
Vol.:(0123456789)1 3

Innovations in Systems and Software Engineering (2022) 18:301–308
https://doi.org/10.1007/s11334-021-00390-x

S.I. : ACITSEP

A sequential ensemble model for software fault prediction

Monika Mangla1 · Nonita Sharma2 · Sachi Nandan Mohanty3

Received: 10 September 2020 / Accepted: 11 November 2020 / Published online: 28 March 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Unlike several other engineering disciplines, software engineering lacks well-defined research strategies. However, with
the exponential rise in automation, the demand for software has observed an enormous elevation. Simultaneously, it neces-
sitates having zero failures in the software modules to maximize the availability and optimize the maintenance cost. This
has attracted many researchers to try their hand in formalizing the strategies for testing of software. Numerous researchers
have suggested various models in this context. The authors in this paper present a sequential ensemble model to predict
software faults. The employment of ensemble modeling in software fault prediction is motivated by its competence in various
domains. The proposed model is also implemented on the 8 datasets taken from PROMISE and ECLIPSE repository. The
proposed model’s performance is evaluated using various error metrics, viz. average absolute error, average relative error,
and prediction. The obtained results are encouraging and thus establish the competence of the proposed model.

Keywords Ensemble modeling · Software fault prediction · Normalization · Fault proneness · Software module

1 Introduction

Various researchers generally have well-defined research
strategies that not only have detailed guidance but also
possess simplified views from observers’ perspectives. For
instance, the public can understand large-scale medical stud-
ies well enough so as to discuss the risks associated with an
experimental treatment. However, this is not true for soft-
ware engineering researchers as they do not have any well-
understandable guidance [1]. Various researchers have made
several attempts to formalize software engineering research,
but it fails to paint a comprehensive picture [2]. As a result,
rigorous research is taking place in this dimension to fill the
void. Authors in this paper attempt to formalize the method
of software fault prediction through a sequential ensemble
model [3, 4].

The motive for selecting this topic for research is that the
prime reason for software failures is the faults present in

software modules affecting the software’s reliability. It may
lead to dissatisfaction among users, eventually leading to
the downfall of the company. However, in the current sce-
nario, when software demand is exponentially increasing in
the industries, there is nearly a zero-tolerance for software
faults. Additionally, the software has a considerable number
of modules that further intricate the identification of fault-
prone modules. This has further opened avenues for research
in the field of software engineering, particularly in the field
of software fault prediction (SFP) [5, 6].

SFP aims to thoroughly inspect the software’s quality
before its release by inspecting the fault vulnerability of
the software modules [7]. Identification of fault vulnerable
modules emphasizes a specific focus on these modules to
efficiently manage the resources by reducing the number of
faults post-implementation [8]. SFP focuses on accurately
predicting the fault vulnerability of the software modules
so as to maximize software availability. Moreover, it also
helps to minimize the maintenance cost and thus achieves
high-quality software products [9].

Machine Learning (ML) has demonstrated success-
ful and widespread deployment for solving classifica-
tion problems of SFP [10]. Here, classification problem
refers to classifying Fault-Prone (FP) and Non-Fault-
Prone (NFP) modules. Now, this classification problem
in SFP has several associated challenges: class imbalance

 * Nonita Sharma
 nonita@nitj.ac.in

1 Lokmanya Tilak College of Engineering, Navi Mumbai,
India

2 Dr. B.R. Ambedkar National Institute of Technology
Jalandhar, Jalandhar, India

3 College of Engineering Pune, Pune, India

http://orcid.org/0000-0002-3132-3748
http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-021-00390-x&domain=pdf

302 M. Mangla et al.

1 3

problems, irrelevant features, and noise [11]. Hence, a
single ML technique fails to handle all these challenges
and thus leads to performance degradation. Hence, it is
widely accepted that ensemble modeling may overcome
the limitations that remain unaddressed by individual ML
classifier [6, 12]. This belief is strengthened by the proven
competence of ensemble learning algorithms (ELA) in
various research fields [10, 13]. In the literature, it is also
claimed that ensemble classifiers overcome the limitations
of individual classifiers. Moreover, no learning technique
can handle SFP’s significant challenges like imbalance
problems, the presence of redundant features, and noise
in the dataset [14, 15]. All these applications advocated
that the application of ELA in SFP as it outperforms the
individual classifier algorithm [6, 16].

