
Innovations in Systems and Software Engineering (2022) 18:39–60
https://doi.org/10.1007/s11334-021-00423-5

S . I . : SOFTWARE AND SYSTEMS REUSE

Requirements engineering and enterprise architecture-based software
discovery and reuse

Abdelhadi Belfadel1 · Jannik Laval1 · Chantal Bonner Cherifi1 · Nejib Moalla1

Received: 23 March 2021 / Accepted: 12 November 2021 / Published online: 8 January 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Organizations’ business processes need to be adapted in response to changing internal and external environments, which are
becoming increasingly complex. We target in this research work the exploitation of a software capability profile based on
requirements engineering and enterprise architecture to respond to stakeholder requirements and efficiently reuse existing
technical solutions. We propose in this work an exploitation methodology based on the alignment of enterprise architecture
actions with a requirement engineering process. These latter evolve together helping to investigate the highest compatibility
of the desired functionalities and their related constraints. Our contribution aims to produce a ready-to-use application based
on the defined requirements and the selected software capability profiles for accelerating business application development.
Implementation and a case study are proposed to demonstrate the effectiveness of this approach.

Keywords Enterprise architecture · Capability profile · Requirements engineering · Service reuse · Software reuse

1 Introduction

Modernizing or designing a new business process by reusing
the functionality of existing software can be of great benefit to
organizations. Leveraging previous developments and con-
sidering internal company solutions enriched with external
ones, can help facilitate the development of complex systems
at controlled costs while maintaining delivery times.

When developing a software, the first thing to do is to
understand and describe in a precise way the problem that
the software must solve. Requirements for a targeted sys-
tem describe what the system should do, what the services it
should provide, and what quality or constraints it must have
to make it attractive and acceptable to the owner [1]. These
requirements reflect the needs of customers for a system. The

B Abdelhadi Belfadel
Abdelhadi.Belfadel@gmail.com

Jannik Laval
Jannik.Laval@univ-lyon2.fr

Chantal Bonner Cherifi
Chantal.BonnerCherifi@univ-lyon2.fr

Nejib Moalla
Nejib.Moalla@univ-lyon2.fr

1 DISP Laboratory, University Lumiére Lyon 2, Lyon, France

process of analyzing, eliciting, and checking these services
and constraints is called requirements engineering [2].

To maximize the reuse opportunities for companies, a
component view with a concise evaluation model of soft-
ware components (that describe in detail the capabilities of
software) provides an overview of existing solutions and
facilitates the discovery, selection, and decision to reuse [3].
This, combined with an organization of the different artifacts
(an artifact is a more granular architectural work product
that describes an architecture from a specific viewpoint.
Examples include a class diagram, a server specification, a
list of architectural requirements, etc.) resulting from this
evaluation model, aligned with a requirement engineering
approach, aims to reduce the complexity when searching and
selecting software components to reuse. In addition, focusing
on service-oriented solutions, many opportunities for reuse
of functionality will arise, resulting in more efficient use of
existing resources.

To reduce the complexity of the description of software
components that result from the evaluation model and to
present the required detail of information at each level of its
exploitation, enterprise architecture is of great value. Enter-
prise architecture (EA) is the definition and representation
of a high-level view of IT systems and enterprises business
processes. By considering an enterprise architecture-based
approach, it is possible to organize the different artifacts in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-021-00423-5&domain=pdf
http://orcid.org/0000-0002-8260-4638


40 A. Belfadel et al.

a way that enables to analyze the reuse possibilities for an
organization, and ensure the feasibility of a targeted systemor
project. The insights or information provided by an enterprise
architecture is needed, on the one hand, to determine, from a
business perspective, the needs, and priorities for change [4]
and, on the other hand, to organize the various components
and technical artifacts and assess how an organization can
exploit them.

With reference to this context, this research is an extended
work of an already published work in [5]. The latter was
focused on the design of a software capability profile
implemented as a semantic model to gather description of
the capabilities of existing solutions from several perspec-
tives (organizational, business, technical and technological
aspects). For the sake of readability, the proposed model and
contributions published in [5] are presented in the follow-
ing sections, as well as the new contributions related to the
exploitation of the capability profiles through the alignment
of a requirements engineering approach and an enterprise
architecture method. As discussed earlier, the objective of
this research work is to leverage the model already published
in [5] to address stakeholder requirements and efficiently
reuse existing solutions, by investigating the highest func-
tional and non-functional compatibility of existing software
capability profiles with stakeholder’s desired features to be
implemented. The expected result from this work is an
exploitation process of the software capability profiles, based
on the architecture development method from TOGAF [6],
aligned to a requirements engineering approach implemented
using Volere Specification [1]. However, the problem we
faced is how to align requirements and architecture artifacts
in an engineering cycle, to help in the refinement of require-
ments and select the best candidate components to serve as
building blocks in a new system?

To respond to this research problem, this paper is orga-
nized as follows: Section 2 focuses on the related work. We
focus afterward on the principal building blocks of the pro-
posed solution and present first the Enterprise Architecture
Capability Profile (EACP) in Sect. 3. Section 4 presents a
concrete use-case scenario on which this approach has been
applied and that serves as an example throughout the descrip-
tion of the exploitation process in Sect. 5. Section 6 presents
an implementation of the proposed approach. Section 7 dis-
cusses our work, and finally, a conclusion is drawn in Sect. 8.

2 Related work

2.1 Requirements engineering in software
development process and service reuse

Classical techniques for software solution specification are
structured analysis and object-oriented techniques [7]. The

view of requirement engineering as solution specification is
taken by the IEEE 830 standard [8] and by other authors on
requirements [1,9]. In this view, and as mentioned by [7], a
requirements specification consists of a specification of the
context where the system operates, desired system functions,
semantic definition of these functions, and quality attributes
of the functions.

