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Abstract
Software fault prediction (SFP) refers to the process of identifying (or predicting) faulty modules based on its characteris-
tics/software metrics. SFP can be done either using the same project data in both the training and testing phase i.e. within 
project defect prediction or using a different one, as done in cross-project defect prediction (CPDP). Previous works show 
that contemporary research in this field is progressing towards CPDP. To present the current state of progress and the 
future prospects of CPDP, this article presents a comprehensive survey of CPDP considering the latest work along with its 
SWOT analysis. This survey is targeted to present the novice researchers, academicians, and practitioners with the alphas 
and omegas of this contemporary challenging field. We have also carried a qualitative and quantitative evaluation of CPDP 
w.r.t some of the targeted research questions. A total of 34 significant primary CPDP studies published from 2008 to 2019 
were selected. Both qualitative and quantitative data are extracted from each study. The collected data is then consolidated 
and analyzed to present a comprehensive report showing the current state of the art, along with the answers to the targeted 
research questions and finally the CPDP SWOT analysis. We observed that there exists a big scope for performance improve-
ment in CPDP. Integration of feature engineering, exploration with different process metrics, hyperparameter tuning, class 
imbalance handling in CPDP setting are some of the ways identified for bringing enhancement in CPDP performance. Apart 
from this, we would like to conclude that there is a strong need to investigate Precision over the Recall and model’s validity 
in terms of effort/cost-effectiveness.
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1  Introduction

Software fault/defect prediction is an evergreen topic in the 
realm of software engineering. Its capability to identify/pre-
dict faulty modules before their release can help the soft-
ware quality assurance personnel to utilize limited resources 
optimally. More efforts can be done on faulty modules as 
compared to non-faulty modules to achieve high confidence 
in the quality and reliability of the software.

Software fault prediction is divided into two branches, 
based on the project data used in the training and the testing 

phase: within project defect prediction (WPDP) and cross-
project defect prediction. (CPDP). Within project defect 
prediction deals with using the same project data in both 
the training and testing phase whereas cross-project defect 
prediction involves using different project data in the train-
ing and testing phase. More formally, we can say, the model 
trained on project X can be used for testing project Y. The 
success of a prediction model majorly depends on the avail-
ability of suitable data. However, when an ample amount 
of suitable data is not available, the prediction model is at 
risk, since most of the machine learning models are built 
on the ground truth available in the training dataset. Thus, 
when enough historical data is not available, then generally, 
cross-project defect prediction comes into play.

To the best of our knowledge, the very first attempt to 
investigate the feasibility of using a prediction model built 
using the data of one project, for the testing of another pro-
ject, was made by Briand et al. [1]. However, the results were 
discouraging. Zimmermann et al. [2] were also amongst the 

 *	 Yogita Khatri 
	 yogitakhatri@jssaten.ac.in

1	 Department of Information Technology, JSS Academy 
of Technical Education, Noida, India

2	 Department of Computer Science Engineering 
and Information Technology, Jaypee Institute of Information 
Technology, Noida, India

http://orcid.org/0000-0001-8789-5932
http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-020-00380-5&domain=pdf


264	 Y. Khatri, S. K. Singh 

1 3

few, who performed an initial study on CPDP. They carried a 
total of 622 cross-project experiments using logistic regres-
sion classifier, out of which only 3.4% of the total experi-
ments were successful. The success of the CPDP model lies 
in reducing the distribution difference between the source 
and the target data, which was ignored and became the 
main reason for failure in the initial attempts. Thereafter, 
the research community has witnessed the growth in the 
researchers’ interest especially concerning CPDP, as can be 
seen in Fig. 1.

Thus, plenty of research has been published, targeting 
different approaches to CPDP. To the best of our knowledge, 
nobody has yet attempted to carry the SWOT analysis of 
CPDP, to clearly project its current state of progress. There-
fore, in this article, we have carried the SWOT analysis of 
cross-project defect prediction as our prime objective. This 
review is basically intended to help, particularly the novice 
researchers, academicians, and practitioners with the alphas 
and omegas of this contemporary challenging field. This 
article also presents a qualitative and quantitative evaluation 
of cross-project defect prediction, aligned with the research 
questions targeted. We identified, critiqued, evaluated, and 
summarized the existing research on cross-project defect 
prediction to find out its strengths, weaknesses, opportuni-
ties, and threats.

Further, we extracted the data to answer some specific 
research questions. Figure 2 illustrates, how the entire work 
is carried out and presented in this article. It starts with 
first, identifying the purpose and targeted audience of this 
SWOT analysis, which has already been explained above, 
followed by defining some specific research questions to 
keep the work focused. The research questions are presented 
in Table 1.

Several digital databases like ACM Digital Library, IEEE 
eXplore, Scopus, Springer, and Google Scholar were then 
explored to carefully select the primary studies as per the 

inclusion/exclusion guidelines mentioned in Table 2. We 
focused majorly on homogeneous CPDP approaches and a 
total of 34 significant primary studies were selected, out of 
which 30 are homogeneous CPDP studies and 4 are hetero-
geneous CPDP studies. Figure 3 shows the distribution of 
studies w.r.t different journals and conferences, highlighting 
the most significant software defect prediction journals and 
conferences. The quantitative data (consisting of datasets 
used, kinds of metrics used, modeling technique applied, 
evaluation measures used and statistical test applied) and 
qualitative data, both are extracted from each study. The 
collected data is then consolidated and analyzed to present 
SWOT analysis and the answers to the proposed research 
questions.

The rest of the paper is structured as follows: Sect. 2 pro-
vides a comprehensive report on cross-project defect predic-
tion whereas Sect. 3 presents the discussion in line with the 
research questions undertaken. Section 4 presents the SWOT 
analysis of CPDP. Section 5 highlights the potential threats 
in the study and finally, Sect. 6 concludes the paper.

2 � Comprehensive report on CPDP

Different researchers proposed different CPDP approaches. 
Figure 4 shows the two broad categories namely homo-
geneous CPDP and heterogeneous CPDP, in which 
the selected studies are grouped. Homogeneous CPDP 
involves the use of the same metrics set across the source 
dataset and target dataset, whereas, in heterogeneous 
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Fig. 1   Distribution of selected CPDP studies published from 2008 to 
2019
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CPDP, the source and the target datasets have dissimilar 
metrics set. For example, the datasets JM1 and KC1 from 
NASA MDP [3] contain 21common features each and the 
ar4 dataset from a Turkish company named SOFTLAB 
contains 29 features. Both groups share 17 features in 
common. A CPDP model built with taking JM1 as the 
source data and the KC1 as the target data would then 
be classified as a homogeneous CPDP since each has the 
same metric set, however a CPDP model built using JM1 
as the source data and ar4 as the target data or vice versa 
would belong to heterogeneous CPDP as both contain, 

unlike metric set. But, if selected 17 common metrics 
from each, then it will come under homogeneous CPDP. In 
this survey, we majorly focussed on homogeneous CPDP 
approaches, however, we have included some significant 
heterogeneous CPDP approaches in our survey to present 
a holistic view of CPDP.

Different CPDP studies evaluated their proposed model 
using a diverse set of evaluation parameters. Broadly, 
they can be grouped under two categories: non-effort 
based evaluation parameters and effort aware evalua-
tion parameters. Non-effort based evaluation parameters 
are the standard machine learning evaluation parameters 
that do not take into account the effort/cost involved in 
identifying the faulty modules. Precision, Recall (PD), 
F-measure, G-measure, G-mean, PF (probability of false 
alarm), AUC (Area under ROC curve), Balance, Accu-
racy, MCC (Mathew’s correlation coefficient) all are non-
effort based measures used in the existing CPDP stud-
ies. Effort aware measures evaluate the model in terms 
of effort/cost incurred vs. benefit expected. They actually 
measure the model’s true performance in a practical sce-
nario. PofB20 (percentage of fault identified in 20% of 
lines), Effort aware Recall, Effort aware Precision, Effort 

Table 1   Research questions

Research question 
ID

Research questions Motivation

RQ1 What kind of datasets have been mostly used in CPDP? To identify the datasets in CPDP
RQ2 What kind of modeling techniques have been mostly used in CPDP? To identify modeling techniques in CPDP
RQ3 What kind of metrics have been mostly used in CPDP? To identify metrics in CPDP
RQ4 What kind of Evaluation Parameters have been mostly used in CPDP? To identify Evaluation Parameters in CPDP
RQ5 What kind of Statistical tests have been performed in CPDP? To identify the Statistical Test in CPDP

Table 2   Inclusion/exclusion criteria

Inclusion criteria
Studies having some significant empirical investigation
Studies published in English only
Studies focusing on fault prediction using software metrics
Exclusion criteria
Studies dealing with literature reviews and systematic reviews
Non-empirical studies
Studies discussing defect datasets but not focusing on defect predic-

tion as the target variable

Fig. 3   Distribution of selected 
studies in Journals/Conferences
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aware F-measure, IFA (initial false alarm) are some of 
the effort aware evaluation measures used in the existing 
CPDP studies.