The class imbalance problem occurs when there is an
extreme imbalance between Fault-Prone (FP) and Non-
Fault-Prone (NFP) modules. Hence, in this scenario, the
dataset is highly skewed toward FP or NFP modules. Gen-
erally, FP modules are relatively small and rarely occur but
have considerable significance. However, learners primarily
focus on NFP modules while ignoring the FP modules. Here,
data balancing is implemented to resolve the skewness in the
dataset to improve the performance of ELA for SFP mod-
els. In the context of class imbalance, ML researchers have
suggested two methods to handle this. As per a suggested
method, a typical cost is to be assigned to training examples.
The other method suggests resampling the original dataset
by oversampling the minority class and under-sampling the
majority class [14]. Hence, various studies suggest Synthetic
Minority Oversampling Techniques (SMOTE) for balancing
to enhance the performance of classification [17].

Also, it is evident that the performance of classifica-
tion learner is affected by the quality of data used [13, 18].
Resultantly, corrupted data in real datasets may impede the
decisions, and thus, the ensemble classifiers built from such
data lack accuracy. A specifically designed ensemble-based
framework may be helpful in this case, and hence, authors
propose a framework that combines ELA with noise filter-
ing, feature selection, and data balancing. Here, feature
selection eliminates the redundant and less significant fea-
tures to consider only principal features for training. Consid-
eration of principal features aids in reducing the complexity
of the algorithm, thus achieving speed and cost-effective-
ness. Here, in order to eliminate the less useful features, it
employs the Information Gain approach, which has been
widely accepted in various studies related to SFP [19].

Hence, the authors in this paper aim to study the large
scale experiment to understand the effect of ensemble mod-
eling in SFP. The paper also presents a thorough comparison
of individual techniques at each stage. Thereafter, a new
sequential ensemble model is presented that aims to address
the challenges of the individual model.

The related work by various researchers demonstrates
that ELA achieves robustness. Summarizing this, when
ELA is implemented on selected features of balanced data,
it achieves remarkable performance improvement. Thus, it
needs to examine the ensemble techniques to achieve robust
performance. The objective of the study is to identify the FP
modules efficiently.

The work is organized into various sections. The require-
ment for a formalized method for SFP is discussed in Sect. 1.
Materials and methods are presented in Sect. 2. The pro-
posed sequential ensemble model is elaborated in Sect. 3.
The results obtained from the proposed model are discussed
in Sect. 4. Finally, the manuscript is concluded in Sect. 5.

2 Materials and methods

The ensemble model contains a learning prototype where
multiple models are trained on the same datasets, and
the forecast of these models are combined to forecast the
future values. The ensemble approach gains performance
enhancement over individual models owing to reduced bias
and variance. Ensembling involves training multiple (same
or different) models individually, which further combines
their results. These results are combined by feeding into a
meta-model that uses individual models’ values to predict
the final value. The ensemble modeling may be broadly cat-
egorized into sequential model and parallel model, which
are defined as follows:

2.1 Sequential

In this method, base learning models are dependent on each
other. A classic example of a sequential model is AdaBoost.

2.2 Parallel

In this model, base learning models are independent of each
other such as Random Forest.

This broad classification of the ensemble model is shown
in Fig. 1a, b.

The following section discusses the material and method
used for this research work.

2.3 Data collection

In this manuscript, authors have selected 8 fault datasets
for experimental analysis. These datasets have been taken
from various open-source projects present in PROMISE
and Eclipse bug data repository [20]. Here, PROMISE is an
open-source repository that contains fault datasets for vari-
ous open-source software. Eclipse repository contains fault
information of the Eclipse project that contains thousands of

303A sequential ensemble model for software fault prediction

1 3

files. This project is similar to an industrial system in terms
of size and complexity. The dataset contains various metrics
like structure and complexity at the file-level. The dataset
contains "filename," "count of errors reported six months
before release," "count of errors reported six months after
the release," and "complexity metrics." Usage of standard
datasets enables the reproduction of the standard experi-
ments that aids in performing comparative performance
analysis. Here, we have taken the datasets with more than
300 modules to check the proposed model’s efficiency. The
datasets are represented in Table 1.

3 Proposed sequential ensemble model

The proposed model is presented abstractly in Fig. 2. Here,
the output of each model is given to Neural Network Autore-
gression (NNAR). NNAR model is run multiple times so as
to achieve the best-fitting model with the least error [21, 22].
Thereafter, the fitted values from the NNAR model are fed
to support vector regression (SVR) model.

