
Innovations in Systems and Software Engineering (2019) 15:235–251
https://doi.org/10.1007/s11334-019-00341-7

S . I . : NFM2018

Optimal compression of combinatorial state spaces

Alfons Laarman1

Received: 1 October 2018 / Accepted: 2 May 2019 / Published online: 20 May 2019
© The Author(s) 2019

Abstract
Efficiently deciding reachability formodel checkingproblems requires storing the entire state space.Weprovide an information
theoretical lower bound for these storage requirements using only the assumption of locality in the model checking input. The
theory shows that a set of n vectors with k slots can be compressed to a single slot plusO(log2(k)) overhead. Using a binary
tree in combination with a compact hash table, we then analytically show that this compression can be attained in practice,
without compromising fast query times for state vector lookups. Our implementation of this Compact Tree can compress
n > 232 state vectors of arbitrary length k � n down to 32 bits per vector. This compression is lossless. Experiments with
over 350 inputs in five different model checking formalisms confirm that the lower bound is reached in practice in a majority
of cases, confirming the combinatorial nature of state spaces.

Keywords Model checking · Information theory · State compression · Lossless compression · Tree compression · Binary
trees · Decision diagrams · BDDs

1 Introduction

Model checking has proven effective for automatically ver-
ifying correctness of protocols, controllers, schedulers and
other systems. Because a model checker tool relies on the
exhaustive exploration of the system’s state space, its power
depends on efficient storage of states.

To illustrate the structure of typical states in model check-
ing problems, consider Lamport’s Bakery algorithm in Fig. 1;
a mutual exclusion protocol that mimics a bakery with num-
bering machine to prioritize customers. Due to limitation of
computing hardware, the number is not maintained glob-
ally but reconstructed from local counters in N[i] (for
each process i). For two processes, the state vector of this
program consists of the two program counters (pcs) and
all variables, i.e.,

〈
E[0], N [0], pc0,E[1], N [1], pc1

〉
.1 Their

respective domains are:

〈{�,⊥} , [0 . . . 2], [0 . . . 7], {�,⊥} , [0 . . . 2], [0 . . . 7]〉 .

1 We opt to order vectors as follows: variables and program counter of
Process 0 (pc0), variables and program counter of Process 1 (pc1), etc.
Section 6 discusses the effect of different orderings.

B Alfons Laarman
a.w.laarman@liacs.leidenuniv.nl

1 Leiden University, Leiden, The Netherlands

There are 2×3×8×2×3×8 = 2304 possible state vectors.
The task of themodel checker is determinewhich of those are
reachable from the initial state; here ι � 〈⊥, 0, 0,⊥, 0, 0〉.
It does this using a next-state function, which in this case
implements the semantics of the Bakery algorithm to com-
pute the successor states of any state. The next-state function
furthermore accounts for all parallel interleavings, by imple-
menting a worst-case scheduler. For example, the successors
of the initial state are:

next- state(〈⊥, 0, 0,⊥, 0, 0〉)
= {〈�, 0, 1,⊥, 0, 0〉 , 〈⊥, 0, 0,�, 0, 1〉}

One successor represents the case where the first process
executed Line 0; its program counter is set to 1, and E[0]
is updated as a consequence. Similarly, the other successor
represents the casewhere the second process executedLine 0.

While exhaustively exploring all reachable states, the
model checker searches whether it can reach a state from
the set Error. For the Bakery algorithm with two threads,
errors are violations of the mutual exclusion principle:

Error � {〈b0, n0, 7, b1, n1, 7〉 | b0, b1 ∈ {�,⊥} ,

n0, n1 ∈ [0 . . . 2]}

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-019-00341-7&domain=pdf
http://orcid.org/0000-0002-2433-4174

236 A. Laarman

bool E[2] = { false, false };
int N[2] = { 0, 0 };
void process(int i) { // with process id i = 0 or 1

0: E[i] = true;
1: N[i] = 1 + max(N[0], N[1]);
2: E[i] = false;
#define j 0
3: while (E[j]) { } // Wait until thread 0 receives its number
4: while ((N[j] != 0) && ((N[j],j) < (N[i],i))) { }
#define j 1
5: while (E[j]) { } // Wait until thread 1 receives its number
6: while ((N[j] != 0) && ((N[j],j) < (N[i],i))) { }

/* begin critical section */
..
/* end critical section */

7: N[i] = 0;
}

Fig. 1 Lamport’s “Bakery” mutual exclusion protocol for two threads.
The wait loop is unrolled at Lines 4–7, where the process waits until
all threads j, with smaller numbers or with the same number but with
higher priority, expressed as (N[j],j) < (N[i],i), passed their

critical section. The Boolean variable E[i] associated with process i
serves to allow other threads to wait until i received a number in N[i].
For simplicity, we assume that each line can be executed atomically

So, Error is a collection of all states where both processes
reside in their critical section, i.e., where both their program
counter locations equal 7.

Algorithm 1: The reachability procedure in a model
checker.
Data: ι, next- state
Result: {error, correct}

1 V := ∅
2 Q := {ι}
3 while Q 	= ∅ do
4 Q := Q \ {s} for s ∈ Q
5 V := V ∪ {s}
6 for s′ ∈ next- state(s) do
7 if s′ /∈ V then
8 if s′ ∈ Error then
9 return error

10 Q := Q ∪ {
s′}

11 return correct

For completeness, Algorithm 1 shows the basic reacha-
bility procedure. The more states the reachability procedure
can process, the more powerful the model checker is, i.e.,
the larger program instances it can automatically verify. This
number depends crucially on the size of the visited states
set V in memory. Several techniques exist to reduce V :
partial-order reduction [24,38], symmetry reduction [15,43],
BDDs [3,9], etc. Here, we focus on explicitly storing the
states in V using state compression.

The potency of compression becomes apparent from two
related observations:

Locality: Successors computed in the next-state function
exhibit locality, e.g.,

next- state(〈⊥, 1, 4,⊥, 2, 6〉)
= {〈⊥, 1, 5,⊥, 2, 6〉 , 〈⊥, 1, 4,⊥, 2, 7〉}

Note that only program counters change value (marked
bold in successors).

Combinatorics: Similar to the set of all possible state
vectors, the set of reached state vectors is also highly com-
binatorial. Assuming 〈⊥, 1, 4,⊥, 2, 6〉 can be reached
from the initial state ι, we indeed saw four different
vectors sharing large sub-vectors with their predecessors
(underlined here):
〈⊥, 0, 0,⊥, 0, 0〉−→〈�, 0, 1,⊥, 0, 0

〉
,
〈⊥, 0, 0,�, 0, 1

〉

〈⊥, 1, 4,⊥, 2, 6〉−→ 〈⊥, 1, 5,⊥, 2, 6
〉
,
〈⊥, 1, 4,⊥, 2, 7

〉

We hypothesize that the typical locality of the next-state
function ensures that the set of reachable states exhibits this
combinatorial structure in the limit. Therefore, storing each
vector in its entirety, e.g., in a hash table, would duplicate a
lot of data. By folding the reachable state vectors in a tree,
however, these shared sub-vectors only have to be stored once
(more in Sect. 3).

In this article, we investigate the lower bound on the
space requirements of typical state spaces occurring inmodel
checking consisting of n vectors with k u-bit slots each.
We do this by modeling the state spaces as an information
stream. The values in this stream probabilistically depend
on previously seen values, in effect modeling the locality in
the next-state function. A simple application of Shannon’s
information theory yields a lower bound of approximately
u+ log2(k)+ε bits for the storage requirements of our “state

123

Optimal compression of combinatorial state spaces 237

space stream” (see Theorem 1), far below the uncompressed
space requirements of k · u bits.

Subsequently, in Sects. 3 and 4, we investigate whether
this lower bound can be reached in practice. To this end, we
provide an implementation for the visited set V . A practi-
cal compressed data structure has an additional requirement
that the query time, the time it takes to look up and insert
individual state vectors, is constant with respect to the num-
ber of states stored. The storage technique suggested by the
information theoretical model, i.e., maintaining differences
between successor states, does not satisfy this requirement
as it would require the iteration of all inserted vectors in the
worst case [16]. Therefore, we utilize a binary tree in com-
bination with a compact hash table [12].

