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Abstract
Property specification patterns (PSPs) have been proposed to ease the formalization of requirements, yet enable automated
verification thereof. In particular, the internal consistency of specifications written with PSPs can be checked automatically
with the use of, for example, linear temporal logic (LTL) satisfiability solvers. However, for most practical applications,
the expressiveness of PSPs is too restricted to enable writing useful requirement specifications, and proving that a set of
requirements is inconsistent can be worthless unless a minimal set of conflicting requirements is extracted to help designers to
correct a wrong specification. In this paper, we extend PSPs by considering Boolean as well as atomic numerical assertions,
we contribute an encoding from extended PSPs to LTL formulas, and we present an algorithm computing inconsistency
explanations, i.e., irreducible inconsistent subsets of the original set of requirements. Our extension enables us to reason
about the internal consistency of functional requirements which would not be captured by basic PSPs. Experimental results
demonstrate that our approach can check and explain (in)consistencies in specificationswith nearly two thousand requirements
generated using a probabilistic model, and that it enables effective handling of real-world case studies.

Keywords Consistency of requirements · Property specifications patterns · LTL satisfiability checking · Inconsistency
explanation

1 Introduction

In the context of safety- and security-critical cyber-physical
systems (CPSs), checking the sanity of functional require-
ments is an important, yet challenging task. Requirements
written in natural language call for time-consuming and
error-prone manual reviews, whereas enabling automated
sanity verification often requires overburdening formaliza-
tions. Given the increasing pervasiveness of CPSs, their strin-
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gent time-to-market and product budget constraints, practical
solutions to enable automated verification of requirements
are in order. Property specification patterns (PSPs) [18] offer
a viable path toward this target. PSPs are a collection of
parameterizable, high-level, formalism-independent specifi-
cation abstractions, originally developed to capture recurring
solutions to the needs of requirement engineering. Each
pattern can be directly encoded in a formal specification
language, such as linear temporal logic (LTL) [39], com-
putational tree logic (CTL) [10], or graphical interval logic
(GIL) [14]. Because of their features, PSPs may ease the bur-
den of formalizing requirements, yet enable verification of
their sanity using current state-of-the-art automated reason-
ing tools—see, e.g., [9,21,25,28,46].

Sanity checking of requirements may consist of three
parts: redundancy (vacuity) checking, completeness check-
ing and consistency checking [3]. A specification is satisfied
vacuously in a model if it is satisfied in some non-interesting
way; borrowing the example from [43], the LTL specification
“every request is eventually followed by a grant” is satisfied
vacuously in a model with no requests. Vacuity checking
can also be performed without the need of a model, and in
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this case it is known as inherent vacuity checking [19,44].
Completeness checking is equivalent to verify if the set of
requirements covers all reasonable behaviors of a system.
Completeness can be checked in combination with a system
model, but in [3] a proposal for model-free completeness
checking is also presented. Finally, requirements consistency
is about checking whether a real system can be implemented
from a given set of requirements. Therefore, two types of
check [44] are possible: (i) realizability, i.e., testing whether
there is an open system that satisfies all the properties in the
set [40], and (i i) satisfiability, i.e., testing whether there is
a closed system that satisfies all the properties in the set.
Satisfiability checking ensures that the behavioral descrip-
tion of a system is internally consistent and neither over- or
under-constrained. If a property is either valid, or unsatisfi-
able, this must be due to an error. Even if the satisfiability
test is weaker than the realizability test, its importance is
widely recognized [44]. In this paper, we restrict our atten-
tion to sanity checking as satisfiability checking. We speak
of (internal) consistency of requirements written using PSPs
having in mind that PSPs can be translated to LTL formu-
las whose satisfiability can be checked using methods and
tools available in the literature—see, e.g., [23,33,46,47] for
tableau-basedmethods and [26,27,42–44] for methods based
on automata-theoretic approaches.

