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Abstract

Software accuracy and efficiency checks are becoming of paramount interest to system users before utilization. As a result,
twenty-first-century programmers are consciously developing less buggy, highly efficient, and robust software with a higher
degree of accuracy. Occasionally, undetected bugs in large software due to the complexity of codes and other associated
parametric attributes cause hardware to malfunction. In this paper, an ensemble model of Logistic Regression and Extra tree
classifier algorithms is deployed on parametric software attributes for the accurate classification and prediction of software
bugs. The implementation was performed on different platforms (WEKA, MATLAB and PyCharm) to determine the rate of
memory utilization, optimize prediction time, maximize the model’s efficiency and compare accuracy rankings among similar
machine models. A publicly available software defects dataset from the National Aeronautics and Space Administration
(NASA) containing 16,962 instances and 38 attributes for software defects prediction was collected, pre-processed and used
in the implementation of this study. The collected data were vectorized, subjected to principal component analysis (PCA)
for dimension reduction based on ranking values and divided in the ratio 3:2 for training and testing of the ensemble model
classifier, respectively, on new sets of buggy software datasets. The result from the ensembled model showed a significant
increase from 96.7-97.8% in the prediction accuracy of the un-vectorized dataset to vectorized dataset. An appreciable
decrease in the prediction time (19.7 s) of the vectorized dataset was also observed against the initial time (26.9 s) recorded
for the un-vectorized dataset. In addition, memory utilization for vectorized datasets increased during the training phase due
to the number of bits but got reduced at the final testing phase of the software bug prediction. However, the overall accuracy of
97.8% recorded by the optimized ensemble model for buggy software prediction proved the model’s capability to accurately
classify and predict buggy software with efficient memory utilization at optimal time duration.
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1 Introduction make tasks easier and faster with little or no human interven-
tion. The benefits derived from the utilization of accurate and
The use of software has grown exponentially over the years  efficient software cannot be achieved without the utilization
due to the increase in the demand for automated and efficient ~ of software bug detectors.
systems (electronic gadgets). Embedded software in digital The role of software bug predictors cannot be over-
and electronic systems has helped to minimize faults and  emphasized [1, 2] in software quality assurance [3, 4]. In
recent years, researchers have implemented several machine
learning techniques for the prediction of software defects
52 Femi Johnson [5-7]. Common models have combined variants of Artificial
femijohnson123 @hotmail.com Neural Networks (ANNs) with regression or classification
models [8, 9]. Recent studies also revealed that the use of sub-
optimal default parameter settings degrades the efficiency of
these models over time [10-13], resulting in the high con-
sumption rate of computing resources (memory and time)
and reducing the accuracy of software bug predictors [14]. As
the prediction time and overall cost of software tests increase
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[15, 16], the primary challenge for every researcher and soft-
ware developer is to improve the quality of software with
limited testing resources through vectorization (a technique
adopted by CPU manufacturers to improve the performance
of modern computers) [17, 18].

Vectorization is a technique for transforming an algo-
rithm from operating on a single or unitary value to multiple
values (vectors) per time unit [19]. It has been adopted to
speed up program execution, make programs more efficient
and readable. In this paper, an optimized ensemble machine
learning model (Logistic Regression and Extra Tree clas-
sifier) is implemented at the learning and testing phases to
address the limitations of single machine learning techniques
[20] to generate a better result, eliminate problems arising
from imbalanced classes using a vectorization technique for
faster execution, and maximize hardware resources.

The organization of this paper is further divided as follows.
Severity-based classification and software bug debugging
priorities are explained, immediately followed by a litera-
ture review of recent research work in Sect. 2. Section 3
presents the methodology for developing the optimized
ensemble machine learning model for software bugs pre-
diction. Implementation and test results derived from the
developed optimized ensemble model’s evaluation and anal-
ysis are documented in Sect. 4, the discussion and conclusion
are given in Sect. 5 accordingly.

