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Abstract
Hand gestures are useful tools for many applications in the human-computer interaction community. Here, the objective is to
track the movement of the hand irrespective of the shape, size and color of the hand. And, for this, a motion template guided
by optical flow (OFMT) is proposed. OFMT is a compact representation of the motion information of a gesture encoded into
a single image. Recently, deep networks have shown impressive improvements as compared to conventional hand-crafted
feature-based techniques. Moreover, it is seen that the use of different streams with informative input data helps to increase
the recognition performance. This work basically proposes a two-stream fusion model for hand gesture recognition. The
two-stream network consists of two layers—a 3D convolutional neural network (C3D) that takes gesture videos as input and a
2D-CNN that takes OFMT images as input. C3D has shown its efficiency in capturing spatiotemporal information of a video,
whereas OFMT helps to eliminate irrelevant gestures providing additional motion information. Though each stream can work
independently, they are combined with a fusion scheme to boost the recognition results. We have shown the efficiency of the
proposed two-stream network on two databases.

Keywords Hand gesture recognition · Two-stream fusion model · Optical flow-guided motion template (OFMT) · 2D-CNN ·
3D-CNN

1 Introduction

In the present time, a critical exertion has been given to
body/body-part movement analysis in real life. Also, ges-
ture recognition is a significant field of research in computer
vision with numerous applications. Since gestures constitute
a common and natural means for non-verbal communica-
tion, hand gesture recognition from visual images constitutes
a vital role of this research [1]. The utilizations of hand
gesture recognition systems cover different spaces like sign
language, medical assistance, virtual reality-augmented real-
ity (VR-AR) [2]. Moreover, as the world adapts to the new
changes after the COVID-19 pandemic, touch-less technol-
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ogy can be the ‘new normal’ in such situations to minimize
the risk of a global health crisis. For instance, in airports,
if cameras and hardware are already embedded, passengers
can take benefit from hand tracking and gesture recognition
to control menus without physically touching a platform.
Though there are some other touch-less technologies such
as voice recognition, language and pronunciation become
a barrier in many instances. Moreover, people are focusing
on using smartphones to minimize contact when it comes
to aspects such as check-in. However, with smartphones,
passengers still often have to touch a screen, which gives
a chance of risk. Additionally, at airport border control, it
is often forbidden to use a smartphone. So, there are fur-
ther limits to these existing features. In addition, on roads,
drivers can control auto-navigation through simple in-air
movements. In such cases, hand-tracking and gesture recog-
nition technology can provide a hardware-agnostic solution
to these problems. Gestures can be made universal and
users can apply user-friendly gestures in place of multi-step
interactions for communication. With a worldwide focus on
reducing the risk of spreading bacteria and viruses, this sort
of solution would undoubtedly be welcomed by all.
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For achieving good performance, the hand gesture recog-
nition system should be independent of different textures like
shape, size and color of the hand for tracking purpose. Out of
various methods, the estimation of the motion field is invari-
ant to shape and appearance (at least in theory) and can be
used directly to describe human gestures/actions [3]. Optical
flow and motion-templates are the two main motion-based
representation methods used for this purpose [4]. Generally,
both these methods are used separately for motion estima-
tion since both have their own advantages. Motion templates
like motion-energy-image (MEI) and motion-history-image
(MHI) [5] give a global aspect of motion without the
requirement of segmentation of the moving object. It is com-
putationally very efficient making it suitable for real-time
applications [6]. In [7], authors applied an approach com-
bining MHI with statistical measures and frequency domain
transformation on depth images for one-shot-learning hand
gesture recognition. Due to the availability of the depth infor-
mation, the background-subtracted silhouette images were
obtained using a simple mask threshold, whereas in [8],
authors used pseudo-color-based MHI images as input to
convolutional networks. On the other hand, optical flow is
obtained from the movement of the target object in a video
scene. Though it is computationally a little expensive, still
it has the advantage that it can produce good results even in
the presence of a bit of camera movement. In [9], the optical
flowwas used to detect the direction ofmotion alongwith the
RANSAC algorithm which in turn helped to further localize
the motion points. There are only a few examples like [10]
where the optical flow is combined with themotion template.
In [10], the authors claimed that the combined technique can
give a better discrimination power to describe local motions
in a global time-space representation. In this work, we have
also proposed a motion template driven by optical flow. Our
method is different from [10] in reducing background noises
through an update rule. In our work also, better discrimi-
nation can be seen for optical flow-guided motion template
(OFMT) over conventionalmotion templates. This combined
method can accurately detect the location and thus provide
the contour of themoving object just like a tracker. The effec-
tiveness of thismethod is quite impressive for long and varied
video sequences.

