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Abstract
Many systems are inherently stochastic: they interactwith unpredictable environments or use randomised algorithms. Classical
model-based testing is insufficient for such systems: it only covers functional correctness. In this paper, we present twomodel-
based testing frameworks that additionally cover the stochastic aspects in hard and soft real-time systems. Using the theory
of Markov automata and stochastic automata for specifications, test cases, and a formal notion of conformance, they provide
clean mechanisms to represent underspecification, randomisation, and stochastic timing. Markov automata provide a simple
memoryless model of time, while stochastic automata support arbitrary continuous and discrete probability distributions. We
cleanly define the theoretical foundations, outline practical algorithms for statistical conformance checking, and evaluate both
frameworks’ capabilities by testing timing aspects of the Bluetooth device discovery protocol. We highlight the trade-off of
simple and efficient statistical evaluation forMarkov automata versus precise and realistic modellingwith stochastic automata.

Keywords Model-based testing ·Markov automata · Stochastic automata · Ioco conformance

1 Introduction

Model-based testing (MBT) [50] is a technique to auto-
matically generate, execute, and evaluate test suites on
black-box implementations under test (IUT). The theoreti-
cal ingredients of an MBT framework are a formal model
that specifies the desired system behaviour, often in terms
of (some extension of) input–output transition systems; a
notion of conformance that specifies when an IUT is con-
sidered a valid implementation of the model; and a precise
definition of what a test case is. For the framework to be
applicable in practice, we also need algorithms to derive test
cases from the model, execute them on the IUT, and evaluate
the results, i.e. decide conformance. They need to be sound
(i.e. every implementation that fails a test case does not con-
form to the model), and ideally also complete (i.e. for every
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non-conforming implementation, there theoretically exists a
failing test case). MBT is attractive due to its high degree
of automation: given a model, the otherwise labour-intensive
and error-prone derivation, execution and evaluation steps
can be performed in a fully automatic way.

Model-based testing originally gained prominence for
input–output transition systems (IOTS) using the ioco rela-
tion for input–output conformance [49]. IOTS partition the
observable actions of the IUT (and thus of the model and
test cases) into inputs (or stimuli) that can be provided at any
time, e.g. pressing a button or receiving a network message,
and outputs that are signals or activities that the environment
can observe, e.g. delivering a product or sending a network
message. IOTS include nondeterministic choices, allowing
underspecification: the IUT may implement any or all of the
modelled alternatives. MBT with IOTS tests for functional
correctness: the IUT shall only exhibit behaviours allowed
by the model. In the presence of nondeterminism, the IUT
is allowed to use any deterministic or randomised policy to
decide between the specified alternatives.

Stochastic behaviour and requirements are an impor-
tant aspect of today’s complex systems: network protocols
extensively rely on randomised algorithms, cloud providers
commit to service level agreements, probabilistic robotics
[46] allows the automation of complex tasks via simple ran-
domised strategies (as seen in, e.g. vacuuming and lawn
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mowing robots), and we see a proliferation of probabilis-
tic programming languages [23]. Stochastic systems must
satisfy stochastic requirements. Consider the example of
exponential backoff in Ethernet: an adapter that, after a col-
lision, sometimes retransmits earlier than prescribed by the
standard may not impact the overall functioning of the net-
work, but may well gain an unfair advantage in throughput
at the expense of overall network performance. In the case of
cloud providers, the service level agreements are inherently
stochastic when guaranteeing a certain availability (i.e. aver-
age uptime) or a certain distribution of maximum response
times for different tasks. This has given rise to extensive
research in stochastic model checking techniques [30]. How-
ever, in practice, testing remains the dominant technique to
evaluate and certify systems outside of a limited area of
highly safety-critical applications.

In this paper, we present two MBT frameworks based on
input–output Markov automata [17] (IOMA) and stochas-
tic automata [11,12] (IOSA), which are transition systems
augmented with discrete probabilistic choices and stochastic
delays. Markov automata are a memoryless continuous-time
model, essentially the extension of continuous-time Markov
chains with nondeterminism: the time spent in any state
of the automaton follows some exponential distribution. In
stochastic automata, on the other hand, the progress of time
is governed by clock variables whose expiration times follow
general probability distributions. By using IOMA or IOSA
models, we can quantitatively specify stochastic aspects
of a system, in particular, w.r.t. timing. While IOMA are
more suitable for the abstract specification of soft real-time
systems, IOSA enable precise modelling of both hard and
soft real-time systems and requirements. Since both mod-
els extend transition systems, nondeterminism is available
for underspecification as usual. After introducing the mod-
els and their semantics (Sect. 3), we formally define the
notions of Markovian and stochastic ioco (mar-ioco and sa-
ioco, respectively), and of test cases as restrictions of IOMA
and IOSA (Sect. 4). We then outline practical algorithms
for conformance testing (Sect. 5). The latter combines per-
trace functional verdicts as in standard ioco with a statistical
evaluation that builds upon confidence interval estimation
for IOMA and the Kolmogorov–Smirnov test [29] for IOSA.
We finally exemplify our frameworks’ capabilities and the
tradeoffs between the IOMA and IOSA approaches by test-
ing timing aspects of different implementation variants of the
Bluetooth device discovery protocol (Sect. 6).

1.1 Related work

Our mar-ioco and sa-ioco frameworks generalise the pioco
framework [20] for probabilistic automata (or Markov deci-
sion processes), which only supports discrete probabilistic
choices and has no notion of time at all.

Early influential work on model-based testing had only
deterministic time [4,31,33,34], later extended with time-
outs/quiescence [5]. Probabilistic testing relations and equiv-
alences are well studied [9,14,42]. Probabilistic bisimulation
via hypothesis testing was first introduced in [35]. Our work
is largely influenced by [8], which introduced a way to
compare trace frequencies with collected samples. A more
restricted approach is given in the work on stochastic finite
state machines [28,40]: stochastic delays are specified simi-
larly, but discrete probability distributions over target states
are not included. Closely related to our testing relation for
Markov automata are the studies of bisimulation relations
[17], which inspired further work on weak bisimulation [15]
and late-weak bisimulation [43]. By studying relations based
on trace distribution semantics, rather than equivalence rela-
tions, we grant vastly more implementation freedom.

Probabilistic and non-probabilistic MBT are part of a
greater ecosystem of formal methods developed to improve
the correctness, dependability, and trustworthiness of various
types of systems, ranging from software over cyber-physical
systems to, for example, organisational processes and bio-
logical applications.Model checking [1], probabilisticmodel
checking [30], and statistical model checking [26,54] serve
to prove or disprove the conformance of a (probabilistic)
model of a system to a (probabilistic) specification usually
given in terms of temporal logics formulas. Notable proba-
bilistic model checkers include Prism [32], Storm [13], and
the mcsta tool of the Modest Toolset [25], while two
current examples of statistical model checkers are Plas-
ma lab [36] and the Modest Toolset’s modes simulator
[6]. These techniques and tools are complimentary to MBT,
which establishes a relation between a model (which now
acts as a specification, and may earlier have been verified
with model checking) and the real implementation. Notably,
theModest Toolset also includes an MBT tool [24], thus
providing all three techniques for probabilistic systems in
one package. The “opposite” of MBT, deriving a model from
an implementation using automata learning [51,53], is also
gaining popularity and is especially well suited for the analy-
sis of legacy systems [41]. Automata learning typically uses
MBT internally to check whether the model learned so far is
approximately equivalent to the implementation under learn-
ing.

1.2 Previous work

This paper provides a new integrated presentation of our pre-
vious papers on model-based testing for Markov automata
[21] and stochastic automata [19]. We explain the differ-
ences and tradeoffs between the two frameworks in theory
and practice. We added examples and more detailed expla-
nations throughout the paper. Test cases for both models are
now effectively IOTS (Sect. 4.2), where our previous work
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used probabilistic test cases, providing a clean distinction
between test generation and test selection.

Specifically compared to [21], we use a more standard
definition of IOMA (Definition 1) that does not rely on being
input-reactive and output-generative [52]. We discuss how to
implement quiescence in a Markovian setting in a way that
does not affect the statistical evaluation yet minimises the
testing runtime and the chance for errors of the second kind
(Sect. 5.2). Finally, we study an additional protocol mutant
with IOMA in the Bluetooth case study (Sect. 6).

Compared to [19], we adapted the sa-ioco conformance
relation such that it now properly extends ioco. That is,
where [19] relied on trace distribution inclusion of closed
systems, we now utilise schedulers for open systems. As a
result, sa-ioco is in line withmar-ioco and with earlier work
on untimed probabilistic systems [20]. We also present full
proofs for the soundness and completeness of the IOSAMBT
framework (Sect. 4.4).

2 Preliminaries

2.1 Mathematical notation

N is { 0, 1, . . . }, the set of natural numbers. R, R
+, and

R
+
0 are the sets of all, all positive, and all nonnegative

real numbers, respectively. We write closed intervals as
[a, b] def= { x ∈ R | a ≤ x ≤ b }, open intervals as
]a, b[ def= { x ∈ R | a < x < b }, and half-open inter-
vals analogously as ]a, b] and [a, b[. For a given set Ω , we
denote its powerset byP(Ω). Amultiset is written as {| . . . |}.
Let the function 1 ∈ { true, false } → { 0, 1 } be defined by
1(true) = 1 and 1(false) = 0. We write 1b to denote 1(b).

We use angled brackets 〈·〉 to denote tuples, and define
Ω∗ def= ∪i∈NΩ i , the set of all finite tuples or sequences con-
sisting of elements from Ω . Correspondingly, we write Ωω

for the set of all infinite sequences,Ω≤ω for the set of all finite
and infinite sequences, and Ω≤k for the set of all sequences
of length at most k. For a sequence

σ = ω0 . . . ωn
def= 〈ω0, . . . , ωn〉 ∈ Ωn+1,

wewrite σ.ωn+1 forω0 . . . ωn ωn+1 ∈ Ωn+2, i.e. σ extended
byωn+1 ∈ Ω .We also use the generalisation of the . operator
to the concatenation of two sequences.

2.2 Probability theory

For a given set Ω , a probability subdistribution is a function
μ ∈ Ω → [0, 1] such that

support(μ)
def= {ω ∈ Ω | μ(ω) > 0 }

is countable. Its probabilitymass is |μ| def=∑
ω∈support(μ) μ(ω).

If |μ| = 1, then μ is a probability distribution. We write
SubDistr(Ω) and Distr(Ω) for the sets of all probability
subdistributions and distributions over Ω , respectively. The
Dirac distribution for ω is D(ω), defined by D(ω) = 1 and
D(ω′) = 0 for all ω′ 
= ω. Given probability distributions
μ1 and μ2, we denote by μ1 ⊗ μ2 the product distribution,
which is the unique probability distribution defined by

(μ1 ⊗ μ2)(〈ω1, ω2〉) = μ1(ω1) · μ2(ω2)

for all 〈ω1, ω2〉 ∈ support(μ1)× support(μ2).
Let Ω be endowed with a σ -algebra σ(Ω): a collection

of measurable subsets of Ω . A probability measure over Ω

is a function μ ∈ σ(Ω)→ [0, 1] such that

μ(Ω) = 1 and μ(∪i∈I Bi ) =
∑

i∈I

μ(Bi )

for any countable index set I and pairwise disjoint measur-
able sets Bi ⊆ Ω .Meas(Ω) is the set of probabilitymeasures
over Ω . Each μ ∈ Distr(Ω) induces a probability measure,
and we also write D(·) for the Dirac measure.

2.3 Valuations

Val def= V → R
+
0 is the set of valuations for an (implicit) set

V of (nonnegative real-valued) variables. Valuation 0 assigns
value zero to all variables. Given X ⊆ V and v ∈ Val, we
write v[X 
→ 0] for the valuation defined by v[X 
→ 0](x) =
0 if x ∈ X and v[X 
→ 0](y) = v(y) otherwise. For t ∈ R

+
0 ,

v + t is the valuation defined by (v + t)(x) = v(x) + t for
all x ∈ V .

3 Automata with stochastic time

We now present the formal automata-based models underly-
ing our model-based testing approaches: Markov automata
for memoryless time and stochastic automata for general
stochastic time. In addition to their syntax and semantics
(in terms of paths, traces and trace distributions), we define
parallel composition operators to formally capture the inter-
action between implementations and test cases.

3.1 Markov automata

Our approach to testing memoryless stochastic-timed sys-
tems builds upon the framework of Markov automata [17].
They are a formal model that unifies the discrete proba-
bilistic and nondeterministic choices of Markov decision
processes (MDP)with the exponentially distributed delays of
continuous-time Markov chains (CTMC) in a compositional
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way. The exponential distribution provides an appropriate
approximation of reality if only the mean durations of activ-
ities are known, as is often the case in practice.

In Markov automata, we distinguish between probabilis-
tic and Markovian transitions. The former take place as soon
as possible and lead into a probability distribution over suc-
cessor states (as in MDP). The latter are defined via a rate
parameter inR

+: the time until the transition is taken follows
the exponential distribution with that rate (as in CTMC).

Definition 1 (IOMA) An input–output Markov automaton
(IOMA) is a tuple

M = 〈S, s0, Act, TP , TM 〉

where

– S is a finite set of states,
– s0 ∈ S is the initial state,
– Act = ActI �ActO �{ τ } is the set of actions partitioned

into inputs, outputs, and the internal action τ , respec-
tively,with δ ∈ ActO being the distinctquiescence action,

– TP ∈ S → P(Act× Distr(S)) is the finite probabilistic
transition function, and

– TM ∈ S → P(R+ × S) is thefiniteMarkovian transition
function.