2 Related works

Large software project development requires modularization
for easier and faster implementation, especially when two or
more programmers are involved [15, 21]. After the compi-
lation of the various modules, the integration of software
bug predictor into various software modules [11, 22, 23]
becomes rigorous and time-consuming. Thus, the inclusion
of bug predictors at the earliest stage of software develop-
ment is necessary. Software bug predictors (SBPs) aid in the
identification and detection of bugs [24] by using collected
software metrics as parameters [25, 26]. Metrics used include
comment line codes [27], modularized codes, web-related
metrics for web-based programs [21], network metrics [28],
cascading style metrics [29], and other metrics based on
mutations that have been identified for measuring software
quality [30-32]. Software bugs appear with varied levels of
severity and debugging priorities as shown in Table 1. These
severity levels are also categorized as:

a. Critical: At this stage, a system’s overall performance is
impacted by the software flaw. There is no workaround
for it. It might also lead to the software modules’ com-
plete failure or unsuccessful installation
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Table 1 Software bugs debugging priorities

S/n Debugging Description
priority

1 Low The defect needs to be repaired, but
the repair can be deferred until
more serious defects have been
fixed

2 Medium The defect could be resolved in the
normal course of development
activities. It may wait until a new
build or version is created

3 High The defect must be resolved

immediately because it affects the
application or the product severely
and makes it unusable

b. Major: A software bug is categorized as having a major
severity level if it has an impact on crucial data or major
computer system functions. It happens when a mod-
ule’s malfunction prevents other modules from operating
effectively, which lowers the system’s performance.

c. Minor: A few minor functions or non-critical data are
affected. It has an easy workaround. A defective non-
functional feature in a module could be improved to
function in another module of the same software.

d. Trivial: The functionality of the system or its data is not
affected. The system’s efficiency is not affected, but it
may merely cause a form of inconvenience to the user.

The impact of bugs in software is very challenging, and the
cost of fixing the bugs varies significantly with the number
of bugs and the time of detection [3, 20, 26]. Detecting bugs
at an early stage of development would significantly lower
the cost incurred in fixing them [27, 33].

Improving software defect prediction accuracy in recent
times involves the combination of two or more techniques
known as the ensemble or hybrid approach [6, 8, 34]. The sys-
tematic review of literature conducted on the forty-six most
relevant papers published by four well-organized libraries
[35], including IEEE and Springer, from 2012-2021 led to
the discovery of WEKA as the most widely used platform
for machine learning and the listing of frequently used eval-
uation metrics in software bug evaluation metrics to include
F-measure, Area under curve (AUC), Recall, and Precision
score. Rarely used ensemble approaches were identified,
including Extra Tree, voting, and stacking.

Authors [36] implemented and tested a genetic algorithm-
based optimization model for the prediction of software
defects on six attributes of the NASA dataset. They formu-
lated two hypotheses and four linear equations to justify their
claim on the need for optimization techniques. The model
was implemented on MATLAB and the evaluation metric was
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simply performed on accuracy and sensitivity level which
yielded an average value of 95-97%.

Yi et al. [37] proposed an automated machine learning
model for the automatic reconstruction of buildings using
photogrammetric and panchromatic images derived from
satellite images. Their approach adopted a combination of
machine learning models to filter out non-building-related
images, building images were refined with edged-vectorized
and conditional Corner Generative Adversarial Networks
(CGAN). Collected images were trained and tested on
Worldview-1 data from Berlin, Germany. Standard metrics
used for qualitative evaluation of their model include normal-
ized Median Absolute Deviation (NMAD), Mean Absolute
Error (MAE) and Root Mean Square.

Considering the deployment of a hybrid approach to
software defects prediction, Mohd and Mohd [6] applied
principal component analysis (PCA) for the appropriate fea-
ture selection and time complexity reduction in a developed
support vector machine model to predict and detect soft-
ware defects on PROMISE (a collection of three software
defect dataset from NASA). The model was implemented on
the Spyder program platform. The accuracy values recorded
were claimed to be improvements over the previous ones.