On the other hand, feature extraction is one of the most
important steps for proper recognition of the action/gesture.
Most hand-crafted features usually demand the user to have
some prior knowledge and some pre-processing steps. Gen-
erally, the feature extraction process needs to segment the
body/body-part from the background in the video sequences.
For a complex and changing background environment, seg-
mentation may be very difficult due to the variation in shape
and appearance of body/body-part depending on many fac-
tors like clothing, illumination variation, image resolution,
etc. In [11,12], the authors used the skin segmentationmethod

to segment the hand portion from the background. But this
method had issues when there were some skin-color like
objects present in the background. So, one major objective
in this work is to skip the segmentation part or to adopt
some other method for this purpose. This has motivated the
development of learning robust and effective representations
directly from raw data and deep learning provides a plausible
way of automatically learning multiple level features. Indif-
ference to hand-crafted features, there is a growing trend
toward feature representations learned by deep neural net-
works [8,11,13–15]. But, in deep learning techniques, the
main requirement is lots of database samples. Several authors
have emphasized the importance of usingmany diverse train-
ing examples for CNN’s [16]. For datasets with limited
diversity, they have proposed data augmentation strategies to
prevent CNN from overfitting. In order to avoid overfitting,
Molchanov et al. [14] introduced several space-time video
augmentation techniques and applied the whole hand ges-
ture video sequences to a 3D-CNN that can extract features
from both spatial and temporal dimensions by performing
3D convolutions [17].

Ciregan et al. [18] has shown that the use of multi-column
deep CNNs with multiple parallel networks improves recog-
nition rates of single networks by 30–80% for various image
classification tasks. Similarly, for large-scale video classifi-
cation, Karpathy et al. [19] have shown the best results on
combining CNNs trained with two separate streams of the
original and spatially cropped video frames. Simonyan and
Zisserman [20] proposed separate CNNs for the spatial and
temporal streams that are late-fused and that explicitly use
optical flow in the context of action recognition. To recog-
nize sign language gestures, Neverova et al. [21] employed
CNNs to combine color and depth data fromhand regions and
upper-body skeletons. A two-stream model with two C3D
layers that takes RGB and optical flow computed from the
RGB stream as inputs was used by [13] for action recogni-
tion. [22] used a hidden two-stream CNNmodel which takes
only raw video frames as input and directly predicts action
classes without explicitly computing optical flow. Here, the
network predicts the motion information from consecutive
frames through a temporal stream CNN that makes the net-
work 10x faster [22], without computing optical flow which
is time-consuming. But still, two hidden layers in one stream
are computationally not so efficient. Moreover, the state-of-
the-art performance is achieved through traditional optical
flow precomputed for the convolution layer in a two-stream
network for action and hand gesture recognition [8,13,20].
But this approach of precomputation of optical flow motion
vectors through CNN is computationally expensive and stor-
age inefficient [22].

So in this paper, our main intention is to propose a
resource-efficient network in terms of data and processing
power as much as possible without compromising much in

123



Two-stream fusion model using 3D-CNN and 2D-CNN via video-frames and optical flowmotion…

Fig. 1 Proposed framework for
hand gesture recognition

its performance. The complete framework is shown in Fig.
1. Here, we propose a deep learning-based two-stream net-
work that is zoomed in Fig. 2. The first layer/stream is a
3D-CNN (C3D) network in the two-stream architecture that
captures the spatial as well as temporal information from
gesture videos. The second layer is a 2D-CNN model where
the input is an optical flow-guided motion template (OFMT)
image. OFMT is a hybrid representation, proposed in this
work that is obtained by combining optical flow with the
motion template to get the advantage of both the methods
for temporal evaluation analysis. OFMT is used to provide
additional motion pattern information which in turn helps to
eliminate irrelevant gestures. The output score of both the
layers is fused using an ensemble method to boost the final
output. The main contributions of our proposed model are as
follows:

1. Ground truth flow is required in supervised training for
optical flow estimation. But, generally, the ground truth
flow is not available except for limited synthetic data [22].
Moreover, computation of optical flow and then learning
the mapping from optical flow to action labels are time-

consuming as well as storage demanding. So, we have
proposed optical flow-guided motion template (OFMT)
images as input to the 2D-CNN stream which provides
additional temporal information in a resource constraint
environment.

2. Our method is efficient in terms of computation and
storage point of view as we do not need to store the
precomputed optical flow. Moreover, the requirement of
segmenting the hand portion from the body is not needed,
and also, the size, shape, and color of the hand have no
effect on the OFMT images.

3. A late-fusion scheme is proposed to leverage the infor-
mation containing in both RGB gesture videos and
motion template modalities. The advantage of the pro-
posed method is that different deep models can provide
complementary motion information. The first layer can
capture the spatiotemporal information through the 3D
deep network, while the motion-patterns are obtained
using 2D-CNN through OFMT images.