The original formulation of PSPs caters for temporal
structure over Boolean variables, but formost practical appli-
cations such expressiveness is too restricted. This is the case
of the embedded controller for robotic manipulators that is
under development in the context of the EU project CER-
BERO [35]1 and provides the main motivation for this work.
As an example, consider the following statement: “The angle
of joint1 shall never be greater than 170 degrees.” This
requirement imposes a safety threshold related to some joint
of the manipulator (joint1) with respect to physically real-
izable poses, yet it cannot be expressed as a PSP unless we
add atomic numerical assertions in some constraint system
D. We call constraint PSP, or PSP(D) for short, a pattern
which has the same structure of a PSP, but contains atomic
propositions from D. For instance, using PSP(R,<,=) we
can rewrite the above requirement as a universality pattern:
“Globally, it is always the case that θ1 < 170 holds,” where
θ1 is the numerical signal (variable) for the angle of joint1.
In principle, automated reasoning about constraint PSPs can
be performed in constraint linear temporal logic, i.e., LTL
extended with atomic assertions from a constraint system
[12]: in our example above, the encoding would be simply
� (θ1 < 170). Unfortunately, this approach does not always
lend itself to a practical solution, because constraint linear

1 Cross-layer modEl-based fRamework for multi-oBjective dEsign of
Reconfigurable systems in unceRtain hybRid envirOnments—http://
www.cerbero-h2020.eu/.

temporal logic is undecidable in general [11]. Restrictions
on D may restore decidability [12], but they introduce lim-
itations in the expressiveness of the corresponding PSPs. In
this paper, we propose a solution which ensures that auto-
matedverificationof consistency is feasible, yet enablesPSPs
mixing both Boolean variables and (constrained) numerical
signals. Our approach enables us to capture many specifica-
tions of practical interest and to pick a verification procedure
from the relatively large pool of automated reasoning sys-
tems currently available for LTL. In particular, we restrict
our attention to constraint systems of the form (R,<,=) and
atomic propositions of the form x < c or x = c, where x ∈ R

is a variable and c ∈ R is a constant value. In the following,
we write DC to denote such restriction.

Knowing that a set of requirementswrittenwith PSPs(DC )
is (in)consistent is only the first step in writing a correct
specification. In case of inconsistent requirements, obtain-
ing a minimal set of such requirements would be desirable
to help designers avoid manual checks to pinpoint problems
in a specification. The problem of finding minimal unsatis-
fiable subsets, or inconsistency explanations, has been the
subject of some attention, e.g., in propositional satisfiabil-
ity and constraint programming. The algorithms to be found
in the literature can be either domain specific—see, e.g.,
[5,30]—or domain independent—see, e.g., [22]. They can
be further divided into algorithms that find only one incon-
sistent subset or all inconsistent subsets. To the best of our
knowledge, most approaches use a general-purpose algo-
rithm, also known as the “deletion algorithm.” Recently,
some special-purpose algorithms have been proposed: (i)
procmine [1] uses a tableau-based solver to obtain an ini-
tial subset from an unsatisfiable set of LTL formulas and
then applies deletion-based minimization to that subset; (i i)
pltl- mup [20] uses a method based on ordered binary deci-
sion diagrams to find inconsistent subsets; (i i i) trp++uc
[45] uses resolution graphs to extract minimal unsatisfiable
subsets of requirements by modifying the algorithm imple-
mented in the temporal resolution-based solver trp++.

Since for practical reasons in requirement engineering it is
better to have a quick turnaround time rather than a complete
answer, we present a method to look for inconsistencies in
an incremental fashion, i.e., stopping the search once at least
one (minimal) inconsistency subset is found. In particular,
given a set of inconsistent requirements, we extract aminimal
(irreducible) subset from them that it is still inconsistent. The
set is guaranteed to beminimal in the sense that, if we remove
one of the elements, the remaining set becomes consistent.

Overall, our contribution can be summarized as follows:

– We extend basic PSPs over the constraint system DC .
– We provide an encoding from any PSP(DC ) into a corre-

sponding LTL formula.
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– We present a tool2 based on state-of-the-art decision pro-
cedures and model checkers to automatically analyze
requirements expressed as PSPs(DC ).

– We propose algorithms devoted to extract minimal sub-
sets of inconsistent requirements, and we implement
them in the tool mentioned above.

– We implement a generator of artificial requirements
expressed as PSPs(DC ); the generator takes a set of
parameters in input and emits a collection ofPSPs accord-
ing to a parameterized probability model.

– Using our generator, we run an extensive experimental
evaluation aimed at understanding (i) which automated
reasoning tool is best at handling set of requirements as
PSPs(DC ), and (i i) whether our approach is scalable.

– Finally, we analyze the specification of the embedded
controller to be dealt with in the context of CERBERO
project, experimenting also with the addition of faulty
requirements.