2.1 � Homogeneous CPDP approaches

Homogeneous CPDP approaches are further divided under 
four heads as data standardization-based approaches, train-
ing data selection-based approaches, transfer learning-based 
approaches, and ensemble approaches.

2.1.1 � Data standardization based approaches

In cross-project defect prediction, we are extracting knowl-
edge from the source project and applying that learned 
knowledge to predict labels for the target project. The tasks 
in both source and target domains are the same, however, the 
data distribution between the source and the target project 
may not be the same. For example, consider two projects 
ant and camel 1.4 datasets from the PROMISE repository 
[4]. Both have 20 features in common. However, the feature 
space is the same, but the distribution of each feature in both 
the dataset may differ. For instance, feature LCOM (lack of 
cohesion in methods) has a different distribution in both the 
datasets as can be seen in Table 3. Here we have taken five 
parameters to characterize a distribution i.e. mean, standard 
deviation, median, min, and max value.

Since machine learning algorithms perform well when 
both the testing and the target data are from a similar distri-
bution. Therefore, the main crux lies in CPDP is, to make the 
data distribution similar across the source and the target pro-
jects. Initial attempts to make the distribution of the features 
homogeneous across both the source and the target datasets 
were made by data standardization-based techniques.

To this end, Watanabe et al. [5] applied the concept of 
data standardization where each value of a metric in the 
target data is normalized by multiplying it by the mean of 
that metric of the source dataset and then dividing it by the 
mean of that metric of the target dataset as shown above. 
Here, MT represents a metric from the target project and MS 
represents the same metric from the source project. They 
evaluated their proposed work using two open-source pro-
jects named Sakura Editor and jEdit. They investigated two 
cross-project experiments, one with jEdit as a source project 
and Sakura Editor as a target project and the second one, 
with jEdit as a target project and Sakura Editor as a source 
project. The results obtained were promising and better than 
the traditional CPDP.

Similarly, Cruz and Ochimizu [6] applied the concept of 
log transformation to standardize the data across the source 
and the target projects. Log Transformation helps in reduc-
ing the skewness in the data and reduces the variability (or 
spread) as well. It tries to convert the given distribution 
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Fig. 4   Different approaches 
under CPDP
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Table 3   Distributional characteristics of feature LCOM in ant and 
camel datasets

Distributional characteristics LCOM

Ant Camel 1.4

Mean 89.15 73.42
Std 349.94 429.91
Median 6 4
Min 0 0
max 6692 9792
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to more like a normal distribution, thus making the data 
distribution across the projects more similar. They made 
three univariate logistic regression models using the design 
and complexity metrics of one source project and tested it 
for two target projects. They observed encouraging results 
and thus highlighted the potential of cross-project defect 
prediction. Both studies highlighted the potential of data 
standardization-based techniques for CPDP, but Precision/
Recall was low.

2.1.2 � Training data selection based approaches

Training data selection based approaches involve filtering 
out those instances from the training set that resembles the 
most with the target dataset.

One of the initial attempts to use this instance filtering 
method in CPDP task was made by Turhan et al. [7]. They 
used the concept of K-nearest neighbor filter. For every 
target sample, they selected the top 10 nearest neighbor-
ing samples from the source project. Duplicate samples if 
any, were removed thereafter, leading to the construction of 
the final training dataset. They experimented on 10 datasets 
from NASA [3] and SOFTLAB and observed improvement 
in the probability of defect detection (PD) and PF as com-
pared to directly using the cross-company (CC) data without 
any instance filtering for CPDP, but the probability of false 
alarm was still high as compared to WPDP.

To improve Turhan et al.’s results [7] further, Peter et al. 
[8] proposed a peter filter for training data selection. First, 
they combined the source data samples and target data sam-
ples in one set, followed by k means clustering and then 
rejecting the clusters not containing any target sample. In 
each of the remaining clusters, for each of the source sample, 
it then selected the nearest target sample. Those selected 
target samples built the popular set. For every target sample 
in the popular set, its greatest fan (closest in Euclidean dis-
tance) from the source samples was selected as its candidate 
for the final training data set. The empirical study on 56 
datasets from the PROMISE repository [4] concluded the 
superiority of peter filter (with RF as the classifier) over 
NN filter [7] in terms of G-measure, however, the result was 
worse than NN filter [7] in terms of AUC and F1 score.

With a little change in Peter’s filtering approach, Kawata 
et al. [9] proposed a relevancy based filter approach for train-
ing data selection. In this approach, source data samples and 
target data samples were combined as a whole, followed by 
applying the DBSCAN clustering algorithm and then elimi-
nating clusters, not having any target sample. Source data 
samples from the remaining clusters form the final training 
set. The empirical study on 56 datasets from the PROMISE 
repository [4], carried with four different classifiers namely 
Random Forest (RF), Naïve Bayes (NB), Logistic Regres-
sion (LR), and K Nearest Neighbor (KNN) individually, 

concluded that their proposed approach outperformed NN 
filter [7] and peter filter [8] in terms of AUC and G-measure 
with LR and KNN as the learners. But, the results were dis-
couraging in terms of F1 score.

With a change in the clustering technique in Kawata 
et al.‘s work [9], Yu et al. [10] proposed a data filtering 
approach based on agglomerative clustering. The experi-
mental results on 15 open-source datasets, revealed the effi-
ciency of the proposed approach in filtering out noisy source 
data samples. They obtained improvement in the prediction 
performance on most of the datasets in terms of G-measure 
over NN-filter [7] and Kawata-filter [9] taking Naïve Bayes 
classifier as the learner, but the results were not good in 
terms of F-measure. Further, the selection of Naïve Bayes 
as the learner shows the author‘s bias as Kawata-filter [9] 
approach gave the best result with logistic regression and 
KNN, which must be taken into account while making a 
comparison with the proposed approach.

Using the same PROMISE datasets [4], Herbold [11] also 
proposed two different training dataset selection methods. 
The first method employed the EM clustering algorithm to 
create clusters in a source dataset merged with the target 
dataset. Clusters containing the target data samples con-
stituted the final training data (excluding the target data 
samples from the selected cluster). The second method 
employed the use of the K nearest neighbor algorithm to 
find k nearest source projects for a particular target project. 
For both the above methods, they represented each dataset 
by its characteristic vector consisting of mean and the stand-
ard deviation as the two metrics to represent the marginal 
distribution of a dataset. He carried his empirical evaluation 
on 44 open-source datasets and observed an improvement of 
9% in success rate (with SVM + RBF kernel) over traditional 
CPDP which utilizes all the available cross-company data for 
training without any treatment. But still, the success rate of 
the proposed CPDP approach was far less than the success 
rate of WPDP. However, from the two methods proposed, K 
nearest neighbor performed the best with the neighborhood 
size equal to 50% to 70% of the available candidate data. 
They suggested that taking a neighborhood size smaller than 
50% would cause the model to underperform and taking a 
neighborhood size above 70% would not improve the mod-
el’s performance further, rather will increase the model’s 
complexity.

With a thought to perform the comparative analyses of 
various relevancy based filter approaches, to arrive at a con-
clusion about which one is the best, Bin et al. [12] replicated 
nine relevancy based filters namely global filter [13] (use all 
source datasets as training data, without any filtering), local 
filter [14], neighbor filter [13], NN filter [7], Peter filter [8], 
Kawatta filter [9], He filter [15], HeBurak filter [15], HePeter 
filter [15] on 33 datasets from PROMISE repository [4] and 
compared their performance using AUC and effort aware 
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measures. Based on their results, they concluded that the 
higher the instance retaining ratio, the better is the prediction 
performance, thus the global filter is always at the first level 
among all and there is no need to filter out the training data.