In our Compact Tree, the compact hash table has 2w+o

buckets storing tuples ofw-bit sized pointers from the binary
tree. It does so compactly by using the storage location in
memory as information [12]. Through this technique, it can
chop off w + o− 3 bits from the 2w bits of each tuple. (The
three bits are required for bookkeeping.) Under reasonable
assumption on the state length k, number of states n, pointer
size w and state slot size u, we analytically show that the
Compact Tree can even surpass the information theoretical
lower bound when w − o + 6 ≤ u (see Theorem 5).2

According to the same best-case analysis, our specific
implementation of the Compact Tree can compress arbitrar-
ily large state descriptors down to only one 32-bit integer per
state (our benchmarks contain inputs with state vectors of a
thousand bytes long). Extensive experimentation in Sect. 5
with diverse input models in five different input languages
shows moreover that this compression is also reached in
practice, and with little computational overhead due to incre-
mental insertion in the tree (see Sect. 3.3).

Surprising is perhaps that the Compact Tree can compress
states down to x bits while storing far more than 2x states.
This property of representing a setwith less space per element
than required for its unique identification is inherited from
the compact hash table. As mentioned above, this is realized
by using the place in memory as information. Indeed, the
case study in Sect. 5.9 demonstrates that the Compact Tree
implementation can store 235.6 states using only 32.5 bits per
state.

This article is an extended version of [33]; the following
contributions are added:

– New experiments using the ProB models [2,28], adding
more evidence that compact tree compression works
regardless of the input language.

2 The fact that the lower bound can be surpassed is not entirely surpris-
ing as the model to derive the bound in Sect. 2 only takes into account
locality as a source of non-entropy. This observation is further discussed
in Sect. 4.2.

– An extensive comparison of compact tree compression
with both Binary Decision Diagram and Multi-valued
Decision Diagrams in Sect. 5.5.

– A better lower bound in Theorem 5 and additional deriva-
tions and proofs for the lower bounds in Theorem 1 and
Theorem 5.

– A case study of the GARP specification from [26] in
Sect. 5.9 demonstrating that the Compact Tree imple-
mentation performs as predicted.

2 An information theoretical lower bound

The fact that state spaces have combinatorial values is related
to the fact that states generated by a model checker exhibit
locality as we discussed in Sect. 1. We will make no assump-
tions on the nature of the inputs, besides the locality of state
generation. In the current section, wewill derive the informa-
tion entropy—which is equal to the minimum number of bits
needed for its storage—of a single state vector using basic
notions from information theory.

Information theory abstracts away from the computational
nature of a program by considering sender and receiver as
black boxes that communicate data (signals) via a channel.
The goal for the sender is to encode the data as small as
possible, such that the receiver is still able to decode it back
to the original. The encoded size depends on the amount
of entropy in the data. In the most basic case, no statistical
information is known about the data: Each of the X possible
messages has an equal probability of taking one of its val-
ues, and the entropy H is maximal: H(X) = log2(|X |) bit,
i.e., the entropy directly corresponds to using one fixed-sized
(log2(|X |)) bit pattern for each possible message.

If more is known about the statistical nature of the infor-
mation coming from the sender, the entropy is lower as more
elaborate encodings can be used to reduce the number of bits
needed per piece of information. A simple example is when
we take into account the character frequency of the English
language for encoding sentences.Assuming that certain char-
acters are much more frequent, a code of fewer bits can be
used for them, while longer codes can be reserved for infre-
quent characters. To calculate the entropy in this example,
we need the probability of occurrence p(x) for each charac-
ter x ∈ X in the English language. We can deduce this from
analyzing a dictionary, or better a large corpus of texts. The
entropy then becomes: H(X) = ∑

x∈X −p(x) log2(p(x))
We apply the same principle now to state vectors. As data

source, we use the next-state function to compute new states,
as we saw in Sect. 1:

next- state(〈⊥, 1, 4,⊥, 2, 6〉) = {〈⊥, 1, 5,⊥, 2, 6〉 , . . .}

As a simplification, let states consist of k variables. By
storing full states in the queue Q, the predecessor state is

123

238 A. Laarman

Fig. 2 The states generated with the next- state function seen as a
stream exhibiting locality. To derive a lower bound, we assume that
locality changes only one value in each new vector, i.e., each vector

that has to be stored. As there are k variables in the vector, the resulting
probability that a variable changes is 1/k. So, the chance that it remains
the same with respect to the predecessor is k−1/k

always known in the model checker’s reachability procedure
(see s and s′ on line 6 inAlgorithm 1). Hence, we can abstract
away from the one-to-many relation of the next-state function
and instead view the arriving states as a k-periodic stream of
variable assignments:

〈
v00, . . . v

0
k−1

〉
,
〈
v10, . . . v

1
k−1

〉
, . . . ,

〈
vn−1
0 , . . . vn−1

k−1

〉

It thus makes sense to describe the probability that a variable
holds a certain value with respect to the same variable in
the predecessor state: For each variable vij with i ≥ 0 and
0 ≤ j < k−1, both encoder and decoder can always look at
the corresponding variable vi−1

j in the predecessor to retrieve
its previous value.

Since we are interested in establishing a lower bound,
we may safely under-approximate the number of variables
changing value with respect to a state’s predecessor. It makes
sense to assume that only one variable changes value, since
with zero changes, the same state is generated (requiring no
“new” space in V). Hence, we take the following relative
probabilities (see example Fig. 2):

p(vij 	= vi−1
j) = 1

k
p(vij = vi−1

j) = k − 1

k

Let
〈
d00 , . . . d

0
k−1

〉
,
〈
d10 , . . . d

1
k−1

〉
, . . . ,

〈
dn−1
0 , . . . dn−1

k−1

〉
,

be the domains of the state slots. As a simplification, we
assume that all domains have u bits, resulting in y = 2u

values. Therefore, there are y − 1 possible values, for which
variable vij can differ from its predecessor vi−1

j . Therefore,

the probability for one of these other values x ∈ dij becomes

p(x) = 1
k × 1

y−1 = 1
k(y−1) (this equal probability distribu-

tion over the possible values results in higher entropy, but
recall that we do not make other assumptions on the nature
of the inputs). Of course, there is only one value assignment
when the variable vij does not change, i.e., the valuation of the

same variable in the predecessor state vi−1
j .3 This results in

3 The assumption that predecessor is always known of course breaks
down for the initial state ι. Our model does not account for the initial
storage required for ι. However, as the number of states |V | typically
grows very large, this space is negligible.

the following definition of entropy per variable in the stream:

Hvar(v
i
j) = −k − 1

k
log2

(
k − 1

k

)

+
y−1∑

n=1

− 1

k(y − 1)
log2

(
1

k(y − 1)

)

After some simplification, we can derive the state vector’s
entropy:

Hvar(d
i
j) = − k − 1

k
log2

(
k − 1

k

)

+
y−1∑

n=1

− 1

k(y − 1)
log2

(
1

k(y − 1)

)

s = − k − 1

k
log2

(
k − 1

k

)
− 1

k
log2

(
1

k(y − 1)

)

Hstate � Hstate(d
i
0, . . . , d

i
k−1) =

k−1∑

j=0

Hvar(d
i
j)

= −(k − 1) log2

(
k − 1

k

)
− log2

(
1

k(y − 1)

)

= −(k − 1) log2

(
k − 1

k

)
− log2

(
1

y − 1

)
+ log2(k)

= −(k−1)(log2(k−1)− log2(k))− log2

(
1

y−1

)
+ log2(k)

= −k log2(k − 1) + k log2(k) + log2(k − 1)

− log2(k) − log2

(
1

y − 1

)
+ log2(k)

= −k log2(k−1)+k log2(k)+ log2(k−1)+ log2(y−1)

= log2(y−1) + log2(k−1) + k log2

(
k

k − 1

)
(1)

Theorem 1 (InformationEntropyof StatesExhibitingLocal-
ity) For k > 1, the information entropy of state vectors in
state spaces exhibiting locality, abbreviated with Hstate, is
bounded by:

log2(y − 1) + log2(k − 1) + 1 ≤ Hstate

≤ log2(y) + log2(k) + 2 = u + log2(k) + 2

123

Optimal compression of combinatorial state spaces 239

Proof We first show that Hstate ≤ log2(y) + log2(k) + 2 =
u + log2(k) + 2.

log2(y−1) + log2(k−1) + k log2(
k

k − 1
)

?≤ log2(y) + log2(k) + 2

log2(y) + log2(k) + k log2(
k

k − 1
)

?≤ log2(y) + log2(k) + 2 [increase left]
k log2(

k

k − 1
)

?≤ 2

log2(
k

k − 1
)

?≤ 2/k

k

k − 1

?≤ k
√
4

1 + 1

k − 1

?≤ k
√
4

(1 + 1

k − 1
)k

?≤ 4

For k = 2 (recall that k > 1), we have (1 + 1
k−1)

k = 4.
In the range [2,∞), this function monotonically decreases
toward the limit limk→∞(1+ 1

k−1)
k = limk→∞(1+ 1

k)
k = e.

