
Innovations in Systems and Software Engineering (2022) 18:283–299
https://doi.org/10.1007/s11334-020-00379-y

S . I . : AC ITSEP

A pragmatic ensemble learning approach for effective software effort
estimation

P. Suresh Kumar1 · H. S. Behera1 · Janmenjoy Nayak2 · Bighnaraj Naik3

Received: 15 September 2020 / Accepted: 11 November 2020 / Published online: 26 January 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
The immense increase in software technology has resulted in the convolution of software projects. Software effort estimation
is fundamental to commence any software project and inaccurate estimation may lead to several complications and setbacks
for present and future projects. Several techniques have been following for ages of the software effort estimation. As the
application of software is extensively increased in its size and complexity, the traditional methods aren’t adequate to meet
the requirements. To achieve the accurate estimation of software effort, in this paper, a gradient boosting regressor model is
proposed as a robust approach. The performance is compared with regression models such as stochastic gradient descent,
K-nearest neighbor, decision tree, bagging regressor, random forest regressor, Ada-boost regressor, and gradient boosting
regressor by employingCOCOMO’81 containing 63 projects andCHINAof 499 projects. The regressionmodels are evaluated
by the evaluationmetrics such asMAE,MSE, RMSE, andR2. From the results, it is evident that the gradient boosting regressor
model is performing well by obtaining an accuracy of 98% with COCOMO’81 and 93% with CHINA dataset. The proposed
method significantly performs better than all regression models used in comparison with both the datasets.

Keywords Software effort estimation · Ensemble learning · Gradient boosting · Machine learning · COCOMO

Abbreviations

SGD Stochastic gradient descent
KNN K-nearest neighbor
DT Decision trees
BR Bagging regressor
RFR Random forest regressor
ABR Ada-Boost regressor

B P. Suresh Kumar
reshu.suri@gmail.com

H. S. Behera
hsbehera_india@yahoo.com

Janmenjoy Nayak
mailforjnayak@gmail.com

Bighnaraj Naik
mailtobnaik@gmail.com

1 Department of Information Technology, Veer Surendra Sai
University of Technology, Burla 768018, India

2 Department of CSE, Aditya Institute of Technology and
Management (AITAM), Tekkali 532201, India

3 Department of Computer Application, Veer Surendra Sai
University of Technology, Burla 768018, India

GBR Gradient boosting regressor
MRE Magnitude relative error
MMRE Mean magnitude of relative error
RMSE Root mean square error
MAE Mean absolute error
MdMRE Median magnitude of relative error
MSE Mean square error

1 Introduction

Software effort estimation deals with estimating the software
effort, which is essential to build a software project [1]. It
considers estimates of schedules, a probable sum of cost and
manpower essential in building a software project [2]. The
software effort estimation approach will foretell the practi-
cal quantity of effort required to maintain and develop the
software from undetermined, insufficient, noisy, and incon-
sistent data input [3]. The software effort estimation has
drawn attention since the mid-1970s [4]. It was of utmost
importance since inaccuracies in the predictions lead to com-
plicated results such as overestimation and dissipation of
resources, and underestimation may cause overabundance

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-020-00379-y&domain=pdf
http://orcid.org/0000-0002-5922-0505


284 P. Suresh Kumar et al.

in their planned budgets [5]. With the boundless extension
of software technology, the significance and bulkiness of the
software are extended in size, collaterally its complexity also
increased to predict the software project’s effort accurately.

To estimate the software effort, the techniques that com-
prehend are algorithmicmodels, expert judgment, estimation
by analogy, and machine learning. The algorithmic models
comprise COCOMO, function points, SLIM, and use case
points. Expert judgment is a method that analyzes and uti-
lizes the expert’s experiences in the estimation of the project.
Estimation by analogy refers to that homogeneous historical
projects which are compared to the current developmental
models. Machine learning techniques are renowned for the
last two decades in estimating software effort [6].

Moving further into the conceptualization of machine
learning, the methods entail in machine learning builds
regression models, which make use of prior projects and
are subsequently employed to estimate the software project’s
effort. As software projects convolutions are increasing, the
statistical methods and traditional parametric models do not
often seem tobe coherent to represent the correlation between
the project features and the software effort [7]. So with
the immense progress of software effort estimation practice,
there should be techniques that can compute the effort of
abruptly changing software, which keeps on updating the
programming tools and skills. In this scenario,machine learn-
ing rather than traditional methods are preferable because
those have the potentiality to access the historical data and
learn from it and can adapt to the wide variations that occur
in a software project [8]. Hence, such techniques are efficient
to deal with the complex data and possessing high accuracy.

Periodically, there would be difficulty in the machine
learning techniques to specifywhich effort estimators accom-
plishes best. Because, while comparing estimators based on
the modified conditions, any estimator may change its place
in the ranking. However, if we merge the estimates of mul-
tiple estimators, then the resulting method executes better
than any single estimator. Taking the above assertion into
consideration, we uncover the ensemble learning in machine
learning, which makes use of multiple learning algorithms
to estimate or predict better performance [9]. So, integrating
ensemble learning for the software effort estimation process
can lead to better accuracy in estimating the effort by making
use of many algorithms and predicting the good result of all.

The primary goal of this paper is to estimate the effort
of software using ensemble learning technique, and various
machine learning techniques. The highlights of the research
work are referenced as follows:

• Proposed gradient boosting regressor (GBR) for estimat-
ing the software effort of large-scale projects.

• Other ensemble learning methods such as Ada-Boost
regressor (ABR), and bagging regressor (BR) andmachine

learning models such as stochastic gradient descent
(SGD), K-nearest neighbor (KNN), decision trees (DT)
are used to compare the performance with the proposed
method.

• Simulation is carried out by using datasets such as
COCOMO’81, and CHINA.

• Considered four performance metrics to analyze the per-
formance of each regressor.

The rest of the paper is structured as follows: Sec-
tion 2 shows the literature review of techniques in estimating
the software project’s effort. Section 3 describes the pro-
posed model along with the framework. Section 4 presents
the Experimental setup along with describing the datasets
COCOMO’81, and CHINA, performance measures and the
environmental setup. Section 5 shows the result analysis
accompanying plots; Sect. 6 presents the conclusion of the
work.

2 Literature review

Estimating software effort has always remained a challeng-
ing task for machine learning researchers. Singal et al. [10]
applied differential evaluation (DE) algorithm on COCOMO
II and COCOMOmodels to estimate the effort of a software.
In this experiment, COCOMO81andNASA’93datasetswere
implemented and the evaluation metric used for compari-
son is MMRE. The effectiveness of the differential evolution
algorithmwas investigated in enhancing the parameter values
for traditional algorithmic models such as COCOMO II and
COCOMO. The cost driver values were upgraded by imple-
menting theDE approach for both themodels, which resulted
in boosting the accuracy in software effort estimation.

The accurate effort estimation in agile software develop-
ment projects can help in the planning of a sprint, which
leads to optimal results. Malgonde and Chari [11] experi-
mented with seven algorithmic approaches such as support
vector machine, ridge regression, artificial neural network,
K-nearest neighbor, decision tree, linear regression, and
Bayesian networks to determine the method that gives bet-
ter accuracy in estimating the software effort, and uniformly
neither of them outperformed. So, they implemented an
ensemble-based approach to predict the effort, the data on
which they executed are from 24 software development
projects. The considered performance metrics for evaluation
aremean absolute error (MAE),mean balanced error (MBE),
and rootmean square error (RMSE).Theproposed ensemble-
based algorithm outperformed the other similar approaches
in predicting the software effort.