However, the findings are in contradiction to the study 
[13], which concluded the superiority of the neighbor fil-
ter over the global filter. The reason for this discrepancy 
could be the use of different clustering and classification 
techniques in both the studies (WHICH & WHERE in [13], 
and MCLUST & RF in [12]). Furthermore, the evaluation 
parameters were also different between the two studies. As 
per our observation, we believe that filter-based technique 
such as NN filter [7] is relatively better than global filter 
[13] particularly in terms of PF with acceptable PD, as it 
is externally validated in many other studies [16–18] also. 
Taking all cross-company data could lead to high PD, but at 
the same time also increases PF value due to the presence 
of negative instances [18].

Different from the above studies where training data 
selection was based on some filtering technique, Hosseini 
et al. [19] explored the application of a search-based tech-
nique for training data selection for effective CPDP. They 
came out with a novel approach named genetic instance 
selection (GIS), where, the genetic algorithm was used to 
identify the optimal training datasets, whose fitness was 
measured in terms of F-measure and G-mean on validation 
set produced by applying NN filter [7] method. They carried 
their experimentation on 13 datasets from the PROMISE 
repository [4]. Their result supported the superiority of their 
proposed approach GIS over traditional CPDP, NN filter [7], 
and WPDP in terms of F-measure and G-mean in a statisti-
cal sense.

Different from the above approaches, where training 
data selection was solely based on the similarity between 
the source and the target data, He et al. [20] proposed an 
improved strategy for training data selection based on two 
factors: similarity between the source and the target data 
and the defect count. They explored three methods namely 
Euclidean Distance, Cosine Similarity, and Manhattan Dis-
tance to measure the similarity along with 5 different meth-
ods namely Linear, Logistic, Log, Square-root, and Inverse 
Cotangent to normalize defect count, making a total of 15 
different combinations. The combination of Euclidean dis-
tance as the similarity method and linear normalization for 
defect count worked the best. In comparison with the two 
baseline approaches peter filter [8] and TCA + [21], they 
observed an improvement in average AUC value on 14 data-
sets from the PROMISE repository [4] and AEEEM [22], 
with a medium and small effect size respectively.

So far we have witnessed some significant training data 
selection based CPDP approaches and analyzed that the per-
formance of CPDP is still under question. Despite filtering 
out the relevant data, the performance is not up to the mark 

and didn’t meet the benchmark postulated by Zimmermann 
et al. [2]. One of the reasons could be the absence of feature 
selection, since all the above approaches applied filters to 
select suitable samples from the given dataset, assuming all 
features are equally important and correlated with faults. 
There may be some features, which are redundant or not 
related to faults at all, leading to the poor performance of a 
CPDP model. This seems out to be a clear gap in the existing 
CPDP literature and must be focused upon.

Furthermore, the above techniques, specifically [7, 11] 
focused more on Recall than Precision, but if seen in the 
light of practical aspect, Precision carries more weight than 
Recall as high PF can frustrate the software quality person-
nel, leading to a significant drop in their confidence over the 
model’s ability. Therefore, to bring this into practice, there 
is a need to focus more on improving Precision than Recall.

2.1.3 � Transfer learning based approaches

Transfer learning involves applying the gained knowledge 
from a particular project to make inferences for another 
project from a related or unrelated domain. With a vision 
of using the concept of transfer learning as another way 
to reduce the data divergence in cross-company data, Ma 
et al. [17] tried to exploit a transfer learning method based 
on the Naïve Bayes algorithm called Transfer Naïve Bayes 
(TNB), to build a faster and highly efficient cross-company 
prediction model. They used the data gravitation formula to 
estimate the similarity between the samples of the source 
and the target datasets. They assigned a weight to each sam-
ple based on the similarity with the target sample and then 
finally combined this information with the Bayes logic to 
build their proposed approach. They used seven datasets 
from NASA [3] as source data to train the model and three 
SOFTLAB datasets as target data to test the model. They 
compared their proposed approach with NN filter [7] and 
a baseline model (CC) built using all cross-company data 
using Recall, PF, AUC, and F-measure as the evaluation 
parameters. Results showed higher AUC, F-measure, and 
lower PF values than NN-filter and CC methods significantly 
on all the target datasets. It also proved to be computation-
ally less expensive than NN- filter method and compara-
ble with the CC method, but they did not compare it with 
WPDP.

Thus, to make CPDP comparable to WPDP, Nam et al. 
[21] explored the use of transfer learning technique TCA 
(Transfer Component Analysis [23]) for CPDP. TCA maps 
the source and target datasets into a latent space, having 
the least distance in the distribution of the two, without 
any change in its geometrical structure and data variance. 
In addition to applying TCA, they also inspected the use 
of normalization before applying TCA (as normalization 
affects TCA’s performance), which they called it as TCA + . 
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They proposed four different types of normalization and an 
automatic selection strategy to choose from the same, based 
on the similarity between the source and the target datasets. 
RELINK [24] and AEEEM [22] datasets were used for the 
experimental work and the result was measured in terms 
of F-measure. They claimed an average F-measure score of 
0.61 and 0.41 on RELINK [24] and AEEEM [22] datasets 
using TCA + , which were far better than the result obtained 
(0.49 and 0.32 for RELINK [24] and AEEEM [22] respec-
tively) using traditional CPDP approach. The results are 
also comparable to within project prediction performance. 
WPDP gave an average F-measure value of 0.53 and 0.42 
on RELINK [24] and AEEEM [22] datasets respectively. 
However, the results may not stand true for other datasets.

Although TCA + proved its capability for CPDP, but it 
is not stable. Its prediction performance largely varies with 
different source projects. To address this shortcoming of 
TCA + , Liu et al. [25] proposed a two-phase transfer learn-
ing model (TPTL) for CPDP. A software project estima-
tor (SPE) was established during the first phase to select 
suitable source projects from the candidate set using the 
two regression models. In the second phase, they exploited 
TCA + to construct two prediction models using the two pro-
jects selected in the previous phase. The final prediction is 
made, consolidating the individual prediction results of the 
above two models. They used 42 datasets from 42 releases 
of 14 different open source java projects from the PROMISE 
repository [4] and the results were computed in terms of F1 
score and PofB20. In comparison with the other state-of-
the-art CPDP models including TCA + [21], TDS [11], LT 
[6], and Dycom [26], the proposed TPTL model observed 
an average improvement of 4.98%, 36.12%, 27.13%, and 
11.08% in terms of F1 score respectively overall 42 datasets 
and observed an average improvement of 91.60%, 71.01%, 
11.27%, and 65.73% respectively in terms of PofB20 over-
all 42 datasets. Thus, TPTL not only resolves the issue of 
TCA + ’s instability but also reduces the developer’s effort to 
find the defective classes. Besides these improvements, the 
proposed model suffers from a limitation. Its model build-
ing time is relatively higher than the compared approaches 
which makes it infeasible particularly when the size of the 
source and target datasets are large.

Motivated by Liu et al.’s work [25], Wen et al. [27] also 
proposed an alternative to resolve the instability issue of 
TCA + , wherein they combined source selection along 
with TCA + . They proposed four different source selection 
techniques namely mean_log, median_log, std_log, and 
median_zscore, which also encompasses feature selection 
into it. They experimented with six different types of feature 
selection techniques namely ReliefF, GainRatio, Correlation, 
OneR, InfoGain, and Symmetrical Uncertainty. Their empir-
ical study on 42 versions of 14 open source projects dem-
onstrated that the median_zscore based TCA + technique 

with Relief Factor as the feature selection outperformed the 
TCA + [21], TDS [11], LT [6], and Dycom [26] in terms of 
F-measure. It also outperformed these approaches in terms 
of accuracy, when the number of features is greater.

Both studies proposed their approaches to resolve the 
instability issue of TCA + and shown improvement in terms 
of F-measure against TCA + [21], TDS [11], LT [6], and 
Dycom [26]. However, Liu et al.’s [25] approach outper-
formed Wen et al.’s [27] approach in terms of F-measure 
with an average score of 0.481 as compared to an average 
score of 0.457 for Wen et al.’s approach [27].

Observation So far we have seen that F-measure has been 
used majorly as the performance indicator for CPDP, with 
almost no attention to high false alarm. A model with a high 
false alarm could hamper the developer’s confidence in the 
system and as a result, they might show their reluctance in 
using it. So keeping practical applicability in mind, Precision 
and PF should also be considered for the model’s evaluation. 
Negative samples in the source data are the main reason for 
high PF value.

