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Abstract

Traceability allows engineers to trace and monitor the relationships between software artifacts. Monitoring these relationships
is vital to many software engineering activities such as software understanding and reuse. Grasping these relationships is studied
in the framework of Requirement Traceability Recovery (RTR). RTR is vital to software reuse as it allows the identification
and comparison of requirements of new and existing systems, and hence the reuse of software system components. Due to
the difficulties in recovering the traceability links manually, only few software development processes take the monitoring
of these relationships fully into account. Many attempts to automate the RTR task that enjoyed some success are based on
methods from the field of information retrieval. However, these methods only concentrate on calculating the textual similarity
between various software artifacts and do not take into account other properties of the artifacts. In this paper, we propose a
search-based RTR approach using genetic algorithms, that relies not only on semantic similarity between software artifacts,
but also takes into account the history of reuse of the artifacts, and incorporates knowledge into RTR in the form of user

(designer/developer) feedback. Experimental results show that the approach is promising.

Keywords Software reuse - Interactive genetic algorithm - Requirements engineering - Requirements traceability

1 Introduction

In software development, lots of information is generated.
This information consists of artifacts such as source code,
design documents, test cases, bug reports, and manual pages.
Describing and following the life cycle of artifacts is called
traceability. Traceability allows engineers to trace and mon-
itor the relationships between artifacts. Monitoring these
relationships is vital to many software engineering activi-
ties such as process compliance and product improvement,
and software understanding and reuse. These relationships,
or traceability links, can exist between design documents and
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requirements, source code and design documents, require-
ments and source code, requirements and test cases, manual
pages and requirements, bug reports and manual pages, etc.
In this work, we are focusing on the relationships between
requirements and source code elements such as functions
and classes. We could facilitate software reuse by taking
into account the relationships between the requirements of a
project and the code created during implementation. Grasp-
ing these relationships can help engineers in identifying the
code elements that implement the requirements they want to
reuse [1]. This is especially important because the developers
are no longer as familiar with the code as during the initial
development. Grasping these relationships is studied in the
framework of Requirement Traceability Recovery (RTR), a
topic that has attracted more and more attention in the field
of software engineering.

In RTR, the focus is on re-/constructing traceability links
between requirements and other software system artifacts.
Here, we focus on links between requirements and source
code elements. The importance of RTR has been well estab-
lished in recent years [2—16]. RTR is vital to software reuse as
it allows the identification and comparison of requirements
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of new and existing systems, and hence the reuse of software
system components.

When the industrial designer/developer is developing new
software (system), he can obtain the benefits from the pro-
posed work by using it to recover traceability links between
the requirements of the new system and source code elements
belonging to available old systems (e.g., systems developed
earlier by the designer/developer). This will contribute to
allowing systematic software reuse which will reduce the
development cycle time and cost and improve the quality of
software.

RTR is also of great importance to many other software
engineering activities, such as verification, change impact
analysis, program comprehension, risk analysis, impact anal-
ysis, criticality assessment, and test coverage analysis. RTR
is also important in adaptive systems that change frequently
and continually and need to manage the requirement changes
and analyze their impact.

Unfortunately, performing RTR manually is person-
power intensive, extremely tedious, error-prone, and time-
consuming. Due to the difficulties in recovering the traceabil-
ity links manually, only few software development processes
take the monitoring of these relationships fully into account,
and developers’ dereliction is obvious. As a result, “RTR as
a practice” is a not always adopted by developers [17, 18]
and RTR is typically taken as afterthought.

Many studies attempted to use methods based on the field
of Information Retrieval (IR) to automate the RTR task. The
IR-based methods are classic ways for traceability recovery
[7, 19, 20] that focus on calculating text similarity between
software artifacts, creating traceability links between arti-
facts that have high similarity. Researchers have applied
techniques such as Latent Semantic Indexing (LSI) [21],
Vector Space Model (VSM) [22], and probabilistic models
[23]. Several IR-based tools have been developed. Examples
include REquirements TRacing On-target RETRO [24, 25],
ReqgSimile [26], Poirot:TraceMaker [27], ReqAnalyst [28],
and ADAMS Re-Trace [29].

These IR-based methods have been shown to help in gen-
erating the traceability links automatically and to reduce the
time for producing the traceability mapping and have enjoyed
some success. However, these methods only concentrate on
calculating the textual similarity between various software
artifacts and do not take into account other properties of the
artifacts. They typically only consider the text of software
artifacts, which contains a lot of information that is not rele-
vant for traceability. This results in lowering the accuracy of
RTR [19, 21, 30].

Many studies attempted to address these issues and
improve IR-based techniques for generating the traceabil-
ity links. Some studies (e.g., [19, 31, 32]) proposed the
use of structural information (relationships between source
codes, like class inheritance) for improving the IR-based
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techniques. Such approaches faced the challenge of efficient
and extensive investigation of the structural information of
related artifacts [19]. Other studies (e.g., [18]) proposed to
focus only on essential information for recovering traceabil-
ity links based on the corresponding domain knowledge.
Other attempts (e.g., [33]) suggested focusing on the impor-
tance of the vocabulary base used for tracing and on using
secondary measures for assessing the traceability mappings.

In this paper, we propose a novel search-based RTR
approach using genetic algorithms, that relies not only
on semantic similarity between software artifacts, but also
takes into account the history of reuse of the artifacts,
and incorporates knowledge into RTR in the form of user
(designer/developer) feedback.

In this work, we deal with natural language requirements,
and the precision of the produced links depends on the
textual similarity between requirements and source code ele-
ments. As source code naming can fall to abbreviation and/or
agglomeration (e.g., via camel case conventions, common
in Java) which would not be expected in natural language,
requirements and source code elements can diverge from
each other, which decreases their textual similarity.

We believe that through the exploitation of other the
sources of information, namely the history of reuse of the
artifacts, and the incorporation of user (designer/developer)
feedback, we can build improved traceability recovery.

We aim at automating the RTR process and help design-
ers/developers find reusable source code matching their
requirements. Code reuse is a great goal, but often proves
to be difficult due to many challenges such as the dependen-
cies of the code element to be reused from its originating
system that could inhibit its reuse. There are also many other
traits of software quality that impact the reuse of a code ele-
ment such as its security, reliability, performance efficiency,
and maintainability.

Through RTR, we aim at contributing to the detection of
code elements that are good candidates to match the require-
ments of the new system being developed and that surely
need to undergo extension and adaptation to suit the new
system. Of course, the quality of the software element plays
a major role in how easily it can be reused. Code elements of
good quality can be reused in new ways that differ substan-
tially from the code’s original design intent. It is clear that
an investment of time and resources during development is
needed for creating such good, truly reusable, code elements.

For this purpose, we consider the RTR process as a search
problem. Although evolutionary search has been applied to
many software engineering problems [34], it is not common
to consider RTR as an optimization problem.

The approach takes as input a software system and a set
of requirements for which appropriate reusable code ele-
ments need to be identified and generates a set of traceability
links (i.e., a solution) between the requirements and source
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Fig. 1 Genetic algorithm-based requirements traceability recovery

Fig.2 Capturing feedback about detected traceability links between
requirements and code element artifacts through interaction with the
user

code elements (class, method, etc.) of the software system as
shown in Fig. 1.