If 〈λ, s′〉 ∈ TM (s), we say that 〈s, λ, s′〉 is a (Markovian)
transition (ofM), also written s λ s′. If 〈a, μ〉 ∈ TP (s), we
say that 〈s, a, μ〉 is a (probabilistic) transition (of M), also
written s a−→ μ. We say that s is Markovian if |TM (s)| 
=
0; s is probabilistic if |TP (s)| 
= 0. We write s → a if
∃μ : s a−→ μ, and s � a if � μ : s a−→ μ. In the former case,
we also say that action a is enabled in s. The set enabled(s)
contains all enabled actions in s. We write s a−→M μ, etc., to
clarify that a transition belongs to IOMA M if ambiguities
arise. For brevity, whenever we refer to an IOMA M, we
assume it to be a tuple with components 〈S, s0, Act, TP , TM 〉
as in the above definition unless otherwise noted.M is input-
enabled if all inputs are enabled in all states, i.e. we have that
∀ a ∈ ActI , s ∈ S : s → a.

We partition the action alphabet into inputs and outputs.
This captures communication ports of a system with its envi-
ronment (e.g. a tester). τ represents internal progress of
a system that is not visible to an external observer. The
existence of a distinct quiescence action δ is required to
explicitly characterise the absence of any other output for
an indefinite amount of time. The combination of exponen-
tially distributed delays and quiescence poses a particular
challenge to an MBT framework since quiescence in prac-
tice is frequently judged by waiting a finite amount of time
[5]. We further investigate this challenge in Sect. 5.2.

A Markov automaton starts in its initial state and then
progresses through the state space, incurring exponentially
distributed delays and jumping between states.When in state
s, the next transition to take is selected as follows: if there is
an outgoing probabilistic transition labelled with an action
in ActO ∪ { τ }, we apply the maximal progress assumption
[27]: no time can pass, and one of these transitions is selected
nondeterministically. We also say that outputs and internal
actions are urgent. Otherwise, time passes until a Markovian
transition takes place or an input arrives. The sum of the rates
of all outgoing Markovian transitions of s is called its exit
rate, denoted E (s). Multiple Markovian transitions repre-
sent a race between exponential distributions. Thus, the time
until any Markovian transition takes place is exponentially
distributed with rate E (s); at that point, the actual transi-
tion to take is selected probabilistically, with the probability
of each transition being its rate divided by E (s). We define
R

(
s, s′

) =∑
〈λ,s′〉∈TM (s) λ, the rate from s to s′.

Example 1 Figure 1 shows three IOMAdescribing a protocol
that associates a delay with every send action, followed by
an acknowledgement or error. As a convention, we indicate
inputs by a ? suffix and outputs by a ! suffix. Discrete prob-
ability distributions follow an intermediate dot. Markovian
transitions are presented as wavy arrows.

After the send? input is received by the specification
in Fig. 1a, there is an exponentially distributed delay with
rate λ1: the probability to go from s1 to s2 in at most T time
units is 1 − e−λ1T . State s2 has one probabilistic transition.
The specification requires that only 10% of all messages end
in an error report and the remaining 90% are delivered cor-
rectly. After a message is delivered, the automaton goes back
to its initial state where it stays quiescent until input is pro-
vided. The δ self-loop marks the absence of outputs.

The “unfair” implementation model in Fig. 1b has the
same structure, except for altered probabilities in the distribu-
tion out of s2.While the delay conforms to the one prescribed
in the specification model, sufficiently many executions of
the implementation should reveal that an error is reported
more frequently than required. The “slow” implementation
model of Fig. 1c assigns rate λ2 to the exponential delay
between input and output. This is conforming iff λ1 = λ2; if
λ2 < λ1, it would be slower than required. This paper aims at
establishing an MBT framework capable of identifying that
implementations like these two do not conform to the given
specification model.

3.2 Stochastic automata

Weuse stochastic automata [11] to develop anMBTapproach
for general stochastic-timed systems. They are MDP aug-
mented with real-time clocks that expire after delays gov-
erned by general (continuous) probability distributions. In

123



Model-based testing of stochastically timed systems 211

(a) (b) (c)

Fig. 1 Protocol specification IOMA and two erroneous implementations

this way, they allow every stochastic delay to be modelled
precisely, without the need for exponential or phase-type
approximation as with Markov automata.

The progress of time is governed and tracked across
locations and edges explicitly by clocks. This is necessary
because, working in general continuous time not restricted
to exponential distributions, delays in stochastic automata
do not have the memoryless property. Clocks are real-valued
variables that increase synchronously with rate 1 over time
and expire some random amount of time after they have been
restarted. The expiration time is drawn from a probability
distribution specified for each clock. Stochastic automata are
thus a symbolic model, so they consist of locations and edges
rather than states and transitions.

Definition 2 (IOSA) An input–output stochastic automaton
(IOSA) is a tuple

I = 〈Loc, �0, C, Act, E, F〉

where

– Loc is a finite set of locations,
– �0 ∈ Loc is the initial location,
– C is a finite set of clocks,
– Act = ActI �ActO �{ τ } is the set of actions partitioned

into inputs, outputs, and the internal action τ , respec-
tively,with δ ∈ ActO being the distinctquiescence action,

– E ∈ Loc → P(Edges) with Edges def= P(C) × Act ×
Distr(T) and T def= P(C)× Loc is the edge function map-
ping each location to a finite set of edges that in turn
consist of a guard set, an action label, and a distribution
over targets in T consisting of a restart set of clocks and
target locations, and

– F ∈ C → Meas(R+0 ) is the delay measure function that
maps each clock to a probability measure.

We write pdf(c) to refer to the probability density func-
tion associated with the measure F(c) for c ∈ C. As for
Markov automata, we use an input–output variant of stochas-
tic automata, along the lines of [12]. We transfer the notation
used for transitions in IOMA to edges in IOSA. We call an
IOSA I input-enabled if all inputs are available in every

location at every time, i.e. ∃μ : � ∅, aI−−−→ μ for all � ∈ Loc
and aI ∈ ActI .

Intuitively, a stochastic automaton starts in the initial loca-
tion with all clocks expired. An edge may be taken only if all
clocks in its guard set G are expired. If any output or internal
edge is enabled, some edge must be taken, i.e. all outputs and
internal actions are urgent. When an edge �

G, a−−→ μ is taken,
its action is a, we select a target 〈R, �′〉 ∈ T randomly accord-
ing to the discrete distributionμ, all clocks in R are restarted,
and we move to successor location �′. There, another edge
may be taken immediately or wemay need to wait until some
further clocks expire, and so on. When a clock c is restarted,
the time until it expires is chosen randomly according to the
probability measure F(c).

Example 2 Figure 2a shows an example IOSA specifying the
behaviour of a file server with archival storage. We omit
empty restart sets and the empty guard sets of inputs. Upon
receiving a request in the initial location �0, the specification
allows implementations to either move to �1 or �2. The edge,
i.e. the element of E(�0), corresponding to the move to �1 is
〈∅,req?,D(〈{ x }, �2〉)〉,where∅ is the edge’s emptyguard
set—it must be empty since req? is an input. The move to
�2 represents the case of a file in archive: the server must
immediately deliver await!notification and then attempt to
retrieve the file from the archive. Clocks y and z are restarted,
and used to specify that retrieving the file shall take on aver-
age 1

3 of a time unit, exponentially distributed, but no more
than 5 time units. In location �3, there is thus a race between
retrieving the file and a deterministic timeout. In case of time-
out, an error message (action err!) is returned; otherwise,
the file can be delivered as usual from location �1. Clock x
is used to specify the transmission time of the file: it shall be
uniformly distributed between 0 and 1 time units.

In Fig. 2b, we show an implementation of this specifica-
tion. One out of ten files randomly requires to be fetched from
the archive. This is allowed by the specification: it is one par-
ticular (randomised) resolution of the nondeterminism, i.e.
underspecification, defined in �0. The implementation also
manages to transmit files from archive directly while fetch-
ing them, as evidenced by the direct edge from �3 back to �0
labelled file!. This violates the timing prescribed by the
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(a)

(b)

Fig. 2 File server specification and implementation IOSA

specification, andmust be detected by anMBT procedure for
IOSA.

In the remainder of this paper, whenever a statement applies
to both IOMA and IOSA, we will say that it applies to an
automaton A for brevity.

3.3 Parallel composition

To give a semantics for synchronisation and communication
between components of a system, we define a binary paral-
lel composition operator. Two components synchronise on
inputs and outputs, and otherwise evolve independently. Our
operators are defined w.r.t. a binary input–output relation M
that associates outputs of one component with inputs of the
other component, and vice versa. Wherever we use the !/?-
suffix convention for action labels, we assume that M relates
every output a! with the input a? and vice versa.

Markov automata IOMA interact via probabilistic tran-
sitions, while Markovian transitions evolve independently,
with the single technical exception of Markovian self-loops:

Fig. 3 Inference rules for IOMA parallel composition

Definition 3 (parallel composition, IOMA) For two IOMA

Mi = 〈Si , s0i , Acti , T i
P , T i

M 〉,

i ∈ { 1, 2 }, and an input–output relation

M ⊆ (ActO1 × ActI2) ∪ (ActI1 × Act02),

the parallel composition of M1 and M2 w.r.t. M is

M1 ‖MM2
def= 〈S1 × S2, 〈s01 , s02〉, Act, TP , TM 〉

with Act def= ActI � ActO � { τ }, ActO = ActO1 ∪ ActO2 , and

ActI
def= (ActI1 ∪ ActI2)\(�

ActI1
ActO2

(M) ∪ �ActI2
ActO1

(M−1))

where�I
O(M) are the inputs in I that arematched to an output

in O by M :

�I
O(M)

def= { aI ∈ I | ∃ aO ∈ O : 〈aI , aO 〉 ∈ M }.

The transition functions TP and TM are the smallest functions
satisfying the inference rules given in Fig. 3 plus symmetric
rules indep2, sync2, mar2, and marloop2 for the correspond-
ing independent steps, synchronising outputs, Markovian
transitions, and Markovian loops of M2.

In the action alphabet only those inputs carry over that do
not have a synchronising output in the other component asso-
ciated with them via M . If s1→M1 a1 and 〈a1, a2〉 ∈ M , an
a1-labelled transition can only take place in synchronisation
with an a2-labelled transition from the second component
(assuming no other action is associated with a1 by M). In
particular, if s1 �M1 a2, then 〈s1, s2〉 has no a1-a2-synchro-
nising transition: synchronisation waits for all partners to be
ready. We later restrict to input-enabled models to make sure
that outputs cannot beprevented fromoccurring immediately.
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Fig. 4 Inference rules for IOSA parallel composition

Stochastic automata The definition of parallel composition
for IOSA is similar: while there are no Markovian transi-
tions, the synchronisation of probabilistic edges now requires
building the unions of the involved guard and restart sets. This
means that a synchronising edge in the parallel composition
only takes places as soon as both of its constituent edges are
enabled: synchronisation partners wait, just as in IOMA.

Definition 4 (parallel composition, IOSA) For two IOSA

Ii = 〈Loci , �0i , Ci , Acti , Ei , Fi 〉,

i ∈ { 1, 2 }, with C1 ∩ C2 = ∅ and an input–output relation
M as in Definition 3, the parallel composition of I1 and I2
w.r.t. M is

I1 ‖I2 def= 〈Loc1 × Loc2, 〈�01 , �02 〉, C1 ∪ C2, Act, E, F1 ∪ F2〉

with Act as in Definition 3 and E being the smallest function
satisfying the inference rules given in Fig. 4, plus symmetric
rules for the corresponding steps of I2.

3.4 Qualitative semantics

The non-probabilistic aspects of the semantics of IOMA and
IOSA are captured in the notion of a path, which precisely
represents a single execution of an automaton.

3.4.1 Paths

A concrete execution of an automaton—the exact amount of
time spent in each state, the transition/edge taken, and the
selected successor state/location—is captured by a path.

Markov automata The definition of paths for IOMA is based
on the automaton’s states and transitions:

Definition 5 (path, IOMA) The set of all paths of an IOMA
M is

paths(M) ⊆ S × (R+0 × T × {∅ } × S)≤ω,

with T def= (Act × Distr(S)) ∪ R
+ serving to characterise

transitions, and contains precisely the sequences π of the

form

π = s0 t1 α1 ∅ s1 t2 α2 ∅ . . .

where, for all applicable i ≥ 1, for the αi ∈ T we have that
either αi = 〈ai , μi 〉 ∈ Act× Distr(S) such that

〈ai , μi 〉 ∈ TP (si−1) ∧ μi (si ) > 0,

i.e. αi is a probabilistic transition, or αi = λi ∈ R
+ with

〈λi , si 〉 ∈ TM (si−1), i.e. it is a Markovian transition.

By definition, every finite path ends in a state, and either
si

ai+1−−→ μi+1 or si
λi+1 si+1 for every non-final state si .

A subsequence si−1 ti αi ∅ si means that M resided ti time
units in state si−1 before moving to si via αi . The empty
sets ∅ are for consistent notation with paths for IOSA (see
below).

Stochastic automata IOSA comprise real-valued clocks; to
define a path through an IOSA I, we need to keep track of
their values and expiration times. We do so by defining the
state of Ito include these values: the set of states of an IOSA
I is S def= Loc×Val×Val. Each state 〈�, v, x〉 ∈ S consists of
the current location � and the values v and expiration times
x of all clocks. Consequently, the state space of an IOSA is
uncountably infinite.