Targeting this issue in mind, Chen et al. [18] proposed a 
two levels based approach named Double Transfer Boosting 
(DTB) to improve the performance of CPDP, by reducing the 
negative samples in the cross-company data. The first level 
implemented the data gravitation method [28] to reshape the 
entire CC data to fit into WC data. The second Level utilized 
a limited amount of WC data and applied TrAdaBoost [29] 
and traditional Adaboost to CC data and WC data respec-
tively. It then recalculated the weights for each instance 
based on the training error rate, with more weight being 
assigned to misclassified instances to improve the classifier 
performance. Compared with the NN filter [7], NN + WC, 
and NB models, the DTB model observed much lesser false 
alarms and produced statistically significantly better bal-
anced performance in terms of G-measure and MCC with 
at least medium effect. On comparing with TNB [17] model, 
the proposed model obtained significantly better results 
on most experimental datasets, achieving a better overall 
G-measure and comparable MCC. Their proposed model 
also performed significantly better than WPDP, trained on a 
limited amount of WC data, and was comparable to WPDP 
with abundant samples. However, the major shortcoming 
of this approach is that it requires the availability of some 
amount of labeled target data and hence cannot be applied in 
a situation when labeled target data is not available.

Unlike other cross-project prediction studies, where 
researchers basically focused on either applying different 
data filters or using different transfer learning methods to 
reduce the marginal data distribution difference between 
the source and the target project, altogether ignoring the 
conditional distribution difference, Xu et al. [30] proposed 
a new transfer learning approach called BDA (Balanced 
Domain Adaptation). It utilized a balanced mix of two 
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different distributions (marginal and conditional) to bridge 
the gap between the source and the target project. Mar-
ginal distribution refers to the distribution of independent 
variables i.e. the features, whereas conditional distribu-
tion refers to the distribution of dependent variable i.e. the 
label, given the independent variables. They used maxi-
mum mean discrepancy (MMD) [23], a nonparametric 
measure to calculate the distribution difference between 
the source and the target data. It takes both the marginal 
distribution difference and the conditional distribution 
difference into account. Marginal distribution difference 
shows the deviation in the means of source and target data 
in Reproducing Kernel Hilbert Space, whereas conditional 
distribution difference is calculated summing the deviation 
in the means of the source and the target data in Reproduc-
ing Kernel Hilbert Space, over each distinct class label.

When calculating the difference between the two 
domain’s data distribution, both marginal and conditional 
distribution have their own importance. When two pro-
jects are unlike, marginal distribution carries more weight 
as compared to conditional distribution, however, in the 
reverse case conditional distribution dominates over mar-
ginal distribution [31]. Therefore, the degree of impor-
tance for the two distributions depends on the source and 
the target project pair. Their proposed approach iteratively 
adjusts the weight of the two distributions to effectively 
reduce the distribution difference between the source and 
the target project pair. They experimented with four defect 
datasets namely AEEEM [22], RELINK [24], SOFT-
LAB, and NASA [3], consisting of 18 project data alto-
gether. They evaluated the performance of their proposed 
approach using six measures namely F-measure, G-mean, 
Balance, AUC, Effort aware Recall, Effort aware F-meas-
ure against six filter-based approaches, and six transfer 
learning based approaches. They observed an average 
improvement of 23.8%, 12.5%, 11.5%, 4.7%, 34.2%, and 
33.7% over four datasets in terms of F-measure, G-mean, 
Balance, AUC, Effort aware Recall, Effort aware F-meas-
ure respectively.

Observation: So far we have seen various transfer learn-
ing based CPDP approaches, majorly focusing on improving 
the CPDP prediction performance. However, one significant 
cause for poor CPDP performance i.e. the class imbalance, 
has not been addressed in any of the above techniques except 
study [18]. Class imbalance is one of the major problems in 
machine learning tasks. Whenever we have an uneven distri-
bution of defective and non-defective samples in the dataset, 
the machine learning model generally, dominates the major-
ity class and will give the wrong output for the minority 
class. In the context of software defect prediction, minority 
class (defective class) is our main concern, therefore it really 
becomes necessary to handle this class imbalance problem 
before the construction of a CPDP model.

Addressing this issue, Ryu et al. [32] proposed a trans-
fer cost-sensitive boosting (TCSBoost) approach (which 
is essentially an amalgamation of knowledge transfer and 
class imbalance learning), to investigate its effectiveness 
over transfer learning and class imbalance learning alone in 
a CPDP setting where some labeled target data is available. 
They applied SMOTE (Synthetic Minority Oversampling 
technique) and Tomek Link under sampling technique to 
handle class imbalance problem and training instances were 
assigned weight based on the concept of the data gravitation 
method [28] and class imbalance. Based on their empirical 
evaluation of 15 datasets from the PROMISE repository, 
their proposed approach TCSBoost outperformed Naïve 
Bayes, Naïve Bayes + SMOTE, AdaCost [33], Transfer 
Boost [34], and NN filter [7] in terms of Recall, G-mean, 
and Balance. However, the probability of false alarm was 
challenging.

As pointed earlier also that researchers have given more 
importance to Recall over Precision, which actually can lead 
to high PF value and could hamper the developer’s con-
fidence in the ability of the CPDP model. Their proposed 
approach also worked on the same ground and achieved a 
better result in terms of Recall but at the cost of high PF. 
Therefore, there seems a strong need to investigate the 
importance of Precision over Recall to see its impact on the 
developer’s effort.

Like Chen et al.’s work [18], this work also suffers from 
a limitation that their proposed approach cannot be applied 
in the case of the unavailability of some labeled target data.

Addressing the same issue of class imbalance, Tong et al. 
[35] proposed an approach, wherein a new minority over-
sampling technique based on transfer learning (TOMO) was 
introduced to handle class imbalance, followed by a modified 
transfer Naïve Bayes approach. In their proposed approach, 
samples were assigned weights based on feature similar-
ity. Based on their empirical work on 11 public datasets, 
they demonstrated that their proposed approach observed an 
average improvement of at least 27.8% and 71.5% in terms 
of G-measure and MCC in comparison to state-of-the-art 
CPDP approaches.

All the above-mentioned approaches assumed that all the 
available source data are well labeled. However, in a situa-
tion where only a limited amount of labeled source data is 
available due to expensive human labeling, semi-supervised 
techniques come into play.

To this end, Wu et al. [36] attempted to provide an effec-
tive and consolidated solution to both within project semi-
supervised fault prediction (WPSFP) and cross-project semi-
supervised fault prediction (CPSFP) problems. They came 
out with a cost-sensitive kernelized semi-supervised diction-
ary learning (CKSDL) method for the same. They incorpo-
rated two changes in the semi-supervised dictionary learn-
ing method [37], firstly by doing kernel space mapping and 
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secondly by introducing a penalty to account for misclassi-
fication cost. Sixteen projects from 4 public defect datasets 
including NASA MDP [3], AEEEM [22] RELINK [24], and 
MORPH have been experimented upon and the performance 
of several state-of-the-art competing models was measured 
in terms of Precision, Recall, F-measure, and AUC. Based 
on the obtained average prediction results of five semi-
supervised defect prediction approaches FTcF-MDS [38, 
39], LDS [40], RusTri [41], ASDP [42], and NSGLP [43], a 
CPDP approach SCC [44], and a dictionary-learning-based 
fault prediction approach CDDL [45] on four datasets, the 
proposed approach outperformed on all four performance 
parameters, both in WPSFP and CPSFP scenarios.

Thus, we have seen a plethora of diverse transfer learning 
CPDP approaches and different results have been obtained 
from different studies since the evaluation parameters and 
the datasets were not the same. It is really difficult to obtain a 
true consensus about who wins over whom. Therefore, there 
is a need to make a comparative analysis among different 
transfer learning-based approaches by replicating them using 
the common datasets and common evaluation measures to 
know the true state of CPDP.

2.1.4 � Ensemble approaches for CPDP

Ensemble approaches usually involve constructing several 
weak learners/classifiers (a classifier which is far away from 
the true classification and performs poorly irrespective of 
training data distribution) and making decisions by combin-
ing the decisions of all weak classifiers, intending to bring 
improvement in the performance compared to an individual 
learner.