Several researchworks andmethods ([10,11] or [12]) exist
in the literature to enhance software requirement specifica-
tions and for feature selection. Robertson and Robertson [1]
propose Volere as a basis for a requirement specification. It is
a result of many years of practice, consulting, and research in
requirement engineering and business analysis. Volere pro-
vides template sections for each of the requirement types
appropriate to today’s software systems. Xu et al. [13] pro-
pose a paradigm for software service engineering to reuse
services for developing new applications more rapidly with
the aim of satisfying individualized customer requirements.
The proposed approach uses service context as a mediating
facility to match a service requirement with a service solu-
tion. The requirements are defined by the targeted business
functionality, service performance, and value. However, no
details about the service pattern description or repository, the
requirement template nor an implementation of the approach
are proposed. Chen andHe [14] propose amethod that allows
users of services to express their requirements. The authors
propose a meta-model for elements required in-service con-
sumption, such as process, goal or role. The proposedmethod
helps to discover errors and conflicts during requirement
refinement. Zachos et al. [15] propose a service selection
algorithm based on textual requirement expressed by the ser-
vice consumer. The service selection is based on a discovery
algorithm, which uses XQuery and WordNet and focuses
on the disambiguation and completeness of the requirements
and retrieving discovered services fromUDDI registry. There
are additional ontology-based research works such as [16],
where the authors took the COREOntology (for Core Ontol-
ogy for Requirements) [17] for requirement elicitation, and
established a relationship with the concepts of Web Service
Modeling Ontology (WSMO) [18].

2.2 Knowledgemanagement and service
repositories for service reuse

Research on repositories for an effective and useful manage-
ment and discovery of services for service-oriented paradigm
has recently earned significant impulse. Some specifications
asUDDI [19] or ebXMLRegistry [20] have providedprimary
support to register, discover and integrate services. Due to
limited capabilities offered by existing registry specifications
for services discovery, some research works in the literature
aim at improving service repositories with ontology-based
discovery facilities. Later, semantic models have been pro-

123



Requirements engineering and enterprise architecture-based software discovery and reuse 41

posed to enrich service registry with semantic annotations,
combined with matchmaking algorithms to match service
capabilities.

Based on the systematic analysis of relevant research
works regarding service discovery with consideration of our
needs, Table 1 classifies the related service registry and
discovery works published between 2002 and 2019 accord-
ing to the following criteria: (C1) Organizational level:
exploitation based on the identification of the stakehold-
ers, business problems, goals, and objectives of the targeted
project. (C2) Functional level: exploitation based on ser-
vice interfaces, the business functions and related inputs and
outputs. (C3) Technical level: exploitation based on the iden-
tification of relevant technical requirement, interoperability
requirement and technology constraints. (C4) Technology
level: exploitation based on the identification of the platforms
and infrastructure. (C5) Non-functional properties (QoS,
Security...). (C6)Exploitation based on aRequirementsEngi-
neering Process (it involves all the mentioned levels)

Out of Table 1, we notice that several research works
considered the functional level and QoS to manage service
repository and matchmaking, but few of them considered the
other levels such as the organizational level, the technical or
technology level.We notice also that few researchworks con-
sidered the exploitation of the service registry in a software
engineering cycle using a requirement engineering process
to manage the user requirements for service discovery and
matchmaking. Software architecture helps to manage the
complexity of software byproviding an abstractionof the sys-
tem.Requirement engineering process drives the architecture
actions, whereas decisions made in the architectural phase
can affect the achievement of initial requirements and thus
change them. We should go through these two fundamen-
tal activities, namely requirement engineering and software
architecting during the engineering process. These activi-
ties should evolve together to offer support to the developer
or architect for formalizing the requirements and architec-
tural artifacts to enable software and service discovery and
reuse. There is, however, no structured solution (as depicted
in Table 1) on how to perform the co-development of require-
ments and architecture actions to select the suitable software
or services to reuse for the development of new business
software.

2.3 Scientific relevance and discussion

From the state of the art on service-oriented software reuse,
we analyzed that currently ad hoc methods are still used
to identify the most suitable service-oriented software or
artifacts to reuse, and a methodology or standardized pro-
cess enabling this is still missing. Moreover, the description,
the capability, or qualification of these software are lacking
wider view qualification taking into consideration the busi-

Table 1 Service repository and discovery for reuse

Service repository and discovery C1 C2 C3 C4 C5 C6

[21–33] + +

[15] + + +

[34] +

[35–37] +

[38–40] + (+)

[41–43] +

[44,45] + (+)

[46] + +

[47] + +

[48] + (+)

[49] + + +

[50] + + (+)

[51] +

[52,53] + + +

[54] + + (+)

ness, operational, and technical views of the software and
their related services [5]. In addition, no solution has been
provided to fit the requirements engineering along with the
impact of architecture on requirementswhen dealingwith the
identification of the most suitable components and avoid the
misevaluation during the selection phase. Therefore, enhanc-
ing the capability description of the software and its related
services in different levels of service description, along with
its exploitation based on requirement engineering and archi-
tecting actions, is a big challenge. This analysis highlighted
the need for an Enterprise Architecture-based methodology
for describing and classifying different artifacts to be avail-
able as building blocks for reuse in future projects.

From the above analysis, we propose the following
research directions: (i) improve software and related service
capability profile to bring value-in-use of the qualified fea-
ture for an organization that is interested into reuse; (ii) shape
a mechanism to identify the most suitable software with spe-
cific features or functionalities helping to overcome the use
of ad hocmethods; (iii) improve the reuse of service-oriented
solutions by considering a process that includes requirements
engineering and enterprise architecture for formalizing the
requirements.

3 Qualificationmodel—software capability
profile

To bring the value-in-use of existing software and facili-
tate the discovery and reuse, we present in this section the
meta-model of the software capability profile (see Fig. 1)
and its related EACP Ontology that is presented in detail

123



42 A. Belfadel et al.

Fig. 1 Proposed meta-model

in [5] and depicted in Fig. 2. The meta-model is inspired
mainly from TOGAF [6], ISO 16100 [55], Microsoft Appli-
cation Architecture Guide [56] and ISO 25010 [57]. It aims
to gather functional and non-functional specifications; the
organizational impact of an organizations’ software; it links
the business services to their related physical components
to offer a wider view qualification and improve the reuse
when developing a new business application. The proposed
meta-model is composed of six packages. (i) Organiza-
tion package: Composed by the organizational unit, with its
related business goals and objectives that guided the develop-
ment of existing software. (ii) Architecture building blocks
package: This entity is constructed according to the life-cycle
creation of architecture building blocks (ABBs) based on the
ADM method. An ABB describes the business problem for
which this component was developed for, its implementation
specification, standards used, the stakeholders concerned.