Yuzhou [19] implemented a vectorized deep-learning
approach for enhancing malware detection. A combination of
two networks, the Convolution and Re-Current Neural Net-
works, was fused to achieve better prediction result accuracy.
Effective features extracted were done through the semantic
and instruction layers of their proposed architecture. Their
proposed model named the Glove model represented each
opcode sequence as a K-dimensional real vector given in
matrix form. The results obtained showed a higher-class
accuracy of 77.38%, feature detection of 83.95% and in com-
parison, with other machine models, generated the highest
result of 88.89% to outperform others.

The collective work of people [10] concentrated on the
effects of employing biased performance to forecast and mea-
sure defective software prediction models. They documented
their findings on several software classification criteria in
their thorough analysis of more than thirty peer-reviewed
studies from 2012-2020. It was found that a popular metric
for assessing defective software in prediction experiments is
the F;-Measure.

Estimating errors in computing systems due to soft-
ware defects can help improve performance and software
assurance levels [36, 38]. A combination of classification
techniques (naive Bayes, decision tree) and Particle Swamp
Optimization technique was used in developing a software
flaw prophecy system [39]. The system was able to deter-
mine the interaction between quality software metrics and
defective modules.

The development of a Neuro-Vectorizer for end-to-
end reinforcement learning in software development by

researchers [40] proved efficient in overcoming errors caused
by compilers while generating loops and determining the
number of instruction packs. A designed framework model
which supported multiple machine learning models was
trained using a dataset containing loops and non-loop func-
tions with about 5,00,000 steps to achieve a better reward
in terms of compilation time, execution time, and generated
assembly code size. Their model’s performance was benched
marked with other models including random search, deci-
sion tree, and brute-force algorithms. However, their result
showed an average of 3% value loss than the brute-force
solution.

In a similar research conducted [17] to determine the per-
formance of microprocessors with compilers to efficiently
perform parallelism techniques on processes. Available vec-
torization policies including the Super Wood Level paral-
lelism (SLP) on integer linear programming solver were
tested for better performance comparison. A graph vector-
ized formulation was performed using Markov Decision
Process (MDP) and trained on a Gated Graph Neural Net-
work with 35,635 data functions derived from benchmarked
suites (SPEC 2006, SPEC 2017, and NAS). The goSLP vec-
torized dataset representing 11.2% was used for training and
un-vectorized samples were further grouped in the ratio of
4:1 for both training and testing of the model, respectively.
Their work showed that the auto-vectorization technique is
better adopted for the compiler to improve parallelism within
programs.

The proposition of Maria et al. [28] about the quality of
software not being judged by a single metric value but an
aggregate of software characteristics and jointly distributed
metric values led to the development of a probabilistic
approach (COPULA)which was trained and tested on a soft-
ware metric dataset. The model was evaluated and compared
with correlation, agreement and distance ranking measure-
ments. The results derived proved the model was accurate
and scalable in performance.

Seven clustering approaches including K-means, Expec-
tation Maximization (EM), and Sequential Information Bot-
tleneck (SIB) were evaluated [38] to detect software defects
on eight different NASA datasets. The results from their
comparison analysis show the varying accuracy level and
the initiated a caution on the choice of clustering technique
to be adopted in developing software defects predictors.

As different classification techniques become more use-
ful in machine learning for differentiating between buggy
software [21] a similar technique was successfully uti-
lized for multi-class classification of online products based
on machine learning models (SVM and K-NN) [41].
Exploratory data analysis was performed to identify salient
attributes and normalized them. The hashing vectorizer and
the term frequency-inverse document frequency (Tf-idf)
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vectorizers were evaluated on three test phases (recall clas-
sifications, quality and speed text). The accuracy results
derived from the evaluation of both models were recorded
as 79 and 2% for both SVM and K-NN, respectively.

3 Research methodology

Several machine learning models have been developed from
works of literature. The technique adopted in this paper began
with the transformation of the collected textual National
Aeronautics and Space Administration (NASA) program
software dataset to meaningfully explored vectors, trained
and tested for predicting and detecting software bugs.