To this end, a very unique approach was proposed by 
Panichella et al. [46] called CODEP (combined defect pre-
dictor), where nothing had been done regarding training data 
selection and reducing the data distribution difference. They 
applied six different classifiers namely Logistic Regression, 
Radial Basis Function Network, Bayes Network, Multilayer 
Perceptron, Decision Table, and Alternating Decision Tree 
in the first phase, and the result of each of them was sup-
plied as input to another classifier (logistic regression and 
Bayes Network taken individually) in sequence. Since indi-
vidual classifiers used in the first phase captured different 
defect probabilities for the same target data and identified 
a different set of samples as defect prone, so to get a better 
prediction performance, they combined these complemen-
tary classifiers in the second phase. The combined approach 
outperformed the standalone classifiers not only in terms of 
AUC but also in terms of cost-effectiveness. CODEP with 
Bayes network observed an average improvement of 10% to 
41% and CODEP with logistic regression observed an aver-
age improvement of 6% to 37% in terms of average AUC 
value.

As we have already seen in Sects. 2.1.1, 2.1.2, and 2.1.3, 
that the two things are very important for CPDP task, firstly, 
how to curtail the data distribution difference across the 
cross-company data and secondly, which source projects 
should be selected from an available candidate set for train-
ing. Some studies [7–10] have selected all source datasets 
for training, giving equal weights to all, leading to high PF. 
It is therefore important to analyze the auxiliary power of 
different source projects for defect prediction to boost the 
effect of samples that resembles the target project most and 
at the same time to negate the effect of samples that resem-
bles the least.

Motivated by this fact, Xia et al. [47] came out with a 
hybrid model reconstruction approach called HYDRA for 
CPDP, which consisted of two phases. The first phase led 
to the construction of a total of n + 1 base classifiers, each 
trained on one of the n source data with one classifier trained 
only on limited available labeled target data. It then followed 
by building a GA classifier, giving the best weights to mul-
tiple classifiers that maximize the fitness score (F1-Score) 
on the training target data. The second phase iterated the 
first phase k times leading to the construction of k GA clas-
sifiers, followed by assigning weights to each of these GA 
classifiers based on their training error rate on training tar-
get data, finally leading to the construction of a composite 
classifier at the end. They carried their empirical evalua-
tion on 29 projects from the PROMISE repository [4] and 
compared their approach with 7 state-of-the-art approaches 
[2, 8, 21, 34, 46, 48, 49] and observed an average improve-
ment of 40.21%, 26.22%, 34.99%, 47.43%, 28.61%, 30.14% 
and 39.49% in terms of F1 score respectively. It also out-
performed WPDP (with 5 percent labeled data) in terms of 
PofB20 and F1-score by 62.40% and 19.46% respectively.

Similar to Xia et al.’s [47] work, Qiu et al. [50] proposed 
a novel multiple components weights (KMM-MCW) learn-
ing model with the same idea in mind that different software 
components have different auxiliary power for fault detec-
tion. They clustered the source project using spectral cluster-
ing and used the Kernel Mean Matching (KMM) algorithm 
to curtail the data distribution difference between the source 
components and the target project. Finally, they build a more 
precise ensemble classifier for the target project. On com-
parison with the seven state-of-the-art techniques namely 
DTB [18], TrAdaboost [29],TNB [17], TCA + [21], NN-
Filter [7], KMM and Baseline, an average improvement 
of 11.2%, 11.5%, 4.1%, 35.8%, 25.5%, 10.7% and 26.17% 
was observed in accuracy overall 15 datasets from PROM-
ISE repository [4] and an average improvement of 4.4%, 
3.2%, 7.1%, 17.8%, 14.8%, 6.9% and 13.9% was observed 
in F-measure over all datasets.

To further improve the CPDP performance taking 
F-measure as the indicator, Chen et  al. [51] proposed 
a new transfer learning framework called collective 
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transfer learning defect prediction (CTDP). It consisted of 
two phases, wherein, first phase leverage TCA + to expand 
the source project dataset using all four normalization 
methods described in the study [21], followed by building 
a base classifier for each of the expanded source datasets. 
The second phase utilizes a particle swarm optimization 
algorithm to assign adaptive weights to each of these base 
classifiers to make an ensemble classifier. They carried their 
empirical study on 28 open source projects from five differ-
ent datasets and observed an improvement of 20%, 100%, 
16.28%, 35.14%, and 47.06% over WPDP, baseline CPDP, 
TCA + [21], HYDRA [47], and CODEP [46] respectively in 
terms of F-measure.

So far we have seen a plethora of diverse CPDP studies, 
but due to different experimental setups, involving different 
datasets and different evaluation parameters, it is difficult 
to analyze which approach comprehensively performed the 
best.

To target this issue, Herbold et al. [16] investigated with 
24 existing CPDP approaches using 85 software products 
from five datasets namely [52], NASA MDP [3], AEEEM 
[22], RELINK [24] and NETGENE [53] using four evalu-
ation measures AUC, F-measure, G-measure and MCC 
together. They reported Cruz [6] at the top in the ranking 
list, followed by Turhan et al.’s approach [7], Menzies et al.’s 
approach [13], and Watanabe et al.’s approach [5]. They sug-
gested these approaches as the benchmark for CPDP under 
a strict CPDP setting. Since only non-effort based evalua-
tion measures AUC, F-measure, G-measure, and MCC have 
been used in the study [16] for comparing various CPDP 
approaches, therefore to obtain a holistic view of the current 
state of the CPDP, Herbold [54] revisited the same study 
[16] considering effort and cost metrics into consideration 
this time. They implemented 26 CPDP approaches and 3 
baselines on two datasets namely [52] and AEEEM [22]. 
They observed the trivial baseline approach called FIX 
(which predicts everything as defective) on the top of the 
ranking list. The two CPDP approaches which performed 
the best in terms of effort and cost measures out of all 26 
CPDP approaches were the approaches proposed by Liu 
et al. [48] and Canfora et al. [49]. However, no correlation 
was observed between the rankings obtained by the study 
[16] and study [54].

This insight uncovers the fact that an approach which 
seems good in terms of technical (or standard) machine 
learning non-effort based measures, may not stand equally 
good in terms of effort/cost-based measures. Therefore, there 
is an urgent need of bringing effort-based measures into con-
sideration in addition to traditional non effort based meas-
ures to evaluate the CPDP model’s effectiveness holistically.

On the same datasets, Zhou et al. [55] also carried a com-
parative study to inspect the true state of CPDP but arrived 
at a different conclusion. They proposed two approaches 

called Manual Down and Manual Up and compared them 
with the existing CPDP approaches using a large number of 
diverse evaluation parameters.

Both Manual Up and Manual Down do not require any 
training data and are simply based on just one feature i.e. the 
module size in terms of LOC. Manual Down is based on the 
assumption that the larger the module size, more will be the 
chances for fault proneness, however, Manual Up is based 
on the rationale that smaller modules are more fault-prone. 
Manual Up simply marks the top 50% of the modules sorted 
in ascending order of LOC as defective, and the rest 50% of 
the modules as non-defective, whereas Manual Down marks 
the top 50% of the modules sorted in descending order of 
LOC as faulty and rest 50% of the modules as non-faulty.

Their empirical investigation concluded the superiority 
of their simple module size based approaches over exist-
ing CPDP approaches. They raised a point saying that, if 
such a simple module size approach can outperform the 
existing state-of-the-art CPDP approaches, then the current 
state of the CPDP is not up to par and thus demands fur-
ther improvement in its performance both technically and 
economically. Furthermore, they proposed Manual Down as 
the baseline, if measuring the performance using non-effort-
based measures, and Manual UP as the baseline, if measur-
ing the performance using effort-based measures. However, 
one limitation of their work is that they have not replicated 
the existing approaches and have taken the results as it is 
from the respective research papers. But it is always better 
to replicate the work with which to make the comparison, to 
ensure its correctness.

2.2 � Heterogeneous CPDP approaches

Till now, we have seen homogeneous CPDP, where the 
source and the target datasets, both have the same met-
ric set and consequently can be used directly without any 
feature matching (or feature selection). However, feature 
selection is an important step in any machine learning task 
since not all given features are the true representative of 
the dependent variable. There may be some redundant or 
irrelevant features, which if not removed, can drop the 
model’s performance significantly. Therefore, it is always 
advisable to select all relevant features before the model 
construction. However, when the source and the target 
datasets have heterogeneous metric sets, there arises 
a question that “will the CPDP still be feasible?” The 
answer is, “Yes”. But, a significant amount of feature’s 
pre-processing work is required. Many researchers are 
attempting to validate the effectiveness of heterogeneous 
CPDP. Few studies [7, 17] have investigated heterogeneous 
CPDP by selecting the common metrics from the source 
and the target datasets. However, the results were not com-
parable to WPDP. Jing et al. [56] proposed unified metric 
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representation (UMR) for both the training and the testing 
data, which consisted of three types of metrics sets namely 
common metric set between the source and the target data, 
followed by metric set particular to the source project and 
then the metric set particular to the target project. While 
constructing the UMR of the source data, target specific 
metrics are set to zero whereas source-specific metrics are 
set to zero for constructing the UMR of the target data-
set. Canonical correlation analysis (CCA) [57] transfer 
learning method was then applied on UMR of source and 
the target data to reduce the data distribution difference 
between them. Their experimental work on 14 datasets 
out shown the efficacy of their approach in comparison to 
state-of-the-art CPDP methods which is also comparable 
to WPDP.