In the framework of a solution to the RTR problem, each
requirement is assigned to one or many code elements of
the software system. The assignment takes into account the
semantic similarity between the documents, i.e., the texts,
representing the requirement and the code element. The
assignment also takes into account statistics from the reuse
history of the software system. We use two types of measures,
namely the recency of reuse measure and the frequency of
reuse measure. The intuition behind the use of the frequency
of reuse measure is that code elements that are reused more
frequently than others are more likely to be reused now, i.e.,
are related to the new requirement at hand.

In this work, we assume the existence of a software
reuse environment that plays an important role in exploiting
reusable artifacts. Environments that support reusing soft-
ware artifacts are of great interest [35]. For an effective reuse
of code elements, we assume that the reuse environment
stores information about the reuse history of individual code
elements, namely information about the recency of reuse (last
time of reuse of the element) and frequency of reuse (number
of times the element was reused).

To make the assignment of requirements to code ele-
ments more informed, we also take into account the user
(designer/developer) feedback. Figure 2 sketches the inte-
gration of the domain-specific knowledge (in form of
user feedback) through interaction with the user. The user
(designer/developer) can provide feedback whenever asked
to do so.

We evaluate the approach using three object-oriented
open-source projects. In a first set of experiments, we perform
the evaluation by running a Genetic Algorithm (GA) to con-
duct RTR automatically based only on semantic similarity
and reuse history. In a second set of experiments, we incor-
porate additionally user (designer/developer) knowledge in
the form of feedback using an Interactive Genetic Algorithm
(IGA). We conduct this evaluation using two types of feed-
back metrics, namely binary feedback and a more granulated
feedback using ratings in the number range [0, 0.3, 0.5, 0.8,
1].

The rest of this paper is organized as follows. Section 2
presents the related work and provides a motivating exam-
ple to illustrate the proposed work. Section 3 presents the
RTR problem formally and analyzes its complexity. Section 4
discusses the modeling the RTR problem using genetic algo-
rithms. In Sect. 5, we present and discuss the experimental
results. Sections 6 presents conclusions and future directions
of work.

2 Background and motivation
2.1 Software reuse

Software reuse, introduced in 1968, is defined by Krueger
[36] as “the process of creating software systems from exist-
ing software rather than building software systems from
scratch.” Frakes and Kang [37] define software reuse as
“the use of existing software or software knowledge to con-
struct new software.” The basic insight behind software
reuse is that most software systems are different variants
of already build systems within certain domains and are
not new [37]. Software reuse can be ad hoc, systematic,
based on composition of code, based on generation of code,
involving only code reuse, or involving reuse of all kinds
of artifacts. Software reuse can focus on technical issues
like programming language support, retrieval of artifacts,
and artifact repositories, as well as on nontechnical issues
like involvement of humans, initiation of reuse processes,
and modification of non-reuse processes [38], in addition to
organizational, economic, administrative, political, and psy-
chological impediments [39, 40].

Although in the 1980s some researchers such as Krueger
[36] believed that software reuse failed to become a standard
software engineering practice, today, libraries, frameworks,
and their APIs are commonplace and they are wholly pur-
posed to reuse [41, 42] and there is still renewed interest in
software reuse by many researchers [37, 38, 43—49]. These
researchers think that traditional software engineering meth-
ods are inadequate, and that software reuse can help building
bigger and more complex systems that can be delivered on
time and that perform better with regard to reliability and
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cost, providing, hence, a better way of doing software engi-
neering. Reusing the outcomes of previous projects could
increase the efficiency of software development. Although
it is not clear how general these benefits could be, some
researchers (e.g., [S0-52]) think that source code reuse could
improve programmer productivity. In a study conducted by
Selby [53], the findings show that module reuse could reduce
the average “total development time per source line” from
1.089 man hours to 0.047 man hours. Although this perfor-
mance looks to be rather idealized, because software reuse
requires finding the module to reuse, interfacing it with the
current project, and possibly editing it, if reusable code is
found, then the time saved could be impressive.

We could facilitate software reuse by taking into account
the relationship between the requirements of a project and
the code created during implementation. We need to mon-
itor these relationships in order to be able to match the
requirements of a new project to those recorded for past
ones. Although monitoring these relationships is vital to
many software engineering activities such as process compli-
ance and product improvement, and software understanding
and reuse, it is, unfortunately, person-power intensive, time-
consuming, error-prone, and lacks tool support. Therefore,
only few software development processes take it fully into
account. Automating monitoring the relationships between
requirements and source code elements, i.e., the automated
generation of traceability links, could smooth the way for bet-
ter solutions. We call this Requirement Traceability Recovery
(RTR).

2.2 Requirement traceability recovery

During the development of a software system, many arti-
facts such as requirement specifications, design, source code,
software analysis, and test models are created. Artifacts can
generalize, refine, rationalize, evolve from, overlap with, sat-
isfy, conflict with, or depend on other artifacts. Artifacts can
also be linked to the stakeholders that participated in their
creation. Establishing these relationships between the arti-
facts of a software system is called software traceability.

Software traceability allows describing the system from
different perspectives and levels of abstraction and con-
tributes to improving its understandability. Software trace-
ability is important for all phases of software development.
Traceability links can assist in executing and integrating
system changes, in coverage and verification analysis, in val-
idation, in system testing, in system inspection, and in system
acceptance. Software traceability is crucial for checking the
completeness and correctness of the system, for the quality of
its final version, for its maintenance, and for finding reusable
components in it [54-56].

Software traceability has been studied from many differ-
ent aspects. Some studies such as [57-62] focused on the
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diversity among software traceability and on defining it prop-
erly. Other studies such as [63—-67] looked to different ways
for supporting the establishment of traceability relations. In
some other studies such as [68—72], the emphasis was on
developing methods for representing and maintaining trace-
ability links. In some other work like [73—77], the focus was
on using traceability relations in the development life cycle.

Although, many studies such as [54, 65, 78-81] attempted
to perceive traceability as a concept that encompasses the
whole software development process and do not put special
emphasis on the requirements, the origins of traceability lie
in the field of Requirements Engineering (RE). Requirements
engineering is usually defined as an activity aiming at discov-
ering, documenting, and maintaining a set of requirements.
Since the term “engineering” is used, systematic and repeat-
able techniques need to be used to ensure the completeness,
consistency, and relevance of the system requirements [82].
A large part of the research dealing with traceability has been
done by researchers of this domain [83]. In many standards
and guidelines for requirements engineering, the traceability
of requirements is a concern [58, 84].

The focus of many researchers on traceability in the con-
text of the specification of system’s requirements led to
the extensive use of the term requirements traceability [58,
77]. Requirements traceability is concerned with establishing
traceability relations between requirements and other soft-
ware artifacts. Requirements traceability can be interesting
for stakeholders in different ways. An end user, for exam-
ple, may want to know the design objects that satisfy certain
requirements. A designer, on the other hand, may want to
know the constraints related to a given design object. The
constraints are defined by the requirements.

In software projects, the traceability of requirements
should be planned so that the people involved in the project
can take advantage of it in an efficient manner, and so that
the productivity of the project team is not influenced nega-
tively. The appropriate degree or extent of traceability allows
keeping an eye on implemented requirements and on the rel-
evant artifacts (e.g., models, source code, test cases, etc.) that
can be traced back to them. The right degree of traceability
needed in a given software project depends on many factors
such as the actual intended benefit of traceability, the cost,
the project complexity, the possibility of assigning require-
ments to artifacts, and the tools used during the software
development process.

