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Abstract
Unlike several other engineering disciplines, software engineering lacks well-defined research strategies. However, with 
the exponential rise in automation, the demand for software has observed an enormous elevation. Simultaneously, it neces-
sitates having zero failures in the software modules to maximize the availability and optimize the maintenance cost. This 
has attracted many researchers to try their hand in formalizing the strategies for testing of software. Numerous researchers 
have suggested various models in this context. The authors in this paper present a sequential ensemble model to predict 
software faults. The employment of ensemble modeling in software fault prediction is motivated by its competence in various 
domains. The proposed model is also implemented on the 8 datasets taken from PROMISE and ECLIPSE repository. The 
proposed model’s performance is evaluated using various error metrics, viz. average absolute error, average relative error, 
and prediction. The obtained results are encouraging and thus establish the competence of the proposed model.
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1 Introduction

Various researchers generally have well-defined research 
strategies that not only have detailed guidance but also 
possess simplified views from observers’ perspectives. For 
instance, the public can understand large-scale medical stud-
ies well enough so as to discuss the risks associated with an 
experimental treatment. However, this is not true for soft-
ware engineering researchers as they do not have any well-
understandable guidance [1]. Various researchers have made 
several attempts to formalize software engineering research, 
but it fails to paint a comprehensive picture [2]. As a result, 
rigorous research is taking place in this dimension to fill the 
void. Authors in this paper attempt to formalize the method 
of software fault prediction through a sequential ensemble 
model [3, 4].

The motive for selecting this topic for research is that the 
prime reason for software failures is the faults present in 

software modules affecting the software’s reliability. It may 
lead to dissatisfaction among users, eventually leading to 
the downfall of the company. However, in the current sce-
nario, when software demand is exponentially increasing in 
the industries, there is nearly a zero-tolerance for software 
faults. Additionally, the software has a considerable number 
of modules that further intricate the identification of fault-
prone modules. This has further opened avenues for research 
in the field of software engineering, particularly in the field 
of software fault prediction (SFP) [5, 6].

SFP aims to thoroughly inspect the software’s quality 
before its release by inspecting the fault vulnerability of 
the software modules [7]. Identification of fault vulnerable 
modules emphasizes a specific focus on these modules to 
efficiently manage the resources by reducing the number of 
faults post-implementation [8]. SFP focuses on accurately 
predicting the fault vulnerability of the software modules 
so as to maximize software availability. Moreover, it also 
helps to minimize the maintenance cost and thus achieves 
high-quality software products [9].

Machine Learning (ML) has demonstrated success-
ful and widespread deployment for solving classifica-
tion problems of SFP [10]. Here, classification problem 
refers to classifying Fault-Prone (FP) and Non-Fault-
Prone (NFP) modules. Now, this classification problem 
in SFP has several associated challenges: class imbalance 
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problems, irrelevant features, and noise [11]. Hence, a 
single ML technique fails to handle all these challenges 
and thus leads to performance degradation. Hence, it is 
widely accepted that ensemble modeling may overcome 
the limitations that remain unaddressed by individual ML 
classifier [6, 12]. This belief is strengthened by the proven 
competence of ensemble learning algorithms (ELA) in 
various research fields [10, 13]. In the literature, it is also 
claimed that ensemble classifiers overcome the limitations 
of individual classifiers. Moreover, no learning technique 
can handle SFP’s significant challenges like imbalance 
problems, the presence of redundant features, and noise 
in the dataset [14, 15]. All these applications advocated 
that the application of ELA in SFP as it outperforms the 
individual classifier algorithm [6, 16].