Different from the above approach, where no feature 
selection was done, Nam et al. [58] proposed a heteroge-
neous CPDP approach wherein feature selection was done 
first, followed by a metrics matching mechanism, where the 
metrics from the target dataset having a similar distribu-
tion with the source metrics were identified. Three differ-
ent metrics matching analyzers namely percentile-based 
analyzer, Spearman’s correlation-based analyzer, and 
Kolmogorov–Smirnov test-based analyzer were proposed. 
Their empirical investigation on 28 datasets demonstrated 
the promising result of their proposed approach (with Kol-
mogorov–Smirnov test-based analyzer at threshold cut-off 
of 0.05 along with Chi square feature selection) in terms of 
AUC in comparison to WPDP and state-of-the-art heteroge-
neous CPDP approaches. However, their proposed approach 
assumed only the linear correlation between the source and 
the target metric sets, altogether ignoring the possibility of 
a non-linear correlation between them.

To overcome this linearly inseparable problem of hetero-
geneous CPDP, together with the class imbalance problem, 
Li et al. [59] proposed an approach, wherein first the source 
and the target data are mapped into high dimensional kernel 
space, so that the defective and non-defective data could be 
easily separable. They designed a kernel correlation align-
ment method with nine Gaussian based kernel functions and 
a linear kernel function, followed by integrating multiple 
kernel classifiers with ensemble based learning to mitigate 
the effect of class imbalance. An extensive empirical investi-
gation on 30 public datasets from five different groups mani-
fested the efficacy of their proposed approach over WPDP, 
state-of-the-art homogeneous CPDP and heterogeneous 
CPDP approaches in terms of AUC.

Further ahead, Li et al. [60] presented another approach, 
which used the transfer kernel canonical correlation analysis 
method to reduce the data distribution difference in non-lin-
ear feature space and also incorporated cost-sensitive learn-
ing to counteract class imbalance. Their detailed experimen-
tal work on 28 datasets from five different groups revealed 

the promising results of their approach over state-of-the-art 
homogeneous CPDP and heterogeneous CPDP approaches 
in terms of Recall, PF, F-measure, AUC, and G-mean.

Thus, it is now evident from the existing literature that 
the cross-project defect prediction has the potential to be 
used in a situation where no historical data is available as 
demonstrated by many of the CPDP studies that the results 
are comparable to within project defect prediction and can 
be utilized when no or limited amount of labeled target data 
is available. Existing CPDP approaches showed promising 
results in terms of non- effort based performance measures 
like Recall, Precision, F-measure, PF, G-measure, G-mean, 
Accuracy, Balance, MCC, and AUC, but none of them was 
able to comply with the benchmark postulated by Zimmer-
mann et al. [2]. All existing approaches failed to achieve 
0.75 Recall, Precision, and accuracy simultaneously for all 
datasets under test [16]. Apart from this, very few of them 
[12, 19, 30, 46, 47, 54, 55] have investigated their model per-
formance in terms of cost/effort measures like Effort aware 
Recall, Effort aware Precision, Effort aware F-measure, 
PofB20, IFA(Initial False Alarm), etc. Before putting CPDP 
into practice, we need to have a cost and benefit analysis, 
therefore, it really becomes necessary to confirm the model’s 
validity in terms of business perspective, which is missing in 
the above work. However, Herbold [54] attempted to throw 
light on the same issue and also provide the significance of 
effort-based measures in a practical sense.

3 � Discussion

A comprehensive picture of cross-project defect prediction 
has been presented in Sect. 2 and now, we summarize the 
literature concerning every research question targeted in the 
beginning.

RQ1: What kind of datasets have been used the most in 
CPDP?

Answer: Both the open-source and the closed source 
datasets have been explored in CPDP, but most studies have 
selected open-source datasets for their experimental work. 
Table 4 lists the kind of datasets used in each of the pri-
mary studies. Only 6% of the selected studies have worked 

Table 4   Open/closed dataset usage in CPDP

Type of datasets used Primary studies

Open source datasets [5, 6, 13, 15, 20, 21, 25, 47, 61]
Closed source/academic/propri-

etary datasets
[7, 17]

Mixed datasets [2, 8–12, 16, 18, 19, 27, 30, 
32, 35, 36, 46, 50, 51, 54–56, 
58–60]
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on closed source datasets, 26% of the primary studies have 
used only open-source dataset, whereas 68% of the primary 
studies chose mixed datasets to work upon. However, the 
studies that used mixed datasets, majorly consist of open-
source datasets with approximately 2 to 3 closed/academic/
proprietary datasets. Mostly PROMISE defect datasets [4] 
have been used the most across all studies. The researcher’s 
bias in favoring/selecting the open-source datasets seems 
obvious since defect data collection involves a huge invest-
ment in terms of money and time. But seeing its practical 
applicability in a real scenario, it demands more tests/inves-
tigations specifically on commercial/private datasets.

RQ2: What kind of modeling techniques have been used 
the most in CPDP?

Answer: Table 5 presents the model(s) used in each of 
the selected CPDP studies. We considered the model(s) 
which gave the best result in a particular study. However, 
for a comparative study, all models used are considered. 
Logistic Regression is the most used modeling technique 
followed by Naïve Bayes due to their best performance in 
most of the selected CPDP studies. However, other models 
have not been used much. The reason for their underper-
formance could be many folds, such as some models like NN 
are quite sensitive to hyper parameter tuning, whereas other 
models such as SVM are sensitive to features distribution. A 
decision tree could lead to model overfitting, whereas KNN 
could be time-consuming.

Although LR and NB worked well on most of the data-
sets used in these studies, but still, we cannot generalize the 
above statement as the model’s performance is associated 
with many other factors also such as the kinds of software 
metrics used, the type of performance indicators used, the 
quality of data used and the hyperparameters setting applied. 

Nonetheless, LR and NB are the two most dominant models 
in the CPDP setting.

RQ3: What kind of metrics have been used the most in 
CPDP?

Answer: Both product and process metrics have been 
used in cross-project defect prediction. But product metrics 
(mainly object-oriented metrics, LOC and Complexity met-
rics) have been used most dominantly as it is explored in all 
the selected CPDP studies, whereas process metrics have 
been used in only 38% of the selected studies along with 
product metrics. Since existing studies [62–65] have already 
witnessed the performance of process metrics in WPDP as 
successful fault predictors, so it can also be applied well in 
cross-project defect prediction. There is a strong need for 
more investigation on the application of process metrics in 
CPDP.

RQ4: What kind of Evaluation Parameters have been used 
the most in CPDP?