In requirements traceability, relationships between
requirements and artifacts are defined and maintained.
Requirements traceability can be performed by writing and
updating cross-reference and indexing schemes or trace-
ability matrices manually. Many methods, environments,
and tools assume the manual identification of traceability
relations [70, 71, 85, 86]. The manual recovery of require-
ments traceability links in large systems can be costly and
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may overlook links. This can make organizations reluctant
to enforce requirements traceability. Therefore, a growing
body of research is investigating automatic Requirements
Traceability Recovery (RTR), i.e., the automatic recovery
of traceability links between requirements and other arti-
facts (e.g., [87-91]). The automatic recovery of links can
rely on information about artifacts and other links given
a set of inference rules [62, 92, 93]. As text is the com-
mon form of information representation, many automated
approaches rely on information retrieval techniques. These
approaches use the similarity between pairs of artifacts to
recover links between them [94, 95]. These approaches can-
not identify traceability links with a rich semantic meaning
when those pairs do not contain overlapping or semantically
similar words or phrases. In this case, the recovered trace-
ability links will not provide the benefits of using RTR and
will be of little use. The challenges for automated RTR lie
not only in the definition and in the description of the trace-
ability links, but also in their maintenance when the artifacts
change. Furthermore, when the artifacts are developed using
different tools, the complexity of automatic RTR will grow.
Due to the complexity of the deployed models and to the
lack of implemented tools, the application of automatic RTR
is limited and the relevant techniques are not widely adopted
in industrial settings.

In this work, when dealing with the RTR problem, we
focus on recovering traceability links between requirements
and source code elements (e.g., method, class, or file) that
implement them. Although, by doing so, we restricted the
scope of the general RTR problem, the complexity, however,
is still high enough as can be shown by the following formal
presentation and analysis of the problem.

A requirement can be related to many source code ele-
ments, i.e., implemented by many source code elements. A
source code element can be related to many requirements,
i.e., used in the implementation of these requirements.

Let R be the set of requirements with IRI= n, i.e., n is the
number of requirements.

Let C be the set of source code elements with ICl=m, i.e.,
m is the number of source code elements.

Let L be the list of candidate matches between require-
ments and source code elements produced by the RTR
approach. L is arelation between R and C, and hence a subset
of the Cartesian product between R and C, i.e., L SR x C.
Because R x C is a set consisting of n*m elements, there are
2 XM nossible subsets of this set.

Obviously, the RTP problem has a large (exponential)
number of potential solutions. Exploring this large search
space using conventional methods/algorithms such as brute-
force methods will be intractable. Such algorithms will be
B(2"*™), i.e., will have exponential complexity.

To avoid the intractability of conventional methods, we
will consider the RTR problem as an optimization problem
and seek to solve it using genetic algorithms.

2.3 Knowledge incorporation into requirements
traceability recovery

Knowledge can be incorporated into RTR in the form of
user feedback, where the user in our case is the designer
or developer. Feedback plays an important role in software
development and software engineering in general and helps
building better software [96—100]. There are many types of
feedback. Feedback on priorities, for example, is related to
the capabilities that need to be delivered and work organi-
zation. Feedback on design is related to properly capturing
the requirements. Feedback on working software is related to
building the right solution and planning necessary updates.
Feedback on code is related to allowing a good code review
workflow and experience. Some types of feedback enable
collaboration between stakeholders and other types enable
collaboration between developers.

As is the case for humans, where feedback clarifies under-
standing and helps seeing things in new ways, feedback can
make RTR learn and correct the course of link detection,
and hence work better and be more successful. Releasing
feedback requests at specific and spaced out points in time,
during the RTR search process carried out by the genetic
algorithm, can give the algorithm interesting insight into
designer/developer satisfaction about the link detection over
time and guide the search process.

We use two types of feedback metrics, namely binary feed-
back and a more granulated feedback using number range
ratings. In binary feedback, the designer/developer is asked
to rate each detected link between a requirement and a source
code element with either YES (1) or NO (0). YES means that
designer/developer is satisfied with the correctness of the
detected link. NO means that the link does not make sense
and the designer/developer is not satisfied with its correct-
ness.

In the more granulated feedback, the designer/developer
is presented with a scale consisting of the number range [0,
0.3, 0.5, 0.8, 1], with the following meaning:

0: the proposed link does not make sense and the

designer/developer is not satisfied at all with its correct-

ness.

e (.3: although the proposed link could make some sense,
the designer/developer is not satisfied with its correctness.

e (.5: the designer/developer is neutral/undecided concern-
ing the correctness of the proposed link.

e 0.8: the proposed link seems to make sense and the

designer/developer is satisfied with its correctness.
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e 1: the proposed Ilink makes sense and the
designer/developer is very satisfied with its correct-
ness.

2.4 Genetic algorithms and interactive genetic
algorithms

Genetic algorithms [101-103] are heuristic methods that
adapt principles of evolutionary biology to solve optimiza-
tion problems. They mimic the paired biological processes of
natural selection and sexual reproduction. They are universal
tools that can deliver good results in a short period of time.
They can therefore be applied when conventional methods,
for complexity reasons, fail to solve optimization problems
having a large number of potential solutions. When con-
fronted with high dimensionality, genetic algorithms avoid
the intractability of brute-force methods and are still able to
explore a wide set of potential solutions. They do this by
looking first for partial solutions to the problem. These are
then used to form fuller solutions by defining discrete neigh-
borhoods.

The basic idea in a genetic algorithm is to change and
combine initial candidate solutions for the intended problem
until a sufficiently good solution has been found. Figure 3
depicts the general form of a genetic algorithm.

An individual or chromosome of the population P corre-
sponds to a candidate solution from the search space of the
problem. The individual consists of genes and can be rep-
resented as a string of characters, a sequence of numbers, a
sequence of variables, etc. The first step in the algorithm is
to generate a starting population with random characteris-
tics. This is usually done by choosing individuals randomly
from the search space. In the next step, each individual in
the population P is assigned a fitness value using the fitness
function. The fitness function corresponds to the objective
function of the optimization problem. The bigger the fitness
value of an individual (compared to the fitness values of other
individuals in P), the greater is its survival probability. In the
following step, the algorithm uses the selection operator to
select those individuals that make up the next generation of
the population by taking into account the survival probabil-

Input: optimization problem with search space S and fitness function f
Output: best individual from the final population (optimized solution)

Generate starting population P randomly
WHILE (termination criteria not reached)

Calculate the fitness of the individuals in P
Select according to fitness
Apply genetic operators

