,
in standard OCL the collection types are value types and are
passed by value. To improve efficiency, in AgileUML they
are however treated as reference types, so that the AgileUML
collection semantics coincides with program semantics for
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VB, COBOL and Python. Class types are reference types in
standard OCL and AgileUML, as with class types in Python
and records in COBOL. Record types are value types in VB,
so they are abstracted to classes marked with the stereotype
�struct� to indicate that value semantics should be used
(as with structs/record types in C and Pascal). This means
that instances of such classes will be copied when assigned
and passed as parameter values.

The semantic preservation of statement semantics by the
abstraction mapping follows directly from the preservation
of expression semantics, due to the close correspondence of
program statement structures and extended OCL statement
structures, at least for the statement forms listed in Tables 1,
2, 3. It is assumed that there is no aliasing between vari-
ables other than that due to data definitions (in the case
of COBOL) and parameter passing by reference. It is also
assumed that ALTER statements are not used in COBOL
code, and that PERFORM anomalies such as overlapping
PERFORM-THRU ranges do not occur, i.e., it is assumed
that PERFORM calls can be treated as normal procedure
calls.

The inbuilt functions and operations of COBOL, VB6 and
Python are handled by the abstraction process. There is also
coverage of over 100 Excel worksheet functions in the case
of VB6. For Python, there is at least partial coverage of the
external libraries re, pickle, datetime, asyncio, numpy, ran-
dom and math, but not of other external libraries.

5.2 Semantic preservation by refactoring steps

We also need to show that any refactoring and rearchitect-
ing actions also preserve semantics, in general this will be the
case because these actions only reorganise data and function-
ality, but do not change the observed semantics. For example,
class splitting moves operations from the original class into
new classes.

Table 6 defines the conditions under which refactorings
preserve semantics.

Considering in particular the ‘Extract local variable’ refac-
toring, the original activity will have a structure such as:

statements1 ;
statements2[expr] ;
statements3 ;
statements4[expr]

where there are at least 2 occurrences of the same complex
expression expr , and the variables/attributes used in expr
are not written by any of the statements in the activity.

The refactored version will have the structure:

var v : T := expr ;
statements1 ;
statements2[v] ;
statements3 ;
statements4[v]

where v is a new variable name, T is the type of expr , and the
expr occurrences are systematically replaced by v through-
out the activity. It is therefore clear that the correctness
condition for this refactoring does ensure the preservation
of the activity semantics.

The ‘Replace recursion by iteration’ refactoring is more
complex. This is restricted to operations of the form:

operation op(pars) : T
activity:
statements;

where each control flow branch in statements ends in either:

1. A recursive call return op(vals)
2. A statement return valwhere val involves no direct

or indirect call of op
3. A program exit OclProcess.exit(n)

The refactored version has the form:

operation op(pars) : T
activity:
while true do

statements1;

In this version, the recursive calls return op(vals)
of statements are replaced in statements1 by simul-
taneous assignmentspars := vals followedbycontinue,
and the other forms of control flow branch end are left
unchanged.

Wecan argue that the refactored version has the same func-
tionality as the original, by induction on the depth of recursive
calls which arise in an execution of the original op version.
In the base case where no recursive call occurs, a branch of
form 2 or 3 above is executed, in both statements and
statements1, and this terminates the while loop and
execution of op in the restructured version, with the same
effect as in the original version.

If the execution of op leads to a recursive call via a branch
of type 1 in statements, then in statements1, the
actual parameters vals are assigned to the formal parameters
pars, and the next iteration of the while loop starts. This is
the same as calling the restructuredop asop(vals), and hence
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by induction, this results in exactly the same functionality as
a call op(vals) of the original op version.

Thus, for any terminating call of the original version of
op, the restructured version also terminates and produces the
same result/effect.

Similar reasoning can be applied to confirm that the other
refactorings of Table 5 also preserve system semantics under
the conditions of Table 6.

With regard to rearchitecting, the heuristics and restructur-
ings described in Sect. 4.3 can be considered as architectural
transformations, such as Extract Interface and Extract DAO.
Each of these can be shown to preserve system semantics,
because they do not change the details of operation defini-
tions, but only the boundaries of components.

6 Specification extraction

In this section we describe techniques for deriving or extract-
ing high-level requirements specifications from code and
from abstracted system models.

In mainstream re-engineering practice, the process of
relating legacy code data and functionality to business
requirements typically involves consultation with system
experts to build up a consistent and systematic understanding
of the system in business-specific terms [16, 67]. We have
also used this approach (for example, with the VB indus-
trial case) when domain experts are available. However this
approach has limitations, because the system experts may
only have expertise gained frommaintaining the system, and
the knowledge of the original developers and stakeholders of
the system is no longer available. Thus in-depth understand-
ing of the reasons behind design decisions has been lost, and
such reasons can only be inferred.