Definition 6 (path, IOSA) Let us define the predicate

Ex(G, v, x)
def= ∀ c ∈ G : v(c) ≥ x(c)

that indicates whether all clocks in G are expired. Then, the
set of all paths of an IOSA I is

paths(I) ⊆ S × (R+0 × Edges× P(C)× S)≤ω

and contains precisely the sequences π of the form

π = 〈�0, v0, x0〉 t1 〈G1, a1, μ1〉 R1 〈�1, v1, x1〉 t2 . . .

where v0 = x0 = 0 and, for all applicable i ≥ 1, we have

– �i−1 Gi , ai−−−→ μi ,
– vi = (vi−1 + t)[Ri 
→ 0],
– Ex(Gi , vi−1 + t, xi−1) is satisfied,
– μi (〈Ri , �i 〉) > 0,
– the expiration times satisfy

xi ∈ { x ∈ Val | ∀ c ∈ C\Ri : x(c) = xi−1(c)
∧ ∀ c ∈ Ri : x(c) ≥ 0 },
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– and if ai /∈ ActI , then additionally

� t ′ ∈ [0, t[: ∃ �i−1 G, a−−→ μ : Ex(G, vi−1 + t ′, xi−1).

The last condition implements the urgency of outputs and
internal actions.We require that every path starts in the initial
location with all clocks and expiration times set to zero. An
edgemayonly be taken if all clocks in its guard set are expired
(which is the case when predicate Ex is satisfied). The clock
values in the successor state are obtained by resetting exactly
those clocks in the restart set Ri to zero. All other clocks keep
their value and expiration time.

We write last(π) to denote the last state of a finite path.
We write π ′ � π if π ′ is a prefix of π . The set of all finite
paths of an automaton A is pathsfin(A). The set of complete
paths, denoted pathscom(A), contains every path ending in a
deadlock, i.e. in a state s where TP (s) = TM (s) = ∅ (for
IOMA) or a location � where E(�) = ∅ (for IOSA).

3.4.2 Traces

A trace is the projection of a path to its delays and actions,
recording the path’s visible behaviour:

Definition 7 (trace) The trace of π is

tr(π) ∈ (R+0 × Act\{ τ })≤ω

given as the projection of

π = s0 t1 α1 R1 s1 t2 α2 R2 . . .

to the ti and the actions ai 
= τ of those αi that are of the form
〈ai , μi 〉 ∈ Act×Distr(S) for IOMA or 〈Gi , ai , μi 〉 ∈ Edges
for IOSA, summing up the ti over all subsequent steps where
αi is of another form (i.e. internal and Markovian transi-
tions for IOMA and internal edges for IOSA). The length of
π , denoted |π |, is the number of actions on tr(π). The set
tr−1(σ ) is the set of all paths that have trace σ . The set of all
traces of an automaton A is traces(A), while tracesfin(A) is
the set of all of its finite traces. Finally, tracescom(A) is the
set of all its complete traces, i.e. those σ for which tr−1(σ )

contains at least one complete path.

3.4.3 Abstract traces

When delays are governed by continuous probability dis-
tributions, the probability of any single time point is zero.
Hence, we will need a notion that represents an automaton’s
behaviour over time intervals instead of points.

Definition 8 (abstract trace) An abstract trace is a trace
where each delay ti is replaced by an interval Ii ⊆ R

+
0 with

ti ∈ Ii .

Fig. 5 Example IOMA for paths and traces

W.l.o.g. we only consider non-empty intervals of the form
[0, t] in the remainder of this paper. Consequently, every
trace can be replaced by its abstract trace by changing all ti to
[0, ti ] and vice versa, defining a bijection between traces and
their abstract counterparts. Hence, for a trace σ we denote by
Σ its corresponding abstract trace. AbsTraces(A) is the set
of all abstract traces of automaton A, and AbsTracesfin(A)

is the set of all its finite abstract traces. For Σ and Σ ′ with
Σ = I1 a1 I2 a2 . . . an and Σ ′ = I ′1 a′1 I ′2 a′2 . . ., we say Σ

is a prefix of Σ ′, denoted Σ � Σ ′, if Ii = I ′i and ai = a′i
for i = 1, 2, . . . , n. That is, Σ and Σ ′ coincide on the first
n steps. Finally, we define act (σ ) as the action trace of σ ,
obtained by removing all time values ti from σ , i.e. act (σ )

consists of actions in Act\{ τ } only.
Example 3 Consider the IOMA M given in Fig. 5. Let the
three Dirac distributions of the transitions labelled τ ,a?, and
b? be μτ , μa and μb, respectively. For the path

π = s0 2.9 3 ∅ s1 0 〈τ, μτ 〉 ∅ s0 0 〈b?, μb〉 ∅ s2

we have π ∈ pathscom(M), trace tr(π) = σ = 2.9 b?,
abstract trace Σ = [0, 2.9] b?, action trace act (σ ) = b?,
and path length |π | = 1. Note that the trace is much shorter
than the path since it omits the internal τ steps and then
merges all the delay steps between any two consecutive
remaining (i.e. non-τ ) actions.

3.5 Quantitative semantics

Our goal is now to quantify the frequency of observed traces.
For this purpose, we first define schedulers, which resolve all
nondeterministic choices, and then a probability space and
measure over the remaining paths. The space and measure
will allow us to specify trace distributions.

3.5.1 Schedulers

IOMA and IOSA comprise nondeterministic choices, dis-
crete probability distributions, and delays following contin-
uous probability distributions. Due to the nondeterminism,
we cannot assign probabilities to paths and traces directly.
Rather, we resort to schedulers that resolve nondetermin-
ism, and consequently yield a purely probabilistic system.
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Given any finite history leading to a state/location, a sched-
uler returns a discrete probability distribution over the set
of next transitions/edges. In order to model termination, we
define schedulers such that they can continue paths with a
halting extension⊥, after which only quiescence is observed.

Definition 9 (scheduler, IOMA) A scheduler of an IOMAM
is a function

S ∈ pathsfin(M)→ SubDistr(Act× Distr(S) ∪ {⊥ })

such that, with last(π) = s,S(π)(〈a, μ〉) > 0 implies s a−→
μ, and if s → a for a ∈ ActO ∪ { τ } then |S(π)| = 1. The
probability to halt is S (π) (⊥); we say that S halts on π

if S (π) (⊥) = 1, and that S is of length k ∈ N if it halts
on all paths π with |π | ≥ k and for every complete path of
length less than k. The set of all schedulers of M of length
k is Sched(M)≤k ; the set of all schedulers of finite length is
Sched(M).

The definition of schedulers ensures that only enabled tran-
sitions are chosen. We use subdistributions, as opposed to
distributions, such that the probability mass a scheduler did
not assign to actions in Act is left for Markovian transitions.
That is, a scheduler chooses an action, halts immediately (⊥),
or leaves a chance forMarkovian actions to take place. Sched-
ulers for IOSA are defined similarly:

Definition 10 (scheduler, IOSA) A scheduler of an IOSA I
is a measurable function

S ∈ pathsfin(I)→ Distr(Edges ∪ {⊥ })

such that, with last(π) = 〈�, v, x〉, S(π)(〈G, a, μ〉) > 0
implies �

G, a−−→ μ ∧ Ex(G, v + t, x) where t ∈ R
+
0 is the

minimal delay for which no other transition was available
before, i.e.

� t ′ ∈ [0, t[:
∨

�
G′, a′−−−→μ′

Ex(G ′, v + t ′, x).

S(π)(⊥) is the probability to halt. S halts on π if
S(π)(⊥) = 1.S is of length k ∈ N if it halts on all paths π

with |π | ≥ k and for every complete path of length less than
k. The set of all schedulers of Iof length k is Sched(I)≤k ;
the set of all schedulers of finite length is Sched(I).

A scheduler for an IOSA can only choose between the edges
enabled at the points where any edge just became enabled.
While actions (via probabilistic transitions) and the passage
of time (viaMarkovian transitions)were decoupled in IOMA,
edges in IOSA directly govern delays. Schedulers thus return
distributions, not subdistributions.

Remark 1 We use schedulers in the context of MBT in an
open environment, yet schedule both inputs and outputs.
This is in contrast to similar approaches in the literature;
for instance, [7] use a partial scheduler for each component
and an arbiter scheduler that tells precisely how progress of
the composed system is determined. Our approach is non-
compositional (see, for example, [44]). However, we utilise
schedulers only to determine the probabilities of paths and
traces, which does not require compositionality.

For both IOMA and IOSA, we restrict to finite-length sched-
ulers in the remainder of the paper. As is usual, we also
consider only schedulers that let time diverge with proba-
bility 1.

3.5.2 Probabilities of paths

By resolving all nondeterminism, a scheduler makes it pos-
sible to calculate the probability for measurable sets of paths
via step probability functions. A scheduler schedules without
delay. Hence, there are no additional races between Marko-
vian transitions or edges and scheduler decisions.

Definition 11 (step probability, IOMA) LetS be a scheduler
of an IOMAM. We define the step probability function QS

from pathsfin(M) to

Meas((R+0 × T × {∅ } × S) ∪ {⊥ }),

with T def= (Act×Distr(S))∪R
+ by QS(π)(⊥) = S(π)(⊥)

and, for π with last(π) = s, by
QS(π)(I × AQ × {∅ } × SQ) =

∑

s′∈SQ

( ∑

αP∈TP (s)∩AQ

Pπ (I , αP , s′)+
∑

αM∈TM (s)∩AQ

Mπ (I , αM , s′)
)

with Pπ (I , 〈a, μ〉, s′) def= 10∈I ·S(π)(〈α,μ〉) · μ(s′)

and Mπ (I , 〈λ, s′′〉, s′) def= 1s′′=s′ · (1− |S(π)|) ·
∫

t∈I
λ e−E(s)·t .

The probability to halt right after π is inferred from the
probability a scheduler assigns to the halting extension ⊥.
Otherwise, this function defines, for every path π , a measure
quantifying the probability to continue fromstate last(π) = s
by incurring a delay in the interval I ⊆ R

+
0 , taking a transi-

tion in AQ , and ending up in a state in SQ . Auxiliary function
Pπ calculates the probability of doing so via a probabilistic
transition while Mπ considers Markovian transitions. The
integral in Mπ implements the exponential distribution of
delays.

Definition 12 (step probability, IOSA) Let S be a scheduler
of an IOSA I. We define the step probability function QS in

pathsfin(I)→ Meas((R+0 × Edges× P(C)× S) ∪ {⊥ })
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by QS(π)(⊥) = S(π)(⊥) and, for π with last(π) =
〈�, v, x〉 and t the minimal delay in � as in Definition 6,

QS(π)(I×EQ×RQ×SQ) = 1t∈I ·
∑

e∈EQ

Y
SQ
RQ

(π, e)

where

Y
SQ
RQ

(π, e) def= S(π)(e) ·
∑

R∈RQ ,�′∈Loc

μ(〈R, �′〉) ·
∫

〈�′,v′,x ′〉∈SQ

X x
R(v′, x ′)

and

X x
R(v′, x ′) def= 1v′=(v+t)[R 
→0]

∏

c∈C

⎧
⎪⎨

⎪⎩

1 if c /∈ R ∧ x(c) = x ′(c)
0 if c /∈ R ∧ x(c) 
= x ′(c)
pdf(c)(x ′(c)) if c ∈ R.

This function defines, for every path π , a measure quantify-
ing the probability to continue from state last(π) = 〈�, v, x〉
by incurring a delay in the interval I ⊆ R

+
0 , taking an edge in

EQ , resetting a set of clocks in RQ , and ending up in a state
in SQ . First, the factor 1t∈I ensures that only delays in I have
positive probability. We then sum the probabilities over all
edges, with the value for each edge being given by auxiliary

function Y
SQ
RQ

. In that function, we multiply the probability
that the scheduler selects this edge, the probability for each
probabilistic branch, and the probability to end up in a state
in SQ by following that branch. States are uncountable, so we
integrate the probability density for every state as given by
auxiliary function X x

R . A state can only have positive proba-
bility if the values it assigns to clocks are the previous values
plus the selected delay plus the branch’s clock restarts (factor
1v′=(v+t)[R 
→0]). The final multiplication in X x

R assigns the
correct probability mass (via pdf(c)(x ′(c))) to sampling new
expiration times for the clocks that are restarted (identified
by c ∈ R); all other clocks retain their expiration times (as
enforced by the first two lines of the case distinction).

3.5.3 Trace distributions

Overall, the two-step probability functions induce unique
probability measures PS over pathsfin(A) for an automaton
Aand a scheduler S. We can define the trace distribu-
tion for A and a scheduler as the probability measure over
traces (using abstract traces to construct the corresponding
σ -algebra) induced by these probability measures over paths
in the usual way. The probability of a set of abstract traces X
is the probability of all paths whose trace is in X .

Definition 13 (trace distribution) The trace distribution T of
a scheduler S ∈ Sched(M), denoted T = trd(S), is given
by the probability space 〈ΩT ,FT , PT 〉 where

– ΩT
def= AbsTraces(M),

– FT is the smallest σ -field generated by the sets

{CΣ | Σ ∈ AbsTracesfin(M) }

with CΣ
def= {Σ ′ ∈ ΩT | Σ � Σ ′ }, and

– PT is the unique probability measure on FT defined by
PT (X) = PS(tr−1(X)) for X ∈ FT .