In the proposed model, authors suggest tuning the hyper-
parameters of SVR to obtain an accurate prediction. The

model mainly considers three hyperparameters, viz. soft
margin constant cost, the linearity degree of the hyperplane
(�), and finally, the error tolerance (�). These parameters
refer to the misclassification of the training data. Here, the
model picks a small margin hyperplane for larger values to
enhance the said model’s performance in terms of classifica-
tion. On the contrary, it picks a larger margin hyperplane for
smaller values. The model derived from a line function is
mathematically defined by the following equation:

here,

s indicates the count of support vectors.
In the model C can be mathematically described as:

where

These parameters indicate the impact of a single train-
ing example considering minimal gamma (distant) and
maximum gamma (near). Here, gamma can be understood
as the inverse of the radius of influence, and thus, a large

(1)m.a + n = 0

(2)m =
∑k

i=1
Ψibiai

(3)n =
1

s

∑s

i=1

(
bi − m.a

)

(4)C =
min

m, n, �

1

2
||w||2 + C

∑p

i=1
�i

(5)bi
(
m.ai + n

)
≥ 1 − �i

(6)�i ≥ 0

(7)i = 1..p

Fig. 1 a Sequential Ensemble Method. b Parallel ensemble methods

Table 1 Dataset for the proposed model of SFP

Dataset Repository Modules KLOC Modules
with fault

% Distri-
bution

PROP
V121

PROMISE 2998 628 426 16.5

XERCES
1.4

PROMISE 589 141 438 74.3

CAMEL
1.6

PROMISE 966 113 189 19.5

ANT 1.7 PROMISE 746 208 167 22.3
XALAN

2.6
PROMISE 886 411 412 46.5

EMF 2.0 ECLIPSE 6730 796 976 14.5
EMF 2.1 ECLIPSE 7889 987 855 10.8
EMF 3.0 ECLIPSE 10,594 1305 1569 14.8

304 M. Mangla et al.

1 3

gamma indicates that the radius of the area of influence
of support vectors includes only support-vector. In such a
case, normalization fails to avoid overfitting. Conversely,
smaller gamma indicates the overly contrived model that
fails to retain the complexity of data. It can be mathemati-
cally expressed as follows:

An extensive detail of the proposed model is given in
Fig. 3. Here, the historical data are segregated into training
data and testing data. In the model, the actual number of
faults is given to NNAR individually. This NNAR gives the
fitted values which are input to the SVR model. Finally, the
predicted values are obtained through the SVR model. In the
end, the performance of the model is established in terms of
several error metrics [23].

3.1 Implementation steps

Various steps in the proposed ensemble model for SFP are
depicted in Fig. 4.

1. As mentioned earlier, the proposed model considers 8
well-known fault datasets from PROMISE and Eclipse
bug data repository [20].

2. Further, if the dataset consists of zero to indicate missing
values, it is suggested to take z-score transformation as
log transformation may again lead to undefined values.
However, log transformation may be done for the rest
of the datasets. The equations for log and z-score trans-
formation are given in Eq. 9 and 10, respectively. These

(8)R
(
ai, aj

)
= exp

(
−�

|||
|||ai − aj

|||
|||
2
)

transformations basically help in minimizing the vari-
ances among the dataset.

 where

3. Thereafter, the transformed dataset is classified into
training dataset and test dataset.

4. The training dataset part after the classification is given
to the model for learning purposes. During learning,
the model extracts useful patterns and information in
the data. The feeding of actual data follows it into the
NNAR model. The equation for the same is expressed
as follows:

 Then, fitted values of NNAR model are given as
input to the SVR model which can be mathematically
expressed as follows:

 Various parameters that have been used in above equa-
tions are described as follows in Table 2:

(9)ât = log
(
at
)

(10)ât =
at − mean

(
at
)

SDt

(11)mean
(
at
)
=

1

p

∑p

t=1
at

(12)SDt =
1

p

∑p

t=1

√
at − ât

(13)b̂t = f
(
ât
)
+ �t

(14)g
(
ct
)
=
(
w.Ψt

(
bt
))

+ C

Fig. 2 Abstract view of pro-
posed model

Fig. 3 Detailed view of sequen-
tial ensemble model

305A sequential ensemble model for software fault prediction

1 3

 The parameters are manually tuned in the model by
fixing a parameter to its default value, and the other
parameter is adjusted accordingly. During each adjust-
ment, the accuracy of the model is checked regularly.
Now, when some parameter achieves a required value,
other parameters are adjusted accordingly while check-
ing the model accuracy. Thus, the values of all param-
eters are manually adjusted. The NNAR model is exe-
cuted multiple times with different seed value each time
to make autoregression, and seasonal autoregression
equal to zero that helps avoid missing values in the fit-

ted result of NNAR. SVR model is also set to default and
modified so as optimize its value. This process of fixing
some parameter’s value and adjusting other parameters
in order to find optimum value is called cross-validation.