Verification and inconsistency explanation of requirements
written in PSP(DC ) are carried out using tools and tech-
niques available in the literature [25,43,44]. With those, we
demonstrate the scalability of our approach by checking the
consistency of up to 1920 requirements, featuring 160 vari-
ables and up to 8 different constant values appearing in
atomic assertions, within less than 500 CPU s. A total of
75 requirements about the embedded controller for the CER-
BEROproject is checked in amatter of seconds, evenwithout
resorting to the best tool among thosewe consider. This paper
is based on and extends the one presented at the NASA For-
malMethod Conference [37]. The additional material relates
to (i) algorithms for inconsistency explanation, including
their experimental evaluation, (i i) proofs of results that were
only stated in [37], and (i i i) the experimental analysis of the
tableau-based tool leviathan[7].

The rest of the paper is organized as follows. Section 2
contains some basic concepts on LTL, PSPs and some related
work. In Sect. 3, we present the extension of basic PSPs
over DC and the related encoding to LTL, while in Sect. 4
we present inconsistency explanation algorithms. In Sects. 5
and 6, we report the results of the experimental analysis con-
cerning the scalability and the case study on the embedded
controller, respectively.We conclude the paper in Sect. 7with
some final remarks.

2 Background and related work

LTL syntax and semantics Linear temporal logic (LTL) [38]
formulas are built on a finite set Prop of atomic propositions

2 https://gitlab.sagelab.it/sage/SpecPro.

as follows:

φ = p | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2 | (φ),

where p ∈ Prop,φ, φ1, φ2 areLTL formulas,X is the “next”
operator andU is the “until” operator. In the following, unless
specified otherwise using parentheses, unary operators have
higher precedence than binary operators. An LTL formula
is interpreted over a computation, i.e., a function π : N →
2Prop which assigns truth values to the elements of Prop at
each time instant (natural number). For a computation π and
a time instant i ∈ N:

– π, i |� p for p ∈ Prop iff p ∈ π(i)
– π, i |� ¬α iff π, i �|� α

– π, i |� (α ∨ β) iff π, i |� α or π, i |� β

– π, i |� X α iff π, i + 1 |� α

– π, i |� α U β iff for some j ≥ i , we have π, j |� β and
for all k, i ≤ k < j we have π, k |� α.

We say that π satisfies a formula φ, denoted π |� φ, iff
π, 0 |� φ. If π |� φ for every π , then φ is true and we write
|� φ.

We consider other Boolean connectives like “∧” and “→”
with the usual meaning, and we abbreviate p ∨ ¬p as 
,
p ∧ ¬p as ⊥. We introduce ♦φ (“eventually”) to denote

U φ and �φ (“always”) to denote ¬♦¬φ. Finally, some
of the PSPs use the “weak until” operator defined asα W β =
�α ∨ (α U β).
LTL satisfiability Among various approaches to decide LTL
satisfiability, reduction to model checking was proposed in
[42] to check the consistency of requirements expressed
as LTL formulas. Given a formula φ over a set Prop of
atomicpropositions, auniversalmodelM canbe constructed.
Intuitively, a universal model encodes all the possible com-
putations over Prop as (infinite) traces, and therefore φ is
satisfiable precisely when M does not satisfy ¬φ. In [44],
a first improvement over this basic strategy is presented
together with the tool PANDA,3 whereas in [27] an algo-
rithm based on automata construction is proposed to enhance
performances even further—the approach is implemented
in a tool called aalta. Further studies along this direction
include [26] and [25]. In the latter, a portfolio LTL satis-
fiability solver called polsat is proposed to run different
techniques in parallel and return the result of the first one to
terminate successfully.
Property specification patterns (PSPs) The original proposal
of PSPs is to be found in [18]. They are meant to describe the
structure of systems’ behaviors and provide expressions of
such behaviors in a range of common formalisms. An exam-
ple of a PSP is shown in Fig. 1—with some parts omitted for

3 https://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html.

123

https://gitlab.sagelab.it/sage/SpecPro
https://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html


310 M. Narizzano et al.

Response

Describe cause-effect relationships between a pair of events/states. An occur-
rence of the first, the cause, must be followed by an occurrence of the second,
the effect. Also known as Follows and Leads-to.

Structured English Grammar
It is always the case that if P holds, then S eventually holds.

LTL Mappings

Globally � (P → ♦S)

Before R ♦R → (P → (R U (S ∧ R))) U R

After Q � (Q → � (P → ♦S))

Between Q and R � ((Q ∧ R ∧ ♦R) → (P → (R U (S ∧ R))) U R)

After Q until R � (Q ∧ R → ((P → (R U (S ∧ R))) W R)

Example
It is always the case that if object detected holds , then moving to target
eventually holds.