The class imbalance problem occurs when there is an 
extreme imbalance between Fault-Prone (FP) and Non-
Fault-Prone (NFP) modules. Hence, in this scenario, the 
dataset is highly skewed toward FP or NFP modules. Gen-
erally, FP modules are relatively small and rarely occur but 
have considerable significance. However, learners primarily 
focus on NFP modules while ignoring the FP modules. Here, 
data balancing is implemented to resolve the skewness in the 
dataset to improve the performance of ELA for SFP mod-
els. In the context of class imbalance, ML researchers have 
suggested two methods to handle this. As per a suggested 
method, a typical cost is to be assigned to training examples. 
The other method suggests resampling the original dataset 
by oversampling the minority class and under-sampling the 
majority class [14]. Hence, various studies suggest Synthetic 
Minority Oversampling Techniques (SMOTE) for balancing 
to enhance the performance of classification [17].

Also, it is evident that the performance of classifica-
tion learner is affected by the quality of data used [13, 18]. 
Resultantly, corrupted data in real datasets may impede the 
decisions, and thus, the ensemble classifiers built from such 
data lack accuracy. A specifically designed ensemble-based 
framework may be helpful in this case, and hence, authors 
propose a framework that combines ELA with noise filter-
ing, feature selection, and data balancing. Here, feature 
selection eliminates the redundant and less significant fea-
tures to consider only principal features for training. Consid-
eration of principal features aids in reducing the complexity 
of the algorithm, thus achieving speed and cost-effective-
ness. Here, in order to eliminate the less useful features, it 
employs the Information Gain approach, which has been 
widely accepted in various studies related to SFP [19].

Hence, the authors in this paper aim to study the large 
scale experiment to understand the effect of ensemble mod-
eling in SFP. The paper also presents a thorough comparison 
of individual techniques at each stage. Thereafter, a new 
sequential ensemble model is presented that aims to address 
the challenges of the individual model.

The related work by various researchers demonstrates 
that ELA achieves robustness. Summarizing this, when 
ELA is implemented on selected features of balanced data, 
it achieves remarkable performance improvement. Thus, it 
needs to examine the ensemble techniques to achieve robust 
performance. The objective of the study is to identify the FP 
modules efficiently.

The work is organized into various sections. The require-
ment for a formalized method for SFP is discussed in Sect. 1. 
Materials and methods are presented in Sect. 2. The pro-
posed sequential ensemble model is elaborated in Sect. 3. 
The results obtained from the proposed model are discussed 
in Sect. 4. Finally, the manuscript is concluded in Sect. 5.

2  Materials and methods

The ensemble model contains a learning prototype where 
multiple models are trained on the same datasets, and 
the forecast of these models are combined to forecast the 
future values. The ensemble approach gains performance 
enhancement over individual models owing to reduced bias 
and variance. Ensembling involves training multiple (same 
or different) models individually, which further combines 
their results. These results are combined by feeding into a 
meta-model that uses individual models’ values to predict 
the final value. The ensemble modeling may be broadly cat-
egorized into sequential model and parallel model, which 
are defined as follows:

2.1  Sequential

In this method, base learning models are dependent on each 
other. A classic example of a sequential model is AdaBoost.

2.2  Parallel

In this model, base learning models are independent of each 
other such as Random Forest.

This broad classification of the ensemble model is shown 
in Fig. 1a, b.

The following section discusses the material and method 
used for this research work.

2.3  Data collection

In this manuscript, authors have selected 8 fault datasets 
for experimental analysis. These datasets have been taken 
from various open-source projects present in PROMISE 
and Eclipse bug data repository [20]. Here, PROMISE is an 
open-source repository that contains fault datasets for vari-
ous open-source software. Eclipse repository contains fault 
information of the Eclipse project that contains thousands of 
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files. This project is similar to an industrial system in terms 
of size and complexity. The dataset contains various metrics 
like structure and complexity at the file-level. The dataset 
contains "filename," "count of errors reported six months 
before release," "count of errors reported six months after 
the release," and "complexity metrics." Usage of standard 
datasets enables the reproduction of the standard experi-
ments that aids in performing comparative performance 
analysis. Here, we have taken the datasets with more than 
300 modules to check the proposed model’s efficiency. The 
datasets are represented in Table 1.