Fig. 2 Proposed two-stream network for hand gesture recognition (K = kernel size, S = stride size, P = pooling size, max-pooling is used here)
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2 The ProposedMethodology

As shown in Fig. 2, the proposed gesture model is composed
of two main streams/layers—the first layer is a 3D-CNN
(C3D) network in a two-stream architecture to capture spa-
tial as well as temporal information of a gesture. The second
layer is a 2D-CNN network, where the input is an optical
flow-guided motion template (OFMT) image. OFMT is a
hybrid, compact and robust motion representation, proposed
in this work. The OFMT template is obtained by combining
optical flow information with the motion template. In this
way, we get the advantage of both the methods for temporal
evaluation analysis. TheOFMTis used to providemotionpat-
tern information,which in turn eliminates irrelevant gestures.
The proposed OFMT can nominally reduce computational
complexity and memory requirement. The output of a CNN
classifier is a class-membership probability for each of the
gestures under consideration, and thus, the prediction results
of 3D-CNN and 2D-CNN networks are fused through a sim-
ple probability-based ensemble method at the decision level
to boost the final output by taking advantage of both themod-
els. Here, we will first talk about proposed OFMT images
then about the two-stream network.

2.1 Proposed Optical Flow-guidedMotion Templates
(OFMT):

The input to the 2D-CNN is a compact motion template. For
this, a hybrid representation is proposed for encoding tempo-
ral information of a gesture by combining optical flowmotion
informationwithmotion templates. This representation takes
advantage of both optical flow and motion-energy-image
(MEI) and motion-history-image (MHI) templates.

MEI represents where motion has occurred in an image
sequence; whereas MHI represents how an object is moving
[6]. MEI describes the motion-shape and spatial distribution
of motion, andMHI is the function of the intensity of motion
of each pixel at that location. MEI-MHI can be implemented
by the following algorithm.
MEI-MHI Algorithm [5]:

• Image sequences

I (x, y, t) = (I1, I2, ..., In). (1)

• Image binarization

B(x, y, t) = |I (x, y, t) − I (x, y, t − 1)|. (2)

where B(x, y, t) =
{
1 if B(x, y, t) > ξ

0 otherwise

• MEI

Eτ (x, y, t) =
⋃τ−1

i=0
B(x, y, t − i). (3)

• MHI

Hτ (x, y, t) =
{

τ if B(x, y, t) = 1
max(0, Hτ (x, y, t − 1) − δ otherwise

where τ decides the temporal extent of the motion (in terms
of frames) and δ is the decay parameter (Figs. 3, 4).

Optical flow indicates the change in image velocity of a
pointmoving in the scene, also called amotionfield.Here, the
goal is to estimate the motion field (velocity vector) which
can be computed from horizontal and vertical flow fields.
Here, optical flow is used to track the movement of the hand
irrespective of shape, size and color. Onemajor problemwith
optical flow estimation is that it is very sensitive to noise and
outlier due to background motion. And, to get rid of this
problem of noise and outlier, Gaussian smoothing operation
is done to image frame k(x, y, t), where (x, y) denotes the
location of the pixel and t denotes time. Smoothing is done
by convolving each frame with a Gaussian kernel Gσ (x, y)
of standard deviation σ :

I (x, y, t) = (Gσ ∗ k)(x, y, t), (4)

The low-pass effect of Gaussian convolution removes
noise and other destabilizing high-frequency outliers. In a
subsequent procedure, σ also called the ‘noise sale,’ can
be chosen of different values. While some moderate pre-
smoothing improves the results, great care should be taken
not to apply too much pre-smoothing, since this would
severely destroy important image structure.

Another problem is tracking points that are moving long
distances with a higher speed of motion. This can be miti-
gated by a course-to-fine optical flow estimation by forming
an image pyramid. All these steps are shown in Fig. 5.

For tracking the motion of the hand, Lukas-Kanade Algo-
rithm (LKA) [23] is applied by extracting the desired features
of the gesture. For that purpose, a mouse call back function
is adopted to select the desired feature on the first frame
that will be tracked successively in the next frames of the
video. The optical flow motion vectors track these features
during the trajectory of the dynamic gesture. These vectors
are tracked on a per-frame basis. By joining these flow vec-
tors on the mask, the trajectory of the gesture is recovered
from the continuous motion of the hand.
Optical Flow Tracking Algorithm:

• The whole video is converted into gray images.
• A customized black window mask is created with the
samedimensions as that of the original frameof the video.
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Fig. 3 MEI images: a–j representing gestures 0–9

Fig. 4 MHI images: a–j representing gestures 0–9

• The first frame of the video is read and it is called
f rameold .