Another approach to derive specification-level documen-
tation is to use automated code summarisation, whereby
natural language explanations are generated from program
code. Code summarisation techniques have mainly focussed
upon modern programming languages, and there is a lack
of datasets and tools for COBOL and VB [71]. The advent
of large language models (LLMs) such as the GPT series
[72] with extensive natural language and programming
knowledge represents another means to obtain code sum-
marisations. We tested GPT 3.5 (chat.openai.com) with
code summarisation tasks from real-world VB and COBOL
programs and found that it was capable of providing appro-
priate explanations of small program extracts and functions
from legacy code. The explanations were generally correct,
although sometimes missing details.

The prompt used for VB6 code summarisation was:

“Canyou explain the purpose of the followingVBcode,
and the meaning of the function parameters?"

For COBOL, the prompt was:

“Can you explain the purpose of the following COBOL
code and the role of each file?”

As an example of VB6 summarisation, we submitted after
the VB prompt the following sample code extract from the
utilities part of the industrial VB case:

FUNCTION Get_lr(M AS Variant,
R_arr AS Range,
C AS Variant) AS Double

DIM N AS Long
DIM I AS Integer

N = R_arr.Rows.Count

FOR I = 1 TO N - 1
IF (M <= R_arr(I + 1, 2) AND

M >= R_arr(I, 2)) THEN
Get_lr = R_arr(I, C)
EXIT FOR

END IF
NEXT I

END FUNCTION

The summary produced by GPT−3.5 for this function
was:

“Overall, the function aims to perform a lookup oper-
ation within a specified range based on a given input
value, returning the corresponding value from the spec-
ified column of the row where the input value falls
within the range.”

While this is correct, it misses some subtle points. For
example, the code makes an implicit assumption that the
column 2 values are in sorted ascending order, and GPT
does not identify this condition. Likewise, there is an implicit
assumption thatC must be a valid column number of R_arr .
A visual explanation could be preferable to a purely textual
description in this case, because the Range R_arr represents
a rectangular area of cells on a spreadsheet.

We concluded from this investigation that an LLM with
sufficient code and domain knowledge could be used to gen-
erate textual documentation for the abstracted systemmodel.
The generated summaries can be integrated into the semantic
model as comments attached tomodel elements. However, as
with any use of an LLM, the risk of erroneous and inconsis-
tent output needs to be mitigated by validation of the output
[56].

There are other forms of abstraction that could be useful,
depending on the nature of the re-engineering task:
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• Abstraction to an object-oriented specification. In this
case a specific spreadsheet range could be represented
instead as a list of instances of a class, with the columns
of the range being the attributes of the class, and the rows
being the objects.

• Mathematical specification in OCL. Loops of the above
form could be abstracted to a postcondition such as:

post :
result =

Sequence{1, .., N }→any(I | Cond · V )

where Cond expresses the conditional test and V the
returned value R_arr(I ,C).

These forms of abstractionwould require collaboration by
both system experts and re-engineering experts (Fig. 1).

7 Code synthesis and test case generation

From the abstracted and restructured UML/OCL represen-
tation, code can be generated in multiple target languages.
AgileUML provides code generators to synthesise code in
ANSI C, C++, C#, Java, Go, Swift and Python. The gener-
ated code structure is closely aligned with the specification
structure, facilitating traceability.

Together with target code, we also generate unit test cases
for operations, and a mutation testing UI, to support test case
selection for the synthesised code [30, 31]. Although gener-
ated code should be ‘correct by construction’, testing is also
usually necessary in order to provide additional assurance
to stakeholders in the case of critical system re-engineering.
Testing will often be mandated by the customers, and can
be the most time-consuming part of a re-engineering process
[16].

We derive unit test cases for operations from the oper-
ation parameter types, and from the attribute types of the
class to which the operation belongs. The tests are ‘black
box’ tests and are independent of the operation functional-
ity/activity. For each parameter or attribute of a given type
T , a set of test values are chosen which represent typical
values of T , together with potential boundary values. Thus
for parameters or attributes of int type we use the values
0, 1,−1, 1024,−1025 and MAX I NT . The choice of test
values for each type can be directly configured by the end
user. If an operation has preconditions, then these are also
used to infer and constrain the generated test values. For
example, an operation:

operation integerPlaces(x : int) : int
pre: x > 0

post:
result = 1 + x->log10()->oclAsType(int)

would have test values 0, 1, 1024 and MAX I NT . Similarly,
test values for attributes are adjusted based on any invariants
of their class. All combinations of test values for parameters
and attributes are used, so that an operation with N integer
parameters could have more than 6N test cases. This test
generation procedure can therefore result in very large test
sets, and we use mutation testing [6, 30, 32] to reduce these
sets to a subset of effective tests.