3.1 Data description and modeling

The collected National Aeronautics and Space Administra-
tion (NASA) program dataset for software bug prediction
comprises fourteen (14) sub-datasets. Each subset contains
software parametric attributes as shown in Table 2 and is
categorized by name ranging from CM1, JM1, KCI1, KC2,
KC3, MC1, MC2, MW1, MW2, PC1, PC2, PC3, PC4, to
PC5. The data have been formatted in CSV file format and
zipped for use. From the available collection of the NASA
dataset, the PC5 was selected for use due to the availability
of the largest number of data items and a precisely complete
dataset with no missing value. The total number of instances
available in the PC5 dataset is sixteen thousand nine hun-
dred and sixty-two (16,962) with thirty-eight (38) attributes
for prediction.

3.2 Data dimension and class vector representation

A set of independent variables (v,) associated with each
instance in the PCS5 dataset is collected to form set a new set
(S) as shown in Eq. (1). Two output classes specified for the
proposed ensemble model are the defective and non-defective
classes represented as 81 and 3, respectively (Fig. 1).

Vit Vi Viz ... Visg
g — Vor Voo Vaz ... Vosg )
Visi Vo Vaz ... Vasg

Vie2o1 Vie292 Vie29s ... Vie293s

where v-independent variable attribute.

3.3 Feature selection and dimension reduction

The principal component analysis (PCA) is used to extract
the required features to generate a reduced dataset having a

strong relationship with the output from the entire vectorized
PCS5 dataset to enhance better prediction.

@ Springer

Table 2 Parametric software bugs attributes and numerical range

S/n Parametric input Description Data range
1 Halstead level Mental effort for 0-2
software design
2 Loc blank Blank lines of code 0-704
that are available in
a program
3 Node count The counts of data 2-1078
structures applied at
the software
development phase
4 Cyclomatic The number of 1-366
complexity decision counts in
software
5 Multiple condition The number of count 0-578
count conditions
6 Parameter count The number of 1-500
variables for passing
information
between functions
7 Operator numbers The number of 0-10,862
operators in the
software
8 Number of Count of instructions 0-5169
operands specifying data to
be operated on
9 Comment percent: Percentage number of ~ 0-95

annotations in the
source code

10 LoC code and Available lines of 0-180
comment code and comments
in a program
11 Maintenance The degree of 0-1
severity software error
correction

The number of codes 0-69
available to both
driver and navigator
at the same time

12 Call pairs

13 Essential 1-290

complexity

The availability of
non-reducible
codes, entry points
and termination
points

Given the vectorized PC5 dataset with a 38-dimensions
vectorized variables (v) and mathematically represented in
Eq. (1), a lower-dimensional representation of S called the
reduced set [R] is derived using Eq. (2). A total of five
attributes derived from the vectorized dataset are used for
the prediction of software bugs.

R={rl, r2, r3, ., rk}, withk < n 2)
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Fig. 1 Instances classification of the NASA dataset

Table 3 PCA selected features for software bugs prediction

S/n Features Ranking value
1 EDGE_COUNT 0.218
2 NODE_COUNT 0.217
3 LOC_TOTAL 0.212
4 NUMBER_OF_LINES 0.210
5 LOC_EXECUTABLE 0.210

where R captures the data attributes (v) in the PC5 dataset
according to the variance maximization criterion. Elements
in R are the hidden components, k is the number of features
and 7 is the number of instances. In this, the PCA maps data
from the space of v-variables to a new space of uncorrelated
k- variables over the dataset. With the dimension reduction
algorithm adopted the best five features were selected. The
features and their corresponding rank values are tabulated in
Table 3.

3.4 Ensembled software bug predictor flow diagram
description

The research flow diagram in Fig. 2 depicts the implementa-
tion stages of the ensembled (Logistic regression and Extra
tree) classifier model for software bug prediction.