It provides other details such as the operational vision of
the component, the definition of the business function of
the ABB, its attributes and constraints, data and applica-
tion interoperability requirements and design-time quality
attributes. (iii) Solution building blocks package: SBBs rep-
resent the physical equivalent of ABBs and describe the
components exposed by software. The SBB is linked to
the exposed service or API, for instance, over the web in
case of a REST-based application. This latter is defined by
the URI, the HTTP method needed to get access to the
resource, the related parameters and the serialization used
in communication (for instance JSON). It defines run-time
and transversal quality attributes, which might be updated
according to the defined frequency for each attribute. (iv)
Application package: Describes the technical requirements
of the service-oriented software in general with its exposed
components (for instance, REST services). It also describes

123



Requirements engineering and enterprise architecture-based software discovery and reuse 43

Fig. 2 Basic pattern of the main classes and relationships in the EACP ontology

the execution environments on which the application is run-
ning. (v) Business process package: This package is used
in the exploitation phase and represents the “to-be” busi-
ness application to realize. (vi) Requirements package: This
package is used in the exploitation phase and represents the
requirements elicitation process, helping to guide the devel-
oper or the architect during the engineering life cycle. The
requirements are elicited in each phase of the ADM, going
from the definition of project driver to the definition of the
use cases and requirements in different levels.

The resulted EACP profile instances are saved in a
semantic repository called in this context the Enterprise
Architecture Knowledge Repository (EAKR repository) as
an ontology instance. Regarding the design effort of the
EACP Ontology, we identified from state-of-the-art solu-

tions some existing ontologies to reuse. We have selected
those that cover some of our needs and that are well-defined,
consistent, and reused in other projects. We selected Basic
Formal Ontology (BFO) which is a top-level ontology and
four domain ontologies, namely Ontology Web Language
for Services (OWL-S) [58], The Open Group Architecture
Framework ontology (TOGAF-Ontology) [59], BPMN 2.0
Ontology [60] and InformationArtifactOntology (IAO) [61].
Third, we managed the selected foundational and domain
ontologies, by integrating and extending in a coherent way
the different ontologies into the targeted EACP ontology
using the Protégé Ontology Editor. Finally, we evaluated the
consistency of the resulted model using the Fact++ reasoner.
An extract of the related Ontology to EAKR repository is
presented in Fig. 2.

123



44 A. Belfadel et al.

Fig. 3 Screenshots of the targeted business application

The scope of this paper does not concern the presenta-
tion of the qualification model and the design of its ontology
mentioned above and presented in [5]; however, the elements
presented above are enough for the understanding of the
exploitation phase that will follow.

4 Use-case scenario

This section presents the use case that will serve as an exam-
ple for the description of the following exploitation process.
This use-case scenario involves two companies. The first
company is specialized in plastic manufacturing, and the
second in metal manufacturing. Both companies have signif-
icant expertise in engineering and transforming plastic and
metal, respectively, parts using several technologies. Their
key business issue is the difficulty to detect the most appro-
priate business collaboration opportunities among common
customer projects. Starting from a computer-aided design
(CAD) description of customer projects, the companies con-
sortiumneeds to quickly detect the set of projects that they are
enabled to produce. The proposed use-case aims to accelerate
and maintain a collaboration channel in two complementary
business domains. The objectives are to reduce project quota-
tion costs and reduce the delay of customer quote treatment.

Currently, clients send product requests to one of the
companies in the form of CAD/PDF files. Then, the cho-
sen company decomposes all the projects features (e.g.,
parts, dimensions, type of surface, and type of raw mate-

rial) to understand customer needs to verify the feasibility
of the product, and to determine the relevance of the busi-
ness opportunity in terms of return on investment. After
the decomposition and if there is a need for subcontract-
ing (especially for multi-physical and complex products),
the two companies will carry out a succession of negotia-
tions, explore several ways to reach the clients requirements
and submit their best offer to the client. For this purpose,
we derive from this use case all needed requirements that
we need to discover existing technical services that allow
to reduce cost and development time. In what follows, we
present how the developer goes through an architecture and
requirement elicitation process to discover existing services
and develop the needed business application. We present an
example of the inputs needed in each phase of the exploitation
process.A screenshot of the developed prototype is presented
in Fig. 3.

5 Exploitation process

To design a new business application reusing technical ser-
vices from theEAKR, the architect or developer goes through
a requirement elicitation process. This process depicted in
Fig. 4 is structured in several phases starting by the architec-
tural vision, going through the business architecture, data,
application, and technology architecture phase, leading to
the generation of an implemented BPMN which uses the
qualified services if a match confirmed. In the following sub-

123



Requirements engineering and enterprise architecture-based software discovery and reuse 45

Fig. 4 Exploitation plan

sections, we describe the actions to realize in each phase,
enriched with a concrete example from the use-case scenario
to strengthen the understanding. Templates in JSON format
are also proposed to formalize the architecture artifacts and
requirement specifications in each phase.

5.1 Phase A: architecture vision

The objective of this phase is to develop a high-level vision
of the business value to be delivered as a result of the project.
This phase is mainly focused on gathering the business goals
and related objectives of the targeted project. Other archi-
tecture artifacts are used to structure the project drivers,
such as the identification of stakeholders, definition of the
organizational model of the company, and KPIs enabling to
evaluate the targetedbusiness application.Basedon the archi-
tectural artifacts of phase A (see Fig. 5 for the exhaustive
list—column ADM artifacts), we fetch requirement patterns
(see Fig. 5 for the exhaustive list fromVolere specification—
column Requirements) produced during previous projects to
guide and support the developer for the upcoming require-
ment definition. If a template is found, it is presented to
the developer. In addition to the architecture artifacts, the
developer formalizes his requirements by defining the project

drivers such as the business actors, the client, and customer
if applicable. These inputs help to consolidate the elicitation
phase and redesign his requirements before going further
in the process. All the artifacts once validated are saved in
the EAKR to be reused as requirements templates in future
exploitation process.

Figure 6 illustrates an example from the use case with
some proposed architecture artifacts and requirements for
phase A. The main inputs are the definition of business goals
andobjectives of the targeted system, alongwith stakeholders
that define people who have an interest in the targeted system
and whose inputs are needed to build the product.

5.2 Phase B: business architecture

The objective of this phase is to develop the target busi-
ness architecture that describes how the enterprise needs to
operate to achieve the business goals previously defined and
responds to stakeholder concerns. This phase focuses on the
business side and supports the developer or architect to pre-
pare all required inputs which are presented in Fig. 7.