We can also use trace distributions to relate two automata:A1

andA2 are related if they induce the same trace distributions.
In particular, a trace distribution T ofA1 is contained in the
set of trace distributions of A2 if there is a scheduler S in
A2 such that T = trd(S). We write trd(A, k) for the set
of trace distributions based on a scheduler of length k and
trd(A) for the set of all finite trace distributions. Finally, we
write A1 �k

TD A2 if trd(A1, k) ⊆ trd(A2, k) for k ∈ N, and

A1 �fin
TD A2 if A1 �k

TD A2 for some k ∈ N. This induces an
equivalence relation =TD: A1 and A2 are trace distribution
equivalent, written A1 =TD A2, iff trd(A1) = trd(A2).

4 Stochastic testing theory

Model-based testing comprises automatic test case gener-
ation, execution, and evaluation based on a requirements
model.We now establish this three-step procedure for IOMA
and IOSA. As a first step, we define formal conformance
between two models via two conformance relations akin to
ioco [49], calledmar-ioco and sa-ioco.We then specifywhat
a test case is, and when an observed trace should be judged as
correct via test annotations. Working in a stochastic environ-
ment also necessitates a statistical verdict. We describe the
sampling process for an IUT and then define verdict func-
tions. Finally, we prove the correctness of the framework.

The main difference of our stochastic test theory, com-
pared to the probabilistic test theory of [20], lies in the
sampling process and its resulting observations, in partic-
ular, in the trace frequency counting functions. We carefully
defined IOMA and IOSA in such a way that many of the
notions in the remainder of this section apply to both set-
tings. For this reason, we will write *-ioco, �∗ioco, etc., to
summarise a definition for bothmar-ioco and sa-ioco,�mar

ioco
and �sa

ioco, etc.

4.1 Stochastic conformance relations

The purpose of the conformance relation is to judge whether
an implementationmodel conforms to the requirements spec-
ification model. We define our relations for IOMA and IOSA
such that they only rely on trace distributions. Trace distribu-
tion equivalence=TD is the probabilistic counterpart of trace
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equivalence for transition systems. However, trace equiva-
lence or inclusion is too fine as a conformance relation for
testing [48]. The ioco relation for functional conformance
solves this problem by allowing underspecification of func-
tional behaviour: an implementation I is conforming to a
specification S if every experiment derived from S executed
on I leads to an output that was foreseen in S:

I �ioco S ⇔ ∀σ ∈ tracesfin(S) : outI(σ ) ⊆ outS(σ )

where outI(σ ) is the set of outputs in I that is enabled after
trace σ . To extend ioco testing to stochastic systems, we need
two auxiliary concepts that mirror trace prefixes and the set
out stochastically:

Definition 14 (prefix and output continuation) For trace dis-
tributions T of length k and T ′ of length ≥ k, the prefix
relation �k is defined by

T �k T ′ ⇔ ∀σ ∈ (R+0 × Act)≤k : PT (Σ) = PT ′(Σ).

For an automaton A, the output continuation of trace distri-
bution T of length k is outcontA(T ) defined as the set of all
T ′ ∈ trd(A, k + 1) such that

T �k T ′ ∧ ∀σ ∈ (R+0 × Act)k × R
+
0 × ActI : PT ′(Σ) = 0.

The prefix relation extends the one for traces to trace dis-
tributions. The output continuation of T of length k in M
contains all trace distributions T ′ of length k + 1 such that
T �k T ′ and T ′ assigns probability zero to every abstract
trace of length k + 1 that ends with an input.

We can nowdefine themar-ioco and sa-ioco conformance
relations that relate input-enabled implementationsI to spec-
ifications S. Intuitively, I conforms to S if the probability
of every output trace of I can be matched by S under some
scheduler. This includes the functional behaviour, probabilis-
tic behaviour, and stochastic timing, as accounted for in the
definition of output continuations.

Definition 15 (mar-iocoand sa-ioco)LetI andS be automata
over the same action signature with I input-enabled. I is
*-ioco-conforming to S, written I �∗ioco S, if for all k ∈ N

we have

∀T ∈ trd(S, k) : outcontI(T ) ⊆ outcontS(T ).

Example 4 Recall the protocol models of Fig. 1. After the
send? input, there is a delay before the file transmission
is either acknowledged or an error is reported. Let S be the
leftmost automaton and I be the rightmost one. Consider
now the scheduler of S that schedules send? with proba-
bility 1. Its set of output continuations in S contains all trace
distributions that schedule the outgoing distribution leading

to ack! and err! with probability p and halt with 1 − p,
for p ∈ [0, 1]. This holds for the set of output continuations
in I, but the probability to reach s2 within a certain amount
of time t differs from S whenever λ1 
= λ2. Hence, there
are trace distributions in I such that the probability of, for
example,

[0, 0] send? [0, t] ack!

cannot be matched. The implementation is therefore not con-
forming with respect tomar-ioco in this case.

Relationship to other relations If A is an IOMA without
Markovian transitions or an IOSA where C = ∅, thenA is a
probabilistic input–output transition system (pIOTS). Under
this restriction,mar-ioco and sa-ioco coincide with pioco of
[20] and are thus extensions of pioco:

Theorem 1 For two pIOTS I and S with I input-enabled,
we have I �∗ioco S ⇔ I �pioco S.

Proof sketch All three relations are defined in the same way
over trace distributions and schedulers, the notions for which
coincide if TM = ∅ or C = ∅, respectively. ��
Consequently, the relationships already established between
pioco and other relations in [20] carry over as well:mar-ioco
and sa-ioco extend ioco (i.e. the relations coincide on IOTS),
and for trace distribution inclusion, we have the following
result:

Theorem 2 Let A,B and C be automata and let A and B be
input-enabled, then

A �∗ioco B ⇔ A �fin
TD B

andA �∗ioco B ∧ B �∗ioco C ⇒ A �∗ioco C.

Proof sketch The fact that finite trace distribution inclusion
implies conformance with respect to �∗ioco is immediate
if we consider that the relation is defined via trace distri-
butions. The opposite direction follows from the fact that
all abstract traces of A ending in output assuredly can get
assigned the same probabilities in B by �∗ioco. All abstract
traces ending in input are taken care of becauseA and B are
input-enabled, and all such distributions are input-reactive.
The second result is a direct consequence of the first. ��

4.2 Test cases and annotations

The advantage of MBT over manual testing is that test cases
can be automatically generated from the specification and
automatically executed on an implementation. We are inter-
ested in the result of a parallel composition of a test case
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and an implementation model. We define test cases over an
action signature 〈ActI , ActO〉. A test case is a collection of
traces that represent the possible behaviour of a tester. It is
summarised by an IOMA without Markovian transitions, or
an IOSA without clocks, whose graph is a tree. The action
signature describes the potential interaction with the imple-
mentation. In each state/location, the test may either stop,
wait for a response of the system, or provide some stimu-
lus. When a test is waiting for a response, it has to take into
account all potential outputs including the situation that the
systemprovides no response at all,modelled by quiescence δ.
A single test case may provide multiple options, giving rise
to multiple concrete testing sequences. It may also prescribe
different reactions to different outputs.

Definition 16 (test case, test suite) A test case over an action
signature 〈ActI , ActO〉 of system inputs ActI and system out-
puts ActO is an IOMA

t = 〈S, s0, Actt, TP , ∅〉

or an IOSA

t = 〈Loc, �0, ∅, Actt, E, ∅〉

whereActt = ActtI�ActtO with inputsActtI = ActO∪{ δ } and
outputsActtO = ActI \{ δ } that is a finite, internally determin-
istic, and connected tree. In addition, all discrete distributions
of the transitions or edges must be Dirac, and for every state
or location s we require that either

(1) enabled(s) = ∅ (stop the test) or
(2) enabled(s) = ActtI (wait for some response) or
(3) enabled(s) ⊆ ActtO ∧ |enabled(s) = 1| (provide a single

stimulus, deterministically).

A test suite T is a set of test cases. A test case (suite) for an
automaton S with inputs ActI and outputs ActO is a test case
(suite) if it is defined over action signature 〈ActI , ActO〉 and
if we additionally require in item 3 above that, if a transition
or edge labelled a ∈ ActtO can lead to state or location s′ with
positive probability, then there exists a σ ∈ traces(S) such
that σ . t a ∈ traces(S) for some t ∈ R

+
0 .

Test cases are, in effect, IOMA or IOSA that are IOTS. The
inputs of a test case are the outputs of the action signature,
i.e. the outputs of the implementation or specification, and
vice versa. The last requirement in the definition ensures that
only specified inputs are provided: a test may only judge the
correctness of specified behaviour. This is referred to as being
input minimal in the literature [47].

In order to identify the behaviour which we deem as func-
tionally acceptable/correct, each complete trace of a test, i.e.
every leaf state or location, is annotated with a pass or fail

verdict. We annotate exactly the traces that are present in the
specification with the pass verdict, formally:

Definition 17 (test annotation) For a test t, a test annotation
is a function

ann ∈ tracescom(t)→ { pass, fail }.

A pair t̂ = 〈t, ann〉 consisting of a test and a test annotation
is an annotated test. The set of all such t̂, denoted by T̂ ={
(ti , anni )i∈I

}
for some index set I, is an annotated test

suite. If t is a test case for a specification S with signature
〈ActI , ActO〉, we define

annS∗-ioco ∈ tracescom(t)→ { pass, fail }

by annS∗-ioco(σ ) = fail if there exist ρ ∈ tracesfin(S), t ∈ R
+
0

and a ∈ ActO such that

ρ . t a � σ ∧ ρ . t a /∈ tracesfin(S)

and annS∗-ioco(σ ) = pass otherwise.

Annotations decide functional correctness only. The correct-
ness of discrete probabilistic choices and stochastic delays is
assessed in a separate second step.

Example 5 Figure 6 presents a test suite for the file server
specification IOSA of Fig. 2. Test case t̂1 uses the quiescence
observation δ to assure no output is given in the initial state.
t̂2 checks for eventual delivery of the file, which may be
archived, requiring the intermediate wait! notification, or
may be sent directly. Finally, t̂3 tests the abort? edge.

4.3 Sampling and verdicts

Functional conformance is assessedvia test annotations in the
same way as in classical ioco theory [47]. However, we test
stochastic systems; thus, executing a test case once is insuffi-
cient to establish *-ioco conformance. We now focus on the
statistical evaluation of the probabilistic and stochastic-timed
behaviour based on a sample of multiple traces.

4.3.1 Sampling

We perform a statistical hypothesis test on the implemen-
tation based on the outcome of a push-button experiment
in the sense of [37]. We assume a black-box timed trace
machine with inputs, a time and an action window, and a
reset button, as illustrated in Fig. 7. An observer records each
individual execution before the reset button is pressed and a
new execution starts. A clock that increases is started, and is
stopped once the next visible action is recorded. We assume
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Fig. 6 Three test cases for the file server specification

Fig. 7 Black-box timed trace machine

that recording an action resets the clock. Thus, the record-
ings of the external observer match the notion of (abstract)
traces. After a sample of sufficient size has been collected,
we compare the collected frequencies of abstract traces to
their expected frequencies according to the specification. If
the empiric observations are close to the expectations, we
accept the probabilistic behaviour of the implementation.

Before the experiment, we fix the parameters for sample
length k ∈ N (the length of the individual test executions),
sample size m ∈ N (how many test executions to observe),
and level of significance α ∈ ]0, 1[ (the probability of erro-
neously rejecting a correct implementation). Checking the
abstract trace frequencies contained in the sample versus their
expectancy w.r.t. the specification S requires a scheduler due
to the presence of nondeterminism in S. In order for any
statistical reasoning to work, we assume each iteration of
the sampling process to be governed by the same scheduler,
which induces a trace distribution T ∈ trd(I).

4.3.2 Frequencies and expectations

To quantify how close a sample is to its expectations, we
require a notion of distance. Our goal is to evaluate the
deviation of a collected sample to the expected distribution.
Thus, we require (1) a metric space for the quantification of
distances between measures, (2) the frequency measure of
abstract traces in a sample, and (3) the expected measure of
abstract traces in the specification under T .

For automaton A, we use metric space 〈Meas(A), dist〉
where the metric

dist(u, v)
def= sup

σ∈(R+0 ×Act)≤k

|u(Σ)− v(Σ)|

is the maximal variation distance of two measures u and v.
(Recall we denote by Σ the abstract trace corresponding to
the trace σ .)We next define the twomeasures—the frequency
measure for a sample O = {| σ1, . . . , σm |} and the expected
measure according to the specification—that need to be com-
pared. Our definitions for the former differ between IOMA
and IOSA due to their different models of stochastic time.

Memoryless time For IOMA, our frequency measure can
assume the independence of all time intervals since the delays
are memoryless. Thus, we order the i-th time intervals of all
ρ increasingly and compare them to σ . We achieve this by
grouping traces into classes based on the same visible action
behaviour. For a given trace σ , its class Σσ is the set of all
traces ρ ∈ O such that act (ρ) = act (σ ). A sample of length
k and width m then induces the frequency measure

freq ∈ ((R+0 × R
+
0 )× Act)≤k×m → Meas((R+0 × Act)≤k)

defined by

freq(O)(Σ) = |Σσ |
m

k∏

i=1

|{| ρ ∈ Σσ | tρi ≤ tσi |}|
|Σσ |

where tρi denotes the i-th time stamp of trace ρ. In this way,
the distributions for each time stamp in a trace converge to the
true underlying distribution by the Glivenko–Cantelli theo-
rem [22].

