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Abstract

Many of the correctness properties afforded by task-parallel programming models such as OpenMP, Cilk, X10, Chapel,
Habanero, etc. rely on data-race freedom. The research in this paper studies data-race in the context of these models with the
intent to prove with model checking its absence on any feasible schedule for a given input. The paper presents the computation
graph as a representation of a happens-before relation that additionally tracks memory accesses with a quadratic algorithm to
detect data-race on the graph. It then shows how the graph is constructed from an execution of a task-parallel program and
proves that under a fixed order of mutual exclusion, if a schedule with a data-race exists in the program, then a data-race is
manifest in the computation graph. The paper then defines a model checking algorithm that enumerates all orders of mutual
exclusion to prove data-race freedom over all schedules on the given input. The approach is evaluated in a Java implementation
of Habanero using the JavaPathfinder model checker. The results, when compared to other data-race detectors including one
based on vector clocks, show that this new approach is more efficient than existing JavaPathfinder solutions and is comparable
to the vector clock solution in the absence of data-race but slower in the presence of data-race since the vector clock algorithm
is on-the-fly while the new approach is not. The results also show that the new approach avoids the memory overhead of
vector clocks when there are many tasks and objects to track.

Keywords Model checking - Data-race - Task parallel - Cilk - x10 - Habanero - OpenMP - SP-bags - Vector clocks - Formal
verification - Happens-before - Partial order - Computation graph - Determinism

1 Introduction

A data-race is where two concurrent executions access the
same memory location with at least one of the two accesses
being a write. It introduces non-determinism into the pro-
gram execution as the behavior may depend on the order in
which the concurrent executions access memory. Data-race
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is problematic because it is not possible to directly control or
observe the run-time internals to know if a data-race exists,
let alone enumerate program behaviors when one does.

The data-race detection problem, given a program with
its input, is to determine if there exists an execution con-
taining a data-race. The research presented in this paper is
concerned with proving data-race freedom for task-parallel
models that impose structure on parallelism by constrain-
ing how threads are created and joined, and by constraining
how shared memory is accessed (e.g., OpenMP, Cilk, X10,
Chapel, Habanero, etc.). These models rely on run-time
environments to implement task abstractions to represent
concurrent executions [4,7,8,21]. The language restrictions
on parallelism and shared memory interactions enable prop-
erties like determinism (i.e., the computation is independent
of the execution) or the ability to serialize (i.e., removing all
task related keywords yields a serial solution). Such prop-
erties only hold in the absence of data-race, which is not
always the case since programmers, both intentionally and
unintentionally, move outside the programming model.
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Data-race detection in task-parallel models generally pri-
oritizes performance and the ability to scale to many tasks
over a proof of absence. The predominant SP-bags algo-
rithm, with its variants, is a dynamic approach that exploits
assumptions on task creation and joining for efficient on-the-
fly detection with low overhead [2,9,15,33,36]; millions of
tasks are feasible with varying degrees of slow-down (i.e.,
slow-down increases as parallelism constraints are relaxed)
[34,35]. The approaches, and SP-bags in general with all
its variants, do not work in the presence of mutual exclu-
sion. Other approaches use access histories [30,32], access
sets [28], or programmer annotations [40]. Performance is a
priority requiring careful integration into complex run-time
environments, and solutions are often only complete, mean-
ing that little can be concluded about other executions of the
program on the same input.

The research presented in this paper reprises the data-race
problem in task-parallel models with the intent to prove, via
model checking, data-race freedom on a given input over all
feasible executions with support for mutual exclusion. Prior
model checking-based solutions enumerate schedules that
interleave conflicting accesses, meaning at least one access is
a write, to shared variables [1,17,42]. In this way, the model
checker schedules on every shared variable access to enu-
merate all interesting schedules on which a data-race might
exist, but such an approach comes with an exponential cost in
the number of schedules generated; these solutions quickly
run out of resources even on very small toy examples on
programs that are data-race free. For input programs with
data-race, performance depends on the luck of the scheduler
to choose a schedule on which the data-race manifests before
running out of resources.

The approach here rather uses techniques from dynamic
approaches to build a happens-before relation in the form of
a computation graph from a single observed program execu-
tion sufficient to prove data-race freedom in all executions
that order mutually exclusive regions in the same way as
the observed execution [20,24,27]. The happens-before rela-
tion is thus a partial order and an equivalence relation. The
observed trace being representative of all other schedules that
observe the same order on the mutually exclusive regions but
perhaps order other concurrent actions differently.

Unlike dynamic approaches, though, the approach here
further generates other program executions necessary to
prove data-race freedom over all executions on the input.
As aresult, in the absence of mutual exclusion, a single pro-
gram execution is sufficient to prove data-race freedom. In the
presence of mutual exclusion, the model checker generates
and checks all feasible orderings of the mutually exclusive
regions to complete the proof. Underlying this contribution
is the fact that we assume the program under test terminates;
if such is not the case, then the research in this paper does
not directly apply.

@ Springer

The research presented in this paper includes an empir-
ical study of the proposed model checking algorithm for a
Java implementation of Habenero with the Java Pathfinder
model checker (JPF). Unlike prior solutions, this implemen-
tation uses an idealized verification run-time for Habanero
rather than a production run-time, does not require inter-
nal modifications to JPF, and gives results about the input
program that generalize to any language run-time implemen-
tation [1,17,42]. Results over several published benchmarks
comparing to JPF’s default race detection using partial
order reduction and a task-parallel approach with permis-
sion regions show the approach here to be more efficient in
JPF terms with its inherent overhead.

An additional algorithm using vector clocks is also imple-
mented in JPF, [16], as part of the research presented in this
paper and compared to the proposed model checking algo-
rithm here. This comparison shows that in the absence of
data-race, the two approaches are comparable in terms of
time and resources. In the presence of data-race, the vector
clock algorithm, being on-the-fly, typically finds the data-
race and terminates before the approach min this paper that
has to wait until the execution completes before doing the
data-race analysis. That said, the results also show that the
vector clock analysis runs out of memory for examples with
many tasks and objects to track.

Of course, as with any model checking approach, the intent
is to not scale to millions of parallel tasks with hundreds of
mutually exclusive regions; rather, this research assumes that
itis possible to provide input to any given program that results
in hundreds of tasks and a few mutually exclusive regions. It
further assumes that a data-race freedom proof on the small
instance of the program, the one that results in hundreds of
tasks and a few mutually exclusive regions, generalizes to
a large instance of the same program with millions of tasks
and many mutually exclusive regions. In other words, with-
out changing the program text in any meaningful way, it is
possible to give test input appropriate for model checking.
The primary contributions are thus

— asimple approach to data-race detection in programs that
terminate based on creating a happens-before relation
from an execution of a task-parallel program;

— a proof that scheduling to interleave mutually exclusive
regions is sufficient to prove data-race freedom; and

— an implementation of the approach for Java Habanero in
JPF with an implementation of a algorithm that uses vec-
tor clocks both with results from benchmarks comparing
to other solutions in JPF.

The rest of this paper is organized as follows: Sect. 2 illus-
trates the approach in a small example; Sect. 3 defines the
computation graph and an algorithm to detect data-race on a
computation graph; Sect. 4 defines the language and seman-
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tics of parallel tasks and shows how to build a computation
graph from a program execution; Sect. 5 gives a correct-
ness proof; Sect. 6 presents the model checking algorithm
and proves it generates all interesting schedules over mutual
exclusion; Sect. 7 is the empirical study with a summary of
the implementation; Sect. 8 briefly discusses related work;
and Sect. 9 is the conclusion with future work.

2 Example

The approach to data-race detection in this paper is presented
in a very simple example. Consider the task-parallel program
in Fig. 1a. The language used is defined in this paper with a
formal semantics to facilitate proofs but has a direct expres-
sion in most task-parallel languages. For example, Fig. 1b
shows the equivalent program in the Habanero Java language.
For Fig. 1, execution begins with the procedure m. The
variable g is global. The async statement creates a new
asynchronous task running procedure p passing 0 for its
parameter. The task handle is stored in the region r, also
global, and when that task completes and joins with its par-
ent m, it runs a default A-expression as a return-value handler.
In this case, that handler is defined to be the no-op skip.
The isolated statement runs the statement in its scope in
mutual exclusion to other isolated statements. The await
statement joins all tasks in region r with the task that issued
the await. The issuer may join with a task in the region if that
task is has evaluated the expression in its return statement.
That value, at the join, is passed to the return-value handler in
the parent context. The parent blocks at the await statement
until it has joined with all tasks in the indicated region.
The program in Fig. 1 has a schedule dependent data-race.
If the scheduler runs the isolated statement in procedure p
before the isolated statement in procedure m then there is a
write—write data-race; otherwise, there is no data-race.
Related work in model checking task-parallel languages
enumerates schedules to interleave the mutual exclusion

Fig.1 A program with
data-race. a Task-parallel. b
Habanero Java proc m (var x : int)
g :=0;
async «— p 0;
[ isolated g :=1 ]
await r
return x

proc p (var x : int)
[ isolated skip; |
g =2
return 0

(a)

and to interleave unprotected shared memory access lead-
ing quickly to state explosion [1,17,42]. These approaches
use the happens-before relation to detect data-race but not to
reduce the number of considered schedules—every schedule
is checked.