Answer: A diverse range of evaluation measures (Pre-
cision, Recall, F-measure, G-measure, G-mean, PF, AUC, 
MCC, Balance, PofB20, accuracy, effort aware measures) 
have been used across the selected CPDP studies and a great 
deal of inconsistency has been observed among all, in terms 
of their usage. However, F1 has been observed as the most 
used evaluation parameter, followed by the AUC score, as 
can be seen in Fig. 5. But, the selection of some evaluation 
measures, most importantly the use of accuracy, seems a 
little biased/not appropriate in some studies [27, 50]. In the 
context of software fault prediction, accuracy may not be the 
right choice to capture the model performance. For exam-
ple, consider a dataset comprising of 95% of non-defective 
samples and 5% of defective samples. A high value of accu-
racy such as 95%, will fail to judge the model’s capability if 
all 5% of defective samples will be misclassified. Since our 
objective is to identify defective samples, a model having 
95% accuracy is just a total wastage of efforts and cost as 
it failed to detect any of the defective samples. Therefore, 
accuracy is not a good indicator to capture the performance 
of a fault prediction model. Instead, the selection of perfor-
mance indicators should be based on the objective taken in 
hand and not on the popularity. For example, the studies [12, 
19, 30, 46, 47, 54, 55] selected effort-based performance 
indicators along with non-effort based measures to capture 
their proposed model’s performance which were perfectly 
aligned with the objective taken in their proposed work. For 
instance, Herbold et al. [16] carried an empirical investiga-
tion to inspect the true state of the CPDP by replicating and 
evaluating 24 existing CPDP approaches using non-effort 
based measures only. Further in the study [54], he repli-
cated the same experiment to know who wins over whom, 
this time in terms of effort-based measures. The selection 
of evaluation parameters in both studies was completely 
aligned with the objective undertaken. Apart from this, one 

Table 5   Models used in CPDP

Models used Primary studies

NB [7, 10, 15–19, 32, 35, 54]
LR [2, 6, 9, 16, 20, 21, 25, 

27, 30, 46, 47, 50, 54, 
58–60]

RF [8, 12, 16, 54]
SVM [11, 16, 54]
NN [56]
Decision tree [5, 16, 51, 54]
Decision table [61]
KNN [9]
Bayes network [46]
RBF Net [16, 54]
WHICH [13, 54]
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major inference that we dug out of this is that most stud-
ies have given more weight to Recall than Precision and as 
a consequence has got a high value of PF. But if we look 
from a practical aspect, having a high value of false alarm 
could shake the developer’s belief in the capability/utility 
of the model and as a result, they might switch back to their 
conventional (manual inspection) way of doing software 
reviews.

RQ5: What kind of Statistical Test have been used the 
most in CPDP?

Answer: Different studies opted for a different statistical 
test to validate their model in comparison to other competi-
tive approaches. Figure 6 showcases the diverse set of statis-
tical tests used in all selected studies. It can be clearly seen 

that the Wilcoxon Signed Rank test has been used mostly, 
along with Cliff delta effect size (Cliff delta and Cohen’s d 
are applied post a statistical test, just to measure the magni-
tude by which a particular technique outperforms the other), 
followed by Wilcoxon Rank Sum test (Mann–Whitney U 
test).

Wilcoxon Signed-Rank test is a non-parametric test that is 
generally used to compare two dependent (related matched 
pair) samples to check whether they both have come from 
the same population or not. On the contrary, the Wilcoxon 
Rank Sum test is used to compare two independent samples. 
Friedman’s test is also a non-parametric test, applied when 
the performance of several different techniques need to be 
compared across multiple test attempts. The suitability of a 
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particular statistical test in a particular study is of great con-
cern. Different statistical tests are based on different assump-
tions. Their inappropriate use could mislead the results.

4 � SWOT analysis of CPDP

Now, we present SWOT analysis of cross-project defect 
prediction, highlighting its strengths/power, weaknesses/
vulnerabilities, opportunities/favorable chances, and threats/
risks to give a deep insight into this subarea, thus enabling 
academicians, researchers, and practitioners to enrich and 
enhance their knowledge to build a more proficient and pro-
ductive approach.

4.1 � Strengths

Several factors contribute to the success of cross-project 
defect prediction. Few significant contributors are as follows:

•	 Support from the corpus of cross-company data

Many companies such as NASA and SOFTLAB have 
made their defect datasets available for public consump-
tion. Apart from this, many researchers also have contrib-
uted their defect datasets (Jureczko and Madeyski [52], 
AEEEM [22], and RELINK [24]) in public repositories. As 
mentioned before, what we need, is the availability of cross-
company data for training. If selected carefully, can achieve 
result comparable to within project defect prediction. Many 
studies [18, 21, 51] have reported that the result obtained, 
are comparable to within project defect prediction. And, thus 
supports the validity of using a CPDP model in the absence 
of availability of costly defect data, as a significant step for 
increasing the developer’s productivity by improving the 
software quality.

•	 Cost reduction in data collection

Collecting defect data for each software module and ana-
lyzing the corresponding class label, is a time consuming 
and costly activity. Several studies [18, 32, 47, 50] demon-
strated that by utilizing a very few amount of within project 
data (10% to 20%), together with cross-company data, an 
efficient CPDP model can be constructed. This finding elimi-
nated the unnecessary/worthless need of collecting all defect 
data and harmonize the balance between the cost incurred 
vs. benefits realized.

4.2 � Weaknesses

Several vulnerable factors responsible for bringing the 
CPDP’s progress graph down are as follows:

•	 Poor selection of cross company data

The initial attempt [2] to check the effectiveness of a 
CPDP model was a big failure and the main reason was no 
selection of cross-company data. Furthermore, the target and 
the cross-company data, both had different data distribu-
tion. According to study [7, 32], when data is used directly 
without any instance filtering, could lead to low Precision 
and a high PF value. On the other hand, when used carefully, 
could increase the Precision with a decrease in the PF value 
as reported in the study [18]. Thus, the success of the CPDP 
task lies in the careful selection of training data in a way that 
the training data distribution should match with the target 
data distribution. A plethora of different approaches as dis-
cussed above, have been proposed by different researchers, 
highlighting the importance of source selection. But still, 
there is a scope of improvement as the victory of CPDP is 
vulnerable to source selection.

•	 High computational cost

As compared to WPDP, CPDP experiments incur more 
computational cost as the data does not straight away fit 
for the training phase. For example, the study [7] used a 
KNN filter to select 10 nearest samples from the CC data 
for every sample in the target project to construct the final 
training dataset. The bigger the target project, the more will 
be the cost of computing the final training data. Similarly, 
the studies [21, 25, 27, 51] which used TCA to reduce the 
data distribution difference are computationally very ineffi-
cient. So, a significant amount of work (for reducing the data 
distribution difference between the source data and target 
data) needs to be done in the pre-processing of data before 
the learning phase.

4.3 � Opportunities

Some of the gaps that we have analyzed and which can be 
turned into possible chances for improvement are as follows:

•	 Incorporation of feature engineering into CPDP

Existing studies [22, 66–73] have already shown the 
importance of feature selection/feature extraction in context 
to WPDP. But only 14.7% of CPDP studies [19, 27, 58, 60, 
61] have been reported, addressing this issue in context to 
CPDP. Seeing the success rate of feature engineering in the 
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WPDP setting, it can also be explored in the CPDP setting as 
an important means to improve the prediction performance 
of a CPDP model.

•	 Scope for process metrics as successful fault predictors

All the selected CPDP studies have used product metrics 
as the predictors in building their CPDP model, however, 
only 38% of the selected studies have also incorporated pro-
cess metrics and previous fault metric along with the product 
metrics in their experimental settings. Seeing the excellent 
performance of process based metrics in WPDP experi-
ments [62–65] one can also explore the validity of different 
process metrics in the CPDP setting. Some process metrics 
such as the module’s age and code churn, number of devel-
opers working on a module, have been used in only 29.4% 
of CPDP studies [16, 21, 30, 36, 54–56, 58–60], as they are 
the part of AEEEM dataset [22], however, the impact of 
some process metrics like number of files modified, num-
ber of subsystems modified, number of directories modified, 
developer’s experience has not been investigated into CPDP 
setting till now. Therefore, further exploration with these 
unseen process metrics into the CPDP setting is needed.

•	 Scope for regression task

Majorly, two kinds of the task are being targeted in con-
text to software fault prediction namely classification and 
regression. Classification refers to the task of classifying/
predicting the software modules as faulty or non-faulty 
based on some of its measured traits/properties (software 
metrics), whereas regression refers to the task of estimat-
ing/predicting the fault count in each software module 
based on its measured features. Based on the estimated 
fault count, modules can be prioritized and thus a ranking 
can be obtained, specifying the order of module’s testing. 
Most of the CPDP experiments which have been carried out 
recently are catering to the classification task. However, very 
limited work has been reported for regression. As per our 
analysis, 97% of the selected studies deal with classification, 
whereas only 3% of the selected studies cater to regression 
tasks. Generally, software developers are available with an 
effort equal to 20% of total LOC (lines of code). Existing 
work [74] suggests that 80% of the fault lies in the 20% files, 
therefore identifying those 20% of files becomes very impor-
tant. Ranking of modules based on the estimated fault count 
helps in identifying that 20% of files that can account for 
80% of the total faults and thus helps in reducing the devel-
oper’s effort in identifying the faultiest modules. Since very 
limited work has been done concerning this, there exists 
a big scope for performance improvement, particularly in 
regression models. Thus, this gap can be exploited as an 

opportunity to come up with some innovative ideas to target 
particularly regression in CPDP.