The initial process involves collecting the PC5 software
metric dataset. The dataset was vectorized into an array
of M x N matrix where M denotes the initial thirty-eight
(38) software variables and N represents a total of 16,962
instances. The vectorized dataset is subjected to PCA for
attributes reduction. Thus, yielding five (5) significant soft-
ware attributes of the pre-processed dataset that was grouped
in the ratio 3:2 for the training and testing of the ensemble

PCS5 Dataset

Vectorized Dataset

i

PCA Feature Reduction

A

[

]

Training data

Test data

Logistic
Regression
Extra-Tree classifier

Features

Mapping

Class Prediction

\_

4

l Accuracy

Measurement l /

Fig.2 Optimized Ensemble Software Bugs Prediction flow diagram
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Fig.3 Software bug attributes visualized in WEKA

software bug predictor model. The ensemble model classi-
fier is developed and trained with the sixty percent vectorized
data until a well-optimized value of the proposed model is
obtained.

3.5 Model’s ensembled classifiers training
and testing algorithms

The operation of the ensembled software bugs prediction
model is dependent on some algorithms. These algorithms
are implemented at successive intervals for the effective oper-
ation and accurate prediction of the model. Each instance of
the dataset is vectorized and converted to an array of m x n
matrix. The PCA algorithm reduced the vectorized array to
a 5-dimensional feature array. The ensemble algorithm com-
bining logistic regression and Extra Trees classifiers were
further used for the training, testing, prediction and detec-
tion of software bugs.

The Logistic regression classifier models the probabili-
ties for the software bugs classification problem with two
possible outcomes. Its application is to determine the class
(defective, non-defective) of each software based on the
available software prediction metrics. The equation repre-
senting the logistic regression model is given as:

1

1 4 exp(—0) )

logistic () =
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where () = the probability of a successful expectation.

In addition, the randomized trees classifier (Extra Tree
classifier) combines the result of multiple decision trees
collated as a forest for the software defects classification
problem. The software bugs prediction is performed by com-
puting the average from the Logistic regression classifier and
the majority count from decision trees. Training is done by
each tree with the best-selected attributes and split randomly
based on predetermined functions.

4 Implementation and results

All algorithms are implemented on an Intel Core™ i5-5020U
CPU @ 2.20GHZ workstation with 8 Gb RAM, 1 TB of hard
disk drive and installed WEKA, MATLAB and PyCharm
software. The implementation stages are:

Loading and fitting the dataset. The NASA dataset is
loaded and attributes are perfectly fitted in equivalent rows
and columns (Fig. 3).

Exploratory data analysis: Hidden information derived
from the NASA data is analyzed using a correlation table.
Figure 4 reflects the scatter plot of significant attributes and
highly ranked attributes based on their representative value
to the dataset.
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Fig.6 MAE and RMSE result plot from different machine learning
models

Training, testing and model evaluation: Training is per-
formed on sixty percent of the well-prepared standardized
dataset using the ensemble model’s algorithm at repeated
intervals. The holdout data corresponding to forty percent
is also tested to determine the model’s accuracy, precision,
recall and F-measure scores. The mathematical equations for
these evaluation metrics are given in Eqs. (4—7), respectively.

Accuracy = ((TP +TN) /(TP + TN + FP 4 FN)) * 100

)
Precision (P) = (TP/ (TP + FP)) % 100 )
Recall (R) = (TP/ (TP + FN)) % 100 (©6)

F — Measure (F —Meas.) = 2 x[(PxR) /(P + R)]
@)

where True Positive (TP): Bugs detected by the system,
False Negative (FN): Bugs not detected by the system, False
Positive (FP): Codes detected as bugs by the system, True
Negative (TN): Codes not detected as bugs by the system
(Fig. 5).

4.1 Software predictions, result analysis
and evaluation

Additionally, automatically generated classification metrics
from the two software platforms (WEKA and MATLAB)
deployed for the model’s simulation include Mean Absolute
Error (MAE), Root-Mean-Square Error (RMSE), training,
validation and testing durations as shown in Figs. 6, 5,
Tables 4 and 5.