Abdelali et al. [12] built a random forest (RF) model and
experimentally optimized the performance by modifying the
key parameters to estimate the accurate software effort. The

123



A pragmatic ensemble learning approach for effective software effort estimation 285

datasets used are ISBSG, Tukutuku, and COCOMO. The
evaluation was handled through the 30% hold-out validation
method. To evaluate and determine the well-performed tech-
nique, three performance metrics such as median magnitude
of relative error (MdMRE), mean magnitude of relative error
(MMRE), and Pred (0.25) are used. The obtained RF model
is collated with the classical regression tree and the results
proved that the enhanced RF model performed well than the
regression tree model.

Fuzzy models in predicting software effort are experi-
mented by Nassif et al. [13]. Three fuzzy logic models were
implemented and compared in estimating software effort and
in aid of designing of these three fuzzy logic models namely
Sugeno,Mamdaniwith constant output, and Sugenowith lin-
ear output, regression analysis were carried out. The dataset
utilized for training and testing the models is ISBSG dataset
and the performance metrics used for evaluation are MAE,
MBRE, mean inverted balance relative error, standardized
accuracy, and Scott–Knott. The comparative analysis among
the fuzzymodels designed in assistancewith regression anal-
ysis showed that the Sugeno fuzzy model with linear output
resulted better.

Pospieszny et al. [14] proposed implementations with
the machine learning algorithms in predicting the effort
of software projects effectively by averaging the ensemble
of machine learning algorithms including neural networks,
generalized linear models, support vector machines with
cross-validation. The methods are tested with ISBSG dataset
and verified with metrics such as MAE, MMRE, mean
squared error (MSE), RMSE, MMER, mean balanced rel-
ative error (MBRE), and PRED in evaluating the proposed
model. The efficacy of the model helped in predicting the
software effort accurately within the time duration.

The other works of estimating software effort using dif-
ferent techniques by employing well-known datasets along
with the real-time industry projects and the performancemet-
rics evaluated to determine the best model that predicts the
accurate software effort are shown in Table 1.

3 Proposedmethodology

The proposedmethod’s framework is the inclusion of various
independent methods. Primarily, data collection is done as
the initial step of our framework and the succeeding steps
are data preprocessing, data cleaning, and data visualization.

In our framework, we compared various machine learning
techniques such as SGD, KNN, DT, BR, RFR, ABR, and
GBR are considered for software effort estimation. The data
are split into training and testing in the ratio of 80:20. Our
proposed framework is represented in Fig. 1.

3.1 Gradient boosting

In ensemble learning, the sets of learning machines are
trained and combined to execute a similar task, to enhance
predictive performance. Ensemble learning techniques have
drawn the attention of software effort estimation commu-
nities as they constantly contributing better performance
over single learning techniques [15]. Gradient boosting is an
ensemble learning algorithm of machine learning. The pri-
mary concept of boosting is to append the new base models
constantly to the ensemble of learning machines. At every
following iteration of the learning process, a new weak base-
learning model is set and trained based upon the errors of the
earlier iterations of the entire ensemble. Gradient boosting
was developed by Friedman [16]. It solves the minimization
problem by using a gradient descent method and develops
a model for prediction in the configuration of an ensemble
of learning machines that includes weak prediction models
consistently with decision trees.

Gradient boosting regressor is the abstraction of gradient
boosting and entails a weak learner, a loss function, and an
additive model. Loss function to be optimized, and it may
be differentiable depending upon the kind of problem being
solved, which is a prerequisite of gradient boosting. Decision
trees are utilized as the weak learners as they permit their
outputs to be added, also allowing the next immediate model
outputs to be appended and to rectify the residuals in the
predictions. The greedy approach is used to build the trees
that chooses the best split to minimize the loss. A gradient
descent method is utilized to minimize the loss by appending
the decision trees.After evaluating the loss, a new tree adjoins
to employ the gradient descent procedure to minimize the
loss and the output of the new tree is subsequently appended
to the existing ensemble of trees to improve the accuracy of
final output [17].

123



286 P. Suresh Kumar et al.

Ta
bl
e
1
L
ite

ra
tu
re

st
ud

y
in

so
ft
w
ar
e
ef
fo
rt
es
tim

at
io
n

C
on

tr
ib
ut
io
n

A
ut
ho

r
pr
op

os
ed

m
et
ho

d
D
at
as
et
s

E
va
lu
at
io
n
fa
ct
or
s

Pe
rf
or
m
an
ce

L
im

ita
tio

n
R
ef
er
en
ce
s

C
om

pa
re
d
va
ri
ou
s

m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu
es

su
ch

as
N
aï
ve

B
ay
es
,R

an
do
m

Fo
re
st
,A

rt
ifi
ci
al
N
eu
ra
l

N
et
w
or
ks
,a
nd

Su
pp
or
t

ve
ct
or

m
ac
hi
ne
.A

N
N

pe
rf
or
m
ed

w
el
l

co
m
pa
re
d
to

al
lo

th
er

te
ch
ni
qu
es

N
B
,R

F,
A
N
N
,a
nd

SV
M

St
ud
en
td

at
as
et

E
ff
or
t

E
ff
or
t—

39
.1
48

O
nl
y
te
st
ed

w
ith

so
m
e
ex
is
tin

g
M
L
m
et
ho
ds

[3
0]

C
O
C
O
M
O
II
m
od
el
is

co
m
pa
re
d
w
ith

C
O
C
O
M
O
II
-C
uc
ko
o,

C
O
C
O
M
O
II
-W

ha
le

op
tim

iz
at
io
n

C
O
C
O
M
O
II
m
od
el
w
ith

hu
m
pb
ac
k
W
ha
le

op
tim

iz
at
io
n,
C
uc
ko
o

N
A
SA

93
M
M
R
E
,M

R
E

M
M
R
E
—
50
.6
12
2

L
es
s
ac
cu
ra
cy

[3
1]

E
st
im

at
in
g
so
ft
w
ar
e
ef
fo
rt

us
in
g
N
N

B
PN

N
C
O
C
O
M
O
81

(6
3)
,

D
es
ha
rn
ai
s
(8
1)

M
M
R
E

H
ig
h
co
m
pl
ex
ity

an
d
le
ss

ac
cu
ra
cy

[3
2]

Im
pr
ov
is
ed

G
en
et
ic

A
lg
or
ith

m
de
si
gn
ed

fo
r

op
tim

iz
in
g
C
O
C
O
M
O
II

m
od

el
’s
co
ef
fe
ci
en
ts
to

en
ha
nc
e
ef
fo
rt

es
tim

at
io
n

G
en
et
ic
al
go
ri
th
m
s

C
O
C
O
M
O
II

M
M
R
E
,M

R
E

M
M
R
E
—
33
.9
6

T
he

C
O
C
O
M
O

II
m
od
el
is

de
pe
nd
en
to

n
on

ly
tim

e
co
ns
tr
ai
nt

an
d

ig
no

re
s
al
l

ot
he
r

re
qu
ir
em

en
ts

[3
3]