Fig. 1 Response pattern (α stands for ¬α)

the sake of readability.4 A pattern is comprised of a Name
(response in Fig. 1), an (informal) statement describing the
behavior captured by the pattern and a (structured English)
statement [24] that should be used to express requirements.
The LTL mappings corresponding to different declinations
of the pattern are also given, where capital letters (P , S, T ,
etc.) stand for Boolean states/events. In more detail, a PSP
is composed of two parts: (i) the scope and (i i) the body.
The scope is the extent of the program execution over which
the pattern must hold, and there are five scopes allowed:
Globally, to span the entire scope execution; Before, to span
execution up to a state/event; After, to span execution after a
state/event; Between, to cover the part of execution from one
state/event to another one; andAfter-until, where the first part
of the pattern continues even if the second state/event never
happens. For state-delimited scopes, the interval in which
the property is evaluated is closed at the left and open at
the right end. The body of a pattern describes the behavior
that we want to specify. In [18], bodies are categorized in
occurrence and order patterns. Occurrence patterns require
states/events to occur or not to occur. Examples of such bod-
ies are Absence, where a given state/event must not occur
within a scope, and its opposite Existence. Order patterns
constrain the order of the states/events. Examples of such
patterns arePrecedence, where a state/eventmust always pre-
cede another state/event, and Response, where a state/event
must always be followed by another state/event within the
scope. Moreover, we included the Invariant pattern intro-
duced in [41], and dictating that a state/event must occur
whenever another state/event occurs. Combining scopes and
bodies, we can construct 55 different types of patterns.

4 We omitted aspects which are not relevant for our work, e.g., trans-
lations to other logics like CTL [18]. The full list of PSPs considered
in this paper and their mapping to LTL and other logics is available at
http://patterns.projects.cis.ksu.edu/.

Inconsistency explanation Usually, inconsistency in a set of
requirements is best explained in terms of minimal subsets of
requirements exposing the core issues within the specifica-
tion. The literature does not provide a consistent naming of
such cores, and the termsminimal inconsistency subset (MIS)
[6],minimal unsatisfiable subset [5] (MUS),minimal unsatis-
fiable core [30] (MUC) and also high-level MUC (HLMUC)
[36] are introduced to refer to the same concept—in the
following, and throughout the paper, we denote with MUC
a minimal set of inconsistent requirements. Algorithms for
finding MUCs can be divided in two basic groups: (i) those
focusing on the extraction of a single MUC and (i i) those
focusing on the extraction of allMUCs. These techniques can
be further divided into domain specific, i.e., targeting specific
domains such as propositional satisfiability [4], and general
purpose, i.e., high-level algorithms that can be applied to
any domain provided that a consistency checking procedure
exists for that domain [17]. The most basic general-purpose
solution for computing a single MUC out of a set of logical
constraints consists of iteratively removing constraints from
an initial set. At each step, the set of constraints represents an
over-approximation of the MUC. This solution is referred to
as the deletion-based approach [2,8,13,17]. Given a set R of n
constraints, the deletion-based approach calls the consistency
checker exactly n times. When examining the i th constraint,
if R \ {ri} remains inconsistent, then there is a MUC that
does not include ri , and ri can be removed; otherwise, ri must
be part of the MUC. This approach is guaranteed to produce
a set M ⊆ R such that, if a single requirement is eliminated
from M , then M becomes consistent. However, the approach
does not guarantee that another MUC M ′ ⊆ R such that
|M ′| ≤ |M | may not exist. The majority of the algorithms
presented in the literature are domain specific [5,29,30,34]
and, to the best of our knowledge, no specific approach that
works for LTL has been proposed so far. Extraction of all
MUCs has received some attention, also because retrieving
MUCs of minimal size can be done simply by enumerating
all MUCs. Finding all the MUCs of a set of constraints R
in a naive way amounts to check the consistency of all the
elements of the power set 2R , but this is clearly untenable in
real-world applications. In [29], the power set of require-
ments is implicitly considered as follows. Given a set of
requirements R, if R′ ⊆ R is inconsistent, every R′′ ⊃ R′
and R′′ ⊂ R is also inconsistent. Furthermore, if R′ ⊆ R is
consistent, every R′′ ⊂ R′ is consistent too. This algorithm
can be modified to find a single MUC by stopping it to the
first MUC extracted.
Related work In [31], the framework Property Specification
Pattern Wizard (PSP-Wizard) is presented. Its purpose is
the machine-assisted definition of temporal formulas cap-
turing pattern-based system properties. PSP-Wizard offers a
translation into LTL of the patterns encoded in the tool, but
it is meant to aid specification, rather than support consis-
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tency checking, and it cannot deal with numerical signals. In
[24], an extension is presented to deal with real-time spec-
ifications, together with mappings to metric temporal logic
(MTL), timed computational tree logic (TCTL) and real-time
graphical interval logic (RTGIL). Even if this work is not
directly connected with ours, it is worth mentioning it since
their structured English grammar for patterns is at the basis
of our formalism. The work in [24] also provided inspiration
to a recent set of works [15,16] about a tool, called VI-Spec,
to assist the analyst in the elicitation and debugging of for-
mal specifications.VI-Spec lets the user specify requirements
through a graphical user interface, translates them to MITL
formulas and then supports debugging of the specification
using run-time verification techniques. VI-Spec embodies an
approach similar to ours to deal with numerical signals by
translating inequalities to sets of Boolean variables. How-
ever, VI-Spec differs from our work in several aspects, most
notably the fact that it performs debugging rather than con-
sistency checking, so the behavior of each signal over time
must be known. Also, VI-Spec handles only inequalities and
does not deal with sets of requirements written using PSPs.