@ Springer
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Fig.7 Memory usage (bytes) for vectorized and vectorized datasets at
testing phase

5 Discussion and conclusion

This study has effectively adopted a non-widely used opti-
mized ensemble learning approach logistic regression and
extra tree classifier to classify and predict software bugs on
the National Aeronautics and Space Administration (NASA)
Metrics Data Program defect dataset with implementation on
two different machine learning platforms. The main aim of
this approach is to compare the effectiveness of the developed
ensemble model on both platforms, discover trade-offs and
make a better choice for software selection during software
bug prediction modeling.

In addition, the comparative analysis of the results
recorded in Tables 4 and 5 showed that the MATLAB-
generated values were higher than the values obtained
from the WEKA platforms with differences ranging from
0.01-3.7. The highest value (3.7) was obtained in the F-
measure score of the tested Logistic regression model.
Observable records in Fig. 5 also showed that the highest
duration of time (459 s) was utilized at the training phase of
the ensemble model on the MATLAB platform. This implied
that the training of the model with the software bugs dataset
was faster on the WEKA platform than on the MATLAB.

The ensemble model was trained with scalar and vector-
ized datasets for memory space utilization comparison at both
the training and testing phases as shown in Fig. 7. At the test-
ing phase, the actual memory usage for the prediction with
the vectorized dataset is lesser than the un-vectorized data.
It was noted that there exists a trade-off between memory
space utilization and time duration with the use of scalar and
vectorized data for software bug predictions.

Furthermore, Fig. 3 displays some software bug attributes
as visualized on the WEKA platform. Two classes (Y = Yes
and N = No) were denoted as the output for the classifica-
tion of the software bug prediction model. If the prediction
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Table 4 WEKA classification

metric of machine learning S/n Model True positive rate Recall F-measure AUC
models
1 Decision tree 96.8 96.8 98.4 0.91
2 Logistic regression 97.0 97.0 96.0 0.95
3 Support vector machine 96.8 96.8 98.4 0.94
4 Naive Bayes 96.8 96.8 96.6 0.96
5 Random subspace 97.1 97.1 98.4 0.94
6 Neural network 96.9 96.1 96.6 0.87
7 Optimized ensemble (Logistic 98.9 97.8 97.5 0.96
Regression and Extra tree)
Table 5 MATLAB classification
metric of machine learning S/n Model True positive rate Recall F-measure AUC
models
1 Decision tree 96.3 97.8 98.2 0.89
2 Logistic regression 97.0 97.1 99.7 0.96
3 Support vector machine 97.0 97.1 98.4 0.96
4 Naive Bayes 96.6 98.1 98.4 0.97
5 Random subspace 97.1 97.2 99.5 0.96
6 Neural network 97.1 97.2 99.4 0.92
7 Optimized ensemble (Logistic 98.5 97.5 99.7 0.98
Regression and Extra tree)
Fig. 8 Evaluation results P
compared to the optimized 120 A
ensemble model
100 -
8!
85.12
80.9
80 -
60 -
20 -
20 v
0 < V . L rs v .
Decision Tree Logistic SupportVector Naive Bayes  RandomSub- Neural Optimized
Regression Machine Space Network Ensemble
M RAE B RRSE (Logistic
Regression and
Extra-tree)
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= vectorized = unvectorized

Model Evaluation Metrics

Fig. 9 Time analysis of ensembled optimized with scalar and vectorized
dataset

outcome is a “‘yes” then the tested software is categorized as
defective, else it is categorized as non- defective.

Although users may exhibit a few doubts in the choice
of software and selection of the best model, there exists a
perfect fit (the developed optimized ensemble) model that
balances the limitations experienced in the individual model.
The results generated by the optimized ensembled model in
comparison with other related machine learning models as
shown in Figs. 6, 7 and 8 proved the model’s efficiency and
accuracy (Fig. 9).

Conclusively, the optimized ensemble model is a very
simple implementable model with a high bug prediction
accuracy, efficient memory utilization and minimum execu-
tion time.
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