Fig. 3 General form of a genetic algorithm
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ities. Individuals that are selected several times should be
renamed. The new generation contains as many individu-
als as the previous generation. After selection has ensured
the survival of the fittest, the genetic operators mutation and
crossover are applied in the following step with the aim of
affecting the population variety and allowing to strive toward
the achievement of optimal solutions by generating new and
fitter individuals. The mutation operator changes randomly
one or more genes of an individual. The mutation of each
gene of each individual of the population happens according
to a given mutation probability. The crossover operator com-
bines two parent individuals and generates two new child
individuals that will replace the parents in the population.
Each of the child individuals inherits some features from the
first parent and some from the second parent. Pairs of indi-
viduals selected from the population P are crossed over with
a certain probability. Each individual is involved only once.
While the genetic algorithm is looping, changes occur and
can produce new and better solutions (individuals). However,
there is no warranty that the new solutions will always be bet-
ter than the previous ones. This will be the case, for example,
when after a while, a number of individuals prevail and no
significant change can occur. The fitness of the individuals
could also decrease through mutation or crossover. It could
also be the case that the optimum has already been found
and no further improvement is possible. For this reason, it
is necessary to define a termination criterion that informs
the algorithm when the individuals of the population repre-
sent a sufficiently good solution. The algorithm can stop, for
example, after a certain number of iterations. It could also
terminate when there is no improvement over the previous
generation, or when the average improvement of the last gen-
erations has fallen below a threshold. When the termination
criterion is met, the algorithm ends and returns the individual
that has the best fitness in the population as the result.
Having humans in the loop of a genetic algorithm gave rise
to advanced optimization methods called Interactive Genetic
Algorithms (IGAs), which are gaining popularity in multi-
ple fields and are effective in solving optimization problems
with implicit or fuzzy indices. These methods allow users to
introduce their preferences and knowledge during the algo-
rithm’s search process in the form of user feedback. Figure 4
depicts the IGA process. The feedback is usually subjective
and unquantified. By observing the phenotypes of different
individuals in a generation using a human—computer inter-
face, the user can influence the fitness of the individuals.
There were many successful applications of IGAs in dif-
ferent fields (e.g., [104—110]). Evaluating individuals and
expressing their fitness through feedback is very important
for the performance and applicability of IGAs in complicated
optimization problems, because user fatigue resulting from
frequent interaction with the user may impose restrictions on
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(apply selection, crossover,
mutation)

Output optimized solution

Fig. 4 The interactive genetic algorithm process

the population size and the number of evolutionary genera-
tions [111].

2.5 Motivation

In this subsection, we provide a motivating example that illus-
trates the proposed work.

Suppose a company wants to develop a new large software
system and reuse as much as possible code from an existing
system, the company could apply a typical similarity-based
method. The output of this requirements traceability recovery
process would consist of a list of candidate links. This list
contains pairs of software artifacts (requirement, source code
element) ordered on the basis of their textual similarity. The
method works, but the accuracy of the recovered links may
be unsatisfactory, i.e., the recall and precision values are low.

These results provide a motivation to extend the similarity-
based method. A heuristic search algorithm can be an ideal
method that goes through requirements and source code ele-
ment lists to automatically identify correct links. This can be
done by a GA-based method that relies not only on textual
similarity between the requirements and source code ele-
ments but also takes into account some other properties of
the source code elements. For example, given in input a list
of requirements (R1, R2, R3, ...) and a list of source code
elements (SCE1, SCE2, SCE3, ...), the output of this process
can be as follows:

Requirement Source code element

R2 SCE1

R9 SCE21
R1 SCE20
R19 SCE32
RI11 SCE25
R7 SCE26
R4 SCE18
R3 SCE20
R4 SCE1

The method works, and the accuracy of the recovered links
improves, i.e., the recall and precision values are higher than
the previous ones, but improvement is still possible. Why
wait until the GA converges and returns the links? Why not
support the system during the search process through user
(designer/developer) feedback? Periodically, after a certain
time, the system asks the user for feedback (binary feedback
or granulated feedback) as follows:

Requirement  Source code  Binary OR  Granulated
element feedback feedback

R2 SCE1 1 0.75

R9 SCE21 1 1

R1 SCE20 1 0.5

R19 SCE32 1 0.25

R11 SCE25 1 0.75

R7 SCE26 0 0.25

R4 SCEI18 1 1

R3 SCE20 0 0

R4 SCE1 0 0.25

The approach works, and the accuracy of the recovered
traceability links between requirements and source code ele-
ments improves significantly.

3 Related work

Requirements traceability recovery for the assistance in soft-
ware reuse and other software engineering tasks is based in
many cases on information retrieval techniques [112-114],
such as the probabilistic model [21, 23], the vector space
model [22, 115, 116], and extensions of these models like
latent semantic indexing [67, 117, 118]. These methods are
usually similarity-based methods. They treat both require-
ments and source code as plain text and recover links by
computing the similarity between the representations of

@ Springer



200

M. H. Hamdi et al.

requirements and source code. It is usually assumed that
most of the identifiers in the source code are named with
meaningful words. If, however, there are traceability links
that do not depend on the textual similarity between the rep-
resentations, these methods will not work well. Furthermore,
information retrieval methods applied to recover traceability
links usually use parameters that were tuned for applications
that retrieve natural text. However, the textual data present in
software artifacts are not necessarily the same as the textual
data present in documents containing natural text. It is also
not clear if the data in one software system have the same
characteristics as in another one. To cover the weaknesses
of these methods and improve the quality and accuracy of
recovery, many approaches have been proposed.

In [119], for example, the authors proposed to improve
latent semantic indexing using hierarchical structure
enhancement, similarity thesaurus, identifier classifying, and
source code clustering.

In [120], the authors proposed to extend the similarity-
based methods by applying natural language processing and
document retrieval to the configuration management log.

In [33], the focus was on improving the traceability links
generated by information retrieval methods by considering
the vocabulary base used for performing traceability and also
by suggesting the use of secondary measures for the evalua-
tion and assessment of traceability mappings.

In [121], improving information retrieval-based trace-
ability recovery is attempted using a smoothing filter as a
complement and alternative to stop word removal. The filter
removes terms that do not allow discriminating artifacts, i.e.,
terms that do not help to characterize the semantics of the
artifact.

In [17], the authors proposed to improve the accuracy of
information retrieval-based traceability recovery by combin-
ing the results of mining software repositories with informa-
tion retrieval techniques. They present Trustrace, an approach
for recovering traceability links between requirements and
source code. Heterogeneous sources of information are used
to discard/re-rank traceability links that are generated by
information retrieval techniques.

In [32], a combination of textual and structural informa-
tion is suggested for the recovery of traceability links between
artifacts in situations where the artifacts describe different
tasks and may use different terminology. Structural analysis
performs the examination of control and data flow among the
artifacts and helps to alleviate this particular problem and to
allow the recovery of useful traceability links.

In [122], the author suggested to enhance information
retrieval-based traceability recovery by providing support
for the storage and incorporation of previous user feedback
across several retrieval sessions. This helps in dealing with
artifact evolution by avoiding the recalculation of link candi-
dates from scratch when the artifact is changed and, hence,
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releasing the user from making decisions he already made in
the past, repeatedly.

In [123], the authors aimed at reducing the number of false
positives during traceability recovery, i.e., avoiding links
between pairs of artifacts having high textual similarity but
that are not related to each other. They proposed an adaptive
version of relevance feedback. The decision whether to apply
feedback and how is based on the characteristics of the arti-
facts and on the characteristics of the previously classified
links.

In [124], it is suggested to improve information retrieval-
based traceability recovery by introducing a concept-based
semantic representation to provide a semantic and unified
description of system artifacts. Instead of adopting an infor-
mal (text-based) representation for the artifacts, a formal
(concept-based) representation is adopted. A knowledge-
based layer identifying terms and entities is used to bridge the
gap between natural language and a domain-specific vocab-
ulary (concepts).