3 Constraint property specification patterns

Let us start by defining a constraint system D as a tuple
D = (D, R1, . . . , Rn, I), where D is a non-empty set called
domain, and each Ri is a predicate symbol of arity ai , with
I(Ri ) ⊆ Dai being its interpretation. Given a finite set of
variables X and a finite set of constants C such that C ∩ X =
∅, a term is a member of the set T = C ∪ X ; an (atomic)
D-constraint over a set of terms is of the form Ri (t1, . . . , tai )
for some 1 ≤ i ≤ n and t j ∈ T for all 1 ≤ j ≤ ai which we
call constraint when D is understood from the context. We
define linear temporal logic modulo constraints—LTL(D)
for short—as an extension of LTL with additional atomic
constraints. Given a set of Boolean propositions Prop, a
constraint systemD = (D, R1, . . . , Rn, I) and a set of terms
T = C ∪ X , an LTL(D) formula is defined as:

φ=p | Ri (t1, . . . , tai ) | ¬φ1 | φ1∨ φ2 | X φ1 | φ1 U φ2 | (φ),

where p ∈ Prop, φ, φ1, φ2 are LTL(D) formulas and Ri (·)
with 1 ≤ i ≤ n is an atomic D-constraint. Additional
Boolean and temporal operators are defined as in LTL with
the same intended meaning. Notice that the set of LTL(D)
formulas is a (strict) subset of those in constraint linear tem-
poral logic—CLTL(D) for short—as defined, e.g., in [12].
LTL(D) formulas are interpreted over computations of the
form π : N → 2Prop plus additional evaluations of the form
ν : T ×N → D such that, for all i ∈ N, ν(c, i) = ν(c) ∈ D
for all c ∈ C , whereas ν(x, i) ∈ D for all x ∈ X . In other
words, the function ν associates with constants c ∈ C a value

ν(c) that does not change in time, and to variables x ∈ X
a value ν(x, i) that possibly changes at each time instant
i ∈ N. LTL semantics is extended to LTL(D) by handling
constraints:

π, ν, j |�D Ri (t1, . . . , tai )iff(ν(t1, j), . . . , ν(tai , j))∈I(Ri ).

We say that π and ν satisfy a formula φ, denoted π, ν |�D φ,
iff π, ν, 0 |� φ. A formula φ is satisfiable as long as there
exist a computationπ and a valuation ν such thatπ, ν |�D φ.
We further restrict our attention to the constraint system DC

= (R,<,=, I), with atomic constraints of the form x < c
and x = c, where c is a constant corresponding to some
real number—hereafter we abuse notation and write c ∈ R

instead of ν(c) ∈ R—and the interpretation I of the pred-
icates “<” and “=” is the usual one. While CLTL(D) is
undecidable in general [11,12], LTL(DC ) is decidable since,
as we show in this paper, it can be reduced to LTL satisfia-
bility.