The most important architectural artifact in this phase
is the high-level business scenario. This is designed using
BPMN which is a standard language for business process

123



46 A. Belfadel et al.

Fig. 5 Phase A: alignment of architecture and requirements artifacts

Fig. 6 Example of architecture artifacts managed during phase A and related model

123



Requirements engineering and enterprise architecture-based software discovery and reuse 47

Fig. 7 Phase B: alignment of architecture and requirements artifacts

modeling. This first high-level modeling is designed using
ArchiMate1 which is recognized as a standard for EA mod-
eling by the Open Group [62] and that supports business
process modeling. This high-level modeling helps to define
the business-entity relationship to know which entities are
needed for every business action or behavior.

This business model is enriched with other architectural
artifacts (see Fig. 7 for the exhaustive list—column ADM
artifacts) such as the actor catalog updated with their related
roles, and the definition of the architecture requirements
specification which form a major component of an imple-
mentation contract and provides quantitative statements as
required inADMPhaseBoutputs. It requires the definition of
the implementation specifications to guide the development
work, implementation standards in case the implementation
should follow some specific standard. Figure 8 depicts the
model of some architecture artifacts managed during this
phase and shows an example of the proposed template for
some of these architecture artifacts.

Once these elements are defined, a request is sent to the
EAKR to fetch requirement templates of phase B produced
during last projects to be reused. The aim is to guide the
developer to define the project constraints and the func-
tional requirements as depicted in Fig. 7 and inspired from
Volere specification (column Requirement). The resulted
templates from the request (if any) present the scope of pre-
vious projects sharing the same context, the existing business
events connected to the actual business scenario, the use cases
of the project or solution, and a set of functional requirements

1 https://www.archimatetool.com/.

related to the selected use cases and their type, i.e., service
type component related to an SBB or user task activity if it is
a user action. Figure 9 depicts the model of the different arti-
facts that may result from the EAKR and shows an example
of the proposed template for some of these artifacts.

These resulted templates are presented to the developer
to guide him during this phase B for the consolidation and
refinement of his requirements. It helps to offer support for
defining and consolidating the use cases and related func-
tional specifications. The proposed template is inspired from
the Atomic Requirement Template, which is proposed by
[1] and depicted in Fig. 10. This phase B ends with well
formalized, testable, and categorized as user or service task
functional requirements.

5.3 Phase C: information systems
architecture—data architecture

The objective of Phase C is to develop the targeted infor-
mation system architecture. It involves a combination of
data and application architecture. Therefore, this phase is
composed of two sub-phases, the data and application archi-
tecture.

Data architecture phase enhances the definition of the rela-
tion between data entities and targeted business functions
previously defined in phase B. We have already depicted in
Fig. 9 the models that enable to link data entities associ-
ated with each business function. Then, the needed action
in this phase is to define the properties of each business
entity involved in the business functions using relevant data

123

https://www.archimatetool.com/


48 A. Belfadel et al.

Fig. 8 Example of architecture artifacts managed during phase B and related model

models such as the class diagram in the Unified Model-
ing Language (UML). To this end, we propose templates
based on the proposed models for the definition and for-
malization of the data entities involved in a business func-
tion. An example related to the use case is depicted in
Fig. 12. The left side of the figure depicts the definition
of a class model, and the right-side links an entity with its
attributes to a specific business function where the entity is
used.

Additional architecture requirements specifications are
as-well formalized such as Data Interoperability or Technol-
ogy Architecture Constraints (see Fig. 11 for the exhaus-
tive list—column ADM artifacts). These constraints have
the same description template as for requirements. The

data interoperability requirement is needed to formalize
specific needs for security policies as for example input
validation or for data format and serialization. Regarding
the technology architecture constraint, it helps to iden-
tify constraints on the infrastructure about to be designed
(Fig. 12).

During this phase, architecture artifacts and requirements
are defined at the same time because we are reaching the
low-level description regarding the business application to
develop. Based on these inputs, we fetch and map in the
EAKR the ABBs and business functions using the defined
data entities, and which are compliant with the constraints
if defined (see Fig. 13-left column for an ABB template
example). The related SBBs and their corresponding techni-

123



Requirements engineering and enterprise architecture-based software discovery and reuse 49

Fig. 9 Example of requirement artifacts managed during phase B and related model

cal components are gathered to highlight potential problems
of integration and are presented in the proposed template
depicted in Fig. 13-right column. The relatedmodels ofABB,
SBB, and application package are already described in Sect. 3
and in [5].

5.4 Phase C: information systems
architecture—application architecture

This phase deals with the application architecture artifacts
and the corresponding requirements (see Fig. 14 for the

123



50 A. Belfadel et al.

Fig. 10 Phase B: requirements template selection

Fig. 11 Phase C—data architecture: alignment of architecture and requirement artifacts

123



Requirements engineering and enterprise architecture-based software discovery and reuse 51

Fig. 12 Data architecture artifacts example for Phase C

Fig. 13 Requirement: partner or collaborative applications (to highlight potential problems of integration)

exhaustive list of the artifacts). The developer or architect
is guided to define the technical requirements in the same
template as for the atomic requirement (see Fig. 15—left side
for an example). Technology or infrastructure constraints and
application interoperability requirement are either defined in
this phase. Those constraints are added to previous ones to
fetch for SBBs and related applications in the EAKR. The

resulted SBBs and related application (middle and right sides
of Fig. 15) offer the first overview of existing applications
and related technical services (in case of service-oriented
solution) to reuse. These solutions fit the requirements and
constraints from a functional, technical, and technology con-
straint side. Up to this requirement level, a first version of the
targeted business application based on BPMN 2.0 is gener-

123



52 A. Belfadel et al.

Fig. 14 Phase C—application architecture: alignment of architecture and requirement artifacts

ated. The user and service tasks are generated and a link
between service tasks and a set of existing services is per-
formed based on the elements defined during previous phases
(related to selected SBBs). This first solution reflects the pro-
totype to realize, aiming to resolve andmeet the business need
expressed during this elicitation process.

5.5 Phase D: technology architecture

The last phase D is about the technology architecture arti-
facts (see Fig. 16 for the exhaustive list of the artifacts). The
objective of this last phase is to define the basis of the imple-
mentationwork.As part of phaseD, the developer or architect
needs to consider what relevant resources are available in the
EAKR repository to ensure that the target system will meet
someor all the requirements and constraints. It is important to
recognize that in practice it will be rarely possible to find and
reuse components that reach 100% coverage of all defined
requirements and constraints. During the previous phase C,
technical and technological constraints are formalized. These
latter are considered during this phase D when matching the
final SBBs, enriched with non-functional properties defining
the Quality of Service needed from the existing services.