Mutation testing is based on creating mutated versions of
operations, with a single mutation in the code or postcondi-
tion definition of an operation op producing a mutant version
op′. For the above example, a mutant version is:

operation integerPlaces_mut2(x \: int) : int
pre: x > 0
post:
result = 1 + x->log()->oclAsType(int)

Tests for op are ranked based on the proportion of op
mutants that they detect, i.e., the proportion of opmutants for
which they give a different result compared to the original op
version. For the above example, test x = 1 has 33% effec-
tiveness in detecting mutants, whilst x = 1024 has 100%
effectiveness. Other test values have 0% effectiveness. The
higher the rate of detection, in principle the more effective is
the test at discovering flaws in implementations of op. Tests
which have low scores can be eliminated from the test set.
Thus in the above case we would only retain test values 1
and 1024. The result is a reduced test set which can be used
for unit testing and regression testing of the generated code
for different target platforms.

In the case of specifications abstracted from COBOL, the
variables are specified to have fixed data width, so test case
generation can utilise this information to restrict the pro-
duced tests. For example, tests for a string attribute with size
N would include random strings of length N , and a string
consisting of N spaces.

8 Evaluation

In this section we provide evidence for research questions
RQ1 and RQ2 in the context of VB6/VBA, COBOL ‘85 and
Python re-engineering tasks.

8.1 RQ1: Effective re-engineering process

Toanswer this questionweapplied theAMDREre-engineering
process to three typical re-engineering tasks: (i) transla-
tion of VB6/VBA code to Python 3, with quality analysis,
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specification extraction, refactoring and rearchitecting of the
abstracted code; (ii) translation of COBOL code to Java and
C#, with quality analysis and refactoring of the abstracted
code; (iii) abstraction of Python code to UML/OCL, with
type inference and refactoring to improve code quality, prior
to translation to Java.

As measures of translation accuracy we use two semantic
accuracy measures:

1. The computational accuracy (CAcc) measure of [37].
This evaluates the percentage of tests which return the
same results when applied to source and target versions
of the re-engineered application. It is appropriate because
users are generally concerned to preserve the functional-
ity of the original version in the re-engineered system.

2. The runtime equivalence (REquiv) accuracy measure of
[28]. This measures the percentage of programs which
have 100% computational accuracy for their translation,
i.e., all tests for the program return the same results in
the original and translated versions.

In order to compute thesemeasureswe use the original test
cases of example programs, and not the autogenerated tests
produced byAgileUML from the abstracted semanticmodels
(Sect. 7). The reason for this choice is that the original tests
will be specific to the expected semantics of the programs,
whilst the autogenerated tests are black-box tests indepen-
dent of internal program semantics. To judge if the results of
a test on the original and re-engineered codes are ‘the same’,
we use a similarity function fsim on the results. As with
the corresponding function fmatched of [28], fsim considers
numeric results to be the same based on their semantics, not
their text (so that 39.5 and 3.95e+1 are considered the same
output value, for example).

As measures of architectural quality we use the CRA-
Index measure of [8], and the quality criteria ADP, ISP and
DR of [49].

8.1.1 VB6/VBA re-engineering

Table 7 gives the accuracy results for translation ofVB6/VBA
source examples to Python 3.9. There are 100VB6 examples,
including 10 parts of the 2000 LOC bond analysis function
suite. The tests for the parts of this case were provided by
the business that owns the application. The other examples
and tests are taken from [50]. We show the percentage of
individual tests that have the same results for source and
target versions (computational accuracy, CAcc), and also the
percentage of cases which have equivalent behaviour for all
their tests (runtimeequivalence,REquiv).Grammar coverage
of VB6 by the CST L abstraction script is 320 of 412gmar
productions (77%).

Table 7 VB6 to Python evaluation cases: accuracy

Case category Cases (tests) Translation accuracy
CAcc (%) REquiv (%)

Language 60 (123) 81 70

Functions 30 (74) 82 87

Bond app 10 (51) 90 60

Total 100 (248) 84 74

Table 8 VB6/VBA cases: reachitecting quality improvement

CRA: original CRA: rearchitected ADP ISP DR

0.18 0.97 100% 100% 80%

Table 8 shows the average CRA-Index before and after
rearchitecting for 15 VB cases for which rearchitecting was
applied. CRA-Index increased in 13 cases, was lower in 1
case and was unchanged in 1 case. The percentage of cases
which satisfy ADP, ISP and DR after rearchitecting is also
given.