In
tr
od

uc
ed

op
tim

iz
at
io
n

te
ch
ni
qu

e
ca
lle

d
O
IL

an
d
co
m
pa
re
d

pe
rf
or
m
an
ce

re
su
lts

of
C
A
R
T-
D
E
,a
nd

C
A
R
T-
FL

A
SH

O
pt
im

iz
ed

in
du

ct
iv
e

le
ar
ni
ng
,C

A
R
T-
D
E
,

C
A
R
T-
FL

A
SH

K
em

er
er
,a
lb
re
ch
t,
IS
B
SG

10
,F

in
ni
sh
,M

iy
az
ak
i,

M
ax
w
el
l,
D
es
ha
rn
ai
s,

K
itc

he
nh

am
,C

hi
na

A
R
,M

R
E
,M

A
E
,S

A
M
R
E
—

59
%

L
es
s
ac
cu
ra
cy

an
d
de
pe
nd
en
t

pa
ra
m
et
er

op
tim

iz
at
io
n

[3
4]

C
om

pa
re
d
va
ri
ou
s
fu
zz
y

lo
gi
c
m
od

el
s
su
ch

as
M
am

da
ni
,S

ug
en
o
w
ith

co
ns
ta
nt

ou
tp
ut
,a
nd

su
ge
no

w
ith

lin
ea
r

ou
tp
ut

in
re
gr
es
si
on

an
al
ys
is

R
eg
re
ss
io
n
fu
zz
y
lo
gi
c

IS
B
SG

M
A
E
,M

B
R
E
,M

IB
R
E
,

SA
,M

E
M
A
E
—
36
13
.7
,

M
B
R
E
—
18
1.
8,

M
IB
R
E
—
62
.5
,

SA
—
38
.5

L
ow

es
tim

at
io
n

in
m
aj
or

ca
se
s

[1
3]

O
pt
im

iz
ed

hy
br
id

m
od

el
ba
se
d
on

C
O
C
O
M
O

C
O
C
O
M
O

R
ea
ls
of
tw
ar
e
pr
oj
ec
ts

M
M
R
E
,P

R
E
D

M
M
R
E
—
0.
21
,

PR
E
D
—
0.
75

L
es
s
ac
cu
ra
cy

[3
5]

123



A pragmatic ensemble learning approach for effective software effort estimation 287

Ta
bl
e
1
co
nt
in
ue
d

C
on

tr
ib
ut
io
n

A
ut
ho

r
pr
op

os
ed

m
et
ho

d
D
at
as
et
s

E
va
lu
at
io
n
fa
ct
or
s

Pe
rf
or
m
an
ce

L
im

ita
tio

n
R
ef
er
en
ce
s

R
an
do
m

fo
re
st
is
ap
pl
ie
d

by
va
ry
in
g
va
ri
ou
s

pa
ra
m
et
er
s
an
d
th
e

re
su
lts

ar
e
co
m
pa
re
d

w
ith

re
gr
es
si
on

tr
ee
s.

R
an
do
m

fo
re
st

IS
B
SG

R
8,

T
uk
ut
uk
u
an
d

C
O
C
O
M
O

Pr
ed
(0
.2
5)
,M

M
R
E
an
d

M
dM

R
E

Pr
ed
(0
.2
5)
—
40
,

M
M
R
E
—
1.
29
,

M
dM

R
E
—
0.
37

L
es
s
ac
cu
ra
cy

[1
2]

C
om

pa
re
d
va
ri
ou
s

m
ac
hi
ne

le
ar
ni
ng

m
od
el
s
su
ch

as
SV

M
,

M
L
P,
G
L
M
,a
nd

E
ns
em

bl
e
av
er
ag
e

ap
pr
oa
ch

SV
M
,M

L
P,
G
L
M
,

E
ns
em

bl
e
av
er
ag
in
g

IS
B
SG

M
E
,M

A
E
,M

SE
,R

M
SE

,
M
M
R
E
,P

R
E
D
(0
.2
5)
,

PR
E
D
(0
.3
),
M
M
E
R
,

M
B
R
E

M
E
—
0.
02
,M

A
E
—
0.
19
,

M
SE

—
0.
07
,

R
M
SE

—
0.
27
,

M
M
R
E
—
0.
13
,

PR
E
D
(0
.2
5)
—
76
.9
1%

,
PR

E
D
(0
.3
)—

81
.1
9%

,
M
M
E
R
—
0.
47
,

M
B
R
E
—
0.
16

L
es
s
ac
cu
ra
cy
,

m
od
er
at
e
er
ro
r

ra
te

[1
4]

E
xa
m
in
ed

th
e

pe
rf
or
m
an
ce

of
D
T,

SG
B
,R

F
w
ith

ex
is
tin

g
ap
pr
oa
ch
es
.

D
T,

SG
B
,R

F
21

so
ft
w
ar
e
pr
oj
ec
ts

M
M
E
R
,M

dM
E
R
,

PR
E
D
25

(5
0)

(7
5)

(1
00
)

M
M
E
R
—
0.
16
32
,

M
dM

E
R
—
0.
11
51
,

PR
E
D
25
—
85
.7
1,

PR
E
D
(5
0)
(7
5)
(1
00
)—

95
.2
3,

U
se

of
Sm

al
l

da
ta
se
ta
nd

le
ss

ac
cu
ra
cy

[1
8]

Pr
ed
ic
tin

g
so
ft
w
ar
e

pr
oj
ec
t’s

ef
fo
rt
us
in
g

fu
nc
tio

n
po
in
t,
SV

M
an
d
A
N
N
M
O
D
E
L
S

SV
M
,A

N
N

R
ea
ls
of
tw
ar
e
pr
oj
ec
ts

R
M
SE

,R
A
E
,R

R
SE

,
M
A
E

R
M
SE

—
5.
89
3,

R
A
E
—
9.
15
8%

,
R
R
SE

—
13
.2
63
%
,

M
A
E
—
3.
77
23

U
se

of
tr
ad
iti
on

al
m
od

el
s
an
d

ob
ta
in
ed

m
od
er
at
e
er
ro
r

ra
te

[2
2]

M
ul
ti-
ob

je
ct
iv
e
so
ft
w
ar
e

ef
fo
rt
es
tim

at
io
n

C
on
fid

en
ce

gu
id
ed

ef
fo
rt

es
tim

at
or

C
H
IN

A
,D

es
ha
rn
ai
s,

Fi
nn

is
h,

M
iy
az
ak
i,

M
ax
w
el
l

M
A
E
,S

A
SA

—
0.
90

L
es
s
ac
cu
ra
cy

[3
6]

E
st
im

at
in
g
so
ft
w
ar
e
ef
fo
rt

th
ro
ug
h
ge
ne
ra
liz
ed

re
gr
es
si
on

N
N

G
en
er
al
iz
ed

re
gr
es
si
on

N
N

C
O
C
O
M
O

M
M
R
E
,M

dM
R
E

M
M
R
E
—
2.
14
42
,

M
dM

R
E
—
78
.4
7

L
es
s
ac
cu
ra
cy

[1
5]

123



288 P. Suresh Kumar et al.

Fig. 1 The framework of the proposed model

The procedure of the proposed Gradient boosting regres-
sor is as follows:

Gradient boosting algorithm constructs trees according to
the input values and calculates the residuals based on the
observed values and improves the accuracy by considering
the predicted outputs of the previous trees. In the above algo-
rithm, input considered are independent variables and the
dependent variable of all the samples and loss function is
considered to calculate the residuals. In step 1, F0(x) func-
tion is initialized with a value obtained by the summation of
the loss function of all the samples. In step 2, the residuals
are calculated by taking the derivative of the loss function to
that of the predicted values for every tree and a regression
tree is fitted for all the residuals. The output is calculated for

each leaf in the tree by minimizing the summation of their
residuals and that is the average of residuals in each leaf, and
are stored. Now, the model is updated by adding the summa-
tion of the output to the previous output, and this iteration
continues for h number of trees until we obtain the estimated
accuracy as described in step 3.