The model of non-functional requirement is based on the
atomic requirement model. An example of the definition of
this non-functional requirement is depicted in Fig. 17. The
resulted SBBs, if a match is confirmed, reflect strongly the
defined requirements and constraints. This helps to imple-
ment the business process already produced during the last
phase with the final SBBs and related services with their
service endpoints to support the business application. The
resulted SBBs are ranked as already defined by [63] for QoS
ranking, reflecting the non-functional specifications before
selecting the final SBB and generate an implemented busi-
ness process. The result of this ranking process is used during
the generation of the implemented BPMN, where for each

business function (only service tasks), we assign the first
ranked SBB to the related task (see Fig. 18 for an exam-
ple). In the next section, we present the implementation of
a prototype of this exploitation process developed as a Web
Application.

6 Framework implementation

We implemented the exploitation process as a Web Appli-
cation as depicted in Fig. 19. The source code is available
at Github repository.2 The video of this technical presenta-
tion is available here3 and of the entire use case is available
here.4 We selected AngularJS [64] as a Web Framework
that enables the development of single-page applications fol-
lowing the MVC (Model-View-Controller) pattern for the
front-end environment, and NodeJS Framework [65] which
is a popular platform for building server-side Web Applica-
tions written in Javascript. Regarding the EAKR repository,
we deployed the EACP Ontology along with example of
qualified open-source solutions from vf-OS 5 and FITMAN
project6 in Apache Jena Fuseki [66] (see Fig. 20).

In the following subsections, we describe how a developer
or architect can interact with this application in each phase,
what inputs are required (based on the use case presented
earlier in this paper), how information is presented, and how
validation occurs.

Note that in the case where no artifact was found in the
repository with a perfect match, we used string similarity
based on Dice’s coefficient. Several open-source JavaScript

2 https://github.com/AbdBelf/EacpFramework.
3 https://bul.univ-lyon2.fr/index.php/s/xsAMwEoYIbRYbLh.
4 https://bul.univ-lyon2.fr/index.php/s/EfoSLyZwkHYbT9t.
5 www.vf-OS.eu.
6 http://www.fiware4industry.com.

123

https://github.com/AbdBelf/EacpFramework
https://bul.univ-lyon2.fr/index.php/s/xsAMwEoYIbRYbLh
https://bul.univ-lyon2.fr/index.php/s/EfoSLyZwkHYbT9t
www.vf-OS.eu
http://www.fiware4industry.com


Requirements engineering and enterprise architecture-based software discovery and reuse 53

Fig. 15 Application architecture artifacts for Phase C

Fig. 16 Phase D: alignment of architecture and requirements artifacts

packages exist.We selected the string-similarity package that
is publicly offered inGitHub repository.7 Wefixed the thresh-
old to 90%, which could be modified to get flexible results.

6.1 Phase A: architecture vision

In this phase, one of the artifacts to provide is about the busi-
ness goals and associated objectives of the targeted project.
The offered design possibility is to upload the inputs designed

7 https://www.npmjs.com/package/string-similarity.

in ArchiMate using the motivation extension. Figure 19
depicts an example from the proposed use case of themotiva-
tion diagram. An export in XML format is needed to import
it to the EACP Web Application to parse it and retrieve the
needed inputs for phase A. Figure 19 depicts the phase A of
the Web application. The first column is the architecture and
requirements elicitation process that guides the developer to
consolidate and validate their requirements during this phase.
The second column displays the actual phase state and the
progression rate of the process. The developer can aswell add

123

https://www.npmjs.com/package/string-similarity


54 A. Belfadel et al.

Fig. 17 Phase D: technology architecture artifacts template example

Fig. 18 Example of an implemented BPMN resulted from Phase D

other stakeholders not mentioned in the motivation diagram
to be considered for the next actions.

Once the motivation diagram uploaded to the framework,
a parsing of the XML source file is realized to retrieve the
defined business goals and objectives. Based on these inputs,
a request is sent to the EAKR (see an example of a SPARQL
request in Fig. 20) to fetch existing requirement templates

guiding the developer during this requirement elicitation
phase. Since it is the first instance of this process, we are
not supposed to get any template. However, and for illustra-
tive reasons, we defined one template that shares the same
business goal to have an example of a template to reuse for
defining and consolidating the required requirements for this
phase. As we may notice in Fig. 19, the requirements needed

123



Requirements engineering and enterprise architecture-based software discovery and reuse 55

Fig. 19 EACP Web Application—Phase A: architecture artifacts

are the definition of the business context, the client and the
customer of the system which is not applicable in this con-
text, and the users that will interact with the targeted system.
The retrieved templates are presented in the ”EAKR Tem-
plates Requirement” side. The process progression column
is updated, and the application now is waiting for the valida-
tion of the requirements to redirect the developer to phase B
of the exploitation process.

6.2 Phase B: business architecture

Based on ArchiMate Business Entity Relationship diagram,
the developer uploads the designed diagram to the architec-
ture artifacts user interface. This latter is parsed to retrieve
the actors, the business processes and related data entities
involved in each business process or use case. These inputs
are considered during the requirement pattern search in the
EAKR repository and retrieved using the process depicted in
Sect. 5.

The requirements specification of phase B deals with the
functional requirements and constraints of the project. Based
on the use case list and their related data entities, we fetch
the previous project that has been saved to the EAKR based
on a string similarity. These existing requirements help to
offer support for defining and consolidating the use cases
and functional specifications close to the actual context, the
business events connected to the actual business scenario and
a set of functional requirements related to the selected use
cases and their type (i.e., service-type component related to
an SBB or user task activity if it is a user action). In the case

of our business scenario, no template has been found but for
illustrative reasons, we initialized requirement templates that
correspond to the actual business scenario to be reused.

In this phase, there is a possibility to enrich the functional
specifications by adding required constraints or architecture
requirements specification such as the specification of imple-
mentation or the usage of a specific standard for the future
development of the functional requirements. In the context
of this proposed scenario, we link an implementation stan-
dard to the functional requirement “Visualize CAD file” as
depicted in Fig. 21.

6.3 Phase C: data and application architecture

Data architecture phase enhances the definition of the rela-
tion between data entities and targeted business functions
previously defined in phase B. Then, the next needed action
is to define the properties of each business data involved in
the business functions using relevant data models such as the
Class Diagram in UnifiedModeling Language (UML) that is
serialized to retrieve the entities with their related attributes.