For the industrial case, we performed analysis of the
source code and abstracted UML/OCL, using an iterative
process working together with the business representative to
identify the domain semantics of individual parts of the sys-
tem and to prioritise improvements which were considered
to be of most value to the owning business.

It was found that the monolithic code of the applica-
tion could be conceptually divided into two main parts: (i)
computation of bond values and of the Nelson Siegel (NS)
[52] and Nelson Siegel Svensson (NSS) yield curve mod-
els under varying assumptions—approximately 550 LOC;
(ii) a genetic algorithm implementation of yield curve fitting
[22], using a set of market data from a spreadsheet—
approximately 1400 LOC. There are also small utility
operations. Part (ii) makes use of part (i). Part (i) is well
commented, but the more complex part (ii) has almost no
comments, but instead 25 lines of commented-out code.

Some cases of EPL, EFO, EFI and DC were detected, but
the most significant problems are:

• EFS: the main routine of part (ii) is over 500 LOC, and a
secondary routine is over 300 LOC;

• MGN: 37 cases in part (i), primarily due to an embed-
ded assumption that bond coupon frequency is twice per
year, and 66 cases in part (ii), due to hard-wired assump-
tions about the structure of the associated spreadsheet,
the number of yield curve parameters (6) and market
data points (8), and other rigid assumptions which would
make the code difficult to adapt.

• UVA: part (i) has 27 unused variables, apparently a legacy
of a previous version of the code.
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Table 9 VB6/VBA industrial case: quality improvement

MGN UVA DC/DE EPL EFS EFO

Original 103 27 15 12 2 2

Revised 0 0 8 4 0 0

Part (ii) uses direct access to Excel instead of via a DAO.
As restructuring actions, we factored the 2 excessively

large operations into parts based on data dependencies, and
replaced magic numbers by declared constants. We applied
the ‘extract value object’ refactoring of Sect. 4 to part (i) to
remove EPL cases.

There are four operations with a common group of five
parameters beta0, beta1, beta2 and tau1, tau2:

• PV_NS(... 9 parameters...)
• PVD_NS(... 8 parameters...)
• PVF_NS(... 10 parameters...)
• NS_extended(... 6 parameters...)

There are also four operations with a common group of
six parameters beta0, beta1, beta2, beta3 and tau1, tau2:

• PV_NSS(... 10 parameters...)
• PVD_NSS(... 9 parameters...)
• PVF_NSS(... 11 parameters...)
• NSS_extended(... 7 parameters...)

Applying ‘extract value object’ with the first group of
common parameters resulted in a class NS with the 5
attributes corresponding to NS yield curve parameters, and
applying the refactoring to the second group resulted in a
class NSS with 6 attributes for the NSS parameters. Since
the NS attributes are a subset of the NSS attributes, the NSS
class can be expressed as a subclass of the NS class.

Further refactoring to remove DC and DE flaws involving
multiple (> 2) clones was also carried out. UVA vari-
ables were removed. Furthermore, all the original code was
contained in a single module. Analysis of the call graph
confirmed that a hierarchical organisation implicitly existed,
whereby part (ii) depended on part (i) and the utilities,
and part (i) depended on the utilities. Using the heuristics
of Sect. 4.3 the code was partitioned into classes for these
implicit components, increasing component cohesion.

Table 9 shows the flaw counts of the case before and after
restructuring.

Overall the total flaws were reduced from 161 to 12, and
the flaw density reduced from 8 to 0.6%. Semantic preserva-
tion was satisfied for the deterministic numeric computations
of part (i) and the utility programs.However, part (ii) involved
calls of Beta_I nv, Norm_I nv and Rnd, where the values

produced by Excel/VB differ slightly from the translated ver-
sions of these functions.6 In such cases the customer of the
re-engineering project needs to decide if the differences are
significant, and if so, an alternative implementation that sim-
ulates the source exactlywould need to be created or selected.

8.1.2 COBOL ‘85 re-engineering

We examined 100 examples of COBOL code, including
examples from the language manual [13] and textbook [57],
together with the industrial case of [38]. Table 10 gives the
accuracy results for translation of these cases to Java and C#.
The tests were taken from the same sources as the exam-
ples. Grammar coverage of COBOL ‘85 is 456 of 631gmar
productions (72%). The main omissions from coverage are
installation-specific aspects such as the data-base, report,
program-library, communication and screen sections of a
COBOL program.

GO TO statements are replaced by recursion during the
abstraction process, and the ‘replace recursion by iteration’
transformation is then applied to remove this quality flaw.

An example of a poorly-structured COBOL program with
a complex use of PERFORM is given in [57]:

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOLPERFORMSOURCE.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 CNT PIC 999 VALUE 0.
PROCEDURE DIVISION.
MAIN SECTION.
P1.
MOVE ZERO TO CNT.
PERFORM P2 THRU P5.