The approach in this paper exploits so-called partial order
analyses to reduce the number of schedules that must be
checked to prove data-race freedom. The approach uses
the simple happens-before partial order, [27], but is easily
extended to something like weak causally precedes to further
reduce checked schedules [20,24]. Unlike other partial-order
approaches though, a sufficient set of schedules is checked
to prove data-race freedom on the given input.

The approach dynamically detects shared memory accesses
and uses the language semantics to capture the happens-
before relation in the form of a computation graph during
execution. Figure 2b shows the computation graph for the
data-race free schedule of the example program. Every node
represents a block of sequential operations and edges order
the nodes. The thick a-labeled line is the result of the
async statement creating a new task, and the dashed boxes are
the isolated statements. Intuitively, the computation graph is
a Hasse diagram with inverted edges—things at the bottom
happen-after things at the top—and with extra information on
each node to indicate read and write memory locations. For
example, the w(g) label indicates that variable g is written
in the node. Such a graph can be checked for data-race using
any number of algorithms [16,27], or if there is no isolation
[22,28]. This research uses as simpler algorithm with worse
complexity but supports all the language features and is easy
to reason about in the proof.

To reason over all schedules, the approach in this paper
assumes input programs are well formed and terminate.
Well formed in this context captures common properties
of task-parallel programming models that prohibit deadlock
and non-determinism in how tasks are synchronized. Under
these restrictions, the model checker, to prove data-race free-
dom, must generate a set of schedules that contains all ways

public class Examplel{
static int g = 0;
public static void main(String[] args) {
g:=0
finish {
async { p(0); }
isolated{ g :=1; }
}
public static void p(int x) {
isolated{ /x skip %/ };
g =2
return 0;
}

}
(b)
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(a) No data - race (b) Data - race

Fig.2 Two computation graphs for Fig. 1

allowed by the program semantics to interleave isolated
statements. Such an algorithm is presented with a proof that
it enumerates all such schedules.

Figure 2b shows the computation graph for the data-race
schedule of the simple example program. Although the two
schedules in Fig. 2 are the only schedules that need to be
considered by the model checker in this example, the number
of interesting schedules grows exponentially in the number
of concurrent dependent isolated statements. The growth
limits the model-checking approach in this paper to input
programs that can be instantiated in such a way as to not
require resources beyond the limits of the model checker. In
other words, a program intended to run on inputs that create a
very large number of tasks and mutually exclusive regions has
a test mode that does not meaningfully change the program
text and only creates a modest number of tasks and mutually
exclusive regions. A data-race proof in the test mode would
then generalize to a full-scale input since the program text
and underlying concurrent structure is unchanged.

3 Data-race detection on computation
graphs

These sections define the computation graph with an algo-
rithm to detect data-race given a computation graph as input.
A complexity proof is then given showing the algorithm to
be quadratic when the number of heap accesses in any given
node is small relative to the number of nodes in the graph and
otherwise cubic. The relation between the algorithm here and
the SP-bags algorithm is discussed. The algorithm is then
proved to be sound and complete.

3.1 Computation graphs

A computation graph for a task-parallel program is a directed
acyclic graph representing the concurrent structure of the
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program execution [11]. It is modified here to track memory
locations accessed by tasks. For the definition, Globals is
the set of the unique identifiers for the shared locations, and
P (Globals) is the power set.

Definition 1 A computation graph is defined as a directed
acyclic graph (DAG), G = (N, E, p, w), where

N is a finite set of nodes;

— E C N x N is a set of directed edges;

— p: (N + P(Globals)) maps N to the unique identi-
fiers for the shared locations read by the tasks; and

w: (N +— P (Globals)) maps N to the unique identi-
fiers for the shared locations written by the tasks.

The graph collapses sequential accesses to memory loca-
tions into single nodes between concurrent operations to
create, join, or isolate concurrent executions. The structure
of the graph is the happens-before relation ordering shared
accesses. Any feasible execution schedule of a task-parallel
program can be captured in a computation graph.

3.2 Data-race detection

Let <C N x N be the happens-before relation in the graph G
with constant time lookup. Such a relation can be computed
in O(|N| | E|) time. There is a data-race in the graph if and
only if there are two nodes, n; and 7, such that the nodes
are concurrent, (i.e., n; A nj Anj A n; or, equivalently,
n; ||< n;), and the two nodes conflict:

pmi)Nwn;) #0V
conflict(n;, nj, p,w) = p(nj) Nw(n;) #0 v €))
oni)Nw@m;) £V

The algorithm to detect data-race in a computation graph
is given in Algorithm 1. It relies on the topological ordering
of the nodes in the computation graph which can be computed
in O(|N| * | E|) time. The algorithm takes advantage of the
topological sort to only check for conflicts with nodes that
do not happen before the current node being considered in
the sort by only looking at nodes that come after in the sort;
though, this small optimization does not change the inherent
complexity of the algorithm.

If there is a small bound on the number of reads and writes
in any given node, meaning that that bound is much much
smaller than the number of nodes in the computation graph,
then the call to the conflict function on the inner loop is con-
sidered constant time rather than linear time (e.g., computing
the intersection is negligible). As such, the data-race detec-
tion algorithm operates in quadratic or cubic time, depending
on the number of reads and writes in the graph’s nodes. Most
often, except in the contrived benchmarks to characterize the
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Algorithm 1 Data Race detection in a computation graph.
1: procedure DETECTRACE((N, E, p, w))

2: (no,ny, ..., ny,) = topological_order(N, E)

3 forallni e(no,nl,...,nm_l)do

4 foralln; € (nj11,ni42,...,ny,) do

5 if (n; A nj) A conflict(n;,nj, p, ) then
6: Report data-race and exit

7 end if

8 end for

9 end for

10: end procedure

algorithm, the bound on the reads and writes in any given
node is much smaller than the number of nodes in the graph.

Itis worth noting that there are more efficient algorithms to
compute the data-race in the computation graph when there is
no mutual exclusion, [22,28], or with mutual exclusion using
vector clocks, [16,27]. Algorithm 1 is preferred here or its
simplicity relative to the proofs, and more critically, the cost
of data-race detection is not being driven by the algorithm
to detect data-race in the detection; it is rather driven by
generating the needed executions for the proof as is shown
in Sect. 7.

That said, this research did implement an approach based
on vector clocks, [16], and though not proven that it has the
same correctness properties as Algorithm 1, assuming it does,
it plugs directly into the model checking algorithm presented
in this paper and all the same properties hold. The results
show that since it is on-the-fly, it can get lucky and report a
race before running out of resources unlike Algorithm 1.

It may be helpful to pause here to make clear the dif-
ference between an SP-bags algorithm and Algorithm 1.
SP-bags relies on a special traversal of the computation graph
so that least common ancestor queries combined with some
book keeping determine the parallel relationship of any two
nodes in the graph. As such, it is based on Tarjans fast LCA
algorithm. Algorithm 1 is only leveraging the fact that the
computation graph encodes the happens before relation and
is not sensitive to the structure the graph or the observed exe-
cution order. This independence is also true of algorithms
based on vector clocks; though, those incur some non-trivial
memory overhead in the clocks as shown in Sect. 7. As such,
Algorithm 1 works on computation graphs that otherwise
break SP-bags and its variants.

3.3 Proof of correctness

Theorem 1 (Soundness of Algorithm 1) If Algorithm 1 finds
a data-race when applied to a computation graph G, G con-
tains a data-race.

Proof The condition on line 5 is the definition of a data-
race in a computation graph; though the symmetric condition
of nj A n; is implied by the fact that n; is topologically

ordered before n; by the outer loop on line 3. Algorithm 1
reports a data-race only on line 6, which is only reachable if
the condition on line 5 is true. Therefore, Algorithm 1 can
only report a data-race on a graph G if that data-race exists
inG. O

Theorem 2 (Completeness of Algorithm 1) If a computation
graph G contains one or more instances of data-race, Algo-
rithm 1 finds at least one instance when applied to G.