Based on these inputs, the application fetches and maps in
the EAKR the business functions with the architecture build-
ing blocks using the defined data entities, and which respects
the interoperability and infrastructure constraints as defined
in Sect. 5.3. This latter matches between the defined func-
tional requirements with business functions defined in ABB
model. ABBs that correspond to the conditions are selected
with their related SBB and corresponding applications. The
objective is to highlight potential problems of integration in

123



56 A. Belfadel et al.

Fig. 20 EAKR based on the EACP Ontology and Apache Jena SPARQL Endpoint

case any selected ABB presents data interoperability con-
straint which is different from the defined constraint in this
phase C. Regarding the Application Architecture phase, the
developer is guided to define the technical requirement using
the same template as for the functional requirements. Tech-
nology or infrastructure constraint is either defined. Those
constraints are added to previous ones to select the SBBs as
described in Sect. 5. For instance, in this use-case scenario,
we define a technical requirement related to the targeted
business function ”Visualize CAD File”. Indeed, we target
an SBB which manages the CAD Objects with a specific
file extension ”STL extension” and that is based on the
JavaScript library Three.js. Then the action ”Fetch ABBs”
triggers the selection of the targeted ABBs and related SBBs
in the EAKR that respect the defined technical requirement

for each business function along with the technology con-
straints if defined. The result of this action is depicted in
Figure 22.

To this level, these inputs enable to download a first ver-
sion of the targeted business application based on BPMN 2.0
specification. Based on the functional requirements defined
in phase B which are composed by user and service tasks,
we generate an XML template (see Fig. 18).

6.4 Phase D: technology architecture

During the previous phase, technical and technological con-
straints are formalized. These latter are considered when
matching the final SBBs, enriched in this phase with non-
functional properties defining the Quality of Service needed

123



Requirements engineering and enterprise architecture-based software discovery and reuse 57

Fig. 21 EACP Web Application—Phase B: requirement specification

from the existing services. This to consider what relevant
resources are available in the EAKR repository to ensure that
the target system will meet the requirements and constraints.
In the proposed use-case scenario, we define an example for
the QoS which is depicted in Fig. 23 (NFR List). We set the
average instance timemetric as a non-functional requirement
applicable for all the targeted technical services. After vali-

dation, SBBs are ranked based on the defined QoS threshold
values.

For each business function,we select thefirst SBB resulted
from the ranking process as a building block to reuse for the
implementation of the targeted business application. As a
final result, we get a last version of an implemented BPMN
with the related service endpoints of the solution building
blocks.

7 Discussion

In this work, we propose an Enterprise Architecture Capabil-
ity Profile specifically designed for service-oriented software
enabling the qualification, the discovery, the reuse, and
the sustainability for new business applications develop-
ment. We demonstrate how the proposed approach can assist
developers or architects in the qualification process using
the semantic Enterprise Architecture Knowledge Reposi-
tory, based on a proposed meta-model inspired mainly from
TOGAF and ISO 16100 Standard and formalized using
semantic web techniques. This helps to offer a wider view
qualification process that deals with the two perspectives
of services which are the business perspective which brings
value-in-use of the qualified feature for an organization that
is interested into reuse, and the technical side along with a
quality of service of the feature encapsulated by the soft-

Fig. 22 EACP Web Application—Phase C: requirement specification

123



58 A. Belfadel et al.

Fig. 23 EACP Web
Application—Phase D:
requirement specification

ware service. An exploitation methodology is defined to
overcome the use of ad-hoc methods to identify the most
suitable components or artifacts to reuse. The proposed
solution is designed based on the alignment of architect-
ing actions with a requirement engineering process, and
evolve together helping to investigate the highest functional
compatibility of the desired functionalities and its related
constraints.

As discussed in [67], on some projects, architectural
requirements can be significantly more important than their
domain-specific equivalents (as for instance, ifwe are design-
ing a business application with a specific high availability as
implementation constraint, the “up time” metric would be
with a high importance). Regarding the proposed exploita-
tionmethodology, it carries the validation of the requirements
and drives the design of the foundations (i.e., architecture)
and the requirement definition of the business application
we are building. This means at least, we offer the nec-
essary structure for defining and validating architectural
artifacts and requirement specifications, and at best, pro-
pose templates and artifacts of previous projects or qualified
solutions for recycling and reuse to meet the business
need.

Regarding the exploitation process, as you may notice
at run time, the process finds few results because no
previous project with its related requirements has been
already introduced and capitalized. Also, it depends on
the number of the qualified solutions and related services
considered as architecture and solution building blocks in
the EAKR Repository. Continuous qualification is needed
to maximize the exploitation and must be realized fre-
quently to take full advantage of this proposed methodol-
ogy.

8 Conclusion

In this work, we defined the Enterprise Architecture Capa-
bility Profile that describes the business, operational and
technical aspects for service-oriented software. It is designed
based on an Enterprise Architecture Framework (TOGAF)
and the best practices related to the implementation of ISO
16100 standard concepts. An exploitation methodology of
the designed capability profile is proposed and based on
the alignment of a requirements engineering process with
the Architecture Development Method from TOGAF. These
latter evolve together to investigate the highest functional
and technical compatibility of the desired functionalities and
related constraints, to respond to end-users’ requirements and
efficiently reuse the qualified solutions. Finally, we provided
an implementation with an industrial use case to demonstrate
the effectiveness of this approach. Concepts presented in this
research work have been implemented as open-source proto-
types based onNode JS and Java platforms. These prototypes
cover the entire exploitation process that leads to the targeted
ready-to-use business application.

Acknowledgements This paper presents work developed in the scope
of the project vf-OS. This project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation programme under
Grant Agreement No. 723710. The content of this paper does not reflect
the official opinion of the European Union. Responsibility for the infor-
mation and views expressed in this paper lies entirely with the authors.