• The initial points are selected on the f rameold using a
mouse call back function (mouse cursor). These points
are named pointsold .

• Initialize a new list to store optical flow vectors.
• Initialize Lucas-Kanade parameterswith thewindow size
as of 15 × 15 and pyramid level as 4. Large motion is
ignored by the pyramidal model.

• while for the next number of frames:
f ramenew = Next frame of the video converted into a
gray scale image.
pointsnew = Generated by optical flow with f rameold ,
f ramenew, pointsold and LK parameters

• copy f ramenew into f rameold .
copy pointsnew into pointsold .
Append pointsnew to list.

• if length(list) ≥ 2:
Draw line with the last two points in the list on the mask.

• Thus, the optical flow vector between two frames is
obtained.

Now, here, we present a motion template driven by the
optical flow method. This combined method can accurately
detect the location of the hand and also provide the contour
of the moving hand just like an object tracker. MEI and MHI
are generated using a binarized image, obtained from frame
subtraction, using a threshold ξ as shown in Eq. (2). In the
motion template representation, all the foreground ormoving
pixels (i.e., B(x, y, t) = 1) are considered for creating the
templates irrespective of the duration and speed of the indi-
vidual moving pixel.Motion templates basically describe the
global motion of a scene and cannot fully describe the local
motions of the target object, whereas optical flow is gener-
ally used for foreground segmentation or to extract moving
objects. It can better describe the local motions of the target
object. In our method, optical flow is judiciously combined
with the motion templates to exploit the advantages of both
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Fig. 5 Steps to obtain optical flow from input video frames

methods. In the proposed method, the optical flow sequence
O(x, y, t) representing the moving regions of the previously
smoothed image is accumulated and fused together to form
an optical flow-guided motion template as per the following
equation:

Eτ (x, y, t) =
⋃τ

i=0
O(x, y, t − i − 1) + λ.O(x, y, t) (5)

where τ indicates the duration of the gesture, and λ is an
update parameter. If the optical flow length O(x, y, t) is
small compared to a pre-defined threshold εs , then it labels
the pixel (x, y) as a background point, and hence, λ value is
taken as zero to reduce the effect of background noises. If the
optical flow length value is greater than the threshold, then it
labels a pixel as a foreground moving point, then λ is empir-
ically set to 5 to consider foreground pixels. In this way, the
background noise is reduced in our proposed method. The
saved moving points from the video frames generate a sin-
gle image providing the trajectory of the gesture as shown
in Fig. 6. These steps are performed for all the hand gesture
videos and the correspondingOFMT images are pre-obtained
as shown in Fig. 7. The entire experiment is done in python
environment, with an OpenCV tool and 30 frames/s is the
frame rate used for generating the OFMT images that are fed
to the 2D-CNN network. Another advantage obtained here is
that the requirement of segmenting the hand portion from the
body is not needed and also, the size, shape, and color of the
hand have no effect on theOFMT images. Through the naked
eye, it can be easily noticed that our proposed OFMT images
give much better results than the conventional motion tem-
plates. Still, for quantitative analysis, we calculate entropy
and structural similarity indexmeasurement (SSIM) for each
set of images to get a clear idea.

2.1.1 Entropy

The entropy of a discrete random variable X with possible
values {x0, x1, x2, ..., xN } can be defined as [24]

H = −
∑N

k=0
pklog2(pk) (6)

where H indicates entropy and pk is the probability associ-
ated with input k.

For a grayscale image, the intensity value of each pixel
varies from 0 to 255, and the possibility of a particular value
occurring is random and varies with the pixel intensity values
of the images. Considering an image with dimension M ×
N having a total of W = M × N pixels, the probability
of a particular intensity value xk occurring in the image is
p(xk) = nk/Wk , where nk is the number of occurrences of
xk among theW pixels. In this case, considering

∑
k nk = M ,

the entropy of the image can be expressed as

H = − 1

W

255∑
k=0

nklog2(nk) (7)

Table 1 shows that most OFMT images have low entropy
values compared to MHI or MEI images. This is due to the
fact that, from the image compression algorithm viewpoint,
entropy tries to discover predictability and each aspect of
predictability requires some storage to represent. The more
storage that an image requires to represent its predictability,
the higher is the entropy the image posses. An image that is
all the same is entirely predictable and has low entropy. An
image that changes from pixel to pixel might at first thought
to be unpredictable, but the change might follow a pattern
too. From this point, we can say that if our motion template
can give some idea about its gesture i.e., predictable in nature,
it should contain low entropy value.