The framework of the proposed model is presented in
Fig. 1.

4 Experimental setup

COCOMO’81, and CHINA datasets were employed to eval-
uate and compare the software effort using various regression
models. The COCOMO dataset has been widely used in
research studies to estimate the effort of software by employ-
ing traditional algorithms and also with the machine learning

123



A pragmatic ensemble learning approach for effective software effort estimation 289

Algorithm: Gradient boosting regressor model

Input: The input taken is {(xi , yi )}ni�1, and a differentiable
loss function considered is G(yi , F(x)) where xi
represents input variables and yi represents the
corresponding output variable i.e., dependent variable and
the differentiable loss function is G(yi , F(x))

The loss function is defined as 1
2 (Actual − Predicted)2

1. A function F0(x) is initialized with a value by
minimizing the summation of the loss function G
(yi , β) by considering the summation of the loss

function and
argmin

β
is used to minimize the

summation of loss function consisting of yi as observed
values and β as predicted values. i.e., we are initializing
the model with a constant value.

F0(x) � argmin
β

n∑

i�1
G(yi , β)

(1)

2. Consider the decision trees i.e., weak learners in our
case; starting from first tree (h) to last tree (H ) for
h � 1 to H :

(a) Computation of residuals is carried out by
derivative of loss function with respect to the
derivative of predicted value; for every tree we are
trying to build, and with every sample
(i � 1, 2, 3, . . .) given by

qih � −
[
∂G(yi , F(xi ))

∂F(xi )

]

F(x)�Fh−1(x)

for i � 1, . . . , n

(2)

The residuals are called as pseudo residuals, and
the derivative ∂G(yi ,F(xi ))

∂F(xi )
is called as Gradient.

(b) After calculating the residuals, a regression tree to
be fitted for pseudo-residuals qih values and keep
count of the terminal regions i.e., leaves in the trees
Q jh for j � 1, …, jh where h is tree.

(c) Compute the output values for each leaf in the tree
by minimizing the summation of loss function by

using
argmin

β
for each sample in the particular

leaves of the tree i.e., xi ∈ Qi j . The output values
are the average of residuals for each leaf and are
stored in β jh

For j � 1, …, jh compute

β jh � argmin
β

∑
xi∈Qi j G(yi , Fh−1(xi ) + β)

(3)

(d) Now, update the model Fh(x) by adding the
previous output and summation of output residuals
of the leaves of each tree to minimize the loss
function. Here, υ is defined as learning rate. By
adding the learning rate, the accuracy of the model
can be increased.

Update

Fh(x) � Fh−1(x) + υ
jh∑

j�1
β j I

(
x ∈ Q jh

) (4)

3. The loop will be continued for the no. of weak learners
keep adding and the output will be the Hth tree which
obtains the estimated level or highest accuracy Output
FH (x).

Table 2 Effort multipliers and their description of COCOMO’81
dataset

Category Effort multipliers Description

Product RELY Required software reliability

DATA Database size

CPLX Product complexity

Platform TIME Execution time

STOR Main storage constraint

VIRT Virtual machine volatility

TURN Computer turnaround time

Personnel ACAP Analyst capability

AEXP Applications experience

PCAP Programmer capability

VEXP Virtual machine experience

LEXP Language experience

Project MODP Modern programming

TOOL Use of software tools

SCED Required development schedule

algorithms [18–21]. China dataset has been used in vari-
ous models to estimate accurate software effort; for instance,
employing in designing a model with an algorithm [22] and
in comparing approaches to improve the defect and effort
estimation models [23] and so on. These two datasets are
publicly available in the PROMISE repository [24, 25].

COCOMO’81, proposed by Barry Boehm [26], compris-
ing 63 software projects. There exist entire 17 numeric
attributes, among them 15 are effort multipliers divided
into four clusters such as product, platform, personnel, and
project. The effort multipliers under their respective clus-
ter are shown in Table 2. The two attributes other than the
15 effort multipliers are lines of code and actual develop-
ment effort. The effort is estimated in person-months. The
development effort is the dependent variable whereas, effort
multipliers and lines of code are the independent variables.

CHINAdataset is of Chinese software projects, and it con-
sists of 499 projects including 19 attributes for each project
and unit ofmeasure is done through function points and effort
is estimated inPerson–Hours [27]. Features and their descrip-
tion are shown in Table 3 [28].

123



290 P. Suresh Kumar et al.

Table 3 Features and description of the CHINA dataset

Features Description

AFP Adjusted function points

INPUT Function points (UFP) of input

OUTPUT Function points (UFP) of external output

ENQUIRY Function points (UFP) of external enquiry

FILE Function points (UFP) of internal logical files or
entity references

INTERFACE Function points (UFP) of external interface added

ADDED Added functions count

CHANGED Function points (CFP) of changed functions

DELETED Function points (CFP) of deleted functions

PDR_AFP –

PDR_UFP Normalized level 1 productivity delivery rate

NPDR_AFP Normalized productivity delivery rate

NPDU_UFP Productivity delivery rate

RESOURCE Team type

DEV.TYPE Development type

DURATION Total elapsed time for the project

N_EFFORT –

EFFORT Summary work effort

4.1 Performancemeasures

Developingmodels is not sufficient and needs to be evaluated
to verify the accuracy and to know how precise the models
are. In this experiment, to evaluate and compare the perfor-
mance of the various regression models, we adopted four
performance measures such as mean absolute error (MAE),
mean squared error (MSE), rootmean squared error (RMSE),
and coefficient of determination (R2). The above regression
metrics are imported from sklearn package.

TheMAE is the mean absolute error that defines the abso-
lute error i.e., the average error of true values and predicted
values of all the samples included. The lower the MAE value
obtained, the better is the model. The mean_absolute_error
function imported from the sklearn metrics package evalu-
ates the mean absolute error, the error metric is relative to
the expected value of absolute error loss. The computation
of MAE [22] is shown in Eq. (5)

MAE � 1

n

n∑

i�1

∣
∣yi − ŷi

∣
∣ (5)

The MSE is the mean squared error which is calculated
by considering the averages of squares of the difference
between the actual and predicted values of all samples. The
lower the MSE value obtained, the better is the model. The
mean_squared_error function imported from the sklearnmet-
rics package evaluates mean square error, the error metric for

the expected value of squared error. The computation ofMSE
[29] is shown in Eq. (6)

MSE � 1

n

n∑

i�1

(yi − ŷi )
2 (6)

TheRMSE is the rootmean squared error, evaluated by calcu-
lating the square root of theMSE, and it can also be defined as
the standard deviation of the residuals. Like MAE and MSE,
the RMSE value should be lower for a model to perform
better. The RMSE is computed by importing the function
mean_squared_error from the sklearn metrics package and
setting the squared parameter to false. RMSE is described in
Eq. (7) [18].