P2.
PERFORM P3.

P3.
ADD 1 TO CNT.
IF CNT = 5

MOVE ZERO TO CNT.
P4.
ADD 3 TO CNT.

P5.
DISPLAY CNT.

Although this is an artificial example, similar coding occurs
in real-world cases such as the charge calculation program of
[38]. The example program is abstracted to the UML/OCL
specification:

class COBOLPERFORMSOURCE_Class {
attribute CNT : int := 0;
invariant 0 <= CNT & CNT <= 999;

operation P1_Call()

6 This arises because the actual function definitions used by Excel are
not available.
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Table 10 COBOL ‘85 to Java,
C# evaluation cases: accuracy

Case category Cases (tests) Accuracy (Java) Accuracy (C#)
CAcc (%) REquiv (%) CAcc (%) REquiv (%)

Statements 65 (138) 93 80 94 91

Language 25 (58) 78 60 91 75

Functions 10 (33) 82 80 96 83

Total 100 (229) 87 75 94 86

pre: true post: true
activity: CNT := 0;

self.P2_thru_P5() ;

operation P2_Call()
pre: true post: true
activity: self.P3_Call() ;

operation P3_Call()
pre: true post: true
activity:

CNT := (CNT + 1)->truncateTo(0) ;
if (CNT = 5) then (

CNT := 0;
skip) else skip ;

operation P4_Call()
pre: true post: true
activity:

CNT := (CNT + 3)->truncateTo(0) ;

operation P5_Call()
pre: true post: true
activity:

execute ("" + CNT)->display() ;

operation MAIN() pre: true
post: true
activity:

CNT := 0;
self.P2_thru_P5() ;
self.P3_Call() ;
CNT := (CNT + 1)->truncateTo(0) ;
if (CNT = 5) then (

CNT := 0;
skip) else skip ;

CNT := (CNT + 3)->truncateTo(0) ;
execute ("" + CNT)->display() ;

...

operation P2_thru_P5() : void
pre: true post: true
activity:

self.P2_Call() ;
self.P3_thru_P5() ;

operation P3_thru_P5() : void
pre: true post: true
activity:

self.P3_Call() ;
self.P4_thru_P5() ;

operation P4_thru_P5() : void

pre: true post: true
activity:

self.P4_Call() ;
self.P5_Call() ;

}

This specification makes clear that the original program
has a complex call graph structure:

MAI N −→ P2_thru_P5

MAI N −→ P3_Call

P2_thru_P5 −→ P3_thru_P5

P2_thru_P5 −→ P2_Call

P2_Call −→ P3_Call

P3_thru_P5 −→ P4_thru_P5

P3_thru_P5 −→ P3_Call

P4_thru_P5 −→ P4_Call

P4_thru_P5 −→ P5_Call

By repeatedly applying the ‘Replace call by definition’ refac-
toring, the MAI N operation code can be transformed to:

operation MAIN() : void
pre: true post: true
activity: CNT := 0 ;

CNT := ( CNT + 1 )->truncateTo(0) ;
if ( CNT = 5 ) then

( CNT := 0 ; skip )
else skip ;
CNT := ( CNT + 1 )->truncateTo(0) ;
if ( CNT = 5 ) then

( CNT := 0 ; skip )
else skip ;
CNT := ( CNT + 3 )->truncateTo(0) ;
execute ( ( "" + CNT )->display() ) ;
CNT := ( CNT + 1 )->truncateTo(0) ;
if ( CNT = 5 ) then

( CNT := 0 ; skip )
else skip ;
CNT := ( CNT + 1 )->truncateTo(0) ;
if ( CNT = 5 ) then

( CNT := 0 ; skip )
else skip ;
CNT := ( CNT + 3 )->truncateTo(0) ;
execute ( ( "" + CNT )->display() ) ;

This is then in a formwhich can be translated directly to Java.
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Table 11 Python to Java evaluation cases: accuracy

Case category Cases (tests) Translation accuracy
CAcc (%) REquiv (%)

Data structures 30 (72) 86 83

Statements 34 (74) 81 76

Libraries 9 (35) 89 67

Language 27 (45) 78 70

Total 100 (226) 83 76

Table 12 Python evaluation cases: restructuring

Flaw category Original flaws Flaws after restructuring

EDN 12 3

MDV 4 0

DE 4 0

PMV 2 2

EPL 3 1

Total 25 6

8.1.3 Python re-engineering

Table 11 shows the accuracy results for Python to Java trans-
lation. 100 Python 2 and Python 3 cases were considered.
These figures can be compared to the best values of 78% for
computational accuracy and 42% for runtime equivalence
given for Python to Java translation in [28]. Grammar cover-
age of Python is 166 of 200gmar productions (83%).