5. The trained model’s performance can be measured in
terms of various error metrics for the test dataset. The
accuracy of the prediction of the proposed model is also
verified by various error metrics as described in the sub-
sequent section.

4 Results and discussions

In order to find the efficacy of the proposed approach, exper-
iments are conducted with reference to the collected data-
sets and other ensemble techniques. The section is divided
into two subsections: In the first subsection, an empirical
evaluation of the proposed ensemble learning approach is
done using two scenarios, viz. Intrarelease prediction and
Intrarelease prediction. Secondly, a comparative analysis is
performed for proposed technique with other ensemble tech-
niques. The datasets are classified into two subsets as train-
ing dataset (80%) and testing datasets (20%). The obtained
results are analyzed with respect to several performance met-
rics, viz. Average Absolute Error (AAE), Average Relative
Error (ARE), and prediction (level 1).

Here, AAE is represented in Eq. (15) that represents the
absolute difference between the predicted faults (PF) and
the actual faults (AF) for n number of modules:

ARE is given in Eq. (16) which represents the proportion
of absolute error with respect to the average fault.

(15)AAE =
1

n

n∑

i=1

||AFi − PFi
||

Fig. 4 Step-wise illustration of the proposed ensemble model

Table 2 Descriptions of used parameters

Parameters Descriptions

at Actual value at time t
ât Predicted value at time t
p Total number of values
T Time period
k Number of lags
bt Regression value of NNAR at time t
f
(
at
)

Vector with lagged values of series
�t Error series (homoscedastic)
g
(
ct
)

SVR function
w Direction of vector
Ψt Kernel Function

306 M. Mangla et al.

1 3

Further, another measure, i.e., prediction at level l, rep-
resents the percentage of faults predicted that lies within
the range of 1% considering the actual faults. In order to
consider the model as acceptable, the value of this metric
must be kept as 1 less than or equal to 0.3 [24].

4.1 Empirical evaluation

In Intrarelease prediction, only a single version of the soft-
ware is used to collect the datasets, Interrelease prediction
where several versions of the same software are used to
derive the datasets. The results obtained are illustrated
below:

4.1.1 Intrarelease prediction

The results obtained are demonstrated in Table 3. The
value of AAE measure remains between 0.13 and 1.78.
CAMEL 1.6 and XALAN 2.6 demonstrate the highest val-
ues. Eclipse datasets have shown the lowest values. Most
of the datasets demonstrate the values lesser than 0.50.
However, the range of ARE values remains between 0.12
and 0.46, and most of the values were lying below 0.31
except XERES 1.4. The results regarding prediction (level
1) range between 45 and 90%. With the highest value for
EMF 2.1. Xerces 1.4 and XALAN 2.6 show lower values
contrasted with other datasets. The average values of the
proposed ensemble approach metrics are 0.51, 0.21, and
72.14% for AAE, ARE, and pred(0.3) analysis, respec-
tively. The visualization of the obtained results is depicted
in Fig. 5.

(16)ARE =
1

n

n∑

i=1

||AFi − PFi
||

AFi + 1

4.1.2 Interrelease prediction

In Interrelease prediction, the software’s current version is
used as testing datasets, whereas the previous versions of the
software are used as a training set. The simulation results are
provided in Table 4. The value of AAE metrics range from
0.2 to 2.0; ARE metrics range from 0.12 to 0.44. Eclipse
datasets have shown promising results with the lowest AAE

Table 3 Error metrics of ensemble approach for Intrarelease predic-
tion

Datasets Avg. absolute
error

Avg. relative
error

Prediction
(30%) (%)