RMSE �
√
√
√
√1

n

n∑

i�1

(yi − ŷi )2 (7)

In Eqs. (5)–(7), yi is the actual values and ŷi is the predicted
values of corresponding actual values for a total of n.

The R2 evaluation metric is the coefficient of determina-
tion. This evaluation metric gives a manifestation that how
good a model fits a given dataset. It indicates how nearer
the predicted values to the actual values. The R2 value lies
between 0 and 1. If the obtained value is 1, it indicates the
model fits exactly to the dataset provided and if it is nega-
tive then it defines that model doesn’t fit well to the dataset.
Unlike, the MAE, MSE, and RMSE, the R2 value should
be higher i.e., nearer to 1 for a model to perform better. The
r2_score function imported from the sklearnmetrics package
computes the coefficient of determination. It represents the
proportion of variance that has been described by the inde-
pendent variables in the model. The equation describes the
R2 is presented in Eq. (8) [29]

R2(y, ŷi
) � 1 −

∑n
i�1(yi − ŷi )2

∑n
i�1(yi − ȳi )2

(8)

yi is the actual value and ŷi is predicted value of ith sample
for a total of n samples and ȳi � 1

n

∑n
i�1 yi .

4.2 Environmental setup

Experimentation is done on the system setup of Lenovo with
windows 10 pro 64-bit operating system Intel i5 processor
and 6 GB RAM. The designing of regression models and
evaluation of statistics is done using python and various
frameworks such as NumPy and pandas modules. Visual-
ization is done by using matplotlib, and seaborn libraries.
We used python’s package scikit-learn to build various
machine learning and ensemble models. Experimentation
is carried out by using COCOMO’81 and CHINA dataset.

123



A pragmatic ensemble learning approach for effective software effort estimation 291

Table 4 Parameter settings of all considered methods w.r.t. respective datasets

Dataset Technique Parameter setting

COCOMO’81 SGD regressor penalty: l1, random_state: 1, learning rate: adaptive, max_iter: 2,000,000

K-nearest neighbors n_neighbors: 3, weight: uniform, p: 1

Decision tree criterion: friedman_mse, max_depth: 2, min_samples_split: 10, random_state: 1, splitter: best,
min_samples_leaf: 2

Bagging regressor n_estimators: 1, random_state: 1, max_samples: 50

Random forest n_estimators: 5, random_state: 1, criterion: mae

Ada-boost regressor n_estimators: 70, random_state: 1, loss: square

Gradient boosting regressor n_estimators: 69, random_state: 1, learning_rate: 0.3, max_leaf_nodes: 6

China SGD regressor loss: huber, random_state: 1, alpha: 0.05, epsilon: 2.9, average: true

K-nearest neighbors n_neighbors: 10, weight: uniform

Decision tree criterion: mse, max_depth: 9, max_leaf_nodes: 27, random_state: 1

Bagging regressor n_estimators: 54, random_state: 1, max_samples: 359, max_features: 12, bootstrap: True,
warm_start: False

Random forest n_estimators: 60, random_state: 1, criterion: mae, max_depth: 12

Ada-boost regressor random_state: 1, n_estimators: 3, learning_rate: 0.18

Gradient boosting regressor loss: ls, random_state: 1, n_estimators: 96, subsample: 0.7, criterion: mae, ccp_alpha: 0.9

The COCOMO’81 and CHINA datasets comprise 63 and
499 projects, respectively. The datasets are split into 80%
for training the model and 20% for testing the model. Vari-
ousmachine learning and ensemble learning algorithms such
as stochastic gradient descent (SGD) regressor, K-nearest
neighbors (KNN) regressor, decision tree (DT) regressor,
bagging regressor (BR), randomforest regressor (RFR),Ada-
boost regressor (ABR), gradient boosting regressor (GBR)
were used to estimate the effort of software. For each regres-
sion model in correspondence with the particular dataset,
with specified parameters that give the best score are shown
in Table 4.

The evaluationmetricswere computed and comparedwith
the results obtained from different parametric settings, in the
process of obtaining the highest accuracy for the regression
models, and the proposed method. The evaluation of the gra-
dient boosting model’s accuracy with the different parameter
settings are shown in Table 5 with the COCOMO’81 and
CHINA datasets.

Table 5 shows the changes in evaluation metrics with
different parameter settings applied to the gradient boost-
ing regression model with the COCOMO’81 and CHINA
dataset. The best score for the R2 metric obtained is 0.98,
and the least error value for MAE, MSE, and RMSE metrics
is obtained as 184.8, 52,314.5, and 228.7, respectively, when
the parameter settings are set to n_estimators: 69, learning
rate: 0.3, max_leaf_nodes: 6. The parameter “n_estimators”
defines the number of trees to be added to the regression
model and from the table, it is evident that the increasing
number of “n_estimators” increases the accuracy. The lower
values were set to the “learning rate” parameter to make the
model more robust, “max_leaf_nodes” parameter defines the

minimum no. of leaf nodes in the tree. From the table, we
can state that the minimum number of leaf nodes is required
to boost the accuracy of the model.

For the proposed model, the best score of R2 with 0.93,
and the MAE, MSE, RMSE with 676.6, 3,252,196.6, and
1803.3, respectively, for CHINA dataset can be obtained
with the parameter settings such as n_estimators: 96, sub-
sample: 0.7, criterion: mae, ccp_alpha: 0.9.With the increase
in “n_estimators,” the accuracy is increased as “no. of trees”
are appending and learning from the previous errors which
result in the best score, “subsample” parameter is the frac-
tion of samples to be considered for each tree. For the value
is nearly less than 1, the results signify a robust model.
‘criterion’ parameter defines the split’s quality, with this
dataset, ‘mae-criteria’, results in good score than the other
‘criteria’. ‘ccp_alpha’ parameter is utilized to reduce the
cost-complexity, ‘ccp_alpha’ is set low according to the cost-
complexity of the subtree, ‘ccp_alpha’ slightly less than 1
gives the best result with the CHINA dataset.

5 Result analysis

In this section, the performance of various machine learn-
ing algorithms is analyzed and evaluated using MAE, MSE,
RMSE, and R2 by employing COCOMO’81 and CHINA
datasets. The statistical results calculated for each regression
model concerning COCOMO’81 and CHINA datasets are
tabulated in Tables 6 and 7 respectively.