Proof Data race is only defined over distinct nodes in G; it
is impossible for a node to race with itself. The condition on
line 5 is agnostic to the order in which it receives nodes; it
is true for (n,-, nj) if and only if it is true for (nj, ni). The
proof of Theorem 1 establishes that the condition on line 5
matches the definition of data-race in a computation graph
and that line 6 always reports a data-race. As such, as long
as each pair of nodes is considered, a date-race is reported.
The loop defined on line 3 guarantees that every node is
considered as n;. The loop defined on line 4 guarantees that
every node after n; is considered as n;. line 6 can break out
of the loop, but only after reporting a valid data-race. In this
case, the lemma holds. If no data-race is detected, every node
is compared against every other node at line 5 once, line 6
never executes, and the algorithm correctly reports no data-
race. O

4 Capturing computation graphs from
parallel tasks

This section formally defines how to build computation
graphs from parallel task executions. The semantic model
for parallel tasks in this presentation is inspired by that of
isolated parallel tasks [5]. In that model, concurrent compu-
tations are hierarchically divided into concurrent tasks with
each task executing sequentially. Tasks additionally maintain
regions that track handles to other tasks.

The initial task begins without any task handles. When a
task ¢ creates a child task ¢/, it stores the handle for ¢’ in one
if its regions; ¢ and ¢’ are concurrent at this point and ¢’ is
able to recursively create new tasks and store handles in its
own regions. If task 7 requires the computation of task ¢, then
it must await the completion of ¢" and in so doing possibly
block its own execution if " is yet to complete. When ¢’
completes, r consumes its handle. The value returned by ¢’ is
combined into the state of ¢ through a programmer supplied
return-value handler. Parent tasks may transfer ownership of
subordinate tasks to children at creation, and children always
pass unconsumed subordinate tasks to parents at completion.

Parallel tasks, unlike isolated parallel tasks, allow shared
memory for communication between tasks, restrict where
parents are allowed to pass tasks to children, and force the
programmer to define a total order on synchronizing with

@ Springer
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P = (procp (var1:L) s)x A task is termed completed when its has evaluated
s ::|: F‘;V}SIHL i(:i:o eS] | | Sl:gt)uln[lef e then s else s] the expression contained in its return statement. The

| asyncr«pe | futurer —pedr | awaitr await statement blocks execution until some task with a
| [isolated s] | isolated-end handle in r completes at which point its return handler is

Fig.3 The surface syntax for task-parallel programs

child tasks anytime the return value handlers side effect on
the parent’s state. Parallel tasks remove the non-determinism
with side-effecting return value handlers that make data-race
detection especially hard while preserving the core semantics
that encompass most aspects of existing programming mod-
els. For example, languages, such as OpenMP, Cilk, X10,
Habanero, fall largely within the semantics of parallel tasks.
The only real notable missing language features are barriers
for phased execution and some generality in futures. Barriers
for phased execution are a lesser known and used language
feature unique to Habanero. The well-known and widely used
core language features are covered by parallel tasks.

4.1 Syntax

The syntax for parallel tasks is given in Fig. 3. A program P is
a sequence of procedures with names taken from a finite set:
po-..pi € Procs®. Each p has a single L-type parameter
1 taken from a finite set of parameter names Vars and a top-
level statement s that gives the body of the procedure. The
semantics is abstracted over concrete values and operations,
so the possible types of 1 are not specified.

Statements are inductive via composition with other
control-flow statements, and the set of all statements is
given by Stmts. The syntax for expressions is intention-
ally undefined but includes a finite set of values Vals and
local or global variable references. It is assumed that Vals
minimally includes true, false, and a special value L for
uninitialized. Global variable references are taken from a
finite set of names, Globals, where Globals NVars =
. The names include a special reserved variable isolate
that is only used by the semantics for mutual exclusion.

The async , future , await , and isolated statements relate
to concurrency; the rest of the statements are sequential and
have their usual meaning. Intuitively, the async statement
adds a task into a region r, taken from a finite set of region
identifiers, Regs, by indicating the procedure p for the task
with an expression e for the value of the local variable. The
return value from p is ignored and not combined into the
parent state. The future statement is similar only it includes
a return value handler d : Vals — Stmts to combine a
return value into the parent state, and it allows the parent
to pass the ownership of tasks in the regions in the region
sequence r to the child.

@ Springer

executed. The await statement recursively calls itself until
all tasks with handles in r complete.

The isolated statement provides mutual exclusion rela-
tive to other isolated statements. If s is isolated, then it
runs mutually exclusive to any other statements s’ that are
also isolated; however, s does not run mutually exclusive to
other non-isolated statements that may be concurrent with s.
An isolated statement must consist of only sequential state-
ments.

For the rest of the presentation, only well-formed pro-
grams are considered.

Definition 2 (Well-formed) A program is said to be well-
formed if and only if it conforms to a programming model
that ensures (1) freedom from deadlock; and (2) awaiting
futures cannot introduce non-determinism.

There are several programming models guarantee well-
formedness. For example, consider the Habanero model. For
deadlock, there is only a single lock for mutual exclusion, so
it is not possible to hold and wait, and it prohibits cyclic
dependencies between futures and only allows sequential
statements in isolation for the same reason. Additionally,
futures do not have return value handlers; instead, the value
returned from a future’s statement block is made accessible
via the future’s get () method. As a result, no nondeter-
minism is introduced when a finish block waits on multiple
futures.

The language is purposely kept simple to focus on the
core concept of a computation graph as an equivalence class
over task-parallel program executions. Additionally, there is
no loss of generality in restricting procedures to a single
parameter or not including statements for procedure calls
because, for example, there are global variables, the syntax
for types and expressions is left free, and procedures calls
are syntactic sugar for a future statement followed by an
await statement with an appropriate return-value handler.

4.2 Tree-based semantics

The semantics of task-parallel programs is defined over a
tree of procedure frames to represent the concurrency in the
language rather than a stack of procedure frames which is
inherently sequential. A frame in the tree is a task. Execu-
tion proceeds by stepping some task in the tree. If that step
creates a new task, then the task is posted as a child of the
creating task in the tree. If that step consumes a completed
child task, then the completed child task is removed from
the tree, and any unconsumed children of the consumed task
become children of the consuming task.
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Additional to the tree of tasks is a global store and a com-
putation graph. The computation graph is additional to the
program state, and that state is updated by the semantics to
capture the program execution; it includes a few additional
tuple members that will be defined shortly. The computation
graph has no bearing on how program execution proceeds,
that is completely defined by the tree of tasks and the global
store.

Any task in the tree that is not blocked may step in an
execution of a task-parallel program. A task step updates the
auxiliary computation graph as appropriate, and it updates
the statement for the current task. Additionally, depending
on the statement, the step may also change the value of the
task’s local variable, change the global store, or, as men-
tioned previously, change the structure of the tree by adding
or removing a child. With this intuition, the semantics are
ready to be formalized.

4.2.1 Program state

The state of a parallel tasks program is defined by the tuple
(I, o, (t, m)) where I" is an augmented computation graph,
0 : Globals — Vals is a partial function mapping global
variable names to values, and (¢, m) is a tree configuration
for the root of the tree. Let o, be the initial store such that
Vg € Globals, o,(g) = L.

An augmented computation graph is a tuple I’ =
(G, last, R), where G = (N, E, p,w) is a computation
graph; last € N is the last isolated node and is used to
assert the observed order of isolated statements in the exe-
cution; and R : Regs +— P (N) is a function to track nodes
that need to join in the computation graph at the end of an
await statement. In general, a function notation is adopted
to access members of tuples. For example, the members of
G are accessed as G(N), G(E), G(p), etc. Let Nodes be a
finite set of nodes, and fresh() return as yet unused nodes in
Nodes. Let I', be the initial augmented computation graph
such that for n, = fresh(), I',(G) = ({n,}, 9, po, w,) Where
Vn € Nodes, p,(n) = @ A w,(n) = @, I,(last) = n,, and
Vr € Regs, I,(R)(r) = 0.

A tree configuration, ¢ = (t, m), is an inductively defined
tree with task-labeled vertices, 7, and region labeled edges
given by the region valuation function, m : Regs —
Configs, where Configs is the set of tree configurations.
The tree is finite and unordered. For a given vertex ¢ = (¢, m),
m(r) returns the collection of sub-trees connected to the -
labeled root by r-labeled edges. In this context, m is local to
the current task. Let m, be the initial region valuation such
that Vr € Regs, m,(r) = (J; itis used in both the initial state
and transition rules when creating new tree configurations.