References

1. Robertson S, Robertson J (2012) Mastering the requirements pro-
cess: getting requirements right, 3rd edn. Addison-Wesley, Boston

2. Sommerville I (2011) Software engineering, 9th edn. ISBN-
10137035152

123



Requirements engineering and enterprise architecture-based software discovery and reuse 59

3. Belfadel A, Amdouni E, Laval J, Cherifi CB, Moalla N (2020)
Towards software reuse through an enterprise architecture-based
software capability profile. Enterprise Inf Syst 1–42

4. Gosselt R (2012) Amaturity model based roadmap for implement-
ing TOGAF. In: 17th Twente student conference on IT

5. Belfadel A, Laval J, Cherifi CB, Moalla N (2020) Semantic soft-
ware capability profile based on enterprise architecture for software
reuse. In: International conference on software and software reuse.
Springer, Berlin, pp 3–18

6. The Open Group (2009) The Open Group Architecture Framework
TOGATM Version 9. Basharat Hussain

7. Wieringa Roel J (2004) Requirements engineering: problem anal-
ysis and solution specification. In: International conference on web
engineering. Springer, Berlin, pp 13–16

8. S ANSI (1984) IEEE. IEEE guide to software requirements speci-
fications. IEEE, New York

9. Davis MA (1993) Software requirements. Objects functions and
status. Pearson, London

10. Ali SW, Ahmed QA, Shafi I (2018) Process to enhance the quality
of software requirement specification document. In: 2018 Inter-
national conference on engineering and emerging technologies
(ICEET). IEEE, pp 1–7

11. AhmadZ,HussainM,RehmanA,QamarU,AfzalM(2015) Impact
minimization of requirements change in software project through
requirements classification. In: Proceedings of the 9th international
conference on ubiquitous information management and communi-
cation. ACM, p 15

12. Alsanad AA, Chikh A, Mirza A (2019) A domain ontology for
software requirements change management in global software
development environment. IEEE Access 7:49352–49361

13. Xu X, Liu R, Wang Z, Tu Z, Xu H (2017) RE2SEP: a two-phases
pattern-based paradigm for software service engineering. In: 2017
IEEE World Congress on services (SERVICES). IEEE, pp 67–70

14. Chen H, He K (2011) A method for service-oriented personalized
requirements analysis. J Softw Eng Appl 4(01):59

15. Zachos K, Maiden N, Zhu X, Jones S (2007) Discovering web
services to specify more complete system requirements. In: Inter-
national conference on advanced information systems engineering.
Springer, Berlin, pp 142–157

16. Verlaine B, Jureta I, Faulkner S (2011) Towards conceptual founda-
tions of requirements engineering for services. In: IEEE Computer
(ed) Proceedings of the fifth IEEE international conference on
research challenges in information science (RCIS 2011), Gosier,
Guadeloupe. IEEE Computer Society, pp 147–157 (2011). Publi-
cation editors: IEEE Computer Society

17. Jureta IJ, Mylopoulos J, Faulkner S (2009) A core ontology for
requirements. Appl Ontol 4(3–4):169–244

18. Roman D, Keller U, Lausen H, De Bruijn J, Lara R, Stollberg
M, Polleres A, Feier C, Bussler C, Fensel D (2005) Web service
modeling ontology. Appl Ontol 1(1):77–106

19. Curbera F, DuftlerM,Khalaf R,NagyW,MukhiN,Weerawarana S
(2002) Unraveling the web services web: an introduction to SOAP,
WSDL, and UDDI. IEEE Internet Comput 6(2):86–93

20. Breininger K, Najmi F, Stojanovic N (2007) The ebXML registry
repository version 3.0. 1. OASIS, Febuary

21. Paolucci M, Kawamura T, Payne TR, Sycara K (2002) Semantic
matching of web services capabilities. In: International semantic
web conference. Springer, Berlin, pp 333–347

22. Wu J, Wu Z (2005) Similarity-based web service matchmaking.
In: 2005 IEEE International conference on services computing
(SCC’05) Vol-1, vol 1. IEEE, pp 287–294

23. Sabou M, Pan J (2007) Towards semantically enhanced web ser-
vice repositories. Web Semant Sci Serv Agents World Wide Web
5(2):142–150

24. Yu J, Sheng QZ, Han J, Wu Y, Liu C (2012) A semantically
enhanced service repository for user-centric service discovery and
management. Data Knowl Eng 72:202–218

25. Haniewicz K (2012) Local controlled vocabulary for modern web
service description. In: International conference on artificial intel-
ligence and soft computing. Springer, Berlin, pp 639–646

26. Hog CE, Djemaa RB, Amous I (2013) Adaptable web service reg-
istry for publishing profile annotation description. In: 2013 IEEE
10th International conference on ubiquitous intelligence and com-
puting and 2013 IEEE 10th International conference on autonomic
and trusted computing, pp 533–538, Dec

27. Yoo H, Park Y, Lee T (2013) Ontology based keyword dictionary
server for semantic service discovery. In: 2013 IEEE Third interna-
tional conference on consumer electronics Berlin (ICCE-Berlin),
pp 295–298, Sept

28. Keppeler J, Brune P, Gewald H (2014) A description and retrieval
model for web services including extended semantic and com-
mercial attributes. In: 2014 IEEE 8th International symposium on
service oriented system engineering. IEEE, pp 258–265

29. Narock T, Yoon V, March S (2014) A provenance-based approach
to semanticweb service description and discovery. Decis Supp Syst
64:90–99

30. Moradyan K, Bushehrian O, Akbari R (2015) A query ontology to
facilitate web service discovery. In: 2015 2nd International confer-
ence on knowledge-based engineering and innovation (KBEI), pp
202–206, Nov

31. Sassi SB (2016) Towards a semantic search engine for open source
software. In: International conference on software reuse. Springer,
Berlin, pp 300–314

32. Rajakumari KE (2020) Towards a novel conceptual framework for
analyzing code clones to assist in software development and soft-
ware reuse. In: 2020 4th International conference on intelligent
computing and control systems (ICICCS). IEEE, pp 105–111

33. Goncharuk E (2021) A case study on pragmatic software reuse
34. Loskyll M, Schlick J, Hodek S, Ollinger L, Gerber T, Pîrvu B

(2011) Semantic service discovery and orchestration for manu-
facturing processes. In: 2011 IEEE 16th conference on emerging
technologies and factory automation (ETFA). IEEE, pp 1–8

35. Seba H, Lagraa S, Kheddouci H (2012) Web service matchmaking
by subgraph matching. In: Filipe J, Cordeiro J (eds) Web informa-
tion systems and technologies. Springer, Berlin, pp 43–56

36. Paliwal AV, Shafiq B, Vaidya J, Xiong H, Adam N (2011)
Semantics-based automated service discovery. IEEE Trans Serv
Comput 5(2):260–275