Hence, it holds that (1 + 1
k−1)

k ≤ 4 and Hstate ≤ log2(y) +
log2(k) + 2 = u + log2(k) + 2 for k > 1.

Now, we show that log2(y−1)+ log2(k−1)+1 ≤ Hstate.

log2(y − 1) + log2(k − 1) + 1
?≤ log2(y−1)

+ log2(k−1) + k log2(
k

k − 1
)

1
?≤ k log2(

k

k − 1
)

1/k
?≤ log2(

k

k − 1
)

k
√
2

?≤ k

k − 1
k
√
2

?≤ 1 + 1

k − 1

2
?≤ (1 + 1

k − 1
)k

Again for k = 2,we have (1+ 1
k−1)

k = 4 and limk→∞(1+
1

k−1)
k = e (monotonically decreasing), hence log2(y− 1)+

log2(k − 1) + 1 ≤ Hstate. ��
The entropy of states Hstate provides a lower bound on the

number of bits required to encode states. Consequently, the
upper boundon the entropy inTheorem1gives a conservative
estimation of the lower bound. Intuitively, the upper bound
from Theorem 1 makes sense since a single modification in
each new state vector can be encoded with solely the index

of the changed variable, in log(k) bits, plus its new value,
in log(y) = u bits, plus some overhead to accommodate
caseswheremore than one variable changes value. This result
indicates that locality could allowus to store sets of arbitrarily
long (k ·u-bit) state vectors using a small integer of less than
u + log2(k) + 2 bits per vector.

In practice, this could mean that vectors of a thousand
(1024) byte-size variables can be compressed to 20 bits each,
which is only slightlymore than if these stateswere numbered
consecutively—in which case the states would be 18 bits—
but far less than 8192 bits required for storing the full state
vectors.

3 An analysis of binary tree compression

The interpretation of the results in Sect. 2 suggests a triv-
ial data structure to reach the information theoretical lower
bound: Simply store incremental differences between state
vectors. However, as noted in the introduction, an incre-
mental data structure like that does not provide the required
efficiency for lookup operations. (The reachability procedure
in Algorithm 1 needs to determine whether states have been
visited before on Line 7.)

The current section shows how many state vectors can be
folded into a single binary tree of hash tables to achieve shar-
ing among sub-vectorswhile also achieving poly-logarithmic
lookup times in the worst case. This is the first step toward
achieving the optimal compression from Sect. 2 in practice.
Section 4 presents the second step. We focus here on the
analysis of tree compression. For tree algorithms, refer to
[29].

3.1 Tree compression

The shape of the binary tree is fixed and depends only on
k. Vectors are folded in the tree until only tuples remain.
These are stored in the leaves. Using hashing, tuples receive
a unique index which is propagated back upwards, forming
again new tuple in the tree nodes that can be hashed again.
This process continues until a tuple is stored in the root node,
representing the entire vector.

Figure 3a demonstrates how the state 〈⊥, 1, 4,⊥, 2, 6〉 is
folded into an empty tree, which consists of k − 1 nodes of
empty hash tables storing tuples. The process starts at the root
of the tree (a) and recursively visits children while splitting
the vector (b). When the leaves of the tree (colored gray) are
reached, they are filled with the values from the vector (c).
The vectors inserted into the hash tables can be indexed. (We
use negative numbers to distinguish indices.) Indices are then
propagated back upwards to fill the tree until the root (d).

Using a similar process, we can insert vector
〈⊥, 1, 5,⊥, 2, 6〉 (e). The hash tables in the tree nodes

123

240 A. Laarman

Fig. 3 Tree folding process for
〈⊥, 1, 4,⊥, 2, 6〉 (in a–d),
〈⊥, 1, 5,⊥, 2, 6〉 (in e),
〈⊥, 1, 5,⊥, 2, 7〉 (in f) and
〈⊥, 1, 4,⊥, 2, 7〉 (in g)

(a) 〈⊥, 1, 4,⊥, 2, 6〉 (b) 〈⊥, 1, 4,⊥, 2, 6〉

〈⊥, 1, 4〉 〈⊥, 2, 6〉

〈⊥, 1〉 〈⊥, 2〉

(c) 〈⊥, 1, 4,⊥, 2, 6〉

4 6

⊥ 1 ⊥ 2

(d) 〈⊥, 1, 4,⊥, 2, 6〉
-1 -1

-1 4 -1 6

⊥ 1 ⊥ 2

(e) 〈⊥, 1, 5,⊥, 2, 6〉

-2 -1

-1 -1

-1 4

-1 5

-1 6

⊥ 1 ⊥ 2

(f) 〈⊥, 1, 4,⊥, 2, 7〉

-1 -2

-2 -1

-1 -1

-1 4

-1 5

-1 6

-1 7

⊥ 1 ⊥ 2

-2 -2

-1 -2

-2 -1

-1 -1

(g) 〈⊥, 1, 5,⊥, 2, 7〉

.

Fig. 4 From left to right: a hash
table and a tree table with their
dimensions

u

u

u

u

k

n

hash table tree database

k − 1×

w w

≤ 2w (due to indexing)

extended with index -2 storing -1 5 in the left child of the
root, while the root is extended with the tuple -2 -1 . Notice
how sub-vector sharing already occurs since the tuple -1 5

in the left child of the root points again to ⊥ 1 . In (f), the
vector 〈⊥, 1, 4,⊥, 2, 7〉 is also added. In this case, only the
right child of the root needs to be extended while the tuple
-1 -2 is added to the root.
With these three vectors in the tree (f), we can now easily

add a newvector 〈⊥, 1, 5,⊥, 2, 7〉 bymerely adding the tuple
-2 -2 to the root of the tree (g). We observe that an entire
state vector (of length k in general) can be compressed to a
single tuple of integers in the root of the tree, provided that
the sub-vectors are already present in the left and the right
sub-tree of the root.

3.2 Analysis of compression ratios

The tree containing four vectors in Fig. 3g uses 20 “places”
(= 10 tuples in tree nodes) to store four vectors with a total of
24 variables. The more vectors are added, the more sharing

can occur and the better the compression. We now recall the
worst-case and the best-case compression ratios for this tree
database. We make the following reasonable assumptions
about their dimensions:

– The respective database stores n = |V | state vectors of k
u-bit variables.

– The size of tree tuples is 2w bits, and w bits are enough
to store both a variable valuation (in a leaf) or a tree
reference (in a tree node); hence, u ≤ w.

– Keys can be stored without overhead in tables.4

– k is a power of 2.5

Figure 4 provides an overview of the different data struc-
tures and the stated assumptions about their dimensions.

To arrive at the worst-case compression scenario (The-
orem 2), consider the case where all states s ∈ V have k

4 [29] explains in detail how this can be achieved.
5 Solely assumed to simplify the formulae below.

123

Optimal compression of combinatorial state spaces 241

identical data values: V = {vk | v ∈ {1, . . . , n}}, where
vk is a vector of length k: 〈v, . . . , v〉. No sharing can occur
between state vectors in the database, so for each state we
store k − 1 tuples at the tree nodes.

Theorem 2 ([4]) In the worst case, the tree database requires
at most k − 1 tuple entries of 2w bits per state vector.

The best-case scenario (Theorem3) is easy to comprehend
from the effects of a good combinatorial structure on the size
of the parent tables in the tree. If a certain tree table contains
d tuple entries and its sibling contains e entries, then the
parent can have up to d×e entries (all combinations, i.e., the
Cartesian product). In a tree that is perfectly balanced (d = e
for all sibling tables), the root node has n entries (1 per state),
its children have

√
n entries, its children’s children 4

√
n, etc.

Figure 5 depicts this scenario.
Hence, there are a total of n + 2

√
n + 4 4

√
n + · · ·

(log2(k)times) · · · + k/2 k/2
√
n tuple entries. Dividing this

series by n gives a series for the expected number of tuple

entries per state:
∑log2(k)−1

i=0 2i
2i√n
n . It is hard to seewhere this

series exactly converges, but Theorem 3 provides an upper
bound. The theorem is a refinement of the upper bound estab-
lished in [4]. Note that the example above of a tree with the
four Bakery algorithm states already represents an optimal
scenario, i.e., the root table is the cross product of its children.

Theorem 3 In the best case andwith k ≥ 8, the tree database
requires less than n + 2

√
n + 4

√
n(k − 4) tuple entries of 2w

bits to store n vectors.