A task r = (¢,s,d,n) is a tuple containing the value,
£ € Vals, of the task’s single local variable 1, along with
its statement s, its return value handler d, and its asso-

ciated node n in the computation graph. The initial task
t, = (L, 50, Av.skip, I',(last)) is defined to start and then
await the initial task,

So = async r, < p, £ ; await r,

where p, is the top level procedure and ¢ is the initial value
for p,’s single parameter. With that, the initial state of a task-
parallel program is (I, 04, (t5, m,)).

4.3 Notation

The semantics are defined as a set of transition rules relat-
ing states. Some amount of additional notation is needed to
help the presentation of the transition rules be as concise and
uncluttered as possible. That notation follows.

Let -], be a partial evaluation function for expressions
without any variables. For convenience in the semantics:

e(t,o)=e(l,s,d,n),o)
e(l,o0)
= [el€/1,0(g0)/g0,0(a1)/g1, - e

Ifel€/1,0(90)/90,0(91)/91, - ..] has any free variables or
other errors, then by definition,

[el€¢/1, 0(g0)/90,0(g1)/91, - - -1]e has no meaning and is
undefined. The set of global variables that appear in an
expression is given by Globals(e).

A statement context S for s is a convenient way to con-
sider, and manipulate, the next-to-be-executed statementin s.
For example, S[1 := e] means that the next-to-be-executed
statement in the context S is 1 := e; other statements may
follow since s is inductive (e.g., 1 := e; s). A configuration
context, C, is a way to consider a single task in a larger tree
leaving the surrounding context (i.e., other tasks in the tree)
unchanged.

The contexts are used to express transition rules. For
example, consider the transition rule for a step on task whose
next-to-execute statement is a skip. The transition rule, via
contexts, is given as:

SKIP

(I', o0, C[(£, S[skip ; s],d, n) , m])
— (I', 0, CI(¢, S[s], d, n) m])

The configuration context can be any task in the tree that
matches the statement context. In the source state, it is
matched when the next-to-execute instruction in the state-
ment context is skip; s where s is any valid statement. In the
target state, the transition side effects the task’s statement
context to be s, having consumed the skip, and leaves the
rest of the surrounding context, or state, unchanged.
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A function can be strongly updated as in a write to a global
store: 0’ = o[g > £]; the new store is just like the old store
only now o/(g) = £. A function may also be weakly updated
as in adding new variables into the read set for a node in

the computation graph: o' = p[n -l Globals(e)]; the
new read set is just like the old read set only now p’(n) =
p(n) UGlobals(e).

A function may remove mappings as in a parent task
consuming a completed child task in the region valuation:
m/1 = m\(r +— (2, m>)); the new region valuation is just
like m only now m/1 (r) no longer includes (#,, m7). Regions
may also be merged together as in m U m, with the intuitive
weak update meaning. The projection of the region valua-
tion, m, to the sequence of regions r is given as m/|, and
defined such that m|.(#") = m (') when r’ occurs in r and
m|r(r") = @ otherwise.

And finally, for a tuple such as a I' = (G, last, R), this
presentation adopts the same notation for updating func-
tions where I’ = I'[last — n'] is understood to mean that
I"'(last) now has the value n’ and everything else is the same
asin I".

There are two additional functions to help manipulate
the augmented computation graph efficiently in the tran-
sition rules. The fork function adds nodes for new tasks:
G’ = fork(G, n,n’,n”, V) forks the node n in the compu-
tation graph G to n’ and n” and updates the read seat for n
with the variables in the set V:

G' = G[N > {0, n")]
[E -y {(n.n"), (n,n")]
[p(n) = V]

The new graph has a new thread of concurrent execution
and corresponds to the creation of a new task in the task
configuration tree.

The join function makes clear in the graph where com-
pleted tasks synchronize at an await statement: G’ =
join(G, R, ny, n) joins the nodes in R and the node from
the recently completed task n; to the new node # in the com-
putation graph G to n':

G' = G[N > {n)]
[E = {(n.n2)} U{(n.n;) | n; € R}]

The new graph has gathered concurrent executions at the join
and corresponds to the removed child tasks in the configura-
tion tree.
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4.3.1 Transition rules

Figure 4 gives the transition rules for all the sequential state-
ments but the skip statement (given previously). Sequential
statements have no direct affect on the shape of the configura-
tion tree. Relative to the computation graph, these statements
are only able to update read or write sets for the task’s asso-
ciated computation graph node.

The return statement does merit some little discussion. Its
rule inserts a machine only done statement. The rule eval-
uates the return expression and then puts the value in the
done statement. Later, when an await statement joins with
the completed task, the done statement is consumed and the
value is used by the return-value handler.

AssiGN LocAL
1 € Globals 0 =e(l,0)

I'" = I'[G(p)(n) = Globals(e)
(I,0,C[(¢4, S[1 := ¢],d,n) ,m]) —
(I'",0,C[(¢', S[skip],d,n) ,m])

ASSIGN GLOBAL
1 € Globals o' =o[l— el o)

I'" = I'[G(p)(n) = Globals(e)][G(w)(n) = {1}]
(F,U,C[(E,S[l = e],d,n) 7m]) -
(1", o', C[(¢, S[skip], d,n) ,m])

IF-THEN

true = e(f,0) I’ = I'[G(p)(n) = Globals(e)]
(Iyo, C[(¢, S[if e then s; else s3],d,n),m]) —
(r’,o,C|(¢,S[s1],d,n),m])

IF-ELSE

false = e(¢, o) I'" = I'[G(p)(n) = Globals(e)]
(Iyo, C[(¢, S[if e then s; else s2],d,n),m]) —
(I'',0,C[(¢,S[s2],d,n) ,m])

Do-roor

true = e(¢, 0) I'" = I'[G(p)(n) = Globals(e)]
(I, o,C[(¢, S[while e do s|,d,n),m]) —
(I'',0,C|(¢, S[s; while e do s],d,n),m])

DoO-BREAK

false = ¢({,0) I’ = I'[G(p)(n) = Globals(e)]
(I',o,C[(¢, S[while e do s],d,n),m]) —
(I, o,C[(¢, S[skip],d,n) ,m])

RETURN

v=-e(l, o) I'" = I'[G(p)(n) = Globals(e)]
(I'yo,C[(¢, S[return €], d,n),m]) —
(I, o,C[(¢, S[done v],d,n) ,m])

Fig.4 Transition rules for sequential statements



Model-checking task-parallel programs for data-race

297

AsyNC

L=e(l' o) d = \v.skip

m' = mlr = (£, sp, d,n1) ,mo)]

I'" = I'[G w fork(I'(G), ng, ny, n1,Globals(e))]
(I,o,C[(¢', Slasync r < p e],d’,ng) ,m]) —
(I'",o,C[(¢', S[skip],d’,ng) ,m’])

ng,n1 = fresh()

FUTURE

L=e(l' o) ng,n1 = fresh()

m' = (m \ m|t‘)[r = ((f, Spvdanl) 7m|l‘)}

I = I'[G + fork(I'(G), ng, ng, n1, Globals(e))]
(I',o,C[(¢', S[future r — p e d],d’,no) ,m]) —
(I'’,o,C[(¢, S[skip],d’,ny) ,m'])

AwAIlT
mi = m\ (T = ((KQ,S[dOI’le U]?d27n2) 7m2))
s=d(v) (m1Umz)(r) #0
I = I'[R(r) & {na}]
(I'yo,C[(¢, Slawait r],d,n),m]) —
(I'",0,C[(4, S[s; await r],d,n),m1 Umz])

AWAIT-DONE
mi1 =m\ (r — (({2, S[done v],d2,n2),m2))

s =d(v) (m1Umga)(r) =0 n’ = fresh()
I = I'[R(r) — 0)[G — join(I'(G), I'(R),n2,n")]
(I'yo, C[(¢, Slawait r],d,n),m]) —
(I'",0,C[(£, S]s],d,n') ,m1 Umsa])

ISOLATED
o(isolate) = false
n’ = fresh()
I’ = I'G(N) = {n'}][G(E) = {(n,n"), (I (last),n")}]
(I',o,C[(¢, S|isolated s],d’,n),m]) —
(I, o', C[(¢, S[s; isolated-end],d’, n") , m])

o' = o[isolate +— true]

ISOLATED-DONE

o(isolate) = true

n' = fresh()

I = I'[G(N) = {n'}[G(E) = {(n,n")}][last — n]
(I,o,C[(¢, S[isolated-end],d’, n) ,m]) —
(I, 0", C[(¢', S[skip],d’,n") ,m])

o’ = ol[isolate — false]

Fig.5 Transition rules concurrent statements

Figure 5 gives the transition rules for all the concurrent
statements in the language. These statements affect the shape
of the configuration tree and the shape of the computation
graph.