2.1.2 Structural Similarity Index Measurement (SSIM)

There are many algorithms developed to provide an index
for image quality analysis. SSIM is a reference image qual-
ity indexing algorithm which is why it requires a reference
image to estimate the quality of the test image. The param-
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Fig. 6 Steps to obtain OFMT images from input video frames

Fig. 7 Optical flow-guided motion template (OFMT) images applied on our in-house dataset: a–j for gesture 0–9

eters that are considered for comparison are the luminance,
contrast and structure of the images [25]. These three factors
are estimated from the images and a relative score is being
provided to the test image. The factors mentioned are some
of the important factors used by the human eye to provide a
subjective analysis of the images. These physical factors are
simulated with the use of the basic statistical parameters like
mean, variance and covariance.

The SSIM indexing algorithm for image quality assess-
ment uses a sliding window approach. The window moves
pixel-by-pixel across the whole image space. At each step,
the SSIM index is calculated within the local window. If
one of the images being compared is considered to have a
perfect quality, then the resulting SSIM index map can be
viewed as the quality map of the other (distorted) image.
The distribution of the window can be rectangular or Gaus-
sian distribution. The Gaussian distribution is preferred to
avoid the blocking effect which is predominant in a rectan-
gular window. Here, we consider Gaussian distribution with
parameters μ = 0 and σ = 1.5. Finally, a mean SSIM index
(mSSIM) of the quality-map is used to evaluate the overall
image quality. Here, we have compared normal motion tem-
plates with our OFMT images (Refer Table 1). Generally, the

zero value of SSIM indicates the worst case and one the best-
case scenario. Visually, an SSIM index greater than 0.94 can
be considered a good image in comparison with the original
image.

2.2 Spatiotemporal feature learning through a 3D
convolutional (C3D) model

The original C3D [17] was designed for RGB videos. The
number of parameters of the networks depends on the reso-
lution of input frames. The original C3D was trained on the
large-scale dataset Sport1M [19], which consists of 1.1M
videos downloaded from YouTube consisting of 487 sports
classes. 2D-CNN is extended to a 3D-CNN by incorporating
the temporal dimension of a video sequence. In 2D-CNNs,
the dimension of each feature map is c × h × w, where c
represents the number of filters in the convolutional (conv)
layer, h and w represent the height and width of the fea-
ture map. In 3D-CNNs, the dimension of each feature map
is c × l × h × w, where additional parameter l represents
the number of frames. This network extracts the features
which are compact and generic while being discriminative.
As we worked on two smaller databases, a slightly different
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Table 1 Image entropy and
mSSIM values for different
motion templates

→ 0 1 2 3 4 5 6 7 8 9

MEI 1.0128 1.0358 1.0217 1.0119 1.0215 1.0090 1.0300 1.0237 0.9801 0.9227

MHI 2.4577 1.9533 2.5930 2.6417 2.4296 2.4893 2.4033 2.3524 2.6540 2.7437

OF-MT 0.9258 0.6670 1.0636 0.9568 1.0130 0.9902 1.0339 0.9235 1.0811 1.0351

mSSIM 0.8348 0.8509 0.830 0.8532 0.8821 0.8810 0.8890 0.8627 0.9102 0.8642

architecture with five conv layers is employed which has a
smaller number of parameters compared to the original C3D
[17] with eight conv layers. The proposed network has five
space-time conv layers with 64, 128, 256, 256, 256 kernels.
Each conv layer is followed by a rectified linear unit (ReLU)
and a space-time max-pooling layer. All 3D convolution ker-
nels are of size 3 × 3 × 3, that gives the best performance
[17] with stride 1 × 1 × 1. Max pooling kernels are of size
2× 2× 2 except for the first, where it is 2× 2× 1 and stride
is 2 × 2 × 1. The conv layers are followed by two dense
layers with 2048 and 1024 neurons and ReLU as the activa-
tion function. To avoid over-fitting while learning, there is
a dropout in each dense layers. The parameter of dropout is
set to 0.4, which means the layer randomly excludes 40% of
neurons. The final dense layer of the classifier has 10 neurons
giving us the respective class labels where softmax function
is used for activation.

2.3 2Dmotion template CNNmodel

As illustrated in Fig. 2, the proposed 2D motion template
CNN model consists of two major parts—motion tem-
plates and a 2D-CNN model. The generation of the motion
templates is explained in the next section. The 2D-CNN
architecture used in our method is a simple structure based
on LeNet [26] (shown in Fig. 2). The network has two conv
layers with 32 and 64 kernels followed by two fully con-
nected layers of size 1024 and 10. The final dense layer of
the classifier has 10 neurons giving us the respective class
labels. The size of the kernels is 3 × 3 and 5 × 5, respec-
tively, for the two conv layers. Each conv layer is followed
by ReLU and 2 × 2 box non-overlapping max-pooling lay-
ers with stride 2 in both horizontal and vertical directions. A
dropout of 40% is used in the dense layer with 1024 neurons
to avoid over-fitting.