In [125], and in an attempt to extend approaches for semi-
automatic link recovery across requirements and source code
in which textual analysis and information retrieval techniques
are the baseline, a method that further enables the automatic
generation of links is targeted. In this method, RTR is inves-
tigated as a combinational problem using an optimization
approach aiming at automating the link recovery process.
The RTR problem is studied as a big search space consisting
of pairs of requirements and source code elements that are
matched to each other using the artificial bee colony (ABC)
algorithm.

In [126], the authors argue that reusing knowledge from
existing projects and traceability between corresponding arti-
facts are important steps toward automatic software and
system development. They list barriers that are encountered
in industry with software artifact reuse and traceability and
suggest ideas to overcome these barriers.

In [127], the authors introduce a query quality prediction
approach for software artifact retrieval by adapting natural
language-inspired solutions for use on software data. They
apply the approach in the context of traceability link recovery
where the queries represent software artifacts. They report
that the approach can identify artifacts that are hard to trace to
other artifacts and may therefore have a low intrinsic quality
for text retrieval-based traceability link recovery.

In this work, we propose to consider requirements trace-
ability recovery for the purpose of software reuse as an opti-
mization problem. We extend information retrieval-based
traceability recovery by taking into account some proper-
ties of the artifacts that are related to the history of reuse. We
also integrate user feedback into the search process.
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4 Modeling the RTR problem using genetic
algorithms

In this section, we introduce the basic GA and IGA concepts,
namely the representation of individuals, the genetic opera-
tors, the evaluation of individuals (fitness function), and the
collection and integration of user (designer/developer) feed-
back. After that, we present a high-level pseudo-code of the
IGA that is adapted to the RTR problem.

4.1 Representation of individuals

To apply the GA and IGA, we represented an individual (i.e.,
a candidate solution) as a list in which each element (i.e.,
gene) is a pair (R, E). R is a requirement description selected
from the set of requirements at hand. E is a source code ele-
ment (e.g., class, method, file, etc.) selected from the source
code of the software system under analysis. Figure 5 shows
an example of an individual with three elements.

4.2 Genetic operators

Genetic operators guide the genetic algorithm toward a solu-
tion to a given problem. Selection, crossover, and mutation
are the main types of genetic operators that influence the
success of the algorithm.

4.2.1 Selection

A multitude of selection methods were proposed in the litera-
ture aiming at selecting the best individuals that will take part
of the next generation (e.g., roulette wheel selection [128],
Boltzmann selection [129], tournament selection [130], rank
selection [131], steady state selection [132], etc.). Many
researchers [132—134] argue that, in certain cases, the choice
of the adequate selection method can help avoid bias toward
highly fitted individuals.

The rank selection technique, for example, is recom-
mended especially when some individual fitness function
values are very high compared to others, in order to avoid
that these individuals dominate the selection process (as it is
the case with roulette wheel selection, for example).

In this paper, we run the GA and IGA using the rank
selection technique to generate a new population, i.e., the set

Requirement Code Element

R6 El
R2 E2
R7 E5

Fig.5 Representation of an individual
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Fig.6 Crossover operator

of individuals that will undergo the crossover and mutation
operators, from the current population. Rank selection [131]
consists of ranking the current population. The individuals
in the population are sorted in order of highest fitness to
lowest fitness with the highest being awarded a rank of N
(population size) and the lowest being awarded the rank one.
The associated rank is then used as fitness value for each
individual. The higher the rank, the higher the fitness.

4.2.2 Crossover

There are many types of crossover in the literature (single
point, two-point, uniform, arithmetic, etc.). In this paper,
we used a double, random, cut-point crossover. Given two
selected individuals (i.e., parents) /1 and /> based on rank
selection and a certain probability parameter, the crossover
operator allows creating two children 7’ and I’ from the
two selected parents /| and /5. A two-point crossover (Fig. 6)
consists of randomly selecting two points from the parents
11 and I, then everything between the two points is swapped
between the parents, creating two children 71’ and I5’.

4.2.3 Mutation
Given a selected individual, the mutation operator randomly

selects one or more elements (i.e., genes) from the list corre-
sponding to the selected individual (solution) /. Then, these
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Fig. 7 Mutation operator

elements are replaced by elements (pairs having the form (R,
E)) chosen randomly from the base of examples to form the
new individual I’. Figure 7 shows the effect of a mutation
operation that replaces the two pairs (R11, E11) and (R13,
E60) by the pairs (R4, E22) and (R1, E71), respectively.

4.3 Evaluation of individuals (fitness function)

The evaluation of individuals is based on two factors: (1)
semantic similarity between requirements and source code
elements and (2) some statistics from the reuse history. To
measure the semantic similarity, we used the cosine of the
angle between a vector that represents the requirement and a
vector that represents the code element. The statistics from
the reuse history include two measures: (i) Recency of reuse,
and (ii) Frequency of reuse.

4.3.1 Semantic similarity

To define the semantic similarity, we assume that developers
use consistent naming in various artifacts and, hence, artifacts
(requirements and code elements) having a high textual simi-
larity are good candidates to establish links between them. To
establish a link between a requirement and a code element,
we compute the semantic similarity between the requirement
text and the code element text (i.e., names of classes, meth-
ods, fields, variables, parameters, types, etc.). We use the
cosine similarity measure known in the field of Information
Retrieval (IR) [135]. Requirements and code elements are
considered as documents.

The documents are represented as vectors in a v-
dimensional space where v is the number of the different
terms in the vocabulary (all different terms appearing in the
documents). The vector for each document is obtained by
assigning a weight to each dimension (representing a spe-

@ Springer

cific term) of the term space. The weight w;; corresponding
to the term k; and document d; is computed using the Term
Frequency-Inverse Document Frequency (TF-IDF) method
known in the field of IR [136] as shown in Eq. (1). #f; is the
term frequency factor. idf; is the inverse document frequency
factor. freq;; is the raw frequency of term k; in document d;.
max; freqy; is the maximum term frequency in document d;.
N is the total number of documents and »; is the document
frequency of k;, i.e., the number of documents in which the
term k; appears, where i = 1,2, ...,vandj=1,2,...,N.

freq;;

N
wij = tfy-idf; = <—) -log<—) (M)
max; freq,j n;

The similarity between a requirement R and a code ele-

ment E is computed by determining the cosine of the angle
—_

between the vector R representing the requirement R and the

vector E representing the code element E, i.e., inner product
normalized by the vector lengths, as shown in Eq. (2):

o ROE
CosSlm(R, E) = —

Y- @)
R|-|E

SemSim, the function that computes the semantic similar-
ity value for an individual /, is defined as the average of the
semantic similarity values for the pair (R;, E;) over all pairs in
the individual / as shown by Eq. (3), where m is the number
of pairs in the individual 7 (i.e., individual size).

1 m
SemSim(I) = — > CosSim(Ri, E,-) (©)
mn i=1

4.3.2 Reuse history

From the reuse history, we use the following two types of
statistics: the recency of reuse of code elements, and the fre-
quency of reuse of code elements.