The ASYNC rule creates a new child task. The rule adds
two fresh nodes n(, and n; to the computation graph. Node
ng, represents the statements following the async and n;
represents the statements to be executed by the new task.
The rule orders both after the current node for the parent,
ng, in the computation graph. The read set p of node ng
is updated to include any global variables referenced in the
expression, Globals (e), for the local parameter value in
the new task. The region mapping m of the parent task is

updated to include the new task with its empty initial region
mapping. The FUTURE rule mimics the ASYNC rule only it
allows arbitrary return value handlers, and its region valu-
ation is seeded with regions passed from the parent using
projection.

The AWAIT rule blocks the execution of the currently exe-
cuting task until a task in the indicated region completes. A
new node to join the two tasks is not created in the com-
putation graph, nor are the two tasks ordered in the sense
of join because the choice of task 7, in the region is non-
deterministic; as such, the computation graph allows tasks
in the region to join in any order contrary to the observed
reduction by the rule. The rule saves the current node in the
graph for #,, n7, to join later once the region is empty, and
it updates the read set for 7, on the expression in the return
statement.

The rest of the rule separates out the task from the region,
makes sure the region is not yet empty, and gets the statement
for the return value handler. The new state adds an await
statement after the return value handler statement since the
region is not yet empty, and the region valuation function in
the new state includes any tasks owned by #,.

The AWAIT- DONE activates when the last task in the
region is joined. It differs from the AWAIT rule in that it orders
all tasks that have joined in the region to happen-before the
new node for the parent in the computation graph, and it does
not insert another await statement in the new state.

If no other isolated statements are running, then the ISO-
LATED rule updates the isolated shared variable and
inserts after the isolated statement s the new isolated-end
keyword that is only a part of the machine syntax for the
semantics. The computation graph gets a new node to track
accesses in the isolated statement with an appropriate edge
from the previous node. A sequencing edge from last is also
added so the previous isolated statement happens before this
new isolated statement. As a reminder, last is initialized to
the initial node when execution starts.

The ISOLATED- END rule creates a new node in the com-
putation graph to denote the end of isolation, updates the
isolated shared variable, and it updates last to properly
sequence any future isolation. The /ast variable implements
how the semantics track and record the order of isolated
statements in the computation graph while reducing the state.

5 Proof of correctness

The semantics in Sect. 4 determine both how a program exe-
cutes and how computation graphs are created. This section
proves that computation graphs are correct with respect to
the executions that produce them. It also proves a much
stronger claim: Computation graphs are correct with respect
to all compatible executions. A computation graph contains
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a data-race if and only if an execution with the same order
on isolated statements contains a data-race.

This section begins with relevant formal definitions,
including a definition for data-race. It then proceeds to rel-
evant reasoning, concluding with Theorem 4, which proves
soundness, and Theorem 5, which proves completeness.

Definition 3 (Compatible execution) A given execution is
compatible with a computation graph G if and only if its
order on isolated statements is the same as the order on iso-
lated nodes in G.

Definition 4 (Conflict) Two statements conflict if they both
access the same shared variable and at least one of them
writes to that variable. p (s) and w (s) behave as expected.

p(s)Nw(s)) #D v
conflict(s;, s;) = p(s;) Nw(s;) #D Vv 2)
w(si) Nw(s;) #9.

A state’s set of active statements is used to define concur-
rency.

Definition 5 (Active statements) A state ¢ has a set of active
statements a (¢) that corresponds to the next statement to be
reduced in each of the active tasks in the state.

Notice that the definition does not check if the active state-
ments are reducible. For example, an await statement may be
active but not reducible in a state because there is no task in
its indicated region that has completed; thus, the AWAIT rule
is not active on that statement. This nuance becomes impor-
tant in the next definition. For that definition, and without
loss of generality, we call the program’s initial state gp.

Definition 6 (Concurrency) Any two statements are concur-
rent if and only if an execution of the program can result in a
state ¢ such that both statements are active at the same time:

slls' <=3s:60 =" A {s,s'} Cal(s). ()

A state ¢ that satisfies this condition for s and s’ is called
a witness state for s || s’. —* is the transitive closure of the
transition relation — defined in Sect. 4.2. Two statements
are ordered if and only if they are not concurrent.

Note that the definition treats some statements as concur-
rent that are in fact not concurrent in the witness state. For
example, consider an isolated statement and an assign state-
ment. The isolated statement may be blocked in the witness
state waiting for the isolation lock while the assign state-
ment is always able to reduce; hence, these statements are
not actually concurrent in the witness state.

This discrepancy is harmless because the only statements
that can block in these ways are the isolated statement and
the await statement. In the case of the isolated statement, it
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only interacts with the machine only isolated global variable.
Similarly, a task that is completed is at a done statement, and
that statement does not read or write any variables; reading
and writing variables happens when the return statement
reduced. As such, it is not possible to ever have a data-race
with either of these statements, so calling them concurrent
with other statements is harmless.

Definition 7 (Data race) There is a data-race on two state-
ments s and s if and only if they conflict and are concurrent:

DR (s,s") =s || s" A conflict (s, s). 4)

Two statements that occur in the same thread of execu-
tion cannot be concurrent, as exactly one statement is active
in each active thread at any point in time. Accordingly,
events contained in the same node are always serialized.
The semantics for the ISOLATED and ISOLATED- DONE tran-
sitions in Fig. 5 ensure that no two statements inside of
isolated statements can be concurrent, as only one thread
may enter an isolated statement at a time.

Definition 8 (Specific transition) A state ¢ transitions to
some other state ¢’ via a configuration context C when C
is the configuration context reduced in the transition from ¢

. c
to ¢’. This is denoted ¢ — ¢’.

Definition 9 (Reachable states) A set X, of reachable states
is the set of states reachable from the initial state ¢p:

T ={slco—>"¢}. ®)

Definition 10 (Safe statement ordering) Any two statements
s and s’ are safely ordered if and only if any state ¢ with two
configuration contexts C and C’ transitions to the same state
¢’ after transitioning via C and C’, regardless of the order in
which these transitions occur:

s =Vee S, (c(C) = (U,s,d,n),m)A
s(C)=(.s".d . n') m))

c c 4 c
== >G> G¢NGg—>G6—>¢.
(6)

Two statements can be safely ordered in one of two ways.
First, they can be ordered (in which the definition is true
vacuously). Second, they can commute, satisfying the def-
inition’s consequent. Thus, all realizable orders on safely
ordered statements yield deterministic results.

A data-race may introduce nondeterminism. Similarly, it
is possible for conflicting statements (intended data-races) in
different isolated statements to introduce nondeterminism.
Lemma 1 and Theorem 3 prove that in the absence of both
data-race and isolation, program execution is deterministic.
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Lemma 1 (Local determinism) When two statements do not
race, they are safely ordered:

~DR(s,5) = s & 5. (7)

Proof A well-formed program cannot introduce data-race on
the order in which futures are gathered. In a well-formed pro-
gram, then, this assertion is equivalent to two implications:

—=DR (s,s’) = <1> s/
= (s 1| s" A conflict (s, 5")) = s &

(s 1 s" A conflict (s, 5)) v s &y

(
(

? . ?
s||s/\/s<—>s/>/\<c0nﬂlct(s,s’)Vs<—>s/)
I ? / . l4 ? /
=s||s" = s <) A(—conflict (s,5") = s < s

The first implication is true from Definition 10, when s
and s’ are safely ordered because no state exists in which
both are active.

The second implication is true by induction on the tran-
sition rules in Figs. 4 and 5. Informally, the two statements
act independently in their respective configuration contexts.
Only a global side effect in one statement that changes a
value read or written in the other statement could change the
second statement’s behavior. This can only occur, however,
when the two statements conflict.

For example, consider a state with two active statements,
one whose next transition is governed by the ASSIGN LOCAL
transition rule and another whose transition is governed by
the ASSIGN GLOBAL rule. The first statement computes the
value of ¢ and the second changes the value of 1. If the
value of e depends on 1, the two statements conflict and
the implication is vacuously true. On the other hand, if the
value of e does not depend on that of 1, its result is the
same regardless of whether the ASSIGN GLOBAL transition
happens before or after the ASSIGN LOCAL transition. O

Theorem 3 (General determinism) In the absence of data-
race and on some order of isolated statements, a program’s
behavior is deterministic.

Proof By induction on Lemma 1. O

Definition 11 (Race-sensitive partial order) Every compu-
tation graph is derived from some execution, which is a
total order on statements executed. Some of these statements
race with each other; by definition, these statements occur in
pairs. The computation graph is a partial order on the state-
ments contained in its nodes. This partial order, together with
additional pairs to enforce the observed order on pairs of
statements that race with each other (and additional pairs, as
needed, for transitivity) is a race-sensitive partial order.