3  Proposed sequential ensemble model

The proposed model is presented abstractly in Fig. 2. Here, 
the output of each model is given to Neural Network Autore-
gression (NNAR). NNAR model is run multiple times so as 
to achieve the best-fitting model with the least error [21, 22]. 
Thereafter, the fitted values from the NNAR model are fed 
to support vector regression (SVR) model.

In the proposed model, authors suggest tuning the hyper-
parameters of SVR to obtain an accurate prediction. The 

model mainly considers three hyperparameters, viz. soft 
margin constant cost, the linearity degree of the hyperplane 
( � ), and finally, the error tolerance ( � ). These parameters 
refer to the misclassification of the training data. Here, the 
model picks a small margin hyperplane for larger values to 
enhance the said model’s performance in terms of classifica-
tion. On the contrary, it picks a larger margin hyperplane for 
smaller values. The model derived from a line function is 
mathematically defined by the following equation:

here,

s indicates the count of support vectors.
In the model C can be mathematically described as:

where

These parameters indicate the impact of a single train-
ing example considering minimal gamma (distant) and 
maximum gamma (near). Here, gamma can be understood 
as the inverse of the radius of influence, and thus, a large 

(1)m.a + n = 0

(2)m =
∑k

i=1
Ψibiai

(3)n =
1

s

∑s

i=1

(
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)
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1
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∑p
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(6)�i ≥ 0

(7)i = 1..p

Fig. 1  a Sequential Ensemble Method. b Parallel ensemble methods

Table 1  Dataset for the proposed model of SFP

Dataset Repository Modules KLOC Modules 
with fault

% Distri-
bution

PROP 
V121

PROMISE 2998 628 426 16.5

XERCES 
1.4

PROMISE 589 141 438 74.3

CAMEL 
1.6

PROMISE 966 113 189 19.5

ANT 1.7 PROMISE 746 208 167 22.3
XALAN 

2.6
PROMISE 886 411 412 46.5

EMF 2.0 ECLIPSE 6730 796 976 14.5
EMF 2.1 ECLIPSE 7889 987 855 10.8
EMF 3.0 ECLIPSE 10,594 1305 1569 14.8
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gamma indicates that the radius of the area of influence 
of support vectors includes only support-vector. In such a 
case, normalization fails to avoid overfitting. Conversely, 
smaller gamma indicates the overly contrived model that 
fails to retain the complexity of data. It can be mathemati-
cally expressed as follows:

An extensive detail of the proposed model is given in 
Fig. 3. Here, the historical data are segregated into training 
data and testing data. In the model, the actual number of 
faults is given to NNAR individually. This NNAR gives the 
fitted values which are input to the SVR model. Finally, the 
predicted values are obtained through the SVR model. In the 
end, the performance of the model is established in terms of 
several error metrics [23].

3.1  Implementation steps

Various steps in the proposed ensemble model for SFP are 
depicted in Fig. 4.

1. As mentioned earlier, the proposed model considers 8 
well-known fault datasets from PROMISE and Eclipse 
bug data repository [20].

2. Further, if the dataset consists of zero to indicate missing 
values, it is suggested to take z-score transformation as 
log transformation may again lead to undefined values. 
However, log transformation may be done for the rest 
of the datasets. The equations for log and z-score trans-
formation are given in Eq. 9 and 10, respectively. These 

(8)R
(
ai, aj

)
= exp

(
−�

|||
|||ai − aj

|||
|||
2
)

transformations basically help in minimizing the vari-
ances among the dataset.

  where

3. Thereafter, the transformed dataset is classified into 
training dataset and test dataset.

4. The training dataset part after the classification is given 
to the model for learning purposes. During learning, 
the model extracts useful patterns and information in 
the data. The feeding of actual data follows it into the 
NNAR model. The equation for the same is expressed 
as follows:

  Then, fitted values of NNAR model are given as 
input to the SVR model which can be mathematically 
expressed as follows:

  Various parameters that have been used in above equa-
tions are described as follows in Table 2:

(9)ât = log
(
at
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(10)ât =
at − mean

(
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)

SDt
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(13)b̂t = f
(
ât
)
+ �t

(14)g
(
ct
)
=
(
w.Ψt

(
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Fig. 2  Abstract view of pro-
posed model

Fig. 3  Detailed view of sequen-
tial ensemble model
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  The parameters are manually tuned in the model by 
fixing a parameter to its default value, and the other 
parameter is adjusted accordingly. During each adjust-
ment, the accuracy of the model is checked regularly. 
Now, when some parameter achieves a required value, 
other parameters are adjusted accordingly while check-
ing the model accuracy. Thus, the values of all param-
eters are manually adjusted. The NNAR model is exe-
cuted multiple times with different seed value each time 
to make autoregression, and seasonal autoregression 
equal to zero that helps avoid missing values in the fit-

ted result of NNAR. SVR model is also set to default and 
modified so as optimize its value. This process of fixing 
some parameter’s value and adjusting other parameters 
in order to find optimum value is called cross-validation.

5. The trained model’s performance can be measured in 
terms of various error metrics for the test dataset. The 
accuracy of the prediction of the proposed model is also 
verified by various error metrics as described in the sub-
sequent section.

4  Results and discussions

In order to find the efficacy of the proposed approach, exper-
iments are conducted with reference to the collected data-
sets and other ensemble techniques. The section is divided 
into two subsections: In the first subsection, an empirical 
evaluation of the proposed ensemble learning approach is 
done using two scenarios, viz. Intrarelease prediction and 
Intrarelease prediction. Secondly, a comparative analysis is 
performed for proposed technique with other ensemble tech-
niques. The datasets are classified into two subsets as train-
ing dataset (80%) and testing datasets (20%). The obtained 
results are analyzed with respect to several performance met-
rics, viz. Average Absolute Error (AAE), Average Relative 
Error (ARE), and prediction (level 1).

Here, AAE is represented in Eq. (15) that represents the 
absolute difference between the predicted faults ( PF ) and 
the actual faults ( AF ) for n number of modules:

ARE is given in Eq. (16) which represents the proportion 
of absolute error with respect to the average fault.

(15)AAE =
1

n

n∑

i=1

||AFi − PFi
||

Fig. 4  Step-wise illustration of the proposed ensemble model

Table 2  Descriptions of used parameters

Parameters Descriptions

at Actual value at time t
ât Predicted value at time t
p Total number of values
T Time period
k Number of lags
bt Regression value of NNAR at time t
f
(
at
)

Vector with lagged values of series
�t Error series (homoscedastic)
g
(
ct
)

SVR function
w Direction of vector
Ψt Kernel Function
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Further, another measure, i.e., prediction at level l, rep-
resents the percentage of faults predicted that lies within 
the range of 1% considering the actual faults. In order to 
consider the model as acceptable, the value of this metric 
must be kept as 1 less than or equal to 0.3 [24].

4.1  Empirical evaluation

In Intrarelease prediction, only a single version of the soft-
ware is used to collect the datasets, Interrelease prediction 
where several versions of the same software are used to 
derive the datasets. The results obtained are illustrated 
below:

4.1.1  Intrarelease prediction

The results obtained are demonstrated in Table 3. The 
value of AAE measure remains between 0.13 and 1.78. 
CAMEL 1.6 and XALAN 2.6 demonstrate the highest val-
ues. Eclipse datasets have shown the lowest values. Most 
of the datasets demonstrate the values lesser than 0.50. 
However, the range of ARE values remains between 0.12 
and 0.46, and most of the values were lying below 0.31 
except XERES 1.4. The results regarding prediction (level 
1) range between 45 and 90%. With the highest value for 
EMF 2.1. Xerces 1.4 and XALAN 2.6 show lower values 
contrasted with other datasets. The average values of the 
proposed ensemble approach metrics are 0.51, 0.21, and 
72.14% for AAE, ARE, and pred(0.3) analysis, respec-
tively. The visualization of the obtained results is depicted 
in Fig. 5.