Proof In the best case, the root tree table contains n entries
and its children both contain

√
n entries. The entries in the

four children’s children of the root represent vectors of size
k/4. These four tree nodes contain each of the 4

√
n entries that

each require k/4 − 1 tuples taking the worst case according
to Theorem 2 (hence also k ≥ 8). ��
Corollary 1 ([29]) In the best case, the total number of tuple
entries l in all descendants of root table is negligible (l �
n), assuming a relatively large number of vectors is stored:
n � k2 � 1.

Corollary 2 ([29]) In the best case, the compressed state size
approaches 2w.

Table 1 lists the achieved compressed sizes for states, as
stored in a normal hash table and a tree database. As a sim-
plifying assumption, we take u to be equal w, which can be
the case if the tree is specifically adapted to accommodate u
bit references.

3.3 Poly-logarithmic-time tree updates by
incremental insertion

The Compact Tree trades ku bit vector lookups (in a plain
hash table) for k − 1 of 2u-bit tuple lookups in its nodes,

s0

.........

k

sk-1

log2(k)

k
2

k/2
√
n

}

k
4

k/4
√
n

√
n

Fig. 5 Optimal entries per tree node level

Table 1 Theoretical bounds for the compressed state sizes in the tree
database and in plain hash table storage

Structure Worst case Best case

Hash table ku ku

Tree database 2kw − 2w 2w + εw

Note that while u ≤ w, often u, w are in the same ballpark

〈⊥, 1, 4,⊥, 2, 6〉 〈⊥, 1,5,⊥, 2, 6〉
-1 -1

-1 4 -1 6

⊥ 1 ⊥ 2

〈⊥, 1, 4〉 〈⊥, 2, 6〉

〈⊥, 1〉 〈⊥, 2〉

-2 -1

-1 -1

-1 4

-1 5

×

×

Fig. 6 Incremental insertion of state 〈⊥, 1, 5,⊥, 2, 6〉. Only a small
part of the tree needs to be updated (dashed boxes), because the prede-
cessor state 〈⊥, 1, 4,⊥, 2, 6〉 is used to look up unchanged parts (the
crosses in the tree of the successor state)

assuming w ≈ u. This makes the data structure already con-
stant timewith respect to the number of vectors n, as required
in Sect. 1. Moreover, the tree requires only few additional
data accesses compared to a hash table, i.e.,O(ku − 2u) bits
(assuming hash table accesses are indeed amortized constant
time).

However, far worse for modern computers with steep
memory hierarchies is that the Compact Tree makes k − 1
times more random memory accesses compared to a plain
table (which, after all, can store key data consecutively in
memory). Luckily, we can exploit locality again to speed up
tree lookups by keeping the tree pointers of the predecessor
state in the search stack (Q), as explained in [29]. Figure 6
illustrates this. The resulting incremental insertion yields a
poly-logarithmic query time ofO(log(k)×u), which is even
faster thanO(ku) time required by a plain hash table, but still
requires log(k) times more random memory accesses (note
that both are still constant in n). Nonetheless, in the case
of good compression, the lower tables in the tree typically
contain fewer entries which can more easily be cached.

123

242 A. Laarman

Keys K
|K| ≤ |T | ≤ |U |

Universe U
|U | = 2x

k1

k2

k3

k4

r1

r3

r4

r2

q(k1)

q(k2)

q(k3)

q(k4)

∀i : ri = rem(ki)

∀i : ki = ri · |T | + q(ki)

Cleary table T

b = r + 3

2m

Fig. 7 Cleary table T storing keys K from universeU with three admin.
bits/bucket. (We omit that keys should be hashed, with invertible func-
tion, for good distribution.)

4 A novel compact tree

The current section shows how a normal tree database can be
extended to reach the information theoretical optimum using
a compact hash table.

4.1 Hash tables and compact hash tables

A hash table stores a subset of a large universe U of keys and
provides the means to look up individual keys in constant
time. It uses a hash function to calculate an address h from the
unique key. The entire key is then stored at its hash or home
location in a table T (an array of buckets): T [h] ← key.
Because typically |U | � |T |, multiple keys may have the
same hash location. These so-called collisions are handled
by calculating alternate hash locations and inserting the key
there if empty. This process is known as probing. For this
reason, the entire key needs to be stored in it, to distinguish
which key is currently mapped to a bucket of T (Fig. 7).

Observe, however, that in the case that |U | ≤ |T |, the
table can be replaced with a perfect hash function and a bit
array.Compact hashing [12] generalizes this idea for the case
|U | > |T |. (The table size is relatively close to the size of the
universe.) The compact table first splits a key k into a quotient
q(k) and a remainder rem(k), using a reversible operation,
e.g., q(k) = k% |T | and rem(k) = k/ |T |. When the key
is x = �log2(|U |)� bits, the quotient m = �log2(|T |)� bits
and the remainder r = x − m bits. The quotient is used for
addressing in T (like in a normal hash table). Now, only the
remainder is stored in the bucket. The complete key can now
be reconstructed from the value in T and the home loca-
tion of the key. If, due to collisions, the key is not stored at
its home location, additional information is needed. Cleary
[12] solved this problem with little overhead by imposing an
order on the keys in T and introducing three administration
bits per bucket. For details, see [12,17,42]. Because of the

administration bits, the bucket size b of compact hash tables
is b = r + 3 bits. The ratio b/x can approach zero arbitrarily
close, yielding good compression. For instance, a compact
table only needs five bits per bucket to store 230 32-bit keys.

4.2 Compact tree database

To create a compact tree database, we replace the hash tables
in the tree nodes with compact hash tables.

Let the tree references again be w bits; tuples in a tree
node table are 2w bits. The tree node table’s universe there-
fore contains 22w tuples. However, tree node tables cannot
contain more than 2w entries; otherwise, the entries cannot
be referenced (withw-bit indices) by parent tree node tables.
As the tree’s root table has no parent, it can contain up to 22w

entries. Let o be the overcommit of the tree root table Troot,
i.e., log2(|Troot|) = 2w+o for 0 ≤ o ≤ w. Overcommitting
the root table in the tree can yield better reductions as we will
see. However, it also limits the subsets of the state universe
that the tree can store. Close-to-worst-case subsets might be
rejected as the left or right child (2w tuples max) of the root
grows full before the root (2w+o tuples max).

We will only focus on replacing the root table Troot with a
compact hash table as it dominates the tree’s memory usage
in the optimal case according to Corollary 1. The following
parameters follow immediately:

– x = 2w, (universe bits)
– m = w + o, (quotient bits)
– r = 2w − w − o = w − o, and (remainder bits)
– b = 2w − w − o + 3 = w − o + 3. (bucket bits)

Let the Compact Tree Database be a Tree Database with
the root table replaced by a compact hash table with the
dimensions provided above, ergo: n = |V | = |Troot| =
2w+o = 2m . Theorem 4 gives its best-case memory usage.

Theorem 4 (Compact tree best case) In the best case and
with k ≥ 8, the compact tree database requires less than
CTopt � (w−o+3)n+4w

√
n+2w 4

√
n(k−4) bits to store

n vectors.

Proof According to Theorem 3, there are at most n+2
√
n+

4
√
n(k − 4) tuples in a tree with optimal storage. The root

table contains n of these tuples, its descendants use at most
2
√
n + 4

√
n(k − 4) bits. The n tuples in the root table can

now be stored using w − o + 3 bits in the compact hash
table buckets instead of 2w bits; hence, the root table uses
n(w − o + 3) bits. ��

Finally, Theorem 5 relates the compact tree compression
results to our information theoretical model in Sect. 2, under
the reasonable assumption that 8 ≤ k ≤ 4

√
n + 4. It shows

that CTopt can approach Hstate up to a factor w−o+6
u . As a

123

Optimal compression of combinatorial state spaces 243

consequence, when the overcommit (o− 6 bits) fills the gap
ofw−u bits between the sizes of references in the tree (w bits)
and the sizes of variables (u bits), the optimal compression
is approached with the compact tree. If o − 6 > w − u, the
compact tree can even surpass the compression predicted by
our information theoretical model. This is not surprising as
the treewith k = 2 reduces to a compact hash table, forwhich
a different information theoretical model holds [17,39].

Theorem 5 Let CTopt be the best-case compact tree com-
pressed vector sizes. We have CTopt ≤ Hstate provided that
w − o + 6 ≤ u and 8 ≤ k ≤ 4

√
n + 4.