Table 6 describes the performance metrics of our con-
sidered regression models in correspondence with the
COCOMO’81 dataset. From the results obtained in Table 6,

123



292 P. Suresh Kumar et al.

Table 5 Parameter settings and
performance metrics of gradient
boosting regression model on
COCOMO’81 and CHINA
datasets

Dataset Parameter setting MAE MSE RMSE R2

COCOMO’81 n_estimators: 1
learning rate: 0.3
max_leaf_nodes: 6

690.6 757,082.3 870.1 0.73

n_estimators: 20
learning rate: 0.3
max_leaf_nodes: 6

208.2 70,673.9 265.8 0.97

n_estimators: 40
learning rate: 0.2
max_leaf_nodes: 8

304.4 286,469.2 535.2 0.89

n_estimators: 54
learning rate: 0.2
max_leaf_nodes: 8

296.8 282,312.3 531.3 0.9

n_estimators: 69
learning rate: 0.3
max_leaf_nodes: 6

184.8 52,314.5 228.7 0.98

CHINA n_estimators:10
subsample:0.7
criterion: mae
ccp_alpha:0.9

2247.2 20,018,975 4474.2 0.61

n_estimators:50
subsample:0.7
criterion: mae
ccp_alpha:0.9

828.9 4,414,217 2101 0.91

n_estimators:50
subsample:0.3
criterion: mse
ccp_alpha:0.9

1084.5 5,768,098 2401.6 0.88

n_estimators:96
subsample:0.7
criterion: mae
ccp_alpha:0.1

689.4 3,342,791 1828.3 0.93

n_estimators:96
subsample:0.7
criterion: mae
ccp_alpha:0.9

676.6 3,252,197 1803.3 0.93

Table 6 Performancemetrics evaluated using COCOMO’81 dataset for
various regression models

Regression model MAE MSE RMSE R2

SGD 860.5 1,498,019.6 1223.9 0.47

KNN 397.9 481,104.3 693.6 0.83

DT 429 639,741.4 799.8 0.77

BR 153 109,995.3 331.6 0.96

RFR 402.6 293,674.5 541.9 0.89

ABR 229.4 69,936.2 251.7 0.97

GBR 184.8 52,314.5 228.7 0.98

the order ofmean absolute error of various regressionmodels
from least to highest error value is BR, GBR, ABR, KNN,
RFR, DT, and SGD with values 153, 184.8, 229.4, 397.9,
402.6, 429, and 860.5, respectively. Similarly, the order of
various regression models from the least to highest mean
squared error values is GBR, ABR, BR, RFR, KNN, DT, and

Table 7 Performance metrics evaluated using CHINA dataset for vari-
ous regression models

Regressor model MAE MSE RMSE R2

SGD 2103.5 20,462,127.5 4523.5 0.6

KNN 2268.2 19,883,523.4 4459 0.61

DT 1268.7 6,325,892 2515.1 0.87

BR 903.9 5,786,313 2405.4 0.88

RFR 810.1 5,235,939.8 2288.2 0.89

ABR 1483.8 7,431,929.3 2726.1 0.85

GBR 676.6 3,252,196.6 1803.3 0.93

SGD with values 52,314.5, 69,936.2, 109,995.3, 293,674.5,
481,104.3, 639,741.4, and 1,498,019.6, respectively. For root
mean squared error, the order of various regression models
from least to highest error value is GBR, ABR, BR, RFR,
KNN, DT, and SGD with values 228.7, 251.7, 331.6, 541.9,
693.6, 799.8, and 1223.9, respectively. Unlike MAE, MSE,

123



A pragmatic ensemble learning approach for effective software effort estimation 293

Fig. 2 Actual versus predicted using SGD in China dataset

Fig. 3 Actual versus predicted using KNN in China dataset

RMSE which needs to possess low values to be the accu-
rate model, for the R2 metric, the higher the value and closer
to 1.0 is the most efficient model. From the Table 6, the
order of different regression models that acquired the high-
est R2 values are GBR, ABR, BR, RFR, KNN, DT, and SGD
with the scores 0.98, 0.97, 0.96, 0.89, 0.83, 0.77, and 0.47,
respectively. So, it is evident from the results of Table 6 that
the GBR attains optimal performance when compared with
other regression models using the COCOMO’81 dataset.

Table 7 represents the performance metrics of regres-
sion models using the CHINA dataset. The order of the
MAE value of the regression models from low to a high

Fig. 4 Actual versus predicted using DT in China dataset

Fig. 5 Actual versus predicted using BR in China dataset

value is GBR, RFR, BR, DT, ABR, SGD, and KNN with
values 676.6, 810.1, 903.9, 1268.7, 1483.8, 2103.5, and
2268.2, respectively. Similarly, for the MSE values, the
order of regression models from low to high are repre-
sented as GBR, RFR, BR, DT, ABR, KNN, and SGD with
values 3,252,196.6, 5,235,939.8, 5,786,313.0, 6,325,892.0,
7,431,929.3, 19,883,523.4, and 20,462,127.5, respectively.
Correspondingly, the RMSE values of various regression
models from low to high values are in the order of GBR,
RFR, BR, DT, ABR, KNN, and SGDwith the values 1803.3,
2282.2, 2405.4, 2515.1, 2726.1, 4459.0, and 4523.5, respec-
tively. For R2 metrics, the regression models with the highest

123



294 P. Suresh Kumar et al.

Fig. 6 Actual versus predicted using RFR in China dataset

Fig. 7 Actual versus predicted using ABR in China dataset

scores nearer to 1.0 are in the order of GBR, RFR, BR,
DT, ABR, KNN, and SGD containing the values as 0.93,
0.89, 0.88, 0.87, 0.85, 0.61, and 0.60, respectively. So from
the results, it is noticed that the gradient boosting regres-
sion model outperformed the other models with the CHINA
dataset.

From Tables 6 and 7, the results obtained i.e., by com-
paring various regression models and analyzing the different
evaluation metrics, we concluded that our proposed regres-
sion model, gradient boosting regressor performed well
among the othermodelswith both the datasets. TheGBRout-
performed the other models by obtaining a score of 0.98 with

Fig. 8 Actual versus predicted using GBR in China dataset

Fig. 9 Actual versus predicted using SGD in COCOMO’81 dataset

the COCOMO’81 dataset. While using the CHINA dataset,
the GBR model obtained a higher score of 0.93 when com-
pared with the other regression models.

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15
describes the scatter plots for CHINA and COCOMO’81
datasets. Figures 2, 3, 4, 5, 6, 7 and 8 shows the scatter plots
of regression models associated with the CHINA dataset and
Figs. 9, 10, 11, 12, 13, 14, and 15 visualize the scatter plots
of regression models with the COCOMO’81 dataset. Scat-
ter plots are used to identify the relationship between the
variables and are used to examine the patterns. In this case,
plots of true and predicted values show a strong, linear, and

123



A pragmatic ensemble learning approach for effective software effort estimation 295

Fig. 10 Actual versus predicted using KNN in COCOMO’81 dataset

Fig. 11 Actual versus predicted using DT in COCOMO’81 dataset

positive relationship between the variables. The line passing
through the origin in all the scatter plots gives a better expla-
nation of how well the model fits. So, if the points are closer
to the line and the outliers are lesser, then the model is the
best model.

The proposed GBR model gives the best fitline with
both the datasets when compared with other models.
COCOMO’81 dataset possesses lesser projects compared to
the CHINAdataset aswe compared only 20%of data for test-
ing. So, the data points plotted for theCOCOCMO’81 dataset
are fewer in number. Though they are lesser in number, data

Fig. 12 Actual versus predicted using BR in COCOMO’81 dataset

Fig. 13 Actual versus predicted using RF in COCOMO’81 dataset

points are closely fitted to the regression line expressing the
best fit.

For better visualization and understanding, we plotted
boxplots for each evaluation metrics of various regression
models such as MAE, MSE, RMSE, and R2 using both the
datasets. Figures 16, 17, 18 and 19 compares the performance
of evaluation metrics of distinct regression models with both
the datasets. The boxplots of the evaluation metrics show
how the errors and performance of regression models are
distributed. The boxplots represent the median value, and
the quartiles represent the lower and higher values. We have

123



296 P. Suresh Kumar et al.

Fig. 14 Actual versus predicted using ABR in COCOMO’81 dataset

Fig. 15 Actual versus predicted using GBR in COCOMO’81 dataset

considered the evaluation metrics of both the datasets to have
a detailed understanding of a better regression model.