PROP V121 0.24 0.13 82
XERCES 1.4 1.78 0.46 47.33
CAMEL 1.6 0.65 0.31 65.68
ANT 1.7 0.35 0.25 69.31
XALAN 2.6 0.50 0.28 59.54
EMF 2.0 0.23 0.12 84.27
EMF 2.1 0.13 0.065 88.2
EMF 3.0 0.23 0.13 80.85

Fig. 5 Illustration of obtained results for intra release predictions

Table 4 Error metrics of ensemble approach for Interrelease predic-
tion

Datasets Avg. absolute
error

Avg. relative
error

Prediction
(30%) (%)

PROP V121 0.42 0.26 74.21
XERCES 1.4 2.0 0.44 32.66
CAMEL 1.6 0.69 0.39 63.48
ANT 1.7 0.55 0.38 63.58
XALAN 2.6 0.53 0.32 51.58
EMF 2.0 0.26 0.15 83.97
EMF 2.1 0.24 0.12 81.25
EMF 3.0 0.2 0.13 81.85

Fig. 6 Illustration of obtained results for inter release predictions

307A sequential ensemble model for software fault prediction

1 3

and ARE values; on the contrary, Xerces 1.4 dataset has the
highest values. The average value of the AAE metric is 0.61,
and all datasets have lesser than the average value except
XERES 1.4. Correspondingly, the average value for the ARE
metric is 0.27. Regarding the pred(0.3) measure, the values
range between 35 and 85%, with the average being 66.56%.
Figure 6 shows the visualization of the results.

4.2 Comparative analysis

The proposed ensemble approach’s performance has been
compared with the state of art ensemble techniques, viz.,
random forest, bagging, stacking, and XGBoost. The simula-
tion results obtained along with the comparative analysis are
demonstrated in Tables 5 and 6.

The obtained results, as shown in Tables 5 and 6, wit-
ness that the ensemble modeling outperforms the individ-
ual model by a significant margin. Thus, the competence
of ensemble modeling for SFP is established in addition to
various other domains.

5 Conclusion

The field of software engineering has lacked well-defined
strategies, unlike other related fields. However, during the
past few decades, there has been a significant rise in soft-
ware demand. This growth of the software industry also
necessitates the presence of well-defined strategies. As a
result, rigorous research is taking place in this direction.
The authors in this manuscript aim to formalize the method
of SFP through a sequential ensemble model. The proposed

model is applied on the 8 datasets taken from well-known
repositories. The proposed sequential ensemble model’s
performance is analyzed in terms of various error metrics,
viz. average absolute error, average relative error, and pre-
diction. Root mean squared error (RMSE), another error
metric, is not employed for analyzing the performance as
RMSE assigns larger weights to larger error, as it squares
the errors before averaging out, and hence, it is more suit-
able for applications focusing on large errors. This means the
RMSE should be more useful when large errors are particu-
larly undesirable. The results obtained through the proposed
model are encouraging and thus support the employment of
ensemble modeling for SFP.

References

 1. Glass RL, Vessey I, Ramesh V (2002) Research in software
engineering: an analysis of the literature. Inf Softw Technol
44(8):491–506

 2. Runeson P, Höst M (2009) Guidelines for conducting and report-
ing case study research in software engineering. Empir Softw Eng
14(2):131

 3. Malhotra R, Singh Y (2011) On the applicability of machine
learning techniques for object oriented software fault prediction.
Softw Eng Int J 1(1):24–37

 4. Sultana N, Sharma N, Sharma KP, Verma S (2020) A Sequential
ensemble model for communicable disease forecasting. Curr Bio-
inform 15(4):309–317

 5. Sherer SA (1995) Software fault prediction. J Syst Softw
29(2):97–105

 6. Rathore SS, Kumar S (2017) Towards an ensemble based system
for predicting the number of software faults. Expert Syst Appl
82:357–382

Table 5 Comparative analysis
for Intrarelease prediction

Techniques AAE ARE

Min Max SD Min Max SD

Random Forest 0.141 2.27 0.46 ± 0.09 0.07 0.44 0.20 ± 0.08
Bagging 0.136 1.69 0.43 ± 0.08 0.08 0.66 0.27 ± 0.04
Stacking 0.158 2.28 0.57 ± 0.11 0.09 0.6 0.28 ± 0.04
XGBoost 0.147 2.25 0.45 ± 0.08 0.09 0.75 0.29 ± 0.05
Ensemble 0.13 0.44 0.31 ± 0.083 0.16 0.91 0.49 ± 0.87