Proof According toTheorem1,nHstate ≤ un+log2(k)n+2n
bits. According to Theorem 4, the compact tree database uses
at most CTopt � (w − o + 3)n + 4w

√
n + 2w 4

√
n(k − 4)

bits in the best case and with k ≥ 8.
We now derive c in CTopt ≤ cHstate using the lower bound

from Theorem 1.

(w − o + 3)n + 4w
√
n + 2w 4

√
n(k − 4)

?≤ c log2(y − 1)n + c log2(k − 1)n + cn

wn − on + 3n + 4w
√
n + 2w 4

√
n(k − 4)

?≤ c log2(y − 1)n + c log2(k − 1)n + cn

(w − o − c + 3)n + 4w
√
n + 2w 4

√
n(k − 4)

?≤ c log2(y − 1)n + c log2(k − 1)n [−cn]
(w − o − c + 3)n + 4w

√
n + 2w 4

√
n(k − 4)

?≤ c(u − 1)n + c log2(k − 1)n [r .r .6]
4w

√
n + 2w 4

√
n(k − 4)

?≤ (c(u − 1) − w + o + c − 3)n + c log2(k − 1)n [−..]
4w

√
n + 2w 4

√
n(k − 4)

?≤ (cu − w + o − 3)n + c log2(k − 1)n

4w
√
n + 2w 4

√
n(k − 4)

?≤ (cu − w + o − 3)n [reduce right by c log2(k − 1)n)]
4w/

√
n + 2w(k − 4)/n3/4

?≤ cu − w + o − 3 [divide by n]
4w/

√
n + 2w 4

√
n/n3/4

?≤ cu − w + o − 3 [increase left by n ≥ (k − 4)4]
4w/

√
n + 2w/

√
n

?≤ cu − w + o − 3

6w/
√
n

?≤ cu − w + o − 3

3
?≤ cu − w + o − 3 [increase left by w/

√
n ≤ 1/27]

w − o + 6
?≤ cu [+w − o + 3]

w − o + 6

u

?≤ c

Taking c = 1, we obtain that CTopt ≤ Hstate provided that
w − o + 6 ≤ u and n ≥ (k − 4)4. ��

5 Experiments

We implemented the Compact Tree in the model checker
LTSmin [30]. This implementation is based on two concur-
rent data structures: a tree database [29] and a compact hash
table [42], based on Cleary’s approach [12]. The parameters
of the Compact Tree Table in this implementation are (for
details see [32]):

– w = 30 bits (The internal tree references are 30 bit)
– u = 30 bits (The state variables can be 30-bit integers,
often less is used)

– o = 2 bits (The root table fits a maximum of 232

elements)

LTSmin is a language-independent model checker based
on a partitioned next-state interface [23]. We exploit this
property to investigate the compression ratios of theCompact
Tree for four different input types: DVE models written for
the DiVinE model checker [1], Promela models written for
the spinmodel checker [20], process algebra models written
for themCRL2model checker [13], Petri netmodels from the
MCC contest [27], and EventB/ProBmodels from LTSmin’s
ProB frontend [2,28]. Table 2 provides an overview of the
models in each of these input formats and a justification for
the selection criterion used. In total, over 400 models were
used in these benchmarks.

We compare the Compact Tree against different com-
pressed and uncompressed data structures: a hash table,
spin’s collapse tables [19], Tries [21], Binary Decision Dia-
grams (BDDs) [6,8] and Multi-Valued Decision Diagrams
(MDDs) [35,41].

All experiments ran on a machine with 128 GB memory
and 48 cores: four AMD OpteronTM 6168 processors with
12 cores each.

5.1 Compression ratio

Compressed state sizes of our implementation can roughly
approachw−2+3 = 31 bits or± 4Bytes byCorollary 1 and
Theorem 4. We first investigate whether this compression is
actually reached in practice. Figure 8 plots the compressed

6 Reduce right-hand side taking u − 1 < log(y − 1).
7 We show that w/

√
n ≤ 1/2 under the assumption that n ≥ (k − 4)4

(and k ≥ 8). We have w ≤ log2(n) in order to accommodate the worst-
case compression (see Theorem 2 in Sect. 4). Therefore, we can derive
log2(n)/

√
n ≤ 1/2. Implied by the two earlier assumptions, we have

n ≥ 256 for which the inequality indeed holds.

123

244 A. Laarman

Table 2 Input languages and model selection criteria

DVE All 267 benchmarks from the BEEM database [36] that completed within 1h in (sequential) LTSmin are selected. (This
selection criterium is more stringent than for the other languages, because the set of models is large and the presence of
differently sized versions of the same type of model still ensures that the selection is varied.)

Promela All models currently supported by LTSmin [40] with the same state count as in spin are selected. This includes case studies
of the GARP, the i-, x509 and BRP protocols

Petri net All models from the MCC 2016 competition [27] that are also considered by Jensen et al. [21] and complete within 10h in
(sequential) LTSmin. (Again, this ensures a varied selection, since Jensen at al. [21] only feature instances that resulted in
best-case, worst-case and average-case compression using a Trie data structure.)

mCRL2 We selected all industrial case studies from the mCRL2 toolset that completed within 10h in (sequential) LTSmin

EventB/ProB All models from [28] which complete within 10h in sequential LTSmin

20 50 100 200 500 1000 2000

5
10

15
20

25

State length (Bytes)

B
yt

es
/s

ta
te

 (C
om

pa
ct

 T
re

e)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
ProB
avg=6.97
min=4B

Fig. 8 Compressed sizes in Compact Tree for all benchmarks against
the length k of the uncompressed state vector

sizes of the state vectors against the length of the uncom-
pressed vector. We see that for some models, the optimal
compression is indeed reached. The average compression
is 6.97 Bytes per state. The fact that there is little correla-
tion with the vector length confirms that the compressed size
indeed tends to be constant and vectors of up to 1000 Bytes
are compressed to just above fourBytes. Figure 9 furthermore
reveals that good compression correlates positively with the
state space size, which can be expected as the tree can exhibit
more sharing.

Only for Petri nets and for DVE models, we find models
that exhibit worse compression (between 10 and 15 Bytes
per state), even when the state space is large. However, we
observed that in these cases, the vector length k is also large,
e.g., the two Petri net instances with a compressed size of
around 12 have k > 400. Based on some earlier informal
experiments, we believe that with some variable reordering,
this compression might very well be improved to reach the
optimum. Thus far, however, we were unable to derive a
reordering heuristic that consistently improves the compres-
sion.

1e+04 1e+06 1e+08 1e+10
5

10
15

20
25

Number of states

B
yt

es
/s

ta
te

 (C
om

pa
ct

 T
re

e)
●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
ProB
avg=6.97
min=4B

Fig. 9 Compressed sizes in Compact Tree for all benchmarks against
the size of the state space n

5.2 Runtime performance and parallel scalability

In the introduction, we mentioned the requirement that a
database visited set ideally features constant lookup times,
like in a normal hash table. To this end, we compare the
runtime of the DVE models with the spin model checker, a
model checker known for its fast state generator.8 Figure 10
confirms that the runtimes of LTSminwith Compact Tree are
sequentially on par with those of spin, and often even bet-
ter. We attribute this performance mainly to the incremental
vector insertion discussed in Sect. 3 (see Fig. 6). Based on
the MCC 2016 [27] results, we believe that LTSmin’s per-
formance is on par with other Petri net tools as well.

The measured performance first of all confirms that the
CompactTree satisfies its requirements. Secondly, it provides
a good basis for the analysis of parallel scalability (if we had
chosen to implement the Compact Tree in a slow scripting
language, the slowdown would yield “free” speedup). Fig-
ure 11 compares the sequential runtimes to the runtimes with

8 The DVE models are translated to Promela, and we only selected
those (76/267) which preserved state count. This comparison can
be examined interactively at http://fmt.ewi.utwente.nl/tools/ltsmin/
performance/ (select LTSmin-cleary-dfs).

123

http://fmt.ewi.utwente.nl/tools/ltsmin/performance/
http://fmt.ewi.utwente.nl/tools/ltsmin/performance/

Optimal compression of combinatorial state spaces 245

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3

SPIN (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

dve
promela
equilibrium

Fig. 10 Sequential runtimes of LTSmin with Compact Tree and spin
with optimal settings (as reported in [40]) on (translated) DVE models
and Promela models

1e−02 1e+00 1e+02 1e+04

1e
−0

2
1e

+0
0

1e
+0

2
1e

+0
4

Compact Tree 1x (sec)

C
on

cu
rr

en
t C

om
pa

ct
 T

re
e

48
x

(s
ec

)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
ProB
48x speedup
timeout (10h)
equilibrium

Fig. 11 Runtimes, sequentially and with 48 threads, of LTSmin with
compact tree on all models: DVE, Promela, ProB, mCRL2 and Petri
nets

48 threads. Themeasured speedup often surpasses 40x, espe-
cially when the runtimes are longer and there is more work to
parallelize. Speedups are good regardless of input language.