The boxplot of MAE in Fig. 16 shows that the box of our
proposed model GBR is at the bottom, compared to the other
regressor models which explain that the MAE values of the
GBR in both the datasets are comparatively lesser than the
other models and are identical in the visualization of GBR in
Figs. 17 and 18 i.e., box plot of MSE and boxplot of RMSE
are also similar as that of MAE boxplot showing that the
MSE and RMSE values of GBR model are lesser than the
other models. The boxplot of R2 shown in Fig. 19 provides
an important insight into how better is our proposed model

Fig. 16 MAE in COCOMO’81 and China dataset

Fig. 17 MSE in COCOMO’81 and China dataset

Fig. 18 RMSE in COCOMO’81 and China dataset

performing compared to other models. The score should be
close to 1.0 for a bettermodel inR2 evaluationmetrics. There-
fore, the values closer to 1.0 are considered as better models.

123



A pragmatic ensemble learning approach for effective software effort estimation 297

Fig. 19 R2 in COCOMO’81 and China dataset

Fig. 20 Actual effort and predicted efforts of regression models in the
case of COCOMO’81

So, unlike the other three evaluation metrics, the visualiza-
tion is different for the R2 box plot.

Figures 20 and 21 describes the predicted effort of each
regression model for the two datasets comparing with the
actual effort. These plots show us how each regressionmodel
predicted effort is contrasted with the actual effort. We can
get a better understanding of each regression model perfor-
mance for the particular dataset. Figure 20 shows the line
plot of regression models effort with the actual effort of the
COCOMO’81 dataset, the line of GBR is competent with
the actual effort line of the dataset i.e., the predicted effort of
this proposed model is relatively closer to the actual effort.
Figure 21 shows that the line plot of regression models effort
regarding the actual effort of the CHINA dataset, the plot
explains that the GBR’s effort line is adjacent to the actual
effort line of the dataset. Hence, the GBR model’s effort is
comparatively better than the other models.

Fig. 21 Actual effort and predicted efforts of regression models in the
case of china dataset

All in all, we can conclude that by considering different
evaluationmetrics, our proposed regressionmodel i.e., gradi-
ent boosting regressor performed well compared to the other
models and for better comprehension, we examined the visu-
alizations of each regression models for each dataset and our
proposed model showed a better fit, and we also considered
the visualization of evaluation metrics of both the datasets,
which showed a better performance of the proposed model.
Finally, the gradient boosting regressor model performs well
with the COCOMO’81 and CHINA datasets compared to the
SGD, KNN, DT, BR, RFR, and ABR.

Table 8 shows previous works on software effort esti-
mation using various techniques. We showed the results
concerning the COCOMO and CHINA datasets. The results
proved that when these models were compared with our pro-
posed model, our proposed model outperformed the other
previous models in estimating software effort.

6 Conclusion

Software effort estimation is very significant and necessary
for software projects. There aremanymachine learningmod-
els and traditional algorithms such as COCOMO, SLIM,
functional points are used of software effort estimation. In
this paper, a gradient boosting regressor method is proposed
for effective software effort estimation. Also, we studied
the problem of estimating the effort of software projects by
adopting SGD, KNN, DT, BR, RFR, and ABR by employing
two datasets COCOMO’81 and CHINA. We evaluated the
performance of these models by using MAE, MSE, RMSE,
and R2. For the model to be an accurate model, the MAE,
MSE, RMSE should possess low and from the results, it
is observed that the gradient boosting algorithm achieved
low value compared to the rest of the models. Whereas,
for the R2 metric, the model is considered as an efficient

123



298 P. Suresh Kumar et al.

Table 8 Evaluated values of previous paper models in estimating software effort

S. no. Author(s) Year Intelligent method Datasets Evaluation factors References

1 Azzeh, Elsheikh and Alseid 2014 Optimized analogy-based
estimation

CHINA MMRE—24.7, PRED25—80.7,
MdMRE—24.6,
MMER—16.2, MBRE—23.3.

[37]

COCOMO MMRE—50.1, PRED25—20.2,
MdMRE—26.3,
MMER—58.0, MBRE—97.3

2 Uzun, Erkaymaz and Yapici 2018 ANN COCOMO R2—0.85, MMRE—420 [38]

3 Kumari and Pushkar 2016 Multi-objective genetic
algorithm

COCOMO MMRE—0.52, PRED—0.72 [39]

4 Liu, Xiao and Zhu 2019 Localized neighborhood-based
feature selection (LFS)

CHINA MAR—414, MMRE—0.11 [40]

5 Abdelali, Mustapha and
Abdelwahed

2019 Random forest COCOMO MMRE—1.40, MdMRE—0.55,
PRED(0.25)%—30.43

[12]

6 Azzeh 2011 Model tree-based estimation
analogy

CHINA MMRE—34.9,
MdMRE—10.9, PRED—67.1

[41]

COCOMO MMRE—21.7, MMRE—21.7,
MdMRE—21.9, PRED—60.0

Proposed method (GBR) COCOMO MAE—184.8, MSE—52,314.5,
RMSE—228.7, R2—0.98

CHINA MAE—676.6, MSE—5,252,
196.6, RMSE—1803.3,
R2—0.93

model if the value is higher and closer to 1.0. The proposed
method obtained R2 values such as 0.98 and 0.93 with the
COCOMO’81 and CHINA dataset, respectively. The study
proved that the gradient boosting regressor performance is
outstanding in terms of COCOMO’81 and CHINA datasets
concerning all performance measures. In future work, some
other ensemble learning models may be adopted to estimate
the effort of software projects and special attention may be
attained toward the large-sized projects.

Compliance with ethical standards

Conflict of interest The authors declare that this manuscript has no
conflict of interest with any other published source and has not been
published previously (partly or in full). No data have been fabricated or
manipulated to support our conclusions.

References

1. Al Yahya M, Ahmad R, Lee S (2010) Impact of CMMI based
software process maturity on COCOMO II’s effort estimation. Int
Arab J Inf Technol 7(2):129–137

2. Attarzadeh I, Mehranzadeh A, Barati A (2012) Proposing an
enhanced artificial neural network prediction model to improve
the accuracy in software effort estimation. In: Proceedings of 2012
4th international conference computer intelligence, communica-
tion system networks, CICSyN 2012, pp 167–72

3. Suresh Kumar P, Behera HS (2020) Role of soft computing tech-
niques in software effort estimation: an analytical study. Adv Intell
Syst Comput 999:807–831

4. Baskeles B, Turhan B, Bener A (2007) Software effort estimation
using machine learning methods. In: 2007 22nd international sym-
posium on computer and information sciences [Internet]. IEEE, pp
1–6. Available from http://ieeexplore.ieee.org/document/4456863/

5. Kocaguneli E, Tosun A, Bener A (2010) AI-based models for
software effort estimation. In: Proceedings of 36th EUROMI-
CRO conference software engineering and advanced applications,
SEAA, pp 323–326

6. Nassif AB, Capretz LF, Ho D (2012) Software effort estimation
in the early stages of the software life cycle using a cascade
correlation neural network model. In: Proceedings of 13th ACIS
international conference on software engineering, artificial intelli-
gence, networking andparallel/distributed computing. SNPD2012,
pp 589–594