Race-sensitive partial orders are not created in practice.
However, they are useful as a theoretical construct for the
proof. Observe that whenever there is no data-race, there are
no additional synchronization pairs and the race-sensitive
partial order is the same as the order induced by the compu-
tation graph.

Lemma 2 Iftwo nodes n andn' are ordered in a computation
graph G, every s € n and s’ € n’ are ordered:

n<gn = s<s. (8)

Proof By induction on the transition rules in Fig. 5 (no rule
in Fig. 4 creates a node or changes its task’s node except
to add a statement to that node). Every computation graph
G is created by these transition rules. Every edge is created
from a node that has completed (no additional events are
added to it) to a node that is beginning, with the exception
of last, which is used only to create an edge in the [SOLATED
transition rule, no state contains a reference to n after the
ASYNC, FUTURE, AWAIT- DONE, ISOLATED, or ISOLATED-
DONE rules complete. In each of these cases, the edge or edges
created in the transition reflect a necessary order on events.
For example, an async statement (in 7¢) must execute before
the events that follow it in its own task (in n6) and must
occur before all events in the task it creates (in n1). Events
contained in the same node always pertain to the same task
and are strictly ordered.

Accordingly, every edge in every computation graph
reflects an ordering imposed by the semantics. O

Corollary 1 Iftwo statements are unordered, their respective
nodes in the computation graph are unordered:

slls" = nll<gn' &)
Proof By two uses of the contrapositive of Lemma 2:

sAsS = nAcgn' As' As = n' £gn
sAS NS As = nAsn An £gn

slls" = nll<;n'.
[m}

Lemma 3 reasons about unordered nodes in a race-
sensitive partial order. This is in contrast with Lemma 2,
which reasons about ordered nodes in a computation graph.

Lemma 3 If two nodes n and n' are unordered in a compu-
tation graph G, every s € n and s’ € n’ not ordered in the
race-sensitive partial order induced by G are concurrent:

Vsen, s en :nll<n = s||s. (10)
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Proof If s and s’ are ordered in the race-sensitive partial order
for G, the lemma holds vacuously.

Synchronization between threads is accomplished by
restrictions in the transition rules. For example, no task may
enter an isolated statement when another task is currently
inside an isolated statement of its own because the other task
must have set isolate to true when executing the ISO-
LATED transition rule and no other ISOLATED transition rule
may fire before the task currently in a critical section exits,
setting i solate to false in its execution of the [SOLATED-
DONE rule. Similarly, an await statement cannot step forward
(per the AWAIT and AWAIT- DONE transition rules) until one
of the tasks in its region is at a done statement (and is there-
fore finished) and cannot complete until all tasks in its region
have been reaped (per the AWAIT- DONE transition rule). In
every case, execution of a synchronization event results in
the creation of a corresponding edge in G.

There is a single first node in each computation graph G
that happens before every other node. As aresult, G is a finite
semilattice with a global infimum. It follows that every two
nodes n and n’ have a least common ancestor 7,,.

Since s and s” both exist in G, they are both reachable in
the execution that created G. The same is true of n and n'.
As aresult, their least common ancestor 7, is also reachable.
Therefore, some state ¢, must exist that creates outgoing
edges to ny and ny where n; is either equal to n or is an
ancestor of it and where the same is true of n, and n’. Ny
is the set of nodes on a path from n; to n, inclusive. Nj is
the set of nodes on a path from n; to n’, inclusive. There
cannot be any synchronization edges between nodes in N
and N, as this would contradict the definition of n, as the
least common ancestor of 7 and n’.

As a result, it is possible for ¢, to transition in the two
tasks independently of each other until reaching s and s’.
The state in which both statements are active is a witness for
their concurrency. O

Corollary 2 Everytopological sort on a race-sensitive partial
order is a realizable trace.

Proof By Lemma 3. O

Theorem 4 (Soundness) If a computation graph G contains
a data-race, an actual data-race exists on an execution com-
patible with that graph.

Proof The race-sensitive partial order for G is <,.. Let S, be
the set of conflicting statements in unordered nodes in G;
that is, the statements that G claims to be racing statements.
Because G contains a data-race, S, must have at least two
members. Furthermore, Corollary 1 proves that every pair
of statements that actually race must belong, respectively,
to unordered nodes. Since they conflict by definition, these
statements are members of S,..
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Let areported race be a pair of members of S, that conflict
with each other and that occur in nodes that are unordered in
G. Let s and s’ be a reported race such that s occurs before s’
in the observed order of execution. Let n and n’, respectively,
be the nodes that contain s and s’. Without loss of generality,
choose s’ to be the first statement that meets these require-
ments. Again without loss of generality, choose s to be the
last statement compatible with these requirements (including
the choice of s”). To restate, conflict (s, s/) andn ||<, n'.

By Corollary 2, any topological sort on <, is a realizable
execution. Choose a topological sort that executes until s is
active and then advances other tasks until s’ is active. The
choice of s and s’ ensures that if they are ordered by <, they
race: if they were ordered because of some other pair of state-
ments that races, the second of those statements must precede
s’, creating a contradiction. By Lemma 3 and because n and n’
are unordered, s and s’ must either race each other (in which
case the lemma holds) or must be unordered by <,.. This lat-
ter case, however, contradicts itself: if s and s’ are unordered
in <, they are necessarily concurrent. Since it is given that
they conflict, they race. This, however, contradicts that s and
s" are unordered by <., which orders all racing statements. O0

Theorem 5 (Completeness) If a computation graph G does
not contain a data-race, no compatible execution contains a
data-race.

Proof By Lemma 2, any statement in two ordered nodes are
ordered. If statements in unordered nodes conflict, there is a
data-race in the graph. Therefore, if there is no data-race in a
graph, no statements in its unordered nodes conflict and no
data-race is possible. O

6 Model checking task-parallel programs

This section applies model checking to a task-parallel pro-
gram to prove data-race freedom under the given input to the
program. The model checker uses a depth-first search-based
algorithm to exhaustively explore all computation graphs that
arise from different total orders on isolated nodes. A proof
of correctness is given. The proof shows that the depth-first
search enumerates a sufficient set of graphs to be both sound
and complete on the given input.

6.1 Depth-first scheduling

The depth-first algorithm to enumerate all schedules over
isolated statements is given in Algorithm 2. The algorithm
is a fairly direct implementation of a depth-first search on the
semantics. It is divided into five ordered cases:

1. The program is completed and only a single task is left
that cannot reduce any further (line 2);
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2. There is some task that is not at an await statement or
isolated statement that can be reduced (possibly more
than once);

3. There is some task at an await statement that can be
reduced;

4. There is some task at an isolated statement that can
be reduced from which all possible choices must be
explored; or

5. The program is not well-formed.

Reduced in this context means the state has a successor. Each
case is discussed below.

line 2 detects when the task-parallel program has run to
completion. The function Configs(s) returns all config-
uration contexts (i.e., task frames) in the tree in the state,
and the notation ¢ - ¢’ is intended to convey that it is not
possible to reduce the state any further. A well-formed pro-
gram gathers all tasks eventually, which means eventually
there is as single context in the task tree, and the statement
in that context is a skip statement that cannot be reduced
because there is no statement that follows. In this case, the
computation graph is pulled out of the state and checked for
data-race.

Line 4 reduces a context in the tree that is not at an

await statement or isolated statement. The notation ¢ cE> <
is intended to convey that the context is reduced as much as
possible, which is at least one time, using any of the rules in
Fig. 4 or Fig. 5 but AWAIT, AWAIT- DONE, and ISOLATED; the
state is maximally reduced when done with the reductions
and should be stopped at the following: a done statement,
await statement, isolated statement, or the case in line 2. In
all of these cases, the procedure makes a recursive call on the
reduced state.

line 6 reduces await statements. It is only reached
when the first two cases fail; meaning the program is
not able to reduce further without first reducing either an
await statement or isolated statement. The algorithm first
gives priority to the await statement. It this case, if it is pos-
sible to step the context exactly once on the await statement,
then the procedure makes the recursive call on the successor
state.

line 8 is the depth-first search over the isolated statements.
The key difference with regard to the await case on line 6 is
that this case searches from the successor of every context
with an isolated statement that can reduce at the current state;
not just one successor. As such, the current state is the back-
track point for the search; thus, from this state, all possible
orders of isolation are considered.

The final case on line 12 should only be reached in the
case of a program that is not well formed. Such a program
may be deadlocked, have dangling tasks that have not been
gathered, etc. Note that a divergent program will cause an
infinite loop and not be detected.