2.4 Fusion Rules

In [20], the authors used two decision level fusionmethods of
averaging and SVM fusion, on two identical C3D networks.
In the averaging method, two softmax prediction scores are
averaged to represent the output class scores. In the SVM
fusion method, the features from fully-connected layers of
both the streams are stacked and, after L2 normalization, are

input to an SVMclassifier, whereas in our two-streammodel,
we have used two non-identical networks applied on inputs
with different dimensions. Hence, decision level fusion is
preferred here in place of feature-level fusion due to com-
putational overhead. But, in place of just simple averaging
fusion, we have adopted an empirical formula given by Eq.
(5) for output prediction score fusion.

pi = γ.p3Di + (1 − γ ).p2Di where i = 1, 2, ..., N (8)

Here, p3Di and p2Di are the prediction class scores of 3D-
CNN and 2D-CNN, respectively, N is the number of gesture
classes, and γ is an empirical parameter. For fusion at the
decision level, experiment with different values of γ such as
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 is carried out. We inves-
tigated that γ as 0.6 achieves the best performance. This is
quite justified since the score given by 3D-CNN has a greater
impact than the score given by 2D-CNN. The final prediction
class score S is the one whose value is maximum and it is
calculated as given below:

S = argmax
1≤i≤N

pi where i = 1, 2, ..., N (9)

3 Experimentation and Results

Toevaluate the performance of the proposedmethod,wehave
carried out experiments on two databases: 1) Palm’s Graffiti
Digits [27] and 2) Our in-house database [11]. The following
sections elaborate on all the details during the implementa-
tion and evaluation processes.

3.1 Databases

In ourwork, two datasets are employed, one is Palm’sGraffiti
Digits [27] and another is the self-collected in-house dataset
[11]. The details are described below.

1. Palm’s Graffiti Digits: ThePalm’sGraffiti digits database
[27] contains standard RGB 2D videos of ten subjects
writing ”in the air” the ten Hindu-Western Arabic numer-
als, 0-9, in a continuous streaming mode with video size
320×240, 30 frames/s as shown in Fig. 8. This database
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Fig. 8 Palm’s Graffiti digits
[27]. The dot point indicates the
starting position

Fig. 9 Different scenes of Palm’s Graffiti digits dataset [27]: a Green glove in GreenDigits, b Bare hand in EasyDigits, c With moving persons in
background

Fig. 10 Training and testing loss as a function of the number of epochs for 3D-CNN

Fig. 11 Training and testing accuracy as a function of the number of epochs for 3D-CNN
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is split into three subsets, namely ”GreenDigits,” ”Easy-
Digits,” and ”HardDigits” sets. Each one of the first two
datasets contains 300 gestures (ten subjects × ten dig-
its × three examples/digit/subject). In both datasets, the
subjects used tightly folded palms while performing the
gestures. GreenDigits dataset after data augmentation is
used for the training phase and EasyDigits and HardDig-
its sets are used for the testing phase. In the GreenDigits
set, subjects wear a green glove, while short-sleeves
in EasyDigits. In this dataset, the subjects used tightly
folded palms while performing the gestures. GreenDig-
its dataset after data augmentation is used for the training
phase and EasyDigits and HardDigits sets are used for
the testing phase. In the GreenDigits set, subjects wear
a green glove, while short-sleeves in EasyDigits. Hard-
Digits is intended for the evaluation of hand detection
methods under very challenging and uncontrolled sce-
narios like with movement of people in the background
(shown in Fig. 9). It has 140 videos (seven subjects ×
ten digits × two examples/digit/subject). The proposed
OFMT images are obtained for these gesture videos and
are fed into the 2D-CNN network for classification pur-
poses in our experiments. While obtaining the OFMT
images of the gestures,whether the subject iswearing any
glove or using a bare hand, there is no effect in detecting
and tracking the hand. This indicates the robustness of
our method.

2. In-house dataset: One limited in-house dataset [11] has
been created with the help of three subjects. Here, also,
the gestures are tenHindu-WesternArabic numerals, 0–9,
but in an isolated mode (320×240, 30 frames/s). Dataset
consists of 90 videos with 10 classes (three subjects ×
ten digits× three examples/digit/subject). For simplicity,
a very simple black background is used with full-sleeve
attire worn by the subjects and they used open palmwhile
performing the gestures.