Table 6 Comparative analysis
for Interrelease prediction

Techniques AAE ARE

Min Max SD Min Max SD

Random Forest 0.2 2.02 0.56 ± 0.14 0.07 0.44 0.20 ± 0.08
Bagging 0.21 2.48 0.83 ± 0.16 0.06 0.46 0.27 ± 0.02
Stacking 0.19 2.46 0.60 ± 0.17 0.05 0.56 0.28 ± 0.02
XGBoost 0.201 2.25 0.45 ± 0.08 0.06 0.63 0.23 ± 0.03
Ensemble 0.2 1.78 0.41 ± 0.083 0.12 0.44 0.24 ± 0.11

308 M. Mangla et al.

1 3

 7. Rathore SS, Kumar S (2018) An approach for the prediction of
number of software faults based on the dynamic selection of learn-
ing techniques. IEEE Trans Reliab 68(1):216–236

 8. Rathore SS, Kumar S (2017) An empirical study of some software
fault prediction techniques for the number of faults prediction.
Soft Comput 21(24):7417–7434

 9. Saliu O, Ruhe G (2005) Software release planning for evolving
systems. Innov Syst Softw Eng 1(2):189–204

 10. Hall T, Bowes D (2012, December) The state of machine learning
methodology in software fault prediction. In: 2012 11th interna-
tional conference on machine learning and applications, Vol 2, pp
308–313. IEEE.

 11. Shatnawi R (2017) The application of ROC analysis in threshold
identification, data imbalance and metrics selection for software
fault prediction. Innov Syst Softw Eng 13(2–3):201–217

 12. Dejaeger K, Verbraken T, Baesens B (2012) Toward comprehen-
sible software fault prediction models using bayesian network
classifiers. IEEE Trans Softw Eng 39(2):237–257

 13. Sharma D, Chandra P (2018) Software fault prediction using
machine-learning techniques. In: Smart computing and informat-
ics, pp 541–549. Springer, Singapore.

 14. Kalsoom A, Maqsood M, Ghazanfar MA, Aadil F, Rho S (2018) A
dimensionality reduction-based efficient software fault prediction
using Fisher linear discriminant analysis (FLDA). J Supercomput
74(9):4568–4602

 15. Malhotra R, Jain A (2012) Fault prediction using statistical and
machine learning methods for improving software quality. J Inf
Process Syst 8(2):241–262

 16. Gondra I (2008) Applying machine learning to software fault-
proneness prediction. J Syst Softw 81(2):186–195

 17. Alsawalqah H, Faris H, Aljarah I, Alnemer L, Alhindawi N (2017,
April). Hybrid SMOTE-ensemble approach for software defect

prediction. In: Computer science on-line conference, pp 355–366.
Springer, Cham.

 18. Karim S, Warnars HLHS, Gaol FL, Abdurachman E, Soewito
B (2017, November) Software metrics for fault prediction using
machine learning approaches: a literature review with PROMISE
repository dataset. In: 2017 IEEE international conference on
cybernetics and computational intelligence (CyberneticsCom),
pp 19–23. IEEE.

 19. Yohannese CW, Li T (2017) A combined-learning based frame-
work for improved software fault prediction. Int J Comput Intell
Syst 10(1):647–662

 20. Bal PR, Kumar S (2018) Cross project software defect prediction
using extreme learning machine: an ensemble based study. In:
ICSOFT, pp 354–361.

 21. Malhotra R (2015) A systematic review of machine learning
techniques for software fault prediction. Appl Soft Comput
27:504–518

 22. Rathore SS, Kumar S (2016) A decision tree regression based
approach for the number of software faults prediction. ACM SIG-
SOFT Softw Eng Notes 41(1):1–6

 23. Catal C (2012) Performance evaluation metrics for software fault
prediction studies. Acta Polytechnica Hungarica 9(4):193–206

 24. MacDonell SG (1997) Establishing relationships between speci-
fication size and software process effort in case environments. Inf
Softw Technol 39(1):35–45

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A sequential ensemble model for software fault prediction
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Sequential
	2.2 Parallel
	2.3 Data collection

	3 Proposed sequential ensemble model
	3.1 Implementation steps

	4 Results and discussions
	4.1 Empirical evaluation
	4.1.1 Intrarelease prediction
	4.1.2 Interrelease prediction

	4.2 Comparative analysis

	5 Conclusion
	References