Algorithm 2 The algorithm to enumerate all schedules over
isolation.
1: procedure DFS(¢)

2: if |Configs(c)| == 1A ¢ = ¢’ then
3: DETECTRACE(¢(I")(G))
c
4. elseif 3C € Configs(c) (—await(C) A —isolated (C) A ¢ —
¢’) then
5 DFS(¢’)
6: elseif 3C € Configs(c) (await(C) A ¢ S ¢’ then
7 DFS(¢’)
8 else if 3C € Configs(c) (isolated (C) A ¢ £> ¢’) then
9: for all C € Configs(c) (isolated (C) A ¢ < ¢’y do
10: DFS(¢")
11: end for
12:  else
13: Report well-formed violation and exit
14:  end if

15: end procedure

6.2 Proof of correctness

Theorem 6 A well-formed, terminating program can mani-
fest adata-race on some schedule if and only if a computation
graph generated by Algorithm 2 contains a data-race.

Proof A program that is well-formed is guaranteed to not
deadlock. Furthermore, it cannot introduce data-race via
futures and Theorem 3 proves that all other determinism is
impossible. If either of these properties is false, the theorem
is vacuously true. When these properties are true, the model
checker successfully performs a depth-first search on isola-
tion orders, generating a computation graph for each possible
order.

Since Algorithm 2 enumerates a computation graph for
each possible ordering on isolated statements, each execu-
tion is compatible with one of these computation graphs. By
Theorems 4 and 5, each of these graphs contains a data-race
if and only if a compatible execution contains a data-race. O

7 Implementation and results

The model checking approach to data-race detection described
in this paper has been implemented for Habanero Java. The
implementation uses the verification run-time specifically
designed to test Habanero Java programs and play nicely with
JPF [1]. The implementation is a set of JPF listeners to create
the computation graph and schedule over isolated state-
ments. Two methods for data-race detection on the generated
computation graph were tested. The first is an implemen-
tation of Algorithm 1. In this implementation, data-race is
detected by intersecting the access sets of parallel nodes
[28]. The second is an implementation of FastTrack [16], a
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fast vector clock algorithm that optimizes the common case
where only the clock value of the last thread to access a shared
memory location is needed to determine whether a race con-
dition exists. There are a few more key differences to the
two methods. FastTrack checks for data-race alongside the
execution of the program while the first method waits until
program completion to check a graph for data-race.

This implementation uses JPF’s VM listeners to track
various program events related to parallelism. The meth-
ods objectCreated and objectReleased are used
to create and connect nodes in the computation graph. The
objectCreated method is used to track the creation of a
new async task. It detects when a async statement executes
and adds appropriate edges to the computation graph.

The objectReleased method is used to track when
finish blocks complete execution and add edges as expected.
The await statement is used to create a node in the graph
where the tasks belonging to the finish block join. The
executeInstruction method is used to track memory
locations that are accessed by various tasks by updating the
node with the location accessed by the task during the exe-
cution of that instruction. All in all, seven listeners and two
factories are replaced in JPF consisting of roughly 1.6K lines
of code.

The approach in this paper is compared to two other
approaches implemented by JPF: Precise race detector
(PRD) and Gradual permission regions (GPR). The PRD
algorithm is a partial order reduction based on JPF’s ability
to dynamically detect shared memory accesses. In this mode,
JPF schedules on all detected shared memory accesses. GPR
uses program annotations to reduce the number of shared
locations that need to consider scheduling by grouping sev-
eral bytecodes that access shared locations into a single
atomic block of code with read/write indications [31]. For
example, if there are two bytecodes that touch shared mem-
ory locations, PRD schedules from each of the two locations.
In contrast, if those two locations are wrapped in a single per-
mission region, then GPR only considers schedules from the
start of the region with the region being considered atomic.
GPR is equal to PRD if every bytecode that accesses shared
memory is put in its own region. Both approaches are a form
of partial order reduction with GPR outperforming PRD by
virtue of considering significantly fewer scheduling points
via the user annotated permission regions.

The comparison over a set of benchmarks is shown in
Table 1. The benchmarks are a collection of those from the
Habanero Java distribution itself ! and various presentation
materials introducing the Habanero model; other benchmarks
come from testing various language constructs in the devel-
opment process. The table indicates for each benchmark its

1 https://wiki.rice.edu/confluence/display/HABANERO/Habanero-
Java.

@ Springer

relative size in lines-of-code and tasks. The number of states
generated by JPF for the proof, the time in minutes and sec-
onds, and finally whether or not a race was detected. The “-”
indicates that no results are available because the approach
exceeded the arbitrary one hour time bound for each run.
The “X” in the time column indicates that the analysis ran
out of memory. Two times are reported for the approach in
this paper, one for each method of data-race detection on
the generated computation graphs: transitive closure (TC)
and FastTrack (FT). The experiments were run on a machine
with an Intel Core i5 processor with 2.8 GHz speed and 8 GB
of RAM.

The table shows that in general, PRD does not finish in
the time bound. The “Y*”” on the Race column for PRD indi-
cates that PRD incorrectly reports data-race on array objects
in some examples. For GPR the “Y*” indicates that GPR
reports the intended data-race between mutually exclusive
regions. GPR falls behind quickly as the number of permis-
sion regions grow. The difference in performance is seen in
the Add, Scalar multiply, and Prime number counter bench-
marks which use shared variables. The regions are made
as big as possible without creating a data-race. The last
six benchmarks also have isolated regions. As a result, the
state space for computation graphs is also large compared to
other benchmarks. Of course, in the presence of isolation, the
approach in this paper must enumerate all possible compu-
tation graphs, so it suffers the same state explosion as other
model checking approaches.

On benchmarks with no data-race, the TC and FT algo-
rithms are comparable. Because FT checks for data-race on
the fly, it finishes for some benchmarks that have data-race
while the TC algorithm does not. Even PRD and GPR finish
on True Dependant Linear and Last Private Missing while
the TC algorithm runs out of memory or times out. The TC
algorithm can be made to be on the fly for programs with-
out isolation by unioning the access sets of parent nodes and
their direct children [28]. This adjustment would make it even
more useful.

For each benchmark that caused the TC algorithm to time
out or run out of memory, a smaller instance of the same
benchmark was also tested (with the exception of Jacobi
Parallel). These rows are marked with an asterisk in the
benchmark name and is an example of how checking a pro-
gram against a smaller problem instance can be a useful
technique in data-race detection.

The benchmark Many Network Requests in an example
of a case where the TC algorithm is more memory efficient
than FT and therefore finishes while FT does not. In this
benchmark, many tasks are spawned with few reads or writes
per task. The benchmark is so named because it simulates a
common idiom used in languages that support light weight
tasks to initiate a network request with each task and then
wait on the results at a later time. In this case, FT runs out


https://wiki.rice.edu/confluence/display/HABANERO/Habanero-Java
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-Java

303

Model-checking task-parallel programs for data-race

- - - - - - N 10:00 10:00 101 101 1T 11V od
X £0:00 16°¢ X 10:00 14 X 10:00 70:00 901 101 €T +SUISSIUI OJeALId 5B
- - - X 01:00 14 X T1:00 - - - €T Sursstur ojearrd 1sery
- - - - - - N 10:00 10:00 901 101 (43 [orrered wug
X £0:00 60S°S X 10:00 14 X 10:00 10:00 S € ve orduurs oydurrs opdwrg
- - - X 10:00 I X 10:00 70:00 901 101 8% SnuIU SNUTA
- - - - - - X 70:00 £€0:00 981 181 €L 1 ss900® J001TpU]
- - - - - - X 70:00 £€0:00 981 181 €L € SSe00E 1021IpU]
- - - - - - X £0:00 £€0:00 981 181 €L T SS90 J0011pu]
- - - X 10:00 vee X 70:00 £€0:00 981 181 €L [ $S000E 10211pU]
- - - X 00:00 S1 X 10:00 10:00 901 101 43 puiig
X 0%:10 950°€LT X ST:00 0Ts‘6 X 70:00 £0:00 901 001 e ;uoISuAWIp 181y Juepuadap onif,
— - — - - - A ﬁonNﬁ - — - .vm uolsuauiIp jsig u:mﬁsomwﬁ QNI
- - - X 10:00 L X 10:00 10:00 901 101 6T s Teaul] yuepuadop onif,
- - - X £0:00 (4% X £0:00 X - - 6T Teaur] juepuadop onif,
- - - X 10:00 S X 20:00 €00 LOOT 1001 8T Juewafa d[3urs Juepuadop onif,
A 500 881°€T A £€0:00 €Il X 10:00 LE00 9001 0001 LT [ Juepuadop onif,
A 85:00 681%C X 10:00 9 A 20:00 9€:00 9001 0001 43 ¢ yuepuadap nuy
A £€6:00 188°€C A €0:00 €Il X 20:00 9€:00 9001 0001 6T [ Juepuadap nuy
- - - N 00:00 SI N 10:00 10:00 S € 0¢ $s000€ paduiny)
N 61:00 Y6£9% N 00:00 L1 N 10:00 10:00 S € 0S PPV 101027

x A 10:00 978 N 0€:00 TIL'SS N 10:00 10:00 Sl € S Aidnpnu refesg
«X £0:00 0g6¥ N £€:00 vLETY N 10:00 20:00 1 € L9 PPV