Recency of Reuse Measure (RR): The RR measure is
computed based on information extracted from the history
of reuse of the code elements of the software system. The
intuition behind introducing the RR measure is that code ele-
ments (classes, methods, etc.) that were reused more recently
than others are more likely to be reused now, i.e., are related
to the new requirement at hand. The RR measure for a given
code element is obtained by looking to time at which the
code element in the software system has been reused. The
RR measure for a code element E is given by Eq. (4), where
LTR stands for “Last Time of Reuse.” The value of the func-
tion RecOfReuse that computes the recency of reuse for an
individual 7 is computed as the average of the recency of
reuse value for the code element E; over all code elements
in the individual /. This average is then normalized by the
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current time to ensure that the value is in the interval [0, 1].
This is shown by Eq. (5), where m is the number of code
elements, i.e., the number of pairs, in the individual 7 (i.e.,
size of the individual).

RR(E) = LTRg @
YILi RR(E)

RecOfReuse(l) = —2—— 5)
Currenttime

Frequency of Reuse Measure (FR): The FR measure is
computed based on information extracted from the history
of reuse of the code elements of the software system. The
intuition behind introducing the FR measure is that code ele-
ments (classes, methods, etc.) that are reused more frequently
than others are more likely to be reused now, i.e., are related
to the new requirement at hand. The FR measure for a given
code element is obtained by looking to the number of times
the code element in the software system has been reused. The
FR measure for a code element is given by Eq. (6), where
NR stands for “Number of Reuses.” The value of the func-
tion FreqOfReuse that computes the frequency of reuse for
an individual 7 is computed as the average of the frequency
of reuse value for the code element E; over all code elements
in the individual /. This average is then normalized by the
maximum number of reuses (over all code elements in the
individual) to ensure that the value is in the interval [0, 1].
This is depicted by Eq. (7), where m is the number of code
elements, i.e., the number of pairs, in the individual 7 (i.e.,
size of the individual).

FR(E) = NRg (6)

it FR(E)

Freq of Reuse() = @)

_ m
max; FR(E))
4.3.3 Fitness function

The GA/IGA is a mono-objective optimization technique. To
apply the GA/IGA, the evaluation of an individual should
be formalized as a mathematical function called “fitness
function.” The fitness function F1 used in this work com-
bines the three functions described above, namely SemSim,
RecOfReuse and FreqOfReuse. In the fitness function for-
mula depicted in Eq. (8), the weights assigned to SemSim,
RecOfReuse, and FreqOfReuse were set to 50%, 25%, and
25%, respectively. The choice of these weights was through
trial and error.

SemSim(I) + RecOf Reuse(I)+FreqOf Reuse(l)

FI(I) = > 2 ®)

4.4 Collection and integration of user feedback

RTR is a context-sensitive operation. The person who is
responsible for this operation is either the designer or the
developer or both. The designer/developer can judge the cor-
rectness of a traceability link between a requirement and
a source code element proposed by an optimization tech-
nique. The integration of the domain-specific knowledge
in the RTR system is done through interaction with the
designer/developer by feedback collection.

In general, when collecting feedback, the basic prin-
ciple as discussed in [97], is that, during an experiment,
subjects are asked for feedback at different times. These
requests for feedback are called probes. The frequency of
probing and the time allowed for feedback are two parame-
ters to consider during feedback collection. There are many
strategies that can be used to decide about the frequency
of probing. Probing can happen at random points, at regu-
lar intervals, designer/developer driven (i.e., whenever the
designer/developer thinks it is appropriate), event-driven
(e.g., the best fitness value reaches certain thresholds), or
according to a combination of these strategies.

In our case, as for the frequency of probing, the IGA asks
the designer/developer for feedback at specific and spaced
out points in time, during the search process, i.e., repeatedly
after a fixed number of iterations. The time allowed for the
designer to provide feedback is not limited.

During the execution of the IGA, the designer/developer is
asked to rate the traceability links between requirements and
code elements detected by the algorithm so far by providing
feedback. This is done each time a defined number of itera-
tions is performed. As mentioned earlier, we use two types of
feedback metrics, namely binary feedback and a more gran-
ulated feedback using ratings in the number range [0, 0.3,
0.5,0.8, 1].

Feedback is integrated into the IGA through the new fit-
ness function F2 given by Eq. (9).

F1(I) + > | Feedback(R;,E;)

F2(I) = 3 o 9

In Eq. (9), Feedback(R;,E;) represents the feedback pro-
vided by the designer/developer for the traceability link
between requirement R; and source code element E;. The
feedback value for an individual / is computed as the aver-
age of feedback value for the pair (R;, E;) over all pairs (links)
in the individual /. m is the number of pairs, in the individ-
ual 7 (i.e., size of the individual). The feedback value for an
individual / is a value in the interval [0, 1]. The fitness func-
tion F2 averages the value of fitness function F'1 (which is
based on semantic similarity and history of reuse) with the
feedback provided by the designer/developer. The intuition
behind this choice was to ovoid being led astray by focusing
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Fig.8 Algorithm for the IGA

adaptation to the RTR problem Nbrinteractions

Input: Set of requirements; Set of code elements; Reuse history; Percentage (P%); MaxNbrlterations; Nbrlterations;

Output: Set of traceability links between requirements and code elements.

01: fori=1 ... Nbrinteractions do

02: Evolve GA for Nbrlterations

03: Select P% of best solutions (individuals) from the current population

04: for-each selected solution do

05: Ask the designer to provide feedback about each traceability link in the selected solution
06: Update the fitness function value of the selected solution to integrate the feedback

07: end for-each

08: Create a new GA population using the updated solutions

09: end for

10: Continue (non-interactive) GA evolution until it converges or it reaches MaxNbrlterations

on the wrong thing, i.e., not focusing too much on semantic
similarity and history of reuse, nor on feedback.

4.5 Interactive genetic algorithm adaptation

We aim at detecting traceability links between requirements
and source code elements by the means of a heuristic search
technique that integrates semantic similarity, reuse history,
and designer/developer’s feedback. The algorithm in Fig. 8
shows the pseudo-code of the IGA adaptation to the RTR
problem.

The algorithm takes as input a set of requirements, a set of
source code elements, statistics from reuse history. The algo-
rithm takes also as input a percentage value corresponding
to the percentage of a population of solutions (individuals)
that the designer/developer is willing to provide feedback
for, the maximum number of iterations for the algorithm,
and the number of interactions with the designer/developer
during which feedback is provided. “Nbrlterations” is the
number of iterations the algorithm is allowed each time to
run before asking for feedback. Initially (line 2), the algo-
rithm runs for a certain number of iterations (i.e., usually
the maximum number of iterations divided by the number
of interactions). Then, a percentage of the solutions from
the current population is selected (line 3). In lines 4-7, we
receive the designer/developer’s feedback for each traceabil-
ity link in each selected solution, then, we update the fitness
function value of each selected solution. We then generate
a new population of individuals (line 8) by applying the
crossover operator and mutation using a probability score
in order to ensure diversity. This step produces the popula-
tion for the next generation. The algorithm terminates when
the maximum iteration number is reached and returns the
best solution.