(16)ARE =
1

n

n∑

i=1

||AFi − PFi
||

AFi + 1

4.1.2  Interrelease prediction

In Interrelease prediction, the software’s current version is 
used as testing datasets, whereas the previous versions of the 
software are used as a training set. The simulation results are 
provided in Table 4. The value of AAE metrics range from 
0.2 to 2.0; ARE metrics range from 0.12 to 0.44. Eclipse 
datasets have shown promising results with the lowest AAE 

Table 3  Error metrics of ensemble approach for Intrarelease predic-
tion

Datasets Avg. absolute 
error

Avg. relative 
error

Prediction 
(30%) (%)

PROP V121 0.24 0.13 82
XERCES 1.4 1.78 0.46 47.33
CAMEL 1.6 0.65 0.31 65.68
ANT 1.7 0.35 0.25 69.31
XALAN 2.6 0.50 0.28 59.54
EMF 2.0 0.23 0.12 84.27
EMF 2.1 0.13 0.065 88.2
EMF 3.0 0.23 0.13 80.85

Fig. 5  Illustration of obtained results for intra release predictions

Table 4  Error metrics of ensemble approach for Interrelease predic-
tion

Datasets Avg. absolute 
error

Avg. relative 
error

Prediction 
(30%) (%)

PROP V121 0.42 0.26 74.21
XERCES 1.4 2.0 0.44 32.66
CAMEL 1.6 0.69 0.39 63.48
ANT 1.7 0.55 0.38 63.58
XALAN 2.6 0.53 0.32 51.58
EMF 2.0 0.26 0.15 83.97
EMF 2.1 0.24 0.12 81.25
EMF 3.0 0.2 0.13 81.85

Fig. 6  Illustration of obtained results for inter release predictions
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and ARE values; on the contrary, Xerces 1.4 dataset has the 
highest values. The average value of the AAE metric is 0.61, 
and all datasets have lesser than the average value except 
XERES 1.4. Correspondingly, the average value for the ARE 
metric is 0.27. Regarding the pred(0.3) measure, the values 
range between 35 and 85%, with the average being 66.56%. 
Figure 6 shows the visualization of the results.

4.2  Comparative analysis

The proposed ensemble approach’s performance has been 
compared with the state of art ensemble techniques, viz., 
random forest, bagging, stacking, and XGBoost. The simula-
tion results obtained along with the comparative analysis are 
demonstrated in Tables 5 and 6.

The obtained results, as shown in Tables 5 and 6, wit-
ness that the ensemble modeling outperforms the individ-
ual model by a significant margin. Thus, the competence 
of ensemble modeling for SFP is established in addition to 
various other domains.

5  Conclusion

The field of software engineering has lacked well-defined 
strategies, unlike other related fields. However, during the 
past few decades, there has been a significant rise in soft-
ware demand. This growth of the software industry also 
necessitates the presence of well-defined strategies. As a 
result, rigorous research is taking place in this direction. 
The authors in this manuscript aim to formalize the method 
of SFP through a sequential ensemble model. The proposed 

model is applied on the 8 datasets taken from well-known 
repositories. The proposed sequential ensemble model’s 
performance is analyzed in terms of various error metrics, 
viz. average absolute error, average relative error, and pre-
diction. Root mean squared error (RMSE), another error 
metric, is not employed for analyzing the performance as 
RMSE assigns larger weights to larger error, as it squares 
the errors before averaging out, and hence, it is more suit-
able for applications focusing on large errors. This means the 
RMSE should be more useful when large errors are particu-
larly undesirable. The results obtained through the proposed 
model are encouraging and thus support the employment of 
ensemble modeling for SFP.
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