- - - N 00:00 43 N 10:00 10:00 ve S 69 sarmny yim durjadig

- - - N 00:00 6 N 10:00 10:00 6 T 8¢ S[qeIAN PIM [[VI0]
«X 00:00 L6S N 00:00 Sl N 10:00 10:00 SI 1 0¢ SABLIE WIP OM],
N 00:00 TS8I1 N 00:00 S N 10:00 10:00 S € 6C 2061 ON Aelre dADIWL

- - - X 90:00 43 N £0:00 £0:00 v (4 8¢ wmns Aeire [eoordooy

X 00:00 0ce X 00:00 S X 10:00 10:00 S € 6€ Qoel AvLIE QADIWITI]

vy ss:urur Nalaly vy ss:uru sayels Joey ss:wwt (1.4) ss:wwt (D) Nalaly

ayd d4d9 sydp.3 uoyvinduio) SYSeL, D0TS d13saL

103991908 YS1921J sNSIdA suorgar uorsstuidd snsioa sydess uonendwo) | sjqel

pringer

As



304

R. Nakade et al.

mm:ss Race

PRD
Race States

mm:ss

GPR
States

Race

(FT) mm:ss

(TC) mm:ss

Computation graphs

Tasks
States

SLOC

Table 1 continued

Test ID
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00:02

101 106 00:03
106

101

23

Do All 2

Y 4661 00:03 Y

00:01

00:01

00:02

4

Linear missing

33
33
24

Matrix multiply

03:28

74 03:11

71

Matrix multiply*

1007 00:29

1001

Many network requests

116
39
54

Jacobi parallel

Y
N
Y
Y
N
N
N

00:01

00:01

00:01

28

Isolated block No

05:53

N 1,013,102

00:08

00:09

24

10

Integer counter isolated

Y
Y

00:01

182
480

00:01

00:01

00:01

46

Data race isolate simple 1

00:01

00:01

00:01

00:01

10
75

53

51

Data race isolate simple 2

17:37
00:01

3,542,569

18

00:01 N

00:01

25

Prime num counter

00:02

246 00:02

25

52

Prime num counter ForAll

2,528,064 15:44

N

00:16

00:18

45,359

11

44

Prime num counter ForAsync

of memory quickly as it must maintain a vector clock whose
size is linear in the number of tasks for each task and each
shared variable. Neither algorithm finishes analyzing Jacobi
Parallel but FT runs out of memory and TC times out.

The next set of results are for bigger real-world pro-
grams. The Crypt-af benchmarks is an implementation of
the IDEA encryption algorithm and Series-af and Series-f
are the Fourier coefficient analysis benchmarks adapted from
the JGF suite [6] using async-finish and future constructs,
respectively. The strassen benchmark is adapted from the
OpenMP version of the program in the Kastors suite [38].
These are quickly verified free of data-race using computa-
tion graphs as shown below—PRD and GPR time out. Source
code and additional benchmarks converted from benchmarks
at https://github.com/LLNL/dataracebench can be found at
https://bitbucket.org/byu-vv/jpf-hj/src/master/.

TestID  SLOC Tasks States (TC)mm:ss (FT)mm:ss Race

Crypt-af 1010 251 259 00:10 00:08 N
Series-af 730 99 106 00:03 00:01 N
Series-f 830 197 207 00:04 00:03 N
Strassen 560 1 2 0:37 00:37 N

8 Related work

Data-race detection in unstructured thread parallelism,
where there is no defined protocol for creating and join-
ing threads, or accessing shared memory, relies on static
analysis to approximate parallelism and memory accesses
[23,26,37] and then improves precision with dynamic analy-
sis [10,12,16,18,27]. Other approaches reason about separate
threads individually [19,29]. These approaches make few
assumptions about the parallelism for generality and some
are somewhat directly applicable to structured programs as
seen in the prior section with the comparison to FastTrack
[16].

There is newer more recent work to improve the efficiency
and precision of data-race detection in unstructured thread
parallelism. RacerD restricts the analysis to only report data-
races for which it has high-confidence are real at the expense
of proving a program data-race free [3]. Another approach
compresses the execution trace using a grammar representa-
tion and analyzes the grammar for data-race [25]. It supports
lock-set or happens-before analysis with vector clocks for
detection. And yet another approach re-implements Fast-
Track and verifies the core algorithm correct, and thread safe,
with CIVL [41]. None of these look specifically the structure
of the parallelism per se and are best grouped with the tech-
niques in the previous paragraph.
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Structured parallelism constrains how threads are created
and joined and how shared memory is accessed through pro-
gramming models. For example, a locking protocol leads
to static, dynamic, or hybrid lock-set analyses for data-race
detection that are typically more efficient than approaches
to unstructured parallelism [13,14,39]. It is worth noting
that locking protocols can be applied to isolation with sim-
ilar results—over-approximating the set of shared locations
potentially rejecting programs as having data-race when
indeed they do not.

Dynamic data-race detection based on SP-bags has been
shown to effectively scale to large program instances and
the method has been applied to the Habanero programming
model to support a limited set of Habanero keywords includ-
ing futures [34,35]. Another extension supports isolation [33]
but is not complete, meaning it reports false races when
isolated regions do not commute. The goal in this paper is
verification and not run-time monitoring, so it needs to enu-
merate all possible computation graphs but can benefit from
the more efficient SP-bags algorithm to detect data-race on-
the-fly in the computation graph. Other dynamic data-race
detectors for structured parallelism are based on access sets
[28] and thread labels [30]. They can be more efficient for
certain classes of programs but neither has been extended to
support isolation.

Programmer annotations indicating shared interactions
(e.g., permission regions) do improve model checking in
general [40]. These are best understood as helping the par-
tial order reduction by grouping several shared accesses into
a single atomic block. The regions are then annotated with
read/write properties to indicate what the atomic block is
doing. The model checker only considers the interactions
of these shared regions to reduce the number of executions
explored to prove the system correct.

There are other model checkers for task-parallel languages
[17,42]. The first modifies JPF and an X10 run-time exten-
sively (beyond the normal JPF options for customization)
and the second is a new virtual machine to model check the
language. Both of these solutions require extensive program-
ming whereas the solution in this paper leverages the existing
Habanero verification run-time for JPF. That run-time maps
tasks to threads making it small enough (relatively few lines
of code) to argue correctness and making it work with JPF
without any modification to JPF internals.

9 Conclusion and future work

This paper presents a model checking approach for data-
race detection in task-parallel programs using computation
graphs. The computation graph represents the happens-
before relation of the task-parallel program and can readily
be checked for data-race. The approach then enumerates all

computation graphs created by different schedules of isolated
regions to prove data-race freedom. The data-race detection
analysis is implemented for a Java implementation of the
Habanero programming model using JPF and evaluated on a
host of benchmarks. The results are compared to JPF’s pre-
cise race detector and a gradual permission regions based
extension. The results show that computation graph analysis
reduces the time required for verification significantly rela-
tive to JPF’s standards.

The paper further implements FastTrack, and uses it in
the model checking to compare its data-race detection per-
formance on the computation graph with Algorithm 1 in
this paper. To be clear, the model checking algorithm works
with any data-race detection algorithm insofar as that algo-
rithm is sound and complete with respect to the computation
graph. The results over the benchmark set show that there
are benefits to the on-the-fly nature of FastTrack, but that it
is susceptible to overhead from the vector clocks. The results
also confirm, in a small way, that it is often possible to instan-
tiate small problem instances—at least in this benchmark set.
It is hard to know how well that generalizes.

Future work is to reduce the number of schedules that
must be considered by the model checker by weakening
the happens-before relation in a manner similar to recent
advances in dynamic data-race detection [20,24]. Soundly
weakening the happens-before relation grows the number of
schedules covered by any one observed program execution
including schedules that have different orders of isolation
statements. These larger equivalence classes captured by
the weakened happens-before relation can be used to prune
schedules from consideration by the model checker. Other
future work is to leverage static analysis, abstract interpreta-
tion, etc., to reason over the input space so that the proof can
be generalized to all inputs and executions.
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