5.3 Comparison with SPIN’s collapse compression

spin’s collapse compression uses the process structure in
the input to fold vectors, similar as in tree compression, but
with only one table per process, whereas the tree continues
splitting vectors until only tuples are left. The lower bounds
reported in the current paper cannot be reached with collapse
due to its n-ary tree structure and limit to two levels. Our
benchmarks compare the Compact Tree with spin’s collapse
compression in both per state compressed size (see Fig. 12)
and total memory use (see Fig. 13). We used all DVE inputs
that were translated to Promela and have the same state count
in spin as in LTSmin. Both the compression and the total

●

● ● ● ● ●

●

●

●

●

●
●

●

●

●

●
●

● ● ●

●

●

● ●

●

● ● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ● ●

●

●
●

● ●

1e+03 1e+05 1e+07

0
50

10
0

15
0

Number of states

C
om

pr
es

si
on

 (B
yt

es
 /

st
at

e)

● SPIN
Tree

Fig. 12 Compressed sizes per state of LTSminwith Compact Tree and
spin with collapse compression [19] on DVE models

5e−01 5e+00 5e+01 5e+02 5e+03

1e
−0

3
1e

−0
1

1e
+0

1

SPIN (MB)

C
om

pa
ct

 T
re

e
(M

B
)

dve
promela
equilibrium

Fig. 13 Absolute memory use of LTSminwith Compact Tree and spin
with collapse compression [19] on DVE models

memory use of the Compact Tree improve upon collapse by
an order of magnitude.

5.4 Comparison with trie compression

Jensen et al. [21] propose a Trie for storing state vectors.
Tries compress vectors by ensuring sharing between prefixes.
BDDs [6] also store state vectors efficiently; however, Jensen
et al. [22] figure them too slow for state space exploration.
The tool from [21] implements reachability with Tries for
Petri nets. We compare it to the compact tree in LTSmin
in Figs. 14 and 15. We see that its compression correlates
positively with the state space size. With its near-optimal
compressions for the Petri net models, the Compact Tree
provides at least a factor 2 improvement over the Trie. The
Trie however exhibits better runtime performance, especially
for the small and large state spaces. We suspect that the Trie
experiences more caching benefits for small problems and

123

246 A. Laarman

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

1e+06 5e+06 2e+07 1e+08

20
40

60
80

Number of states

C
om

pr
es

si
on

 (B
yt

es
 /

st
at

e)

● Trie
Compact Tree (petrinet)

Fig. 14 Memory use per state of LTSmin with Compact Tree and Trie
from [21] on Petri net models

50 100 500 2000 5000 20000

50
10

0
50

0
20

00
50

00
20

00
0

Trie (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

petrinet
equilibrium

Fig. 15 Runtime (sequential) of LTSmin with Compact Tree and Trie
from [21] on Petri net models

that the hash table probes in the Compact Tree become more
expensive for larger ones, as shown in [42].

5.5 Comparison with BDDs

Model checking with BDDs is done semi-symbolically in
LTSmin [3], using its partitioned next-state interface [23].
Each next-state partition represents one action in the underly-
ing modeling formalism. (LTSmin is language independent,
but an action in turn can be, e.g., a statement in a process
guarded by a program counter.) Second, the model checker
creates an empty BDD representing the transition relation for
each partition. (The relations are interpreted conjunctively,
implementing asynchronous behavior in the input [7].) These
relation BDDs are projected to the variables involved in the
underlying action, which in many cases involve just a few
variables, e.g., a program counter update and a variable ref-
erence/update. Third, starting from the initial state, themodel

checker fills the relation by calling the next-state function and
adding the result to the relation BDD. Because the BDDs are
(often) defined over a subset of all variables, the learning
terminates after a while and the closure is computed fully
symbolically inside the BDDs.

When the reachability procedure converges to a fixpoint,
the BDD representing the visited set encodes all reach-
able states. However, intermediary (non-fixpoint) visited set
BDDs might be much larger than the final visited set (as
not all subsets are efficiently represented by BDDs). (For
this reason, symbolic reachability with BDDs is rather sen-
sitive to the search order used [10,41].) On the other hand,
(compact) tree compression space requirements growmono-
tonically with the number of inserted vectors, making them
insensitive to search orders. (No subset ever takesmore space
than storing the entire state space.) Therefore, it could be
argued that symbolic BDD-based model checking is lim-
ited by the largest BDD that needs to be stored during the
entire reachability procedure. However, we are strictly inter-
ested in compression here—not in investigating the smallest
possible intermediary BDDs with different search orders—
and hence focus on the final BDD representing all reachable
states. Nonetheless, Sect. 5.7 investigates the difference in
size of the final decision diagram with the peak intermediary
decision diagram.

We compare both the runtime of the model checking pro-
cedure and compressed sizes of the visited set as BDDs
with those of tree compression. Apart from the intermedi-
ary visited set sizes, another point should be raised about
this comparison. The semi-symbolic approach might not be
as efficient as a fully symbolic procedure, such as found in
model checkers such as NuSMV [11], since LTSmin learns
the transition relation on the fly. On the other hand, LTSmin
allows formore freedom in the next-state function implemen-
tation, e.g., multiplication of integer variables. Therefore,
we can expect similar unwieldy BDD sizes for such hard
inputs in NuSMV [6]. For optimal results in LTSmin, we ran
the symbolic tool with the flags for saturation and variable
reordering the following options:

–regroup=bcm,gs –order=chain-prev

–saturation=sat-like –save-sat-levels

Figures 16 and 17 show the result of the comparisons.
We observe that the compressed state sizes in BDDs are
unrelated to tree compression sizes. The latter are always
(slightly) larger than the minimum of four bytes per states,
while BDDs can even compress better than that. This can be
expected as a single BDD node; the “true” node represents
all states. Other large subsets might also be represented effi-
ciently (for example, when there is no correlation between
variable values). Nonetheless, the converse is also true as the
BDD can explode in size (which we see happening here for

123

Optimal compression of combinatorial state spaces 247

●●

●

●

●●

●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with BDD (Bytes per state)

C
om

pa
ct

 T
re

e
(B

yt
es

 p
er

 s
ta

te
)

●

dve
mcrl2
petrinet
promela
ProB
min=4B
equilibrium

Fig. 16 Memory use per state of LTSminwith Compact Tree and BDD
[3]

●●

●

●

●

●
●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with BDD (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

●

dve
mcrl2
petrinet
promela
ProB
timeout (10h)

ilib i

Fig. 17 Runtime (sequential) of LTSminwith Compact Tree and BDD
[3]

two Promela models and mCRL2’s process algebraic mod-
els).

Runtime, however, does not follow the trend of the com-
pression in BDDs. This is likely because the size of the
intermediary BDDs is larger and/or because it may take long
before the fixpoint is computed in BDDs. (The BDD oper-
ations used for image computation are polynomial in the
size of the BDD, i.e., potentially exponentially faster than
handling the states in BDD individually. However, many iter-
ations might be needed before the fixpoint is found, so even
when intermediary BDDs are small the reachability might
take long.)

5.6 Comparison with MDDs

LTSmin uses Sylvan as BDD/MDD implementation. Multi-
valued decision diagrams are implemented in Sylvan as List
Decision Diagrams (LDDs) [41]. Like MDDs, the edges in

●●

●

●

●●

●

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3

LTSmin with LDD (Bytes per state)

C
om

pa
ct

 T
re

e
(B

yt
es

 p
er

 s
ta

te
)

●

dve
mcrl2
petrinet
promela
ProB
min=4B
equilibrium

Fig. 18 Compressed sizes per state of LTSmin with LDD [19]

●●

●

●

●

●
●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with LDD (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

●

dve
mcrl2
petrinet
promela
ProB
timeout (10h)
equil.

Fig. 19 Runtime (sequential) of LTSmin with Compact Tree and
LTSmin with LDD

LDDs represent integer values rather than the Boolean val-
ues in BDD edges, thereby often reducing the size for state
spaces of software systems. Additionally, LDDs represent
the resulting n-ary tree as a binary tree, ala Knuth [25], to
allow sharing between sublists at the same level. (Each level
represents one totally ordered variable.)