7. Huang J, Li YF, Xie M (2015) An empirical analysis of data pre-
processing for machine learning-based software cost estimation.
Inf Softw Technol 67:108–127

8. Arslan F (2019) A review of machine learning models for software
cost estimation. Rev Comput Eng Res 6(2):64–75

9. Kocaguneli E,Menzies T,Keung JW (2012)On the value of ensem-
ble effort estimation. IEEE Trans Softw Eng 38(6):1403–1416

10. Singal P, Kumari AC, Sharma P (2020) Estimation of software
development effort: a differential evolution approach. ProcComput
Sci 167(2019):2643–2652

11. Malgonde O, Chari K (2019) An ensemble-based model for
predicting agile software development effort. Empir Softw Eng
24:1017–1055

12. Abdelali Z, Mustapha H, Abdelwahed N (2019) Investigating the
use of random forest in software effort estimation. Proc Comput
Sci 148:343–352

123

http://ieeexplore.ieee.org/document/4456863/


A pragmatic ensemble learning approach for effective software effort estimation 299

13. Nassif AB, Azzeh M, Idri A, Abran A (2019) Software devel-
opment effort estimation using regression fuzzy models. Comput
Intell Neurosci. https://doi.org/10.1007/978-94-007-7506-0_7

14. Pospieszny P, Czarnacka-Chrobot B, Kobylinski A (2018) An
effective approach for software project effort and duration estima-
tion with machine learning algorithms. J Syst Softw 137:184–196

15. Minku LL, Yao X (2013) Ensembles and locality: insight
on improving software effort estimation. Inf Softw Technol
55(8):1512–1528. https://doi.org/10.1016/j.infsof.2012.09.012

16. Friedman H, Greedy J (2001) Function approximation: a gradient
boosting machine. Ann Stat. https://doi.org/10.2307/2699986

17. KeprateA,RatnayakeRMC(2017)Using gradient boosting regres-
sor to predict stress intensity factor of a crack propagating in small
bore piping. In: IEEE international conference on industrial engi-
neering management, pp 1331–1336

18. Aljahdali S, Sheta AF, Debnath NC (2016) Estimating software
effort and function point using regression. In: Support vector
machine and artificial neural networks models. Proceedings of
IEEE/ACS international conference on computing system appli-
cations, AICCSA

19. Reddy PVGDP, Sudha KR, Sree PR, Ramesh SNSVSC (2010)
Software effort estimation using radial basis and generalized
regression. Neural Netw 2(5):87–92

20. Minku LL, Yao X (2011) A principled evaluation of ensembles of
learning machines for software effort estimation. In: ACM inter-
national conference on proceeding series

21. Dave VS, Dutta K (2011) Comparison of regression model, feed-
forwardneural network and radial basis neural network for software
development effort estimation. ACM SIGSOFT Softw Eng Notes
36(5):1

22. Sarro F, PetrozzielloA,HarmanM (2016)Multi-objective software
effort estimation. In: Proceedings of international conference on
software engineering, pp 619–30

23. Bettenburg N, Nagappan M, Hassan AE (2012) Think locally, act
globally: improving defect and effort prediction models. IEEE Int
Work Conf Min Softw Repos, pp 60–69

24. Boehm B (1981) Software engineering economics. Avail-
able from http://promise.site.uottawa.ca/SERepository/datasets/
cocomo81.arff

25. No Title. Available from http://promise.site.uottawa.ca/
SERepository/datasets-page.html

26. Boehm BW (1984) Software engineering economics. IEEE Trans
Softw Eng 10(1):4–21

27. Bosu MF, Macdonell SG (2019) Experience: quality benchmark-
ing of datasets used in software effort estimation. J Data Inf Qual
11(4):1–38

28. Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F et al
(2013) Local versus global lessons for defect prediction and effort
estimation. IEEE Trans Softw Eng 39(6):822–834

29. Li X, Li W, Xu Y (2018) Human age prediction based on DNA
methylation using a gradient boosting regressor. Genes (Basel)
9(9):424

30. Singh AJ, Kumar M (2020) Comparative study on effort estima-
tion using different data mining techniques. Int J Sci Technol Res
9(4):3005–3010

31. Fadhil AA, Alsarraj RG (2020) Exploring the whale optimization
algorithm to enhance software project effort estimation. In: 2020
6th international engineering conference “sustainable technology
and development” (IEC) [Internet]. IEEE, pp 146–51. Available
from https://ieeexplore.ieee.org/document/9122918/

32. Suresh Kumar P, Behera HS (2020) Estimating software effort
using neural network: an experimental investigation. In: Advances
in intelligent systems and computing. Springer ,Singapore, pp
165–80. https://doi.org/10.1007/978-981-15-2449-3_14

33. Xia T, Krishna R, Chen J, Mathew G, Shen X, Menzies T (2018)
Hyperparameter optimization for effort estimation. Available from
http://arxiv.org/abs/1805.00336

34. Saljoughinejad R,Khatibi V (2018) A new optimized hybridmodel
based on COCOMO to increase the accuracy of software cost esti-
mation. J Adv Comput Eng Technol 4(1):27–40

35. Satapathy SM, Rath SK (2017) Empirical assessment of machine
learning models for agile software development effort estimation
using story points. Innov Syst Softw Eng 13(2–3):191–200. https://
doi.org/10.1007/s11334-017-0288-z

36. Satapathy SC, Govardhan A, Srujan Raju K, Mandal JK (2015)
Emerging ICT for bridging the future. In: Proceedings of the 49th
annual convention of the computer society of India (CSI), vol 1.
Advanced intelligent system computing, vol 337, pp 19–30

37. Azzeh M, Elsheikh Y, Alseid M (2014) An optimized analogy-
based project effort estimation. Int J Adv Comput Sci Appl
5(4):6–11

38. Uzun R, Erkaymaz O, Yapici İŞ (2018) Comparison of artifi-
cial neural network and regression models to diagnose of knee
disorder in different postures using surface. Electromyography
31(1):100–110

39. Kumari S, Pushkar S (2016) A framework for analogy-based soft-
ware cost estimation using multi-objective genetic algorithm. Lect
Notes Eng Comput Sci 2225:508–515

40. Liu Q, Xiao J, Zhu H (2019) Feature selection for software effort
estimation with localized neighborhood mutual information. Clus-
ter Comput 22(1):6953–6961

41. Azzeh M (2011) Model tree based adaption strategy for soft-
ware effort estimation by analogy. In: Proceedings of 11th IEEE
international conference on computing information technology, pp
328–335

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-94-007-7506-0_7
https://doi.org/10.1016/j.infsof.2012.09.012
https://doi.org/10.2307/2699986
http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff
http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://ieeexplore.ieee.org/document/9122918/
https://doi.org/10.1007/978-981-15-2449-3_14
http://arxiv.org/abs/1805.00336
https://doi.org/10.1007/s11334-017-0288-z

	A pragmatic ensemble learning approach for effective software effort estimation
	Abstract
	Abbreviations
	1 Introduction
	2 Literature review
	3 Proposed methodology
	3.1 Gradient boosting

	4 Experimental setup
	4.1 Performance measures
	4.2 Environmental setup

	5 Result analysis
	6 Conclusion
	References