3.2 Data Augmentation

Data augmentation plays a vital role in the deep learning
approach due to the huge amount of data required in these
techniques. It generates more data from a small database
using some simple methods like affine transformations.With
this, we can increase the diversity of data available for the
training model, without actually collecting new data. The
generation of new data provides robustness as well as scale,
translation and rotation invariance to the system. In thiswork,
data augmentation methods are used on the GreenDigits
dataset. Initially, 300 videos from the GreenDigits dataset
are preprocessed into 300 OFMT images. These images are
then increased to 1500 images after data augmentation. For
data augmentation, several transforms are used like rotation

up to 20 degrees, width shift (up to 0.2 range), height shift
(up to 0.2 range), sheer (up to 0.2 range), zoom mode (up
to 0.2), fill mode on nearest data, etc. Data augmentation
techniques like horizontal and vertical flipping are not used
on the images as it may lead to confusion between a few
pairs of digits like (2, 5), (4, 7), (6, 9), etc. EasyDigits and
HardDigits sets are used for the testing phase on which data
augmentation is not implemented.

3.3 Experimental setup

This section gives an idea of the experimental setup, work
performed and the analysis done on the databases to obtain
the results.Also, it throws light on the importance of data aug-
mentation process for small databases. The experimentation
part is done taking the help of the Google Colab GPU, espe-
cially, for the training phase. Other parts of the experiment
are performed in a workstation with Intel® CoreTMi5-4570
CPU at 3.2 GHz and 8GB in RAM without any GPU usage.

For training the 3D-CNN model, the segmented video
clips of isolated gestures fromGreenDigits sets are used from
the Graffiti dataset. Here, stochastic gradient descent (SGD)
algorithm is used with the cross-entropy loss function given
by Eq. (10).

Loss(y, ŷ) = −
M∑
j=1

N∑
i=1

yi j log ŷi j (10)

whereM is the number of samples, N is the number of classes
and ŷ is the predicted value for a true value y. The batch size
is set to 10 videos and the model is trained with 100 epochs
on the training dataset. The choice of learning rate is 0.01
if the epoch count is less than 25 and is reduced to 0.001
for epoch count up to 50. To further promote slow learning,
values of 1e−4 and 1e−5 are used, till 75 and 100 epochs,
respectively. Figures 10 and 11 give the training-testing loss
and accuracy curves for theGraffiti dataset. From the training
loss and accuracy curves, it can be concluded that the system
is not suffering from over-fitting after some tuning of the
hyper-parameters. Since the gestures of our limited in-house
dataset are the same as the training dataset, our in-house
dataset is used only for testing purpose which reduces the
burden of training requirements again and again.

With regard to the training of the 2D-CNN model, the
GreenDigits set from Graffiti Digits is used. SGD algorithm
is carried outwith a cross-entropy loss function in the training
process. The initial learning rate is set to 0.01 if the epoch
count is less than 25 and is reduced to 0.001 for epoch count
up to 50with batch size as 32. The training process is stopped
after 50 epochs. Figures 12 and 13 give the training-testing
loss and accuracy curves for the Graffiti dataset.
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Fig. 12 Training and testing
loss as a function of the number
of epochs for 2D-CNN

Fig. 13 Training and testing
accuracy as a function of the
number of epochs for 2D-CNN

Table 2 Performance accuracy
(%) of 2D-CNN motion
template network alone

Dataset Without data augmentation (%) With data augmentation (%)

Graffiti 86.24 92.60

In-house 81.20 89.70

3.4 Results

In this subsection, the performance of the proposed two-
stream network is evaluated in three aspects on Graffiti as
well as in-house datasets: 2D-CNNmodel alone with OFMT
motion templates as input, 3D-CNN model alone with RGB
gesture videos as input, and the combined fusion model.
Basically, here, accuracy, which indicates the proportion of
correctly classified samples with respect to the total num-
ber of samples, is used as the evaluation index. Since data
imbalance is not there in our databases, i.e., each class is
constituted by an equal number of samples so other perfor-
mance matrices like precision, sensitivity, or f-score are not
considered here.

In the proposed model, used 3D-CNN and the 2D motion
template CNN architecture can be regarded as two heteroge-
neous networks that can be used as independent models. So,
first, we have evaluated the performance of the independent
streams and then the fusion performance as a combined net-
work. In the case of 2D-CNN, confusion occurs mainly in
discriminating class ‘3’ with class ‘5’ and class ‘1’ with class

‘7’ due to the similarities in their shapes in the OFMT images
which can be seen in Fig. 7. Here, 3.4% of ‘5’ are misclassi-
fied as ‘3’ or vice versa and 2.8% of ‘7’ are misclassified as
‘1’ or vice versa and rest 2.2% are various misclassification,
whereas 3D-CNN has performed quite better in this regard
since it also considers the temporal evaluation of the gestures
in the video clips. Table 2 gives the results of the proposed 2D
motion template CNN model, where two cases, without data
augmentation and with data augmentation, are considered.
From Table 2, we can conclude that the data augmentation
has a great impact on accuracy and can improve the network
performance up to a great extent.