General stochastic time For IOSA, we define the frequency
measure by

freq(O)(Σ) = |{| ρ ∈ O | ∀i : tρi ∈ I Σ
i |}|

m
,

i.e. the fraction of traces in O that are in Σ . Specifically, we
require all time stamps to be contained in the intervals given
inΣ . In contrast to IOMA, this function does not assume the
independence of clock valuations from locations.

Expected measure The last missing ingredient is the
expected measure according to a specification. Let T be the
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trace distribution resulting from the resolution of all nonde-
terministic choices. We treat each iteration of the sampling
process of the implementation as Bernoulli trial. Recall that
a Bernoulli trial has two outcomes: success with probability
p and failure with probability 1− p. For any trace σ , we say
that success occurred at position i of the sample if σ = σi .
Therefore, let Xi ∼ Ber(PT (Σ)) be Bernoulli distributed
random variables for i = 1, . . . , m. Let Z = 1

m Σm
i=1Xi be

the empiric mean with which we observe σ in a sample. The
expected probability under T is then calculated as

E
T (Z) = E

T
(
1

m
Σm

i=1Xi

)

= 1

m
Σm

i=1E
T (Xi ) = PT (Σ).

Hence, the expected probability for each abstract trace Σ is
the probability of Σ under trace distribution T , as expected.

Example 6 Returning to the example of

σ1 = 0.5 a? 0.6 b! and σ2 = 0.6 a? 0.5 b!,

assume O = { σ1, σ2 }. Then,

freq(O)([0, 0.5]a? [0, 0.5]b!) = 2

2
· 1
2
· 1
2
= 1

4
,

freq(O)([0, 0.5]a? [0, 0.6]b!) = 2

2
· 1
2
· 2
2
= 1

2
,

freq(O)([0, 0.6]a? [0, 0.6]b!) = 2

2
· 2
2
· 2
2
= 1.

4.3.3 Acceptable outcomes

We accept a sample O if freq(O) lies within some distance
rα of the expected measure E

T . All measures deviating at
most rα from the expected measures are contained within
the ball Brα (ET ). The actual rα is chosen such that the error
of accepting an erroneous sample is limited while keeping
the error of rejecting a correct sample smaller than α, i.e.

rα = inf{r ∈ R
+
0 | PT (freq−1(Br (E

T ))) ≥ 1− α}.

Definition 18 (acceptable outcomes) For k, m ∈ N and an
automaton A, the set of acceptable outcomes under T ∈
trd(A, k) of significance level α ∈ (0, 1) is Obs(T , α, k, m)

=

{ O ∈ (R+0 × Act)≤k×m | dist(freq(O), E
T ) ≤ rα }.

We obtain the set of acceptable outcomes of A by

Obs(A, α, k, m) =
⋃

T ∈trd(A,k)

Obs(T , α, k, m).

The set of acceptable outcomes consists of all possible sam-
ples that we are willing to accept as close enough to the
expectations. Note that this takes all possible trace distribu-
tions ofA into consideration. The set of acceptable outcomes
has two properties reflecting the error of false rejection
and the error of false acceptance, respectively: first, if a
sample was generated under a trace distribution of A or a
trace distribution-equivalent automaton, we correctly accept
it with probability higher than 1− α, i.e.

PT (Obs(T , α, k, m)) ≥ 1− α;

second, if a sample was generated by a non-admitted trace
distribution, the chance of erroneously accepting it is smaller
than some βm . Again, α is the a priori defined level of sig-
nificance, and βm is unknown, but minimal by construction.
Additionally,βm → 0 asm →∞: the error of falsely accept-
ing an observation decreases with increasing sample size.

Remark 2 The set of acceptable outcomes comprises sam-
ples of the form O ∈ (R+0 × Act)≤k×m . In order to align
observations with the *-ioco relations, we define the set of
acceptable output outcomes OutObs(T , α, k, m) as the set
of those O ∈ ((R+0 × Act)≤k−1 × R

+
0 × ActO)m for which

we have dist(freq(O), E
T ) ≤ rα .

Verdict functions With all necessary components in place,
the followingdecisionprocess summariseswhether an imple-
mentation fails a test case or test suite based on a functional
or statistical verdict. The overall pass verdict is given iff both
sub-verdicts yield a pass. LetAut∗ denote the set of all IOMA
or IOSA, respectively.

Definition 19 (verdicts) Given a specification automaton S,
an annotated test t̂ for S, k, m ∈ N where k is the length of
the longest trace of t̂, and α ∈ (0, 1), we define the functional
verdict as the function

vfunc ∈ Aut∗ × Aut∗ → { pass, fail }

with vfunc(I, t̂) = pass if

∀σ ∈ tracescom(I ‖ t̂) : annS∗-ioco(σ ) = pass

and vfunc(I, t̂) = fail otherwise, the statistical verdict as

vprob ∈ Aut∗ × Aut∗ → { pass, fail }

with vprob(I, t̂) = pass if for all T ∈ trd(I ‖ t̂) there exists a
T ′ ∈ trd(S, k) such that

PT ′(OutObs(T , α, k, m)) ≥ 1− α

123



Model-based testing of stochastically timed systems 221

and vprob(I, t̂) = fail otherwise, and the overall verdict as

V ∈ Aut∗ × Aut∗ → { pass, fail }

with V (I, t̂) =
{

pass if vfunc(I, t̂) = vprob(I, t̂) = pass

fail otherwise.

An implementation passes a test suite T̂ if it passes the
overall verdict for all annotated tests t̂ ∈ T̂.

Although IOMA and IOSA include three properties in terms
of (1) functional behaviour, (2) discrete probabilistic beha-
viour, and (3) continuous time, we only have two verdicts.
This is because continuous time is only present in the form
of stochastic delays. Thus, on the purely mathematical level,
the decision whether or not a delay in the implementation
adheres to the one specified is covered by the probabilistic
verdict vprob. Only on the practical side of things do we need
a new decision procedure. We study this in Sect. 5.

4.4 Soundness and completeness

Ideally, only *-iococorrect implementations pass a test suite.
However, due to the stochastic nature of our models, there
remains a degree of uncertainty upon giving verdicts. This
is phrased as errors of first and second kind in hypothesis
testing: the probability to reject a true hypothesis and to
accept a false one, respectively. They are reflected as the
probability to reject a correct implementation and to accept
an erroneous one in the context of probabilistic MBT. The
relevance of these errors becomes evident when we con-
sider the correctness of our test frameworks. Correctness
comprises soundness and completeness: every conforming
implementation passes, and there is a test case to expose
every non-conforming one. A test suite can only be consid-
ered correct with some guaranteed (high) probability.

Definition 20 (sound, complete) Let S be a specification
automaton over action signature 〈ActI , ActO〉, α ∈ ]0, 1[
the level of significance, and T̂ an annotated test suite for
S. Then, T̂ is sound for S with respect to �∗ioco if, for all
input-enabled automata I and sufficiently large m ∈ N, it
holds for all t̂ ∈ T̂ that

I �∗ioco S ⇒ V (I, t̂) = pass.

T̂ is complete for S with respect to �∗ioco if, for all input-
enabled automata I and sufficiently large m ∈ N, there is at
least one t̂ ∈ T̂ such that

I 
�∗ioco S ⇒ V (I, t̂) = fail.

Soundness expresses for a givenα ∈ ]0, 1[ that there is a 1−α

chance that a correct systempasses the annotated test suite for

sufficiently large sample sizem. This relates to false rejection
of a correct hypothesis in statistical hypothesis testing, or
rejection of a correct implementation, respectively.

For the following theorems, we provide full proofs for sa-
ioco. The proofs for mar-ioco use the exact same arguments
and only lack someof the technical complications of themore
general IOSA setting. The interested reader may find the full
proofs for mar-ioco in [18].

Theorem 3 Each annotated test case for an automaton S is
sound for every level of significance α ∈ (0, 1) with respect
to �∗ioco.

Proof Let I be an input-enabled IOSA and t̂ be a test for S.
Assume that I �sa

ioco S. We want to show V (I, t̂) = pass.
By Definition 19, we have that V (I, t̂) = pass if and only
if vfunc(I, t̂) = vprob(I, t̂) = pass. We proceed by showing
vfunc(I, t̂) = pass and vprob(I, t̂) = pass in separate steps:

Functional verdict By Definition 19, we need to show that

annSsa-ioco (σ ) = pass for all σ ∈ tracescom(I ‖ t̂).

Let σ ∈ tracescom(I ‖ t̂) and use Definition 17. Assume
σ ′ ∈ tracesfin(S) and a ∈ ActO such that σ ′. t a � σ for
some t ∈ R

+
0 . We observe that (a) since the empty trace

is a trace and is in tracesfin(S), σ ′ always exists, and (b) if
no such a ∈ ActO exists, then σ only consists of inputs,
and by Definition 17 consequently annSsa-ioco(σ ) = pass. By
construction of σ , we have σ ′. t a ∈ tracesfin(I ‖ t̂) and
therefore also σ ′. t a ∈ tracesfin(I). In particular, the parallel
composition with a test case does not alter the guard sets on
edges.We conclude that σ ′ ∈ tracesfin(I)∩ tracesfin(S). Our
goal is to show σ ′. t a ∈ tracesfin(S).

Let l = ∣
∣σ ′

∣
∣ be the length of σ ′. W.l.o.g. we can now

choose T ∈ trd(S, l) such that PT (Σ ′) > 0. In particular,
this choice is not invalidated by urgent transitions. If a tran-
sition has a guard set with a clock that can never expire in a
location due to another urgent output, then this transition is
never part of a path (Definition 6).With the previous observa-
tion, this yields outcontI(T ) 
= ∅. Again, w.l.o.g. we choose
T ′ ∈ outcontI(T ) such that PT ′(Σ ′. [0, t] a) > 0. Finally,
we assumed I �sa

ioco S; hence,

outcontI(T ) ⊆ outcontS(T ).

We conclude T ′ ∈ trd(S, l + 1) and PT ′(Σ ′. [0, t] a) >

0. By Definition 13, this implies σ ′. t a ∈ tracesfin(S). If
additionally σ ′. t a ∈ tracescom(I ‖ t̂), then σ = σ ′. t a.
Consequently, annSsa-ioco(σ ) = pass by Definition 17 and
vfunc(I, t̂) = pass.
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Statistical verdict By Definition 19, we must show that for
all T ∈ trd(I ‖ t̂, k) there exists a T ′ ∈ trd(S, k) such that

PT ′ (OutObs (T , α, k, m)) ≥ 1− α.

Let T ∈ trd(I ‖ t̂, k). By Remark 2, OutObs(T , α, k, m) is
the set of all O ∈ ((R+0 × Act)≤k−1 × R

+
0 × ActO)m such

that dist(freq(O), E
T ) ≤ rα . There exists T ∈ trd(I ‖ t̂, k)

with

PT ′(Σ) =
{
0 if σ ∈ (R+0 × Act)k−1 × R

+
0 × ActI

PT (Σ) if σ ∈ (R+0 × Act)≤k−1 × R
+
0 × ActO .

(1)

To see why, consider the scheduler that assigns all probabil-
ity to halting instead of inputs for traces of length k while
assigning the same probability to outputs as the scheduler
of T . By construction of OutObs (Remark 2), observe that

PT ′(OutObs(T ′, α, k, m)) = PT ′(OutObs(T , α, k, m))

= PT (OutObs(T , α, k, m))

≥ 1− α

since only traces ending in output are measured.
It is now sufficient to show that T ′ ∈ trd(S, k). As an

intermediate step, we first show that T ′ ∈ trd(I, k), as this
will let us make use of the assumption I �sa

ioco S. Consider
the mapping

f ∈ pathsfin(I ‖ t̂) −→ pathsfin(I)

where for every fragment of the path we have

f (. . . 〈〈�, q〉, v0, x0〉〈t1, e1, R1, |〈�, q〉, v1, x1〉〉 . . .)
= . . . 〈�, v̄0, x̄0〉〈t̄1, ē1, R̄1〈�′, v̄1, x̄1〉〉 . . .

This is possible because test cases do not contain clocks and
parallel composition thus does not change guard sets, restart
sets, or expiration times (Definition 4) and implies vi = v̄i ∧
xi = x̄i for i = 0, 1 and t1 = t̄1 ∧ R1 = R̄1. For ē1 consider
g ∈ EI‖t̂→ EI such that

g(e) = g(C, a, μ(R, (�, q))) = (C, a, μ̄(R, �)) = ē

where μ(R, 〈�, q〉) = μ̄(R, �) for all �. This construction
of μ is possible because tests only contain Dirac distribu-
tions and discrete probabilities thus directly transfer. Hence,
q is uniquely determined by parallel composition. Since t̂ is
internally deterministic, f is an injective mapping, i.e.

f (π1) = f (π2)⇒ π1 = π2.

By Definition 13, there is a scheduler S′ ∈ Sched(I ‖ t̂)≤k

such that trd(S′) = T ′. With the help of f , we show the
existence of a scheduler S′′ ∈ Sched(I) such that for all
traces σ we have Ptrd(S′)(Σ) = Ptrd(S′′)(Σ), i.e. trd(S′′) =
T ′.