Examples of poorly-structured Python code were taken
from undergraduate student machine learning programs.
These included DE, EPL, EDN, PMV andMDVflaws. Table
12 shows the overall flaw counts before and after restructur-
ing.

As an example of EDN, the following structure was
present in one case of data pre-processing:

if cond1 :
proc1
if cond2 :

proc2
return e1

else :
proc3
return e2

else :
if cond3 :

proc4
return e3

else :
proc5
return e4

This is an example of the ‘pipeline jungle’ antipattern,
complex logic which is difficult to understand and maintain

Table 14 Example of effort required for re-engineering process steps

Step Effort (person days)

Abstraction 0.5

Analysis 0.5

Restructuring 3

Specification 3

extraction

Code synthesis 0.5

Test generation 0.5

Total 8

[63]. There are at least 8 statements at the maximum nesting
depth of 3 (since this code is nested in a function definition).

By applying the ‘Reduce code nesting’ refactoring, this
can be replaced by the functionally-equivalent code:

if cond1 then
(proc1 ;
if cond2 then
(proc2;
return e1) else skip ;

proc3;
return e2) else skip ;

if cond3 then (proc4;
return e3) else skip;

proc5 ;
return e4

This version reorganises the pre-processing as a linear
chain of filter elements. In this version there are only 2 effec-
tive statements at the maximum nesting depth. Other exam-
ples of Python re-engineering are given in the avatarCases
directory of the provided dataset. These are typical Python
solutions to programming problems, sourced from AtCoder
[1].

8.2 RQ2: Re-engineering effort reduction

To answer this question we consider the typical processes
involved in re-engineering, and identify to what extent our
approach can automate or support these steps (Table 13).

This shows that AMDRE enables substantial automation
of several main re-engineering steps, hence reducing the
manual workload of these processes. Table 14 gives an illus-
tration of the workload required for the AMDRE steps in an
actual re-engineering case, the bond analysis application of
Sect. 8.1.1. This was a relatively small legacy system, and
it can be expected that timescales would be larger for more
substantial systems, especially in the steps requiring detailed
user intervention.
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In addition, the abstraction and code-synthesis steps
can be user-configured to address different source/target
languages, to extend the source language coverage or to
process installation-specific variations in languages. Each
of the code abstractor scripts VB2UML, COBOL2UML and
Python2UML are defined as CST L text files external to
the AgileUML toolset, and can be edited to modify or
extend their processing, without specialised knowledge of
the toolset. Only knowledge of the programming language
grammar, of CST L, and of UML/OCL syntax is needed to
perform such adaption.

For example, in order to add coverage of the recently-
introduced ‘map union’ interpretation of the Python pipe
operator to the Python2UML script, we added two rules
to the script:

_1 | _2 |-->_1->union(_2)<when> _1 Map

in the expr :: ruleset, and

|= _1 |-->->union(_1)<when> _1 Map

in the assign_part :: ruleset.
Code-generators for the production of Java, Go and Swift

code are also written as CST L scripts, and can be adapted
by end users independently of the AgileUML toolset.

It would also be possible for users to create new CST L
scripts to perform specific new analyses (e.g., to compute
newmetrics or to generate different forms of documentation)
from source code parse trees. In general, a script sc.cstl can
be applied to a parse tree by the command line tool cgtl:

cgtl sc.cstl ast.txt

where ast .t xt contains the textual representation of the parse
tree (as produced by an ANTLR parser).

The abstraction scripts are relatively small and required
low resources to construct (Table 15). To further reduce

effort, we provide a command-line tool antlr2cstl to gen-
erate outline CST L rulesets from ANTLR grammars. The
outline versions of theCOBOL rulesets shown in Sect. 3were
generated in this way from the COBOL grammar.

We have found that CST L scripts are approximately 3
times faster to write than Java code, for the same reverse-
engineering task. However, Java codingmay be necessary for
specialised tasks, and CST L includes a facility for scripts to
call external Java functions in such cases.

9 Threats to validity

Threats to validity include bias in the construction of the
evaluation, inability to generalise the results, inappropriate
constructs and inappropriate measures.

9.1 Threats to internal validity

9.1.1 Instrumental bias

This concerns the consistency of measures over the course
of the analysis. To ensure consistency, all analysis and mea-
surement was carried out in the same manner by a single
individual (the first author) on all cases. Analysis and mea-
surement for the results of Tables 7, 8, 9, 10, 11 and 12 were
repeated in order to ensure the consistency of the results.

9.1.2 Selection bias

We chose VB6, COBOL ‘85 and Python examples which
covered the core statements and features of the languages,
and examples were taken from the language manuals [13]
and [50] and from python.org. The large VB6 case is taken
from a real-world application used in the second author’s
company, and exhibits characteristics typical of legacy finan-
cial VB applications. The large COBOL case is a real-world
program from the utilities sector. Python programs included
application code from student ML projects.