37. Xue Y, Zhang C, Ji Y (2015) Restful web service matching based
onWADL. In: 2015 International conference on cyber-enabled dis-
tributed computing and knowledge discovery. IEEE, pp 364–371

38. Rathore M, Suman U (2013) An ARSM approach using PCB-QoS
classification for web services: a multi-perspective view. In: 2013
International conference on advances in computing, communica-
tions and informatics (ICACCI). IEEE, pp 165–171

39. Becha H, Sellami S (2014) Prioritizing consumer-centric NFPs in
service selection. In: International conference on conceptual mod-
eling. Springer, Berlin, pp 283–292

40. Sandhu AK, Batth RS (2021) Software reuse analytics using
integrated random forest and gradient boosting machine learning
algorithm. Softw Pract Exp 51(4):735–747

41. Rodríguez-García MÁ, Valencia-García R, García-Sánchez F,
Samper-Zapater JJ (2014) Ontology-based annotation and retrieval
of services in the cloud. Knowl Based Syst 56:15–25

42. Kapitsaki GM (2014) Annotating web service sections with com-
bined classification. In: 2014 IEEE International conference onweb
services. IEEE, pp 622–629

43. Chiplunkar NN et al (2014) Dynamic search and selection of
web services. In: 2014 IEEE International conference on advanced

123



60 A. Belfadel et al.

communications, control and computing technologies. IEEE, pp
1532–1536

44. Li R, He K,Wang S (2013) An ontology-based process description
and reasoning approach for service discovery. In: Proceedings of
2013 3rd international conference on computer science and net-
work technology. IEEE, pp 320–325

45. Matsuda M, Kodama K, Noguchi S, Onishi S, Asano T, Horikita
T, Komatsubara K (2014) Configuration of a production control
system through cooperation of software units using their capability
profiles in the cloud environment. Procedia CIRP 17:416–421

46. Alarcon R, Saffie R, Bravo N, Cabello J (2015) Rest web ser-
vice description for graph-based service discovery. In: International
conference on web engineering. Springer, Berlin, pp 461–478

47. Elshater Y, Elgazzar K, Martin P (2015) goDiscovery: web service
discovery made efficient. In: 2015 IEEE International conference
on web services. IEEE, pp 711–716

48. Boissel-Dallier N, Benaben F, Lorré J-P, Pingaud H (2015) Medi-
ation information system engineering based on hybrid service
composition mechanism. J Syst Softw 108:39–59

49. Khanfir E, Djmeaa RB,Amous I (2015) Quality and context aware-
ness intentionweb service ontology. In: 2015 IEEEWorldCongress
on services. IEEE, pp 121–125

50. Chhun S, Moalla N, Ouzrout Y (2016) QoS ontology for service
selection and reuse. J Intell Manuf 27(1):187–199

51. Purohit L, Kumar S (2016) Web service selection using seman-
tic matching. In: Proceedings of the international conference on
advances in information communication technology and comput-
ing. ACM, p 16

52. Elgazzar K, Hassanein HS, Martin P (2014) DaaS: cloud-based
mobile web service discovery. Pervasive Mobile Comput 13:67-84

53. Zeshan F, Mohamad R, Ahmad MN, Hussain SA, Ahmad A, Raza
I, Mehmood A, Ulhaq I, Abdulgader A, Babar I (2017) Ontology-
based service discovery framework for dynamic environments. IET
Softw 11(2):64–74

54. MuW,Benaben F, PingaudH (2018)An ontology-based collabora-
tive business service selection: contributing to automatic building
of collaborative business process. Serv Oriented Comput Appl
12(1):59–72

55. ISO 16100-1:2009 Industrial automation systems and integra-
tion (2009) Manufacturing software capability profiling for
interoperability—part 1: framework

56. Microsoft Patterns and Practices Team (2009) Microsoft® Appli-
cation Architecture Guide, 2nd edn (Patterns and Practices).
Microsoft Press

57. ISO/IEC 25010:2011 systems and software engineering (2011)
Systems and software quality requirements and evaluation
(square)—system and software quality models

58. Martin D, Paolucci M, McIlraith S, Burstein M, McDermott D,
McGuinness D, Parsia B, Payne T, Sabou M, Solanki M et al
(2004) Bringing semantics to web services: the OWL-S approach.
In: International workshop on semantic web services and web pro-
cess composition. Springer, Berlin, pp 26–42

59. Gerber A, Kotzé P, Van der Merwe A (2010) Towards the formali-
sation of the TOGAF content metamodel using ontologies

60. Rospocher M, Ghidini C, Serafini L (2014) An ontology for the
business process modelling notation. In: FOIS, pp 133–146

61. CeustersW (2012) An information artifact ontology perspective on
data collections and associated representational artifacts. In: MIE,
pp 68–72

62. Josey A, Lankhorst M, Band I, Jonkers H, Quartel D (2016) An
introduction to the archimate® 3.0 specification.White Paper from
The Open Group

63. Benfenatki H, Da Silva CF, Benharkat A-N, Ghodous P, Maamar
Z (2017) Linked USDL extension for describing business services
and users’ requirements in a cloud context. Int J Syst Serv Oriented
Eng (IJSSOE) 7(3):15–31

64. GreenB, Seshadri S (2013) AngularJS. O’ReillyMedia, Inc., New-
ton

65. CantelonM, HarterM, Holowaychuk TJ, Rajlich N (2013) Node.js
in action. Manning Publications Co., Greenwich

66. Jena A (2014) Fuseki: serving RDF data over HTTP
67. Eeles P (2005) Capturing architectural requirements. Accessed 10

May 2020

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Requirements engineering and enterprise architecture-based software discovery and reuse
	Abstract
	1 Introduction
	2 Related work
	2.1 Requirements engineering in software development process and service reuse
	2.2 Knowledge management and service repositories for service reuse
	2.3 Scientific relevance and discussion

	3 Qualification model—software capability profile
	4 Use-case scenario
	5 Exploitation process
	5.1 Phase A: architecture vision
	5.2 Phase B: business architecture
	5.3 Phase C: information systems architecture—data architecture
	5.4 Phase C: information systems architecture—application architecture
	5.5 Phase D: technology architecture

	6 Framework implementation
	6.1 Phase A: architecture vision 
	6.2 Phase B: business architecture
	6.3 Phase C: data and application architecture
	6.4 Phase D: technology architecture

	7 Discussion
	8 Conclusion
	Acknowledgements
	References