From Fig. 18, we see that LDDs seem to provide an order
of magnitude better compression ratios than BDDs. In fewer
cases, the compact tree still beats the LDDs (compared to
BDDs). The experiments show that runtimes of the tree and
LDDs are harder to compare (see Fig. 19). Looking at the
larger models (longer runtimes), we see thought that DVE
problems seem better suited for tree compression, while the
other input languages tend to verify faster with LDDs.

5.7 Decision diagram peak sizes

Asmentioned in Sect. 5.5, the size of a decision diagram does
not monotonically grow with the size of the set it stores. For

123

248 A. Laarman

●●

●

●

●

●

0.1 0.5 5.0 50.0

0.
1

0.
5

5.
0

50
.0

LTSmin with LDD (Bytes per state)

LT
S

m
in

 w
ith

 L
D

D
 (B

yt
es

 p
er

 s
ta

te
 P

E
A

K
)

●

dve
mcrl2
petrinet
promela
ProB
equilibrium

Fig. 20 Compressed state sizes in the final LDD compared to the peak
intermediate LDD

this reason, the bottleneck for symbolic reachability using
BDDs is the peak-sized decision diagram encountered during
the entire procedure. To investigate the impact, we measured
the peak decision diagram size for theMDD-based reachabil-
ity and compared it against the size of the final BDD. For this
experiment, we use a saturation search order as it is known to
keep the size of the intermediate decision diagrams smallest
[10,41]. Figure 20 shows that the peak sizes can be almost an
order of magnitude larger than final sizes; however, for most
inputs the impact is not that pronounced.

5.8 Comparison with parallel BDDs/MDDs

Figures 21 and 22 show the speedups of BDDs/LDDs. Good
speedups are less common than with tree compression (cf.
Fig. 11). We do observe however that BDDs scale better than
MDDs. The difference in speedup results in a performance
advantage for the tree approach, when parallel verification is
used, as Figs. 23 and 24 show.

5.9 Case study: GARP

To push the envelop in enumerative model checking, we
performed a case study using the GARP protocol as imple-
mented by Konnov and Letichevsky [26]. Instantiated with
one bridge and two applications, the implementation has
3.31e11 (331 billion) states according to the symbolic back-
end of LTSmin, which takes 3.2h to explore the full state
space. Using partial-order reduction [31], we could fully
explore the model with the enumerative multi-core backend
[32] for the first time. (While the model could already be
explored symbolically with BDDs, this feat is still of interest
as enumerative analysis methods can more efficiently verify
certain temporal properties on the fly [34].)

To this end, we used another machine with 512 GB mem-
ory and 64 cores: four AMD OpteronTM 6376 processors
with 16 cores each. The model checker was configured to
use all available memory by setting:

– w = 36
– o = 7
– u = 30

Table 3 shows the results of the case study. The first thing
to note is that the OS-reported memory use is close to the
space occupied by filled table buckets in the Compact Tree.
This means that the implementation performs according to
the design as predicted by the analysis in Sects. 3.2 and 4.2.
(In fact, due to likely paging of all allocated table buckets,
the OS-reported memory should be closer to the memory
allocated by the Compact Tree. And the difference of 41 GB
between tree-allocated and OS-reported memory is taken up
by the five billion states we measured which were stored in
the queues at peak.)

Furthermore, the compressed state size of 32.5 bits per
state is close to the best case of ≈ 32 bits as predicted by
Theorem 4 according to the above parameters. Interesting to
note is that this amount of space used per state is smaller
than the space required for a unique state identifier, which
takes 35.6 bits given that 5.2e10 states are stored. This can
be explained by the fact that the compact hash table uses the
location of buckets as information as discussed in Sect. 4.1.

6 Discussion and conclusion

The tree compression method discussed here is a more gen-
eral variant of recursive indexing [19], which only breaks
down processes into separate tables. Hash compaction [37]
compresses states to an integer-sized hash, but this lossy tech-
nique becomes redundant with the compact tree database.
Bloom filters [18] still present a worthwhile lossy alterna-
tive using only a few bits per state, but of course abandon
soundness when applied in model checking.

Valmari and Geldenhuys [17] present a data structure sim-
ilar to Cleary’s [12].

Evangelista et al. [16] report on a hash table storing
incremental differences of successor states (similar to the
incremental data structure discussed in Sect. 3). Partial vec-
tors in the table contain a pointer to one predecessor, and
only the initial vector is stored fully. Their partial vectors
take 2u + log(E) bits, where E is the set of (deterministic)
actions in the model. To look up vectors in this database, a
state is hashed to a table bucket. Defying our requirement
of constant time for lookups, Evangelista et al. reconstruct
full states by reconstructing all ancestors (in the worst case,
there might be as many ancestors as reachable states). We

123

Optimal compression of combinatorial state spaces 249

1 10 100 1000 10000

1
10

10
0

10
00

10
00

0

LTSmin with BDD 1x (sec)

LT
S

m
in

 w
ith

 B
D

D
 4

8x
 (s

ec
)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
ProB
48x speedup
timeout (10h)
equilibrium

Fig. 21 Speedup using 48 cores of LTSmin with BDD (cf. Fig. 11)

1 10 100 1000 10000

1
10

10
0

10
00

10
00

0

LTSmin with LDD 1x (sec)

LT
S

m
in

 w
ith

 L
D

D
 4

8x
 (s

ec
)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
ProB
48x speedup
timeout (10h)
equilibrium

Fig. 22 Speedup using 48 cores of LTSmin with LDD (cf. Fig. 11)

could not compare to this approach due to lack of an avail-
able implementation.

A Binary Decision Diagram (BDD) [6] can store an astro-
nomically sized state set using only constant memory (the
true leaf). Our information theoretical model suggests how-
ever that compressed sizes are merely linear in the number of
states (and constant in the length of the state vector). We can
explain this with the fact that we only assume locality about
inputs. Compression in BDDs, on the other hand, depends on
the entire state space. Therefore, an analysis is needed that
takes into account the entire space,much like the analysis pre-
sented in [17] In the case of model checking, we could also
assume structural, global properties to describe the nonlinear
compression of BDDs (e.g., the input’s decomposition into
processes, symmetries, etc). Valmari [39] presents a similar
approach for storing Rubik’s cube states.

Much like in BDDs [5], the variable ordering influences
the number of nodes in a tree table and thus the com-
pression, as mentioned in Sect. 1. Consider the vector set
{i, i, j, j | i, j ∈ [1 . . . N]}: Only the root node in a compact

●●

●

●

●

●

●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with BDD 48x (sec)

C
om

pa
ct

 T
re

e
48

x
(s

ec
)

●

dve
mcrl2
petrinet
promela
ProB
timeout (10h)
equilibrium

Fig. 23 Runtime (48 cores) of LTSmin with Compact Tree versus
LTSmin with BDD

●●

●

●

●

●

●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with LDD 48x (sec)

C
om

pa
ct

 T
re

e
48

x
(s

ec
)

●

dve
mcrl2
petrinet
promela
ProB
timeout (10h)
equil.

Fig. 24 Runtime (48 cores) of LTSmin with Compact Tree versus
LTSmin with LDD

Table 3 Results for the GARP case study

Maximum memory used as reported by OS 321 GB

Memory allocated by Compact Tree 260 GB

Memory occupied in Compact Tree 198 GB

Run time 2.4h

States explored (reduced to 16% by POR) 5.2e10 ≈ 235.6

Compressed state size 4.06 B = 32.5 bits

Note that this includes queues and other data structures in the model
checker

tree will contain N 2 entries, while the leaf nodes contain
N entries. On the other hand, we have no such luck for
the set {i, j, i, j | i, j ∈ [1 . . . N]}. Preliminary research [14]
revealed that the tree’s optimum can be reached inmost cases
for DVE models, but we were unable to find a heuristic that
consistently realizes this.