Table 13 Support for
re-engineering processes

Step Automation Support

Abstraction
√

Via ANTLR, CST L
Analysis

√
Flaw measures; Guidance for flaw reduction

Restructuring Partial Manual selection of restructuring actions

Rearchitecting Partial Automation of heuristics for rearchitecting

Specification extraction Partial Interactive analysis; Code summarisation

Code synthesis
√

AgileUML/CST L
Test generation

√
Mutation testing
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Table 15 CSTL script size and
development effort

CSTL Script Script LOC Script effort (person months) (pm)

VB2UML 2430 4.5

COBOL2UML 3818 6

Python2UML 2246 3.5

Averages 2831 4.7

Table 16 Re-engineering approaches

Approach Scope Intermediate representation; tools Methodology

Gra2MoL [27] Model extraction ASTM; ANTLR Grammar-based

RCRRE [46] Design extraction SOFL Pattern recognition

REMICS [35] Modernisation; migration KDM, UML ADM + Scrum

SOAMIG [21] Migration TGraph; GReQL SOMA

StateJ [64] Design extraction State machines Symbolic execution

Transcoder [37] Program translation Implicit; Tensorflow Machine learning

Tree2Tree [11] Program translation Implicit; PyTorch Machine learning

XIRUP [20] Modernisation; componentisa-tion XSM custom metamodel; ATL MDA; iterative

This paper (AMDRE) Translation; Restructuring; Rearchitecting UML/OCL; CST L, ANTLR Agile & lightweight MDE

The tests used for checking semantic correctness were
taken from the same sources as the examples, and were not
constructed by the authors.

9.2 Threats to external validity: generalisation to
different samples

Our approach is restricted to the analysis of business and data
resource code, and does not directly handle GUI/UI code.
Thus it is not applicable to code in the UI layer of applica-
tions. Here we have only considered the cases of mapping
VB6 to Python, COBOL ‘85 to Java and C#, and Python
to Java, however similar procedures have been followed to
apply the approach for other 3GL language pairs, such as Pas-
cal to Java translation, and the data for these are contained in
the replication package.

A challenge with the re-engineering of legacy systems is
that these are often closely bound to particular technologies
such as Excel in VB finance cases, or particular data storage
technologies and system services in the case of COBOL.
These supporting technologies may themselves be legacy
systems. Python ML systems may depend upon outdated
versions of Python libraries and toolsets. In such cases the
re-engineering process needs to consider the supporting soft-
ware environment and dependencies of the legacy system,
and decisions need to be made whether (i) use of the legacy
environment should continue; (ii) the legacy environment
should be simulated for the re-engineered system; or (iii)
the re-engineered system should be transformed to depend
instead upon modern platform services/libraries.

We facilitate the separation of the legacy system from
its environment via the rearchitecting process (Sect. 4.3),
which helps to isolate the platform dependencies of sys-
tem components. In the case of Excel, we provide a library
component that attempts to simulate Excel functionality.
Likewise, we simulate some COBOL file storage mecha-
nisms such as indexed-sequential files, using the OclFile
library of AgileUML. However, in general this issue may
require significant additional work to resolve, which is not
addressed by the AMDRE process.

9.3 Threats to construct validity: inexact
characterisation of constructs

We have used established metrics such as the CRA-Index
[8] and computational accuracy [37] measures in our eval-
uation, in order to precisely measure semantic preservation
and structural improvement resulting from the re-engineering
process. In addition, the principles ADP, ISP and DR from
the clean architecture [49] have been used as criteria for the
quality of the re-engineered system.

9.4 Threats to content validity

9.4.1 Relevance

The re-engineering approach has been shown to be applicable
to the analysis and translation of the main COBOL ‘85, VB6
and Python program elements. Here we have focussed on
specific target languages (Java, C# and Python), but other
target languages could also be used, such as Swift and C++.
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9.4.2 Representativeness

The industrial finance application was selected to be repre-
sentative of legacy systems at the company, a finance SME.
The combination of Excel code and VB code in this appli-
cation is typical of VBA programs in the finance domain.
The large COBOL application is typical of legacy business
application code. The Python examples are representative of
Python ML system coding.

9.5 Threats to conclusion validity

The preservation of program semantics via abstraction and
restructuring is a key element of our process. Seman-
tic preservation cannot be assured in all cases because
differences exist between different program execution envi-
ronments due to different device characteristics andoperating
system behaviour. The semantics of libraries used by pro-
grams may not be available, so that no assurance about
semantic preservation can be made unless exactly the same
library in the same environment is also used in the re-
engineered system. A particular case is Excel, for which the
WorksheetFunction library can be used in VBA code, but the
exact definition of the library functions is not publicly avail-
able. Therefore there may be minor discrepancies between
the Excel definition of functions such as the cumulative nor-
mal distribution, and our version of these functions in the
OCL Excel library component.