For every path π ∈ pathsfin(I) with

f −1(π) ∈ pathsfin(I ‖ t̂),

we define S′′ as S′′(π)(ē) def= S′( f −1(π))(e). PS′′(�) = 0
if π /∈ pathsfin(I ‖ t̂). The construction of S′′ is straightfor-
ward: due to the construction of test cases, I ‖ t̂ is internally
deterministic. In particular, there is no interleaving. This
means that S′′ can copy the behaviour of S′ step by step.
We set T ′′ = trd(S′′) and conclude T ′′ ∈ trd(I, k). By
construction PT ′′(Σ) = PT ′(Σ) for all traces σ . Further,

PT ′′(OutObs(T ′′, α, k, m)) = PT ′′(OutObs(T ′, α, k, m))

= PT ′′(OutObs(T , α, k, m))

= PT ′(OutObs(T , α, k, m))

= PT (OutObs(T , α, k, m))

≥ 1− α.

We proceed to show that T ′′ ∈ trd(S, k). The proof is by
induction over trace distribution length of prefixes of T ′′ up
to k. Trivially, if T ′′ ∈ trd(I, 0), then also T ′′ ∈ trd(S, 0).
Assume this has been shown for length n. We proceed by
showing that the statement holds for n + 1 ≤ k. Let T ′′ ∈
trd(I, n+ 1) and take T ′′′ �n T ′′. By induction assumption
T ′′′ ∈ trd(S, n). Together with I �sa

ioco S, we have

outcontI(T ′′′) ⊆ outcontS(T ′′′).

Since T ′′ ∈ outcontI(T ′′′) (Eq. 1), we also have that T ′′ ∈
outcontS(T ′′′), and consequently T ′′ ∈ trd(S, n + 1). We
showed T ′′ ∈ trd(S, k) and conclude

PT ′′(OutObs(T , α, k, m)) ≥ 1− α.

Ultimately, this yields vprob(I, t̂) = pass by Definition 19).
��

Completeness of a test suite is an inherently theoretical result.
Infinite behaviour of the implementation, for instance, via
loops, would require an infinite test suite. Moreover, the pos-
sibility of accepting an erroneous implementation by chance,
i.e. committing an error of the second kind, remains. How-
ever, the latter is bounded from above by construction, and
decreases with increasing sample size (Definition 18).

Theorem 4 The set of all annotated test cases for an automa-
ton S is complete for every level of significance α ∈ (0, 1)
with respect to �sa

ioco for sufficiently large sample size.
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Proof Assume I 
�sa
ioco S. We want to show that V (I, T̂) =

fail. By the definition of verdicts (Definition 19), this is the
case iff vfunc(I, t̂) = fail or vprob(I, t̂) = fail for some t̂ ∈
T̂. Since I 
�sa

ioco S, there is a k ∈ N such that there is a
T ∗ ∈ trd(S, k) for which outcontI(T ∗) � outcontS(T ∗).
More specifically, there exists a T ∈ outcontI(T ∗) such that

∀T ′ ∈ outcontS(T ∗) : ∃ σ ∈ C : PT (Σ) 
= PT ′(Σ) (2)

where C def= tracesfin(I) ∩ (R+0 × Act)k × R
+
0 × ActO and

Σ is the abstract trace of σ . W.l.o.g. we can assume k to
be minimal. There are two cases to consider: (1) ∃σ ∈ C :
σ /∈ tracesfin(S), or (2) ∀σ ∈ C : σ ∈ tracesfin(S). We will
relate the two cases to the functional and the probabilistic
verdict (Definition 19): we prove that case 1 implies that
vfunc(I, T̂) = fail and that case 2 implies vprob(I, T̂) = fail.
Now let T ∈ outcontI(T ∗) such that Eq. 2 holds for all
T ′ ∈ outcontS(T ∗).

Functional verdict By Definition 19, we need to show

∃σ ∈ tracescom(I ‖ t̂) : annSsa-ioco(σ ) = fail

for some t̂ ∈ T̂. Assume there is a σ ∈ C such that σ /∈
tracesfin(S). Our goal is to show that there is t̂ ∈ T̂ for which
σ ∈ tracescom(I ‖ t̂) and annSpioco(σ ) = fail.

Without loss of generality, we assume PT (Σ) > 0. To
see why, assume PT (Σ) = 0. Then, we can find a trace
distribution in outcontS(T ∗) with an underlying scheduler
Sched(S) that does not assign positive probability to the last
action in σ to obtain overall probability zero. This violates
the assumption that PT (Σ) 
= PT ′(Σ) for all T ′ ∈ trd(S).
We conclude σ = σ ′. t a, for some σ ′ ∈ (R+0 × Act)k ,
a ∈ ActO and t ∈ R

+
0 . The prefix σ ′ is in tracesfin(S)

because it is of length k and since T ∗ ∈ trd(S, k). Since
T and all T ′ ∈ outcontS(T ∗) are continuations of T ∗, we
conclude that PT ∗(Σ ′) = PT (Σ ′) = PT ′(Σ ′), i.e. that all
trace distributions of the respective sets assign every prefix
of σ the same probability by merit of outcont. We conclude
σ ′ ∈ tracesfin(S), but σ ′. t a /∈ tracesfin(S).

By initial assumption T̂ contains all annotated test cases.
Let t̂ ∈ T̂ such thatσ ∈ tracescom(t̂). This is possible because
σ ′ ∈ tracesfin(S). By Definition 17, annSsa-ioco(σ ) = fail.
Recall that the set of clocks in test cases in empty. Since σ ∈
tracesfin(I) and σ ∈ tracescom(t̂), we consequently also have
σ ∈ tracescom(I ‖ t̂) as no guard or restart sets are changed
under parallel composition with a test case. Ultimately, this
yields vfunc(I, t̂) = fail.

Statistical verdict ByDefinition 19, wemust show that there
is T ∈ trd(I ‖ t̂, l) such that for all T ′ ∈ trd(S, l) we have

PT ′(OutObs(T , α, l, m)) < 1− α,

for some t̂ ∈ T̂ and some l ∈ N.
Together with Eq. 2 and Definition 18, we conclude that

for all T ′ ∈ outcontS(T ∗) we have

PT ′(OutObs(T , α, k + 1, m)) < βm (3)

for some βm → 0 as m →∞. Observe that

sup
T ′∈trd(S,k+1)

PT ′(OutObs(T , α, k + 1, m))

= sup
T ′∈outcontS (T ∗)

PT ′(OutObs(T , α, k + 1, m)), (4)

byRemark 2.OutObs only comprises traces ending in output;
thus, its measure under any trace distribution of trd(S, k +
1) cannot be larger than the measure of the ones already
contained in outcontS(T ∗). Together with Eq. 3, this yields
that for all T ′ ∈ trd(S, k + 1) we have

PT ′(OutObs(T , α, k + 1, m)) < βm (5)

for some βm → 0 as m → ∞. We are left to show that
T ∈ trd(I ‖ t̂, k + 1) for some t̂ ∈ T̂. Let

K = { σ ∈ tracesfin(I) | PT (Σ) > 0 },

i.e. the set of all traces assigned positive probability under
T . Obviously C ⊆ K. By initial assumption, we know that
all σ ∈ C are contained in tracesfin(S). Hence, all σ ∈ K are
necessarily in tracesfin(S). Thus, there is a test case t̂ for S
such that all σ ∈ K are in tracescom(t̂). In particular, all σ end
in output by assumption. Hence, the last stage of every test
case is item 2 in Definition 16. We now construct a scheduler
S′ ∈ Sched(I ‖ t̂)≤k+1 such that trd(S′) = T .

Consider the mapping f ∈ tr−1(K) → pathsfin(I ‖ t̂)
where for every path fragment we have

f (. . . 〈�, v0, x0〉〈t1, e1, R1〈�′, v1, x1〉〉 . . .)
= . . . 〈〈�, q〉, v̄0, x̄0〉〈t̄1, ē1, R̄1, 〈〈�, q〉, v̄1, x̄1〉〉 . . . .

By Definition 16, vi = v̄i ∧ xi = x̄i for i = 0, 1 and t1 =
t̄1∧ R1 = R̄1, because test cases do not have clocks. Further,
we define g ∈ EI → EI‖t such that

g(e) = g(C, a, μ(〈R, �〉)) = (C, a, μ̄(〈R, 〈�, q〉〉)) = ē

where μ(〈R, 〈�, q〉〉) = μ̄(〈R, �〉) for all �. q is uniquely
determined because tests are internally deterministic and
every distribution is the Dirac distribution. Thus, discrete
probabilities carry over from μ to μ̄. In particular, q = q ′ if
a = τ . Then, f is an injection, i.e. f (π1) = f (π2)⇒ π1 =
π2.
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We now constructS′. LetS be the scheduler that induces
T by Definition 13. For every π ∈ tr−1(K), we define

S′(π)(ē) def= S( f −1(π))(e).

The construction ofS′ is straightforward: since t̂ is internally
deterministic, and every of its discrete distributions is the
Dirac distribution, there is no interleaving in I ‖ t̂. Hence,
a scheduler of I ‖ t̂ may copy the decisions of S step by
step. In particular, Ptrd(S′)(Σ) = 0 for σ /∈ K. We conclude
trd(S′) = T and therefore T ∈ trd(I ‖ t̂, k + 1).

Together with Eq. 4, we have found a scheduler S′ such
that trd(S′) ∈ trd(I ‖ t̂, k+1), and for all T ′ ∈ trd(S, k+1)
we have

PT ′(OutObs(trd(S′), α, k + 1, m)) < βm .

Now iff α ≤ 1− βm , we estimate this further to

PT ′(OutObs(trd(S′), α, k + 1, m)) < βm ≤ 1− α.

However, the inequality α ≤ 1− βm always holds for suffi-
ciently large m, since βm → 0 as m →∞ by Definition 18.
Ultimately, this yields vprob(I, t̂) = fail. ��

5 Implementing stochastic testing

We now present practical procedures to implement the con-
cepts defined in the previous section. First, we propose a
goodness-of-fit method in the form of Pearson’s χ2 test
enrichedwith confidence interval analysis on the time stamps
to evaluate the stochastic behaviour of the observed traces
in the IOMA setting. Waiting times recorded in traces are
grouped and compared to the prescribed rate parameters in
the specification. Some additional assumptions are neces-
sary to enable a clean and efficient framework. Since IOSA
are not limited to exponential distributions, we need more
powerful ways to infer if a sample was drawn from a par-
ticular distribution. In the IOSA setting, we thus apply the
Kolmogorov–Smirnov (KS) test, which is able to infer gen-
eral probability distributions, in place of interval estimation.
Next, we discuss the interplay of stochastic delays and qui-
escence. Finally, we summarise the overall stochastic MBT
procedure from test case generation to final verdicts.

5.1 Goodness of fit

We need practically applicable methods to decide about the
verdicts given by Definition 19. While the functional verdict
is determined via test annotations in the same straightforward
way as in traditional ioco testing, we also need a procedure
to decide the probabilistic verdict. We propose a two-step

procedure consisting of Pearson’s χ2 hypothesis test for the
discrete probabilities followed by interval estimation (in the
IOMA setting) or multiple KS tests (in the IOSA setting) for
the time stamps resulting from the stochastic delays.

Our method is based on a theorem known from the liter-
ature [8] relating trace distributions to the set of acceptable
outcomes. However, neither is readily available to us in case
of a real black-box implementation—only experiments and
samples give evidence about its inner workings. Therefore,
we pose a null-hypothesis test based on a gathered sample
of the implementation. Should the sample turn out to be an
acceptable outcome of the specification, too, then we accept
the hypothesis that all observations of the implementation
are also observations of the specification. In tandem with the
theorem byCheung et al. [8], this would imply an embedding
on the set of trace distributions. Consequently, the resulting
probabilistic verdict in Definition 19 would be pass.

5.1.1 Pearson’s �2 test

In previous work for pIOTS models [20], we used the χ2

hypothesis test to judge discrete probabilistic behaviour. Its
outcome is based on a sample O taken from the implemen-
tation under test. Should O prove to be a sample of the set
OutObs(S, α, k, m) for some α ∈ (0, 1), we are willing to
accept the hypothesis of the embeddings of observations. In
the continuous-time stochastic case, we argue along the same
lines. However, only applying the χ2 hypothesis test is insuf-
ficient, as it does not take into account the delays observed
in abstract traces. Nonetheless, passing the χ2 test is a nec-
essary condition for an implementation to be accepted.

For a finite trace σ = t1 a1 t2 a2 . . . tn an , we define
its time closure as σ̄ = R

+
0 a1 R

+
0 a2 . . . R

+
0 an . Then, the

empiric χ2 score is given as

χ2 def=
∑

σ̄∈{ρ̄|ρ∈O}

(|{| ρ̄ | ρ ∈ O ∧ ρ̄ = σ̄ |}| − mE
T (σ̄ )

)2

mET (σ̄ )
,

(6)

essentially comparing observed traces to their respective
expected counterparts. We use the time closure of traces to
ignore time stamps for the χ2 analysis. The empirical χ2

value is compared to critical values of given degrees of free-
dom and levels of significance. The degrees of freedom are
given by the number of different timed closures in O minus
one. The critical value can be calculated, or looked up in a
χ2 table. In case the empiric χ2 score is below the given
threshold χ2

crit, the hypothesis is accepted, and otherwise, it
is rejected.

However, the expected value E
T depends on the resulting

trace distribution of a scheduler. Thus, finding a scheduler
such that χ2 ≤ χ2

crit turns (6) into a minimisation problem
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Fig. 8 Specification IOMA and observation sample

(or satisfaction problem, respectively):

min
T ∈trd(S,k)

∑

σ̄∈{ρ̄|ρ∈O}

|{| ρ̄ | ρ ∈ O ∧ ρ̄ = σ̄ |}| − mE
T (σ̄ )2

mET (σ̄ )
.