5 Empirical study
In this section, we describe the definition, design, and set-

ting of the experiments, following the general guidelines by
Wohlin et al. [137].
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5.1 Experiment definition, design and context

The goal of the experiments was to evaluate the proposed
RTR approach. As mentioned earlier, we will evaluate the
approach using three object-oriented open-source projects.
In a first set of experiments, we perform the evaluation
by running a GA to conduct RTR automatically based
only on semantic similarity and reuse history. In a sec-
ond set of experiments, we incorporate additionally user
(designer/developer) knowledge in the form of feedback
using an IGA. We conduct this evaluation using two types of
feedback metrics, namely binary feedback and a more gran-
ulated feedback using ratings in the number range [0, 0.3,
0.5,0.8, 1].

We aim at supporting the developer/designer who has
a set of requirements and is looking for code elements to
reuse. These code elements should be related to the require-
ments at hand. We want to find out whether the presented
approach could help in dealing with the recovery of trace-
ability links between the requirements and the code elements
of a software system. We want to evaluate the ability of the
approach to generate correct traceability links by assessing
its performance and its stability, i.e., its ability to allow a
stable performance during different executions. We will also
compare the performances of the GA, the IGA, and another
approach proposed in the literature. We will determine the
precision and recall of the approach by applying it on a set
of existing projects for which we have information about the
relationships (traceability links) between requirements and
code elements. We will run the approach multiple times (31
executions for each project) and observe its behavior in terms
of precision and recall scores.

5.2 Experimental settings

Parameter tuning was performed by trial and error by execut-
ing several tests. The following settings were found to work
well. The “Maximum number of iterations” (stopping crite-
rion) parameter was set to 10,000. The “Maximum size of the
population” parameter was set to 40. The “Crossover proba-
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bility” parameter was set to 90%. The “mutation probability”
parameter was set to 10%. This relatively high mutation rate
allows to diversify the population continuously and discour-
ages the occurrence of premature convergence.

To run the experiments, we used a HP Proliant DL580
(Gen8) server (Two processor Intel Xeon E7-4820v2 at
2.0 GHz with 8-core, Cache Memory 20 MB, 64 GB of
RAM). The execution time of the approach depends on the
number of requirements and code elements, and on the length
of their texts. In the GA case, the execution time of the
algorithm, i.e., the time needed for performing 10,000 iter-
ations, was less than 5 min, which is a good indicator for
the scalability of the approach. In The IGA case, the execu-
tion time was mainly dependent on the time needed by the
developer/designer to enter the feedback.

5.3 Description of the datasets

For the evaluation of the approach, we used three medium-
sized open-source projects that are widely used in traceability
recovery evaluation [18, 19, 65, 67, 138—141]:

e LEDA (Library of Efficient Datatypes and Algorithms)
[142]: A freely available C + + library of foundation classes
developed and distributed by Max-Planck-Institut fiir
Informatik, Saarbriicken, Germany. We used the release
3.4.

e Albergate: A Hotel management system developed in Java,
according to a waterfall process, by a team of final year
students at the University of Verona (Italy). Available at
http://coest.org/ (CoEST).

e eTour: A Tour guide system. Available at http://coest.org/
(CoEST).

For all three projects LEDA, Albergate, and eTour, we
have the requirements, the source code, and the traceability
links between requirements and source code elements. We
use these projects for the evaluation of our approach. We
launch our approach (i.e., the 3 variants of the approach, each
variant in a separate set of experiments) on these systems in
order to evaluate its ability to detect the traceability links.

The Library of Efficient Data types and Algorithms
(LEDA) is a software library providing C+ + imple-
mentations of a broad variety of algorithms for graph
theory and computational geometry. It was originally
developed by the Max Planck Institute for Informat-
ics, Saarbriicken, Germany. Now it is further devel-
oped and distributed by the Algorithmic Solutions Soft-
ware GmbH (https://www.algorithmic-solutions.com/index.
php/products/leda-free-edition). We used an older version
(release 3.4). The data sets for the Albergate and eTour sys-
tems were downloaded from http://coest.org/ (CoEST). The
CoEST (Center of Excellence for Software & Systems Trace-

Table 1 Details of the datasets

Project name KLOC  #Classes # Methods # Requirements
Leda 95 208 283 88
Albergate 20 95 119 17
eTour 65 116 212 58

ability) is a website created to provide data sets for RTR
investigations.

We selected the systems LEDA, Albergate and eTour
because they include the requirements document, source
code divided by classes, and traceability links from the
requirements document to the source code elements of each
system.

When the approach is to be used in a real-world applica-
tion, a reuse environment that stores information about the
reuse history of the individual code elements will provide the
recency of reuse and frequency of reuse data for the source
code elements. In our case, when evaluating our approach,
no reuse history data were available. For the purpose of the
evaluation, we assumed values for the recency of reuse and
frequency of reuse of the source code elements, based on our
estimation (subjective estimation based on the generality of
the source code elements) of the reuse probabilities of the
source code elements.

The details of these datasets are shown in Table 1.

5.4 Experimental variables

In the context of the proposed experiment, the independent
variable was the RTR method used. We used the following
four treatments: GA (proposed in this work), IGA with binary
feedback (proposed in this work), IGA with granulated feed-
back (proposed in this work), and IR-based method (from
related work).

The dependent variable, the outcome observed in the
study, was the accuracy of the tracing result. We use two
widely accepted information retrieval metrics, namely recall
and precision [143] to measure the accuracy and access
the approach. Recall is the ratio of the number of correct
traceability links (between requirements and source code
elements) retrieved by the approach over the total number
of correct traceability links (Eq. 10). Precision is the ratio
of the number of correct traceability links retrieved by the
approach over the total number of traceability links retrieved
by the approach (Eq. 11). In general, precision is a measure
of quality. When the approach returns more correct links
than incorrect ones, precision is high. Recall is a measure
of quantity. When the approach returns most of the correct
links, recall is high.
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Fig.9 Evolution of the fitness functions for the three projects eTour, Albergate, and Leda

Fig. 10 Recall and precision
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Fig. 11 Recall and precision
results for 31 executions of the
GA on the Albergate project
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results for 31 executions of the
GA on the Leda project
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Precision and recall require the use of knowledge or infer-
ence as to the correct answers. As mentioned earlier, for all
three systems that we used for the evaluation of our approach,
namely LEDA, Albergate, and eTour, we have the require-
ments, the source code, and the traceability links between
requirements and source code elements.

|correct retrieved|

RTR_recall = ———— (10)
|correct|
.. |correct retrieved|
RTR_precision = ——X———— (11)
|retrieved|
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5.5 Results and discussion

In a first set of experiments, we performed the evaluation by
running a GA to conduct RTR automatically based only on
semantic similarity and reuse history on the projects shown in
Table 1. Figure 9 shows the evolution of the fitness functions
for the three projects eTour, Albergate, and Leda. Figures 10,
11, and 12 depict the precision and recall values (y-axis)
obtained for 31 executions (x-axis) for eTour, Albergate,
and Leda, respectively. The average (precision, recall) values
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Fig. 13 Recall and precision
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Fig. 14 Recall and precision
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(averaged over the 31 executions) were as follows: (72.71%,
70.35%) for eTour, (66.16%, 63.78%) for Albergate, and
(75.60%, 75.70%) for Leda.