To analyze the performance of the 3D-CNN model, strat-
ified 10-fold cross-validation is carried out on combined
GreenDigits andEasyDigits sets ofGraffiti dataset. Themean
accuracy for this dataset is obtained at 97.30%, whereas
our in-house dataset has provided an accuracy of 98.67%
when tested on the pre-trained network. Lastly, the predic-
tion class/label scores from both the streams are fused for
each class. Since both the streams acquire complementary
motion information regarding the gesture, so such fusion
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Fig. 14 Confusion matrix for: a EasyDigits set, b HardDigits set

generally boosts the recognition performance. That is, the
streams complement each-other in acquiring the spatiotem-
poral information from their respective inputs, and thus,
certain good output score w.r.t. the target can be achieved,
at least by one or the other or by both. In our case also, the
same scenario is noticed when both streams are fused at the
decision level. Here, decision level fusion is chosen since we
have used two non-identical networks applied on inputs with
different dimensions.Moreover, rather than simple averaging
of the prediction class scores, we have formulated a proba-
bilistic ensemble formula given by Eq. (8) with γ as fusion
parameter. Different values of γ have been tried out and γ as
0.6 has provided us the best fusion accuracy of 99.20%. So,
here, more weight is given to the score provided by the 3D-
CNN since it can capturemore subtle spatiotemporal features
compared to the other one. This is quite justified from the
performance achieved by the individual networks performed
on the two databases. Our in-house dataset has achieved a
recognition rate of 99%when tested on the fused model. The
confusion matrix for EasyDigits and HardDigits sets is also
shown in Fig. 14.

3.5 Comparison with state-of-the-art

Our proposedmodel is comparedwith three existingmethods
performed on the same Graffiti dataset. Table 3 represents a
comparison of performance for the different methods. The
first two methods [28,29] rely on hand-crafted feature repre-
sentations for gesture classification, while [30] uses CNN to
extract gesture features. In [28], the most probable longest
common subsequence (MPLCS) is proposed to measure the
similarity between the probabilistic template and hand ges-
ture sample. The final decision is based on the probability
and length of the extracted subsequences. The method is also
compared with HMM and CRF classifiers for performance
analysis, whereasmaximum cosine similarity and fastNN are
used as a trajectory mapping scheme for digit hand gesture

recognition in [29]. A combined fusion-based method with
CNN as trajectory shape recognition and CRF as temporal
feature recognition is proposed by [30]. From Table 3, it can
be noticed that our 2D-CNNmodel is as efficient as the clas-
sic HMMmodel, whereas 3D-CNN has achieved even better
results. In [30], fusion-based model with CNN and CRF as
components has achieved 98.4% accuracy which is similar
to the sequential state-space MPLCS [28] method. On the
other hand, our 2D-CNN- and 3D-CNN-based fusion model
has achieved state-of-the-art resultswith 99.20%of accuracy.
The fusion result at the decision level has outperformed all
other methods, which shows the effectiveness of the fusion
scheme. The only work done on our in-house dataset is [11],
which has a similar accuracy of 99% as this work for alphabet
gesture recognition.

4 Conclusion

In thiswork,we propose a two-streamnetworkwith 3D-CNN
and 2D-CNN as its two streams/layers for hand gesture and
in general action recognition. So, the main objective of the
model is to detect and recognize isolated dynamic hand ges-
tures with varying shape, size, and color of the hand. This is
possible because of the fact that the system doesn’t require
the pre-segmentation of the hand portion through various
methods like skin-segmentation, etc. The first stream of the
system is a 3D-CNN applied for capturing the spatiotempo-
ral information directly from the RGB gesture videos. The
second layer is a 2D-CNNmodel employed to extractmotion-
patterns for gesture classification. For this stream, an optical
flow-guided motion template (OFMT) is used as input where
the temporal motion information of a gesture is encoded
into a single image which helps to remove irrelevant ges-
ture patterns. Moreover, the proposed OFMT can nominally
reduce computational complexity and memory requirement
as compared to more complex networks like double 3D-
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CNN/RNN/LSTM models. So, our proposed model can be
used in a resource constraint environment without affecting
much to its performance. For improving results, the predic-
tion scores of the 3D-CNNmodel and the 2D-CNNmodel are
fused. Since both the streams acquire complementarymotion
information regarding the gesture, so such fusion generally
boosts the recognition performance. Though our model is
simple, experimental results have demonstrated that it is able
to achieve the state-of-the-art results. However, the adopted
motion template has the limitation that the moving body has
to be in a plane perpendicular to the camera. In the future,
we will investigate more on robust feature learning methods
for distinguishing the subtle differences among some ges-
ture classes for the viewpoint-invariant gesture recognition
method.
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