(7)

The probability of a trace is given by a scheduler and the cor-
responding path probability function. Hence, we need to find
probabilities p used by a scheduler to resolve nondetermin-
ism. This turns (7) into a minimisation or constraint solving
problem of a rational function f (p)/g(p) with inequality
constraints on the vector p. This type of problem is NP-hard
in general [39].

5.1.2 Interval estimation for IOMA

In addition to the χ2 test defined above, we need a metric to
decide whether the observed delays correspond to exponen-
tial distributions prescribed by the specification in the IOMA
setting. For this purpose, we use interval estimation on the
parameters of the exponential distributions.

In general, assume values x1, . . . , xn are given, and
suppose we ought to test whether the values follow an expo-
nential distribution with rate λ. Our goal is to construct the
confidence interval of these values for a given α ∈ ]0, 1[, i.e.
upon further sampling and estimations, there is a 1−α chance
that the true parameter λreal is contained in the interval. The
1− α confidence interval is given by

[
χ2
1−α/2,2n

2Σn
i=1xi

,
χ2

α/2,2n

2Σn
i=1xi

]

(8)

where χ2
α,2n is the 1−α quantile of the χ2 distribution of 2n

degrees of freedom.

Example 7 Figure 8 shows an example specification model
alongside an example observation sample from an imple-
mentation. State s0 has two outgoing τ transitions, followed
by one Markovian transition in each of s1 and s2. In states

s3 and s4, we either observe action a! or b!, respectively.
The sample shows 14 recorded traces of length one, thus
m = 14 and k = 1. There are two steps to assess whether the
observed data are a truthful sample of the specificationmodel
with a confidence of α = 0.1: first find a trace distribution
that minimises the χ2 statistic, then evaluate two confidence
intervals to assess whether the observed time data are a sam-
ple of λ1 = 1 and λ2 = 0.1, respectively.

There are two classes of traces solely based on the action
signature: ID 1-8 with a! and ID 9-14 with b!. Let p be the
probability that a scheduler assigns to taking the left branch
in s0, and 1 − p the probability for the right branch. Upon
drawing a sample with m = 14 we expect m · p as frequency
for a! and m · (1 − p) as frequency for b!. The empirical
χ2 score therefore calculates as

χ2 = 8− 14 · p

14 · p
+ 6− 14 · (1− p)

14 · (1− p)
.

This yields χ2 = 0 for p = 8/14, which is obviously smaller
than the value χ2

crit = χ2
0.1,1 = 2.706. We thus proceed to

confidence interval estimation.
t1 = 0.03, . . . , t8 = 2.69 is the data associated with λ1

and t ′1 = 2.28, . . . , t ′6 = 19.01 the data associated with λ2.
Calculating the confidence intervals according to Eq. 8 yields
C1 = [0.441, 1.458] and C2 = [0.092, 0.368]. We see that
λ1 ∈ C1 and λ2 ∈ C2 and are therefore willing to accept
that the recorded sample was drawn under the prescribed
parameters.

These two steps do not yet make a sound statement about
the acceptanceof thehypothesis O ∈ OutObs(S, 0.05, 1, 14)
since we test multiple hypotheses at once. We need to adjust
the individual level of significance for the statistical tests, to
conclude the overall acceptance with α = 0.1. This inflation
of the error of first kind is discussed in Sect. 5.1.4.

Example 7 highlights the necessity of two assumptions if we
are to apply confidence intervals as the method of choice:

– We must be able to uniquely identify every recorded
trace. Assume for illustration that the transition currently
labelled b!was labelled a! instead. It would not directly
be possible to associate values ti with λ1 and t ′i with λ2;
we would need to check all possible permutations. This
becomes infeasible in practice even for moderate sample
sizes or moderately sized models; we therefore assume
all specificationmodels to be internally deterministic, i.e.
there must be a bijection between paths and traces.

– The sum of exponential distributions is not an exponen-
tial distribution. Hence, confidence interval estimation
would be flawed for two sequential Markovian actions.
We would need to deal with phase-type distributions
instead, which are dense in the set of all positively valued
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Fig. 9 Specification IOSA and observation sample

distributions. We thus assume models to contain an input
or output between any two Markovian transitions.

5.1.3 Kolmogorov–Smirnov tests for IOSA

Working with IOSA means that specifications and imple-
mentations are not limited to the exponential distribution.
Since they neither comprise one specific distribution nor one
specific parameter to test for, we use the nonparametric KS
test to validate that the observed delays were drawn from
the specified clocks and distributions. The KS test assesses
whether observed data matches a hypothesised continuous
probability measure. We thus restrict the practical applica-
tion of our approach to IOSA where the F(c) for all clocks c
are continuous distributions.

Let t1, . . . , tn be the delays observed for a certain edge
over multiple traces in ascending order and Fn be the
resulting step function, i.e. the right-continuous function Fn

defined by

Fn(t) =

⎧
⎪⎨

⎪⎩

0 if t < t1
ni/n if ti ≤ t < ti+1
1 if t ≥ tn

where ni is the number of t j that are smaller or equal to ti .
Further, let c be a clock with CDF Fc for the measure F(c).
Then the n-th KS statistic is given by

Kn
def= sup

t∈R
+
0

|Fc(t)− Fn(t)|. (9)

If the sample values t1, . . . , tn are truly drawn from the CDF
Fc, then Kn → 0 almost surely as n →∞ by the Glivenko–
Cantelli theorem [22]. Hence, for given α and sample size
n, we accept the hypothesis that the ti were drawn from Fc

iff Kn ≤ Kcrit, where Kcrit is a critical value given by the
Kolmogorov distribution. Again, the critical values can be
calculated or found in tables.

Example 8 The left-hand side of Fig. 9 shows a tiny example
specification IOSAwith clocks x and y. The expiration times
of both are uniformly distributed with different parameters.
In �0 there is a nondeterministic choice to either take the
left or the right branch. The right-hand side depicts a sample

from this IOSA. There are two steps to assess whether the
observed data are a truthful sample of the specification with
a confidence of α = 0.05: first find a trace distribution that
minimises the χ2 statistic, and then evaluate two KS tests to
assess whether the observed time data are a truthful sample
of Uni[0, 2] and Uni[0, 3], respectively.

In the same way as in Example 7, the empirical χ2 value
calculates as

χ2 = (8− 14 · p)2

(14 · p)
+ (6− 14 · (1− p))2

(14 · (1− p))
,

which isminimal for p = 8/14 and smaller thanχ2
crit = 3.84.

We thus found a scheduler that maximises the likelihood of
the observed frequencies.

For the second step, t1 = 0.26, . . . , t8 = 1.97 is the data
associated with clock x and t ′1 = 0.29, . . . , t ′6 = 2.74 is the
data associated with clock y. Since there is no time that was
recorded twice, the step function of the ti is

F8 (t) =

⎧
⎪⎨

⎪⎩

0 if t < t0
k
8 if tk ≤ t < tk+1, k = 1, . . . , 7

1 if t ≥ t8.

D8 = 0.145 is the maximal distance between this empirical
step function and Uni[0, 2]. The critical value of the Kol-
mogorov distribution for n = 8 andα = 0.05 is Kcrit = 0.46.
With K8 < Kcrit, the empiric value is below the given thresh-
old. Hence, the inferred measure is sufficiently close to the
specification. The KS test for t ′i and Uni[0, 3] can be per-
formed analogously. To conclude overall acceptance with
α = 0.1, we again need to adjust the level of significance
due to performing multiple tests; see Sect. 5.1.4.

Our intention is to provide a general and universally appli-
cable procedure. The KS test is conservative for general
distributions, but can be made precise [10]. Specialised and
thus more efficient tests exist for specific distributions, e.g.
the Lilliefors test [29] for Gaussian distributions, and para-
metric tests are generally preferred due to higher power
at equal sample size. The KS test requires a comparably
large sample size, an alternative being, e.g. the Anderson–
Darling test [29].

Remark 3 The connection of two nonparametric tests is
immensely more difficult in the presence of internal nonde-
terminism in a specification, cf. Example 8 with only a! on
both visible edges. Time values can no longer be unambigu-
ously addressed to unique distributions, and no confidence
bound for the measured time data can be given. In this case,
the scheduler probability decisions p are used as parameters
for mixture distributions, e.g. F (p)

def= p · Fx + (1− p) · Fy

in Fig. 9. The parameterised distribution can then be used in
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the iterative expectation–maximisation algorithm [38], and
confidence can be given upon convergence.

For the sake of simplicity, we assume that the specification
is internally deterministic, i.e. there are no two paths that
result in the same trace. While this decreases the space of
potential specifications, we deem it a necessary compromise
to come up with a feasible and general method.

5.1.4 Multiple comparisons

Since the χ2 test and all subsequent confidence interval esti-
mations or KS tests are statistical hypothesis tests on their
own, their errors accumulate. To illustrate: if a hypothesis test
is performed at α = 0.05 there is a 5% chance of perform-
ing an error of first kind, i.e. of erroneously rejecting a true
hypothesis. If we apply 100 individual tests with α = 0.05,
we might naively expect to perform this error 5 times. If we
assume the tests to be independent, the probability of com-
mitting at least one error of the first kind actually calculates
as 1− (1− 0.05)100 = 99.4%.

There are several techniques to cope with the inflation of
the error of first kind. For the remainder of this section, we
use Bonferroni correction: αlocal = αglobal/l where l is the
total number of statistical hypothesis tests to be performed.

Example 9 We return to Example 7. Applying Bonferroni
correction for a total of three hypothesis tests with desired
α = αglobal = 0.1 tests yields a necessary αlocal ≈ 0.033.
This applies to the χ2 test and the two interval estimations.
The χ2 test still passes, and the new confidence intervals are
C ′1 = [0.353, 1.677] and C ′2 = [0.070, 0.432]. We see that
λ1 ∈ C ′1 and λ2 ∈ C ′2 still hold, so we give the implementa-
tion the probabilistic pass verdict.

5.2 Stochastic delays and quiescence

A test case needs to assess if an implementation is allowed
to be unresponsive when output was expected [45]. In our
formalism, quiescence δ models the absence of output for an
indefinite time. It should be regardedwith caution in practical
testing scenarios. A common way to deal with quiescence is
a global fixed timeout value set by a user [2,5]. The time
progress in IOMA and IOSA is governed by continuous
probability distributions; hence, a global timeout has two
disadvantages: first, a timeout might occur before a specified
Markovian transition or edge takes place. The average wait-
ing time of this event might be substantially higher than the
global timeout. Second, a global timeout might unnecessar-
ily prolong the overall test process.

A timeout can be seen as a delay that follows a Dirac
distribution. While this naturally fits into the framework
of stochastic automata, it is incompatible with the IOMA
approach: Dirac delays cannot be represented in IOMA, and

Fig. 10 Two example specifications for quiescence timeouts

consequently, they were not considered in the statistical eval-
uation that we developed in Sect. 5.1.2. We now detail an
approach for IOMA that avoids the problem of Dirac distri-
butions and aims to minimise the probability of erroneously
declaring quiescence while keeping the overall testing time
as low as possible. While Dirac distributions are supported
by IOSA, similar ideas for the latter apply to IOSA, too.

In order to avoid Dirac distributions, an MBT tool for
IOMA needs to implement quiescence by racing an expo-
nentially distributed delay with rate μδ against the imple-
mentation; this quiescence timer winning the race is then
treated as the quiescence output δ. Let λ > 0 be theminimum
exit rate over all Markovian states. With level of signifi-
cance α ∈ ]0, 1[, we would like the probability that the
quiescence timer expires before a Markovian transition is
executed, i.e. that we incorrectly report quiescence when the
implementation couldmake progress, to be atmostα. Choos-
ing μδ = λ · α

1−α
as the quiescence timer’s rate achieves this

probability with the shortest waiting time in case of actual
quiescence. We can further reduce the waiting time by using
a different rate in every state: if the exit rate of state s is λs ,
we use rate μs

δ = λs · α
1−α

to judge quiescence in s.
The statistical evaluation only has to be adjusted to con-

sider the new exit rate λ + μδ and the new “Markovian
transition” for quiescence. In fact, we can directly represent
this approach by rewriting the specification model as shown
in Example 10. For non-Markovian states, a default maximal
waiting time is still applicable.

Example 10 Figure 10 (top) shows a simple specification of
a file transmission protocol. Exponential distributions model
the delay between sending a file and acknowledging its recep-
tion. Different delays are associated with sending small or a
large files, respectively. After a file was sent, there is a chance
that it gets lost, and we do not receive an acknowledgement.
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In this case, the system is judged as quiescent, and therefore
erroneous.

However, since λ2  λ1, a test should use a quiescence
timer rate of μ

s1
δ = 10 · α

1−α
in s1 and μ

s2
δ = α

1−α
in s2 to

minimise the probability to erroneously judge the system as
quiescent while also keeping the global testing time as low
as possible. Regardless, for sufficiently large sample size, an
MBT tool eventually erroneously observes quiescence. Fig-
ure 10 (bottom) therefore allows some amount of quiescence
observations depending on α, i.e. on how many erroneous
quiescent judgements we are willing to accept.

Example 11 We compare a global quiescence timer rate to
individual ones by assuming α = 0.05 and that we are to test
the protocol as in Fig. 10 (top) 100 times:

Long global: A sensible long global quiescence timer rate
is μd = μ

s2
δ ≈ 0.053. Executing 100 test cases yields

a worst-case expected waiting time (for the case where
implementation is always quiescent) of 100/μs2

δ = 1900
time units. However, we are (more than) guaranteed to
incorrectly judge the implementation quiescent in atmost
5% of all cases.