123

250 A. Laarman

Acknowledgements The author thanks Yakir Vizel for promptly point-
ing out the natural number as a limit, Tim van Ervsen for a fruitful
discussion and Jaco van de Pol for the use of the multi-core cluster of
his Formal Methods & Tools group at University of Twente.
This work is part of the research program VENI with Project Number
639.021.649, which is (partly) financed by the Netherlands Organiza-
tion for Scientific Research (NWO).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Baranová Z, Barnat J, Kejstová K, Kučera T, LaukoJan H, Mrázek
J, Ročkai P, Štill V (2017) Model checking of C and C++ with
DIVINE 4. In: D’Souza D, Narayan Kumar K (eds) Automated
technology for verification and analysis. Springer, Cham, pp 201–
207

2. Bendisposto J, Körner P, Leuschel M, Meijer J, van de Pol J, Tre-
harne H, Whitefield J (2016) Symbolic reachability analysis of b
through prob and ltsmin. In: Ábrahám E, Huisman M (eds) Inte-
grated formal methods. Springer, Cham, pp 275–291

3. Blom SCC, van de Pol J, Weber M (2010) LTSmin: distributed and
symbolic reachability. In: CAV, volume 6174 of LNCS. Springer,
pp 354–359

4. Blom S, Lisser B, van de Pol J, Weber M (2009) A database
approach to distributed state space generation. J Logic Comput
21(1):45–62

5. Bollig B, Wegener I (1996) Improving the variable ordering of
OBDDs is NP-complete. IEEE Trans Comput 45:993–1002

6. Bryant RE (1986) Graph-based algorithms for Boolean function
manipulation. IEEE Trans Comput 35(8):677–691

7. Burch JR, Clarke EM, Long DE (1991) Symbolic model checking
with partitioned transition relations. North-Holland, pp 49–58

8. Burch JR, Clarke EM, McMillan KL, Dill DL (1991) Sequential
circuit verificationusing symbolicmodel checking. In: Proceedings
of the 27th ACM/IEEE design automation conference. ACM, New
York,NY,USA, pp46–51. https://doi.org/10.1145/123186.123223

9. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1990)
Symbolic model checking: 1020 states and beyond. In: LICS, pp
428–439

10. CiardoG, LüttgenG, Siminiceanu R (2001) Saturation: an efficient
iteration strategy for symbolic state-space generation. Margaria T,
Yi W (eds) Tools and algorithms for the construction and analysis
of systems. Springer, Berlin, Heidelberg, pp 328–42

11. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M,
Roveri M, Sebastiani R, Tacchella A (2002) NuSMV version 2:
an opensource tool for symbolic model checking. In: Proceedings
of international conference on computer-aided verification (CAV
2002), volume 2404 of LNCS, Copenhagen, Denmark, July 2002.
Springer

12. Cleary JG (1984) Compact hash tables using bidirectional linear
probing. IEEE Trans Comput C–33(9):828–834

13. Cranen S et al (2013) An overview of the mCRL2 toolset and its
recent advances. Springer, Berlin, pp 199–213

14. de Vries SHS (2014) Optimizing state vector compression for pro-
gram verification by reordering program variables. In: 21st Twente
SConIT, 21(June 23)

15. Emerson EA, Wahl T (2005) Dynamic symmetry reduction.
Springer, Berlin, pp 382–396

16. Evangelista S, Kristensen LM, Petrucci L (2013) Multi-threaded
explicit state space exploration with state reconstruction. Springer,
Berlin, pp 208–223

17. Geldenhuys J, Valmari A (2003) A nearly memory-optimal data
structure for sets and mappings. In: Ball T, Rajamani SK (eds)
Model checking software. Springer, Berlin, Heidelberg, pp 136–
150

18. Holzmann GJ (1996) An analysis of bitstate hashing. Springer,
Berlin, pp 301–314

19. Holzmann GJ (1997) State compression in SPIN: recursive index-
ing and compression training runs. In: Proceedings of the third
international SPIN workshop

20. Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw
Eng 23:279–295

21. Jensen PG, Larsen KG, Srba J (2017) PTrie: data structure for
compressing and storing sets via prefix sharing. In:HungDV,Kapur
D (eds) Theoretical aspects of computing–ICTAC 2017. Springer,
Cham, pp 248–265

22. Jensen PG et al (2014)Memory efficient data structures for explicit
verification of timed systems. In: Badger JM, Rozier KY (eds)
NASA formal methods. Springer, Cham, pp 307–312

23. Kant G, Laarman A, Meijer J, van de Pol J, Blom S, van Dijk
T (2015) LTSmin: high-performance language-independent model
checking. Tools and algorithms for the construction and analysis
of systems. Springer, Berlin, Heidelberg, pp 692–707

24. Katz S, Peled D (1988) An efficient verification method for par-
allel and distributed programs. In: REX workshop, volume 354 of
LNCS. Springer, pp 489–507

25. Knuth D (1968) The art of computer programming 1: fundamental
algorithms 2: seminumerical algorithms 3: sorting and searching.
Addison-Wesley, Boston, p 30

26. Konnov I, Letichevsky OA Jr (2010) Model checking GARP
protocol using spin andVRS. In:Algorithms, and information tech-
nologies, international workshop on automata

27. Kordon F et al (2016) Complete results for the 2016 edition of
the model checking contest. http://mcc.lip6.fr/2016/results.php.
Accessed 14 May 2019

28. Körner P, Leuschel M, Meijer J (2018) State-of-the-art model
checking for b and event-b using prob and LTSmin. In: Furia CA,
Winter K (eds) Integrated formal methods. Springer, Berlin, pp
275–295

29. Laarman A, van de Pol J, Weber M (2011) Parallel recursive state
compression for free. In: Groce A, Musuvathi M (eds) Model
checking software. Springer, Berlin, Heidelberg, pp 38–56

30. Laarman A, van de Pol J, Weber M (2011) Multi-core LTSmin:
marrying modularity and scalability. In: Bobaru M, Havelund K,
Holzmann GJ, Joshi R (eds) NASA formal methods. Springer,
Berlin, Heidelberg, pp 506–511

31. LaarmanAW,PaterE, vandePol JC,HansenH (2014)Guard-based
partial-order reduction. Int J Soft Tools Technol Transf 18(4):427–
448. https://doi.org/10.1007/s10009-014-0363-9

32. Laarman A (2014) Scalable multi-core model checking. Ph.D. the-
sis, UTwente

33. Laarman A (2018) Optimal storage of combinatorial state spaces.
In: NASA formal methods symposium. Springer, pp 261–279

34. Laarman A, Langerak R, van de Pol J, Weber M, Wijs A (2011)
Multi-core nested depth-first search. In: Bultan T, Hsiung P-A
(eds)Automated technology for verification and analysis. Springer,
Berlin Heidelberg, pp 321–335

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/123186.123223
http://mcc.lip6.fr/2016/results.php
https://doi.org/10.1007/s10009-014-0363-9

Optimal compression of combinatorial state spaces 251

35. Miner AS, Ciardo G (1999) Efficient reachability set generation
and storage using decision diagrams. In: International conference
on application and theory of petri nets. Springer, pp 6–25

36. Pelánek R (2007) BEEM: benchmarks for explicit model check-
ers. In: Bošnački D, Edelkamp S (eds) Model checking software.
Springer, Berlin, Heidelberg, pp 263–267

37. SternU,Dill DL (1995) Improved probabilistic verification by hash
compaction. In: Camurati PE, Eveking H (eds) Correct hardware
design and verification methods. Springer, Berlin, Heidelberg, pp
206–224

38. Valmari A (1988) Error detection by reduced reachability graph
generation. In: Proceedings of the 9th europeanworkshop on appli-
cation and theory of petri nets, pp 95–112

39. ValmariA (2006)What the smallRubik’s cube taughtme about data
structures, information theory, and randomisation. STTT8(3):180–
194

40. van der Berg F, Laarman A (2013) SpinS: extending LTSmin with
Promela through SpinJa. ENTCS 296:95–105

41. van Dijk T, van de Pol J (2017) Sylvan: multi-core framework for
decision diagrams. Int J SoftwTools Technol Transf 19(6):675–696

42. van der Vegt S, Laarman AW (2012) A parallel compact hash table.
In: Kotásek Z, Bouda J, Černá I, Sekanina L, Vojnar T, Antoš D
(eds) Mathematical and engineering methods in computer science.
Springer, Berlin, Heidelberg, pp 191–204

43. Wahl T, Donaldson A (2010) Replication and abstraction: symme-
try in automated formal verification. Symmetry 2(2):799–847

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Optimal compression of combinatorial state spaces
	Abstract
	1 Introduction
	2 An information theoretical lower bound
	3 An analysis of binary tree compression
	3.1 Tree compression
	3.2 Analysis of compression ratios
	3.3 Poly-logarithmic-time tree updates by incremental insertion

	4 A novel compact tree
	4.1 Hash tables and compact hash tables
	4.2 Compact tree database

	5 Experiments
	5.1 Compression ratio
	5.2 Runtime performance and parallel scalability
	5.3 Comparison with spin's collapse compression
	5.4 Comparison with trie compression
	5.5 Comparison with BDDs
	5.6 Comparison with MDDs
	5.7 Decision diagram peak sizes
	5.8 Comparison with parallel BDDs/MDDs
	5.9 Case study: GARP

	6 Discussion and conclusion
	Acknowledgements
	References