Despite the randomness effect that is present in any meta-
heuristic technique application, the approach looks to be
stable enough as there are no noticeable fluctuations in the
values of precision and recall during different executions of
the approach for all three systems. These results are also
promising with regard to performance expressed by preci-
sion and recall. For example, the average (precision, recall)
values outperform those values reported in [138] when using
the vector space model of information retrieval on the eTour
project when they got (17%, 47%). The average (precision,
recall) values also outperform those values reported in [65]
when using the probabilistic information retrieval model
on the Albergate project when they got (48.33%, 50%).
The average (precision, recall) values also outperform those
values reported in [140] when using the probabilistic infor-
mation retrieval model on the Leda project when they got
(25%, 53.06%).

It is noteworthy that the average (precision, recall) values
for the Albergate project are relatively smaller than those
values achieved by the GA approach for the Leda and eTour
projects. This is probably related to the size of the Albergate
project that has a smaller number of requirements and code
elements. Heuristic search techniques usually perform bet-
ter, i.e., produce better precision and recall scores, when the
number of examples increases.

In a second set of experiments, we incorporated addi-
tionally user (designer/developer) knowledge in the form of

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

feedback using an IGA. We conducted this evaluation using
two types of feedback metrics, namely binary feedback and a
more granulated feedback using ratings in the number range
[0, 0.3, 0.5, 0.8, 1]. The number of interactions with the user
was set to 10.

IGA requires feedback from humans. When the approach
is to be used in a real-world application, experts, i.e., design-
ers and developers of the software systems to be developed
and the systems to be reused, and other experts in software
engineering would provide such feedback. In our case, and
for the purpose of evaluating the approach, providing the
feedback is a relatively easy task, because we, the authors,
already know the requirements, the source code, and the
traceability links between requirements and source code ele-
ments. Hence, providing the feedback is straightforward and
there is no risk of bias or lack of independent expertise.

Figures 13, 14, and 15 depict the precision and recall
values (y-axis) obtained for 31 executions (x-axis) of the
IGA with binary feedback for eTour, Albergate, and Leda,
respectively. The average (precision, recall) values (averaged
over the 31 executions) were as follows: (78.75%, 74.29%)
for eTour, (75.08%, 71.11%) for Albergate, and (81.35%,
77.87%) for Leda.

Again, despite the randomness effect that is present in any
meta-heuristic technique application, the approach looks to
be stable enough as there are no noticeable fluctuations in the
values of precision and recall during different executions of
the approach for all three systems (see Figs. 13, 14, and 15).
These IGA results with binary feedback are also promising
with regard to performance expressed by precision and recall
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as we notice a considerable improvement against the GA in
both precision and recall levels for all three projects.

Figures 16, 17, and 18 depict the precision and recall val-
ues (y-axis) obtained for 31 executions (x-axis) of the IGA
with granulated feedback for eTour, Albergate, and Leda,
respectively. The average (precision, recall) values (averaged
over the 31 executions) were as follows: (87.40%, 85.37%)
for eTour, (81.63%, 78.74%) for Albergate, and (89.06%,
85.47%) for Leda.

@ Springer
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Again, despite the randomness effect that is present in any
meta-heuristic technique application, the approach looks to
be stable enough as there are no noticeable fluctuations in
the values of precision and recall during different executions
of the approach for all three systems (see Figs. 16, 17, and
18). These IGA results with granulated feedback are also very
promising with regard to performance expressed by precision
and recall. There is a noticeably considerable improvement
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Table 2 Summary of the results

of the different approaches Project GA IGA binary feedback  IGA granulated IR-based approaches
feedback
Precision Recall Precision Recall Precision Recall Precision Recall
Leda 75.6 75.7 81.35 77.87 89.06 85.47 25 53.06
Albergate 66.16 63.78 75.07 71.11 81.63 78.74 48.33 50
eTour 72.17 70.35 78.75 74.29 87.4 85.37 17 47

against the GA and the IGA with binary feedback in both
precision and recall levels for all three projects.

Table 2 provides a summary of the presented results for the
GA, IGA with binary feedback, IGA with granulated feed-
back, and IR-based approaches from related work (results for
Leda from [140], results for Albergate from [65], results for
eTour from [138]).

The results of the IGA-based approach with granulated
feedback—measured in terms of two well known information
retrieval metrics, namely precision and recall—are satisfac-
tory and very encouraging and this enforces our belief that
IGA-based RTR can play a useful role in software reuse.

5.6 Threats to validity

In our approach, we rely partly on computing the similar-
ity between the representations of requirements and source
code by treating both requirements and source code as plain
text and assuming that source code identifiers (functions,
variables, types, classes, and methods) are named with mean-
ingful words. If this is not the case, the performance can
decrease. However, we believe that professional program-
mers will ensure that they capture the application-domain
knowledge that they process by the mnemonics for identi-
fiers when they write the code. For traceability links that do
not depend on the textual similarity between the representa-
tions, we rely on the reuse history and on the incorporated
designer/developer knowledge to support the recovery.

Another problem that could influence the effectivity of the
approach is user fatigue resulting from the user’s evaluation
of the individuals. In order to alleviate user fatigue, the user
is just asked to provide feedback in certain points in time.

Additionally, the use of precision and recall for evaluat-
ing the effectiveness of the approach may not cover all its
strengths and weaknesses. To assess other dimensions, like
the usefulness of the recovered links for reuse, it would be
interesting to consider additional measures.

For example, Sundaram et al. [33] used a measure called
“selectivity” that can be used instead of precision in order
to determine whether the candidate lists of traceability links
returned by the approach are of acceptable sizes. They define
selectivity as ILI/(n*m) where L is the list of candidate
matches between requirements and source code elements

produced by the RTR approach, n is the number of require-
ments, and m is the number of source code elements. In
general, when an analyst has to perform RTR manually, each
requirement has to be compared to each source code element,
which means that there are n*m potential candidate matches
to be checked. Selectivity measures the savings incurred by
the analyst when manually going through the list L gener-
ated by the automated RTR approach rather than manually
comparing each (requirement, source code element) pair. The
smaller the selectivity, the better the savings for the analyst.
The authors argue that selectivity is not an exact measure
of effort savings, because it assumes that the analyst will
be correcting only errors of commission found in the list of
candidate matches. Selectivity needs therefore to be consid-
ered in concert with recall. The higher the recall, the fewer
errors of omission the analyst needs to fix, the better selec-
tivity approximates effort savings. The authors came to the
conclusion that in certain cases, secondary measures, like
selectivity, significantly affect the analyst’s perception of the
quality of the results. This means that, in some cases, the
assessment of the results of a trace given primary measures,
like recall and precision, can be different from the assessment
of the results using secondary measures, like selectivity.

6 Conclusions

In this paper, to support software reuse, we proposed a novel
search-based RTR approach using genetic algorithms, that
relies not only on semantic similarity between software arti-
facts, but also takes into account the history of reuse of the
artifacts, and incorporates knowledge into RTR in the form
of user (designer/developer) feedback.

We implemented the approach as a plugin integrated
within the Eclipse platform and we performed multiple exe-
cutions of the approach on three open-source projects. The
results of the experiments show that the approach is stable
and is performing well. The IGA with granulated feedback
delivered the best results and looks to be promising.

While the results of the approach are very promising in
terms of precision and recall, we plan to extend it in two
different ways: (1) expand our study to include additional
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datasets and (2) do more experimentations and analyses of
feedback use.
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