•	 Room for improvement in prediction’s performance

Although a plethora of diverse approaches have been pro-
posed for CPDP, but most of them have missed out on tak-
ing class imbalance, feature preprocessing, hyperparameter 
tuning, and effort-based evaluation measures into considera-
tion. Only 20.58% of the selected CPDP studies [12, 19, 30, 
46, 47, 54, 55] have validated their proposed models using 
effort-based measures, which are very important for their 
practical applicability. Similarly, class imbalance, hyperpa-
rameter tuning, and multicollinearity are the three significant 
issues, which could lead to poor prediction performance, but 
have not been given due importance in cross-project defect 
prediction. So this insight brings out a hope/a way to amal-
gamate different class imbalance and features preprocessing 
techniques with existing CPDP approaches and their evalua-
tion on effort-based measures, with the positivity of observ-
ing improvement in the prediction performance.

4.4 � Threats/risks

There are some factors which can lead to a risky situation, 
where the findings reported, could be misleading. Some of 
the significant threats are as follows:

•	 Inconsistency in the use of performance evaluation 
parameters

Different studies have used different combinations of eval-
uation parameters to validate their respective approaches. 
As a result, it becomes cumbersome to compare and ana-
lyze their relative performances. Figure 5 is representing 
the proportion of different evaluation parameters used in the 
selected studies. The most commonly used metric is F-meas-
ure (the harmonic mean of Recall and Precision), followed 
by AUC, PD & PF, and PD & Precision. The least used met-
rics are MCC, accuracy, PofB20, and effort aware measures. 
Different performance indicators lead to a different intuitive 
interpretation of the underlying model. Actually, the selec-
tion of evaluation metrics should depend upon the objective 
of the study undertaken. If the focus is more on correctly 
identifying faulty instances, then the metrics like Precision, 
Recall, PF, F-measure, G-mean, and G-measure may pro-
duce a fruitful result. At the same time, one can also choose 
between Precision and Recall. If both are equally important, 
Fβ with β = 1 will be the right choice. However, if Recall 
weighs more than Precision, Fβ with β = 2 can be used. If 
Precision is more important than Recall, Fβ with β = 0.5 will 
be the right choice. When the correct classification of both 
the faulty and non-faulty classes are equally important, then 
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metrics like accuracy, Matthew’s coefficient of correlation 
(MCC) could be used. AUC is a threshold independent met-
ric and is less affected by class imbalance, therefore can be 
used to compare the relative performances of various clas-
sifiers. When inspecting the performance of a ranking based 
model, then the metrics like PofB20%, FPA (fault percentile 
average), AUCEC (area under cost-effectiveness curve) may 
suffice. On the other hand, when inspecting the practical 
applicability of the model, effort-based metrics including, 
PofB20%, FPA, AUCEC, Effort aware Recall, Effort aware 
Precision, Effort aware F-measure, and IFA comes into 
play. Thus, the selection of correct evaluation parameters 
is important for the success of a CPDP model. Erroneous 
selection of performance measurement metrics could pose 
danger to the validity of a CPDP model.

•	 Inconsistency in the use of statistical test techniques

A great deal of disparity has been observed in the usage 
of statistical testing techniques across different studies, as 
can be seen in Fig. 6. Selecting an appropriate hypothesis 
testing technique is important for the model’s validation. 
For example, when applying the Friedman-Nemenyi test 
to compare several approaches, its ranking based results 
sometimes fail to discriminate between a good and a bad 
approach. Therefore, one must carefully look into the weak-
nesses possessed by a particular test, before using it.

Further, Cliff delta effect size calculation or Cohen’s 
d effect size calculation, which are generally carried post 
another statistical test to measure the magnitude by which a 
particular model is better than the other and is always advis-
able, is attempted by only 28% of the selected studies. Fur-
ther, to our big surprise, 23% of the selected studies have 
not used any statistical test, which is not a good practice. 
One must validate their findings statistically to gain confi-
dence in their respective approach. Several factors decide 
the applicability of a particular type of tests, such as the 
size of test data, the type of sample’s distribution (Gauss-
ian/Non-Gaussian), sample’s dependence/independence, 
their underlying assumptions, and many more. Therefore, 
the right selection of a statistical technique is important for 
model validation.

•	 Threat to external validity

All the CPDP approaches that we came across, worked 
on some specific datasets. To the best of our knowledge, 
there is no effective universal CPDP approach that can fit in 
all datasets. This is a common threat reported in all CPDP 
studies considered in the survey.

5 � Threats to validity

We have selected 34 primary significant studies in this sur-
vey to uncover the major strengths, weaknesses, opportu-
nities, and threats about CPDP. Since our major focus is 
on homogeneous CPDP, therefore we selected a total of 30 
homogeneous CPDP studies and 4 heterogeneous CPDP 
studies to present the current state of CPDP holistically. 
Although we have carefully selected all CPDP studies using 
our well-defined inclusion and exclusion criteria, but it may 
be possible that some significant studies have been missed 
out. To the best of our knowledge, we believe that selected 
studies were sufficient to carry the SWOT analysis of CPDP 
and to present the current state of CPDP as the majority of 
our selected studies are from recent times as can be seen in 
Fig. 1.

6 � Conclusion

Cross Project Fault Prediction (CPDP) is gaining much 
attention from various researchers across the globe. To syn-
thesize and analyze the current state of the art and also to 
present what milestones need to be covered, we performed 
a comprehensive survey on CPDP along with its SWOT 
analyses.

The comprehensive report presented in this work is based 
on 34 primary different approaches used for CPDP. From 
these studies, qualitative and quantitative data were extracted 
and analyzed to present the SWOT analysis as well as to 
frame answers for the targeted research questions. SWOT 
analysis of cross-project defect prediction highlighted the 
grey areas to further improve the CPDP performance. It has 
been found that none of the existing approaches have been 
able to comply with the benchmark postulated by Zimmer-
mann et al. [2]. It has been also found that all the exist-
ing approaches failed to achieve 0.75 recall, precision, and 
accuracy simultaneously for all datasets under test. Hence 
we can conclude that there exists a big scope for perfor-
mance improvement in the field of CPDP. Incorporation of 
feature engineering, exploration with process metrics (such 
as number of files modified, number of subsystems modified, 
number of directories modified, developer experience, etc.), 
class imbalance handling, and hyperparameter tuning can 
be investigated in CPDP setting to bring improvement in its 
performance. Further ahead, our analysis also reported that 
LR and NB have been heavily used models in CPDP. The 
product metrics (object-oriented metrics, complexity met-
rics, and LOC) were the most used fault predictors in CPDP. 
Open source datasets have been used extensively in most of 
the works on CPDP. F-measure and AUC evaluation meas-
ures have been found to be widely used in CPDP. Wilcoxon 
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Signed-Rank test has been observed to be the heavily used 
statistical test among all in CPDP studies.

Finally, to conclude analytically, we would say that the 
performance of a CPDP model is linked with the way it is 
built. The kind of metrics used, the types of modeling tech-
niques applied, the diverse approaches explored, the quality 
of data used, and the kinds of the statistical test applied, all 
have a significant impact on the model’s capability. Existing 
approaches are more or less Recall oriented and failed in 
achieving good Precision and low probability of false alarm. 
A high false alarm could hamper the developer’s confidence 
in the system. Therefore, there is a need to investigate the 
importance of precision over recall to see its impact on the 
developer’s productivity. Moreover, 82.35% of the selected 
CPDP studies focused on traditional machine learning per-
formance evaluation measures, with little or no emphasis 
on cost/effort aware performance measures. Before put-
ting CPDP into practice, we need to have a cost and benefit 
analysis, therefore, it really becomes necessary to confirm 
the model’s validity in terms of cost-effectiveness, which 
was missing in 82.35% of the selected studies. Furthermore, 
existing work focused more on instance selection with no or 
very little emphasis on feature selection. There can be some 
features that are not related to fault and can degrade the 
performance of a CPDP model. Only 14.7% of the selected 
CPDP studies targeted feature selection in their work. There-
fore, future studies must consider these points and should 
take into account feature engineering and effort aware per-
formance measures along with non-effort based performance 
measures as well, to depict the true performance of the pro-
posed model.

We hope that the findings reported in this survey will be 
fruitful for carrying future research and will assist in turning 
its weaknesses into possible strengths.
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