Short global: A sensible short global quiescence timer rate
is μd = μ

s1
δ ≈ 0.526. The worst-case expected time

is now only 190 time units. However, the probability of
theMarkovian transitionwith rate λ2 not firing before the
quiescence timer becomes≈ 34%.Wewould then incor-
rectly judge the implementation quiescent even though
the transition might still take place.

Individual: Using the long rate in state s2 and the short one
in state s1 guarantees that we erroneously judge quies-
cence overall in at most 5% of the cases. Note that this
is accounted for in the specification in Fig. 10 (bottom).
The worst-case waiting time now depends on the proba-
bility p of sending a small file instead of a large one; it
is p · 190+ (1− p) · 1900. Time is saved in the overall
test process whenever a small file is sent.

5.3 Stochastic test procedure outline

Test cases for IOMA and IOSA are essentially IOTS. Hence,
the standard test generation algorithms for ioco [47] apply
directly, except for the inclusion of explicit quiescence time-
outs as in Fig. 10 (bottom), if desired. We summarise all
necessary steps to performmodel-based testing withMarkov
automata or stochastic automata using our framework:

1. Generate an annotated test case (suite) for the specifica-
tion automaton.

2. Execute the test case (all test cases of the test suite) m
times. If the functional fail verdict is encountered in any

of them executions, then fail the implementation for func-
tional reasons.

3. Calculate the number of necessary statistical hypothesis
tests for each test case. Correct α accordingly.

4. Perform statistical analysis on the gathered sample of size
m for the test case (all test cases) with the new parameter
ᾱ.

(a) Use optimisation or constraint solving to find a sched-
uler such that χ2 ≤ χ2

crit. If no such scheduler is
found, reject the implementation for statistical rea-
sons.

(b1) For IOMA, perform confidence interval estimation,
and check if all Markovian parameters are contained
in their respective intervals. If there is at least one
parameter not contained in its confidence interval,
reject the implementation for statistical reasons.

(b2) For IOSA, group all time stamps assigned to the same
clock and perform a KS test for each clock. If any of
them fail, reject I for statistical reasons.

5. Accept the implementation.

6 A Bluetooth device discovery example

Bluetooth is a wireless communication standard [3] aimed at
low-powered devices that communicate over short distances.
Before any communication can take place, Bluetooth devices
organise into small networks of one master and up to seven
slave devices. To cope with interference, this device discov-
ery protocol uses a frequency hopping scheme.

To illustrate and compare our frameworks for IOMA and
IOSA, we study the discovery phase for one master and one
slave device. The device discovery protocol is inherently
stochastic due to the initially random and unsynchronised
state of the devices. We give a high-level overview of the
protocol here and refer the interested reader to a verification
case study performed with PRISM [16] for a more detailed
description and formal analysis in a more general setting.

6.1 Device discovery protocol

To resolve possible interference, the master and slave device
communicate via a prescribed sequence of 32 frequencies.
Both devices have a 28-bit clock that ticks every 312.5µs.

The master broadcasts on two frequencies for two con-
secutive ticks followed by a two-tick listening period on the
same frequencies. It picks the broadcasting frequency freq as

(CLK16...12 + o+ (CLK4...2,0−CLK16...12) mod 16) mod 32

where CLKi ... j marks bits i to j of the clock and o ∈ N is an
offset. The master chooses one of two tracks and switches to
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the respective other every 2.56 s. Every 1.28 s, i.e. every time
the 12th bit of the clock changes, a frequency is swapped
between the two tracks. For simplicity, we choose o = 1 for
track one and o = 17 for track two, such that the two tracks
initially comprise frequencies 1, . . . , 16 and 17, . . . , 32.

The slave device periodically scans on the 32 frequen-
cies. It is in either a sleeping or a listening state. To ensure
eventual connection, the hopping rate of the slave device is
much slower. The Bluetooth standard leaves some flexibil-
ity with respect to the length of the listening period. For our
study, every 0.64 s, it listens to one frequency for 11.25ms
and sleeps during the remaining time. It cycles to the next
frequency after 1.28 s. This is enough time for the master
device to broadcast on 16 different frequencies.

6.2 Specificationmodels

The time to connect two devices is deterministic for a fixed
initial state. That is, assuming we know the initial state of
both devices, we can calculate the time needed until a con-
nection is established. To study a realistic scenario, however,
we have to assume that the clocks of both devices are initially
desynchronised. Thus, in ourmodels, themaster starts broad-
casting immediately while the slave starts listening after a
uniformly chosen random waiting time. We then have four
scenarios to reach synchronisation:

– Synchronisation happens during the first 16 broadcast
frequencies. This happens between 0 and 1.28 s and com-
prises 16 frequencies.

– Synchronisation happens after the first frequency swap
of the master device (1.28 to 2.56 s, one frequency).

– Synchronisation happens after the first switch of tracks
and two frequency swaps of the master device (2.56 to
3.84 s, 14 frequencies).

– Synchronisation happens after the first switch of tracks
and three frequency swaps of the master device (3.84 to
5.12 s, one frequency).

These four scenarios are exhaustive, i.e. the master device
broadcasts on frequencies such that the slave necessarily
listens to at least one of them within 5.12 s. The different
scenarios yield 32 possible exact waiting times to connect,
i.e. after 2 or 3 ticks, 6 or 7 ticks, etc.

This protocol specification prescribes a delay that is not
exponentially distributed, as is evident by the sample CDF
we collected for the specification shown in Fig. 13 (dark
blue line). This is no problem for IOSA-based testing. Our
IOSA specification is shown in Fig. 11; we directly incor-
porate the exact probability distribution to connect within a
certain time as prescribed by the protocol description as the
distribution F(x) here. Thus, the structure of the IOSA can
be extremely simple; the complexity is hidden in F(x). For

Fig. 11 IOSA specification for the Bluetooth example

IOMA, we have to approximate the true distribution by an
exponential distribution. Calculating the mean of all waiting
times gives us the average time to connect as approximately
1.325s and thus λ = 0.755 as the estimated rate parameter.
Note that F(x) in the IOSA case could also be specified as
the exponential distribution with λ = 0.755 to pose the same
requirement that concerns the mean time to connection only.

6.3 Experimental setup

Our toolchain is depicted in Fig. 12. The implementation is
tested on-the-fly via the MBT tool JTorX [2], which gener-
ates tests with respect to the transition system abstraction of
the specifications. JTorX returns the functional fail verdict if
unforeseen output is observed at any time throughout the test
process. Additionally, we chose a timeout of approximately
5.2 s in accordance with the protocol description: this is the
time that the master device needs to broadcast all available
frequencies at least once. We can use this fixed timeout even
in the IOMA setting since we know that no correct imple-
mentationmay take this long to connect; any implementation
that does can be functionally rejected without the need for
statistical analysis. The recorded log files of JTorX comprise
the sample. We use MATLAB to calculate the statistical ver-
dict. We implemented the correct protocol and three mutants
in Java 7:

M1 The first master mutant never switches between tracks
one and two, therefore covering far fewer different fre-
quencies than the correct protocol in the same time. It
will need a total of 16 · 1.28 s = 20.48 s to cover all 32
frequencies. Hence, we expect a much longer time to
connect when compared to the correct implementation.

M2 The second master mutant never swaps frequencies,
only switching between tracks one and two. The
expected time to connect will therefore be around
2.56 s.

S1 The slave mutant has its listening period halved, and
thus only listens for 5.65ms every 1.28 s. Therefore,
it has a longer sleeping period and we expect that the
probability to connect is slightly reduced when com-
pared to the correct counterpart.

6.4 Results

We collected m = 100, m = 1000, and m = 10,000 test
executions for each of the four implementations. We set the
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Fig. 12 Experimental setup

Fig. 13 Probability to establish connection over time

level of significance to α = 0.05. No χ2 tests are neces-
sary due to the absence of nondeterminism and probabilistic
branching in the specifications. Furthermore, we need only
one statistical test in each setting and thus no α correction.
Figure 13 shows the cumulative distribution of the sample
data collected for m = 1000 runs of the correct implemen-
tation and mutants (coloured lines).

IOMA For comparison, we show as a dashed line in Fig. 13
the cumulative probability to connect within T seconds for
the exponential distribution with rate λ = 0.755, which
is the specified distribution in the IOMA setting. Table 1
shows the confidence intervals calculated based on our sam-
ples. All intervals of the correct implementation contain the
assumed value λ = 0.755, which is therefore judged as cor-
rect.M1 ‖S was consistently rejected for functional reasons
by JTorX due to exceeding the fixed timeout. The remain-
ing two mutants required the statistical verdict for rejection;
both were still accepted for m = 100, requiring at least 1000
test executions for the statistical verdict to produce a confi-
dence interval sufficiently narrow for rejection. In particular,
dividing the listening time of the slave into half had the least
impact on the behaviour; it was consequently rejected with a
very small margin.

IOSA We used MATLAB’s kstest2 function to execute a
two-sample KS test to analyse the samples with respect to the

specified time distribution. Table 2 shows the verdicts and the
observed KS statistics Km alongside the corresponding crit-
ical values Kcrit for our experiments. The statistical verdict
pass was given if Km < Kcrit, and fail otherwise. The crit-
ical values depend on α and m. The correct implementation
was accepted in all three experiments. During the sampling
of M1 ‖S, we again observed several timeouts leading to a
functional fail verdict. It would also have failed the KS test
in all three experiments.M2 ‖S passed the test form = 100,
but was rejected with increased sample size. M ‖ S1 is the
most subtle of the three mutants and was only rejected with
m = 10,000 at a narrow margin.

Discussion The case study was not tailored to MBT with
Markov automata. The waiting time of interest is clearly not
exponentially distributed, and only means of the delay until
the connection is established are compared. Nonetheless, the
IOMA framework is applicable and rightfully judged the
correct implementation as conforming while eliminating the
mutants. The confidence intervals for the slave mutant only
marginally did not contain the parameter λ. Consequently,
there is a relatively high probability to commit an error of
second kind. On the other hand, the second master mutant
was eliminated with a large margin.

In the IOSA setting, observe that the critical value
decreases faster than the observed KS statistic in all three
faulty implementations. We conjecture that an even larger
sample is expected to have a clearer verdict, as this is in line
with the decreasing error of the second kind for increasing
sample size pointed out in Sect. 4. This is especially desirable
in the case of M ‖S1, where a sample of size m = 10,000
was needed to refute the faulty implementation. This is in
contrast to the IOMA setting, where m = 1000 sufficed,
and highlights that the statistical evaluation for IOMA is in
general more efficient (it needs fewer samples for clearer ver-
dicts) than the one for IOSA. We point out that an alternate
specification to the very compact one given in Fig. 11 is pos-
sible. For instance, the entire specification could comprise a
probabilistic branching over 32 locations with deterministic
guard sets according to the step values of the distribution of
the Bluetooth specification. This illustrates the flexibility of
the modelling capabilities in the IOSA test framework, and
goes to show there is no unique best model.
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Table 1 Connection time
confidence intervals (IOMA)

Correct Mutants

M‖S M1 ‖S M2 ‖S M‖S1

k = 2 pass fail pass pass

m = 100 [0.586, 0.868] – [0.597, 0.885] [0.673, 0.997]
Timeouts 0 33 0 0

k = 2 pass fail fail fail

m = 1000 [0.729, 0.826] – [0.767, 0.868] [0.756, 0.855]
Timeouts 0 376 0 0

k = 2 pass fail fail fail

m = 10,000 [0.735, 0.764] – [0.772, 0.803] [0.757, 0.787]
Timeouts 0 3753 0 0

Table 2 Verdicts and KS test
results (IOSA)

Correct Mutants

M‖S M1 ‖S M2 ‖S M‖S1

k = 2 pass fail pass pass

m = 100 Km = 0.065 – Km = 0.110 Km = 0.065

Kcrit = 0.136 Kcrit = 0.136 Kcrit = 0.136

Timeouts 0 40 0 0

k = 2 pass fail fail pass

m = 1000 Km = 0.028 – Km = 0.050 Km = 0.020

Kcrit = 0.045 Kcrit = 0.045 Kcrit = 0.045

Timeouts 0 399 0 0

k = 2 pass fail fail fail

m = 10,000 Km = 0.006 – Km = 0.043 Km = 0.0193

Kcrit = 0.019 Kcrit = 0.019 Kcrit = 0.0192

Timeouts 0 3726 0 0

Overall, there is a trade-off in expressivity and efficiency
when comparing the test theory for Markov automata and
stochastic automata in practical applications.

7 Conclusion

We presented two closely related sound and complete MBT
frameworks to test probabilistic systems with stochastic
delays. The underlying modelling formalisms are Markov
automata and stochastic automata with a separation of their
alphabet into inputs and outputs: IOMA and IOSA. The for-
mer limit delays to follow exponential distributions, butmark
a relevant intermediate step between previouswork on testing
untimed probabilistic models [20] and the full generality—
and complexity—of stochastic automata. In particular, the
statistical evaluation of testing results is far simpler andmore
efficient in the case of IOMA. On the other hand, our Blue-
tooth case study shows that being able to represent arbitrary
distributions over time directly as in IOSAmay lead to speci-

fications thatmuchmore closelymatch reality, and to provide
results that are more precise and understandable.
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