10 Related work

The most direct form of re-engineering is program-to-
program translation, where normally no abstractions above
the level of syntax trees are constructed. This is an active
area of current research [23, 45, 53]. Both machine learn-
ing approaches and explicit rule-based translations have
been used for program translation [11, 28, 29, 37]. Direct
translation has the disadvantage that no abstractions or doc-
umentation of the code are produced, and that N*M separate
translations need to be defined or learned for N source and
M target languages. Replicating the structures and idioms of
a legacy system in a new language may result in code that
is difficult to understand and maintain without knowledge of
the legacy code concepts [16].

Other re-engineering approaches attempt to recover some
form of design or specification from the code, in order to
support the redevelopment and improvement of the system
[58, 59]. Inevitably some manual intervention is needed in
this process, as specialised domain expertise is necessary to
interpret the program data and functionality in domain terms.
For example, in the case of the bond analysis system given
above, the domain expert was able to identify that variables

Table 17 Comparison of re-engineering effectiveness

Approach CAcc (%) REquiv (%)

Transcoder 56.1 2.0

This paper 83 76

B1 andB2 (Sect. 2.1) represent theNelson-Siegel yield curve
model parameters β0 and β1 [52].

Redesign and transformation of a system specification is
necessary if the existing system has poor quality or if the tar-
get language/platform is substantially different to the source.
This may involve transforming procedural program designs
into object-oriented or declarative designs [38, 46]. However,
such a radical rewrite also carries the risk of loss of essential
information from the source, and can make it more difficult
to understand for maintainers familiar with the old system.

Most model-driven re-engineering (MDRE) approaches
have followed the ADM approach [35, 59, 60]. Whilst agile
MDE is an active area of research [3] there have been few
works applying agile MDE to re-engineering. The closest
work to ours is [24], but they focus on the business level
organisation and prioritisation of re-engineering instead of
the technical process.

In previous work we have described CST L and its appli-
cation to program translation [40, 41, 44]. In this paper we
consider in more depth the abstraction processes and seman-
tic representations for COBOL, VB and Python, and we
extend the program translation process to a general MDRE
process including refactoring and rearchitecting of applica-
tions based on their abstracted semantic models.

Table 16 summarises recent related approaches and how
they compare to our approach. Table 17 compares the effec-
tiveness of our approach for Python to Java re-engineering
with the Transcoder ML approach of [37]. This is the
only approach for which comparable data was available.
Transcoder has been regarded as the state-of-the-art approach
for ML-based transpilation [28]. The results show that our
approach can achieve higher accuracy than Transcoder on
similar program translation tasks. In addition, compared to
Transcoder, our approach additionally enables the abstraction
of designs and specifications from code, and the refactoring
of designs for quality improvement.

Overall our approach is distinguished from previous
MDRE approaches by (i) construction of a semantic interme-
diate representation in a standard software language, instead
of a repository of syntactic data in a metamodel; (ii) pro-
viding rearchitecting facilities linked to ‘clean architecture’
qualities; (iii) providing user-configurable tools that do not
require high skills in MDE.
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11 Conclusions and future work

In this paper we have defined the AMDRE approach for
agile model-driven re-engineering, which provides restruc-
turing and rearchitecting processes for legacy system quality
improvement and platform migration, based upon detailed
semantic models abstracted from code. We evaluated the
approach on real-world legacy systems in VB, COBOL and
Python, and demonstrated that AMDRE can be applied to
practical cases of re-engineering tasks.

The use of model-driven techniques for software re-
engineering supports automation of the source code abstrac-
tion process, and the definition of a wide range of analyses
upon the abstracted models, and facilitates the production of
target code in multiple languages/platforms. It also enables
strong assurance of semantic preservation to be made, which
is of key importance to industrial clients.

In future work we will investigate the automated learning
of abstraction transformations from examples, using sym-
bolic machine learning [43]. This would enable users to
specify code abstractors without the need to write specifi-
cations in CST L. We will also further investigate the use of
LLMs for specification discovery, including the creation of
specialised LLMs for this task by the fine-turning of general
LLMs [65, 72]. An increasingly important area of research is
software sustainabiity, the reduction of software energy use
and consequent greenhousegas emissions [51].Our approach
could also potentially be used to analyse energy use flaws
(energy-inefficient practices in code) and to restructure the
system to remove such flaws, analogously to the use of refac-
toring to remove quality flaws.
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