We introduce the concept of constraint property specifi-
cation pattern, denoted PSP(D), to deal with specifications
containing Boolean variables as well as atoms from a con-
straint system D. In particular, a PSP(DC ) features only
Boolean atoms and atomic constraints of the form x < c
or x = c (c ∈ R). For example, the requirement:

The angle of joint1 shall never be greater than 170
degrees

can be rewritten as a PSP(DC ):

Globally, it is always the case that θ1 < 170

where θ1 ∈ R is the variable associated with the angle of
joint1 and 170 is the limiting threshold. While basic PSPs
only allow for Boolean states/events in their description,
PSPs(DC ) also allow for atomic numerical constraints. It is
straightforward to extend the translation of [18] from basic
PSPs to LTL in order to encode every PSP(DC ) to a formula
in LTL(DC ). Consider, for instance, the set of requirements:

R1 Globally, it is always the case that v ≤ 5.0 holds.
R2 After a, v ≤ 8.5 eventually holds.
R3 After a, it is always the case that if v ≥ 3.2 holds, then

z eventually holds,

where a and z are Boolean states/events, whereas v is a
numeric signal. These PSPs(DC )5 can be rewritten as the

5 Strictly speaking, the syntax used is not that of DC , but a statement
like v ≤ 5.0 can be thought as syntactic sugar for the expression (v <

5.0) ∨ (v = 5.0).
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following LTL(DC ) formula:

�(v < 5.0 ∨ v = 5.0) ∧
�(a → ♦(v < 8.5) ∨ (v = 8.5)) ∧
�(a → �(¬(v < 3.2) → ♦z)).

(1)

Therefore, to reason about the consistency of sets of require-
ments written using PSPs(DC ) it is sufficient to provide an
algorithm for deciding the satisfiability of LTL(DC ) formu-
las.

To this end, consider an LTL(DC ) formula φ, and let X(φ)

be the set of variables and C(φ) be the set of constants that
occur in φ. We define the set of thresholds Sx (φ) ⊆ C(φ)

as the set of constant values against which some variable
x ∈ X(φ) is compared to; more precisely, for every variable
x ∈ X(φ) we construct a set Sx (φ) = {c1, . . . , cn} such that,
for all ck ∈ R with 1 ≤ k ≤ n, φ contains a constraint
of the form x < ck or x = ck . For convenience, we always
consider each threshold set Sx (φ) ordered in ascending order,
i.e., ck < ck+1 for all 1 ≤ k < n. For instance, in example
(1), we have X = {v} and the corresponding set of threshold
is Sv = {3.2, 5.0, 8.5}. Given an LTL(DC ) formula φ, and
some variable x ∈ X(φ), let Sx (φ) = {c1, . . . , cn} be the set
of thresholds for which we define the corresponding sets of
inequality propositions Qx (φ) = {q1, . . . , qn} and equality
propositions Ex (φ) = {e1, . . . , en}. Informally, inequality
propositions should be true exactlywhen a variable x ∈ X(φ)

is below or between some value in the threshold set Sx (φ),
whereas equality propositions should be true exactly when
x is equal to some value in Sx (φ). Because of this, in our
encoding we must ensure that for every computation π and
time instant i ∈ N exactly one of the following cases is true
(1 ≤ j ≤ n):

– q j ∈ π(i) for some j , ql /∈ π(i) for all l �= j and
e j /∈ π(i) for all j ;

– e j ∈ π(i) for some j , el /∈ π(i) for all l �= j and
q j /∈ π(i) for all j ;

– q j /∈ π(i) and e j /∈ π(i) for all j .

The first case above corresponds to a value of x that lies
between some threshold value in Sx (φ) or before its small-
est value; the second case occurs when a threshold value is
equal to x , and the third case is when x exceeds the highest
threshold value in Sx (φ).

Given the definitions above, an LTL(DC ) formula φ over
the set of Boolean propositions Prop and the set of terms
T = C ∪ X can be converted to an LTL formula φ′ over the
set of Boolean propositions Prop∪⋃

xinX (Qx (φ)∪Ex (φ)).
We obtain this by considering, for each variable x ∈ X and
associated threshold set Sx (φ), the corresponding proposi-
tions Qx (φ) = {q1, . . . qn} and Ex = {e1, . . . , en}; then, for

each ck ∈ Sx (φ), we perform the following substitutions:

x < ck �
k∨

j=1

q j ∨
k−1∨

j=1

e j and x = ck � ek . (2)

Replacing atomic numerical constraints is not enough to
ensure equisatisfiability of φ′ with respect to φ. In particular,
for every x ∈ X(φ),wemust encode the informal observation
made above about “mutually exclusive” Boolean valuations
for propositions in Qx (φ) and Ex (φ) as corresponding con-
straints:

φM =
∧

x∈X(φ)

⎛

⎝
∧

a,b∈Mx (φ),a �=b

�¬(a ∧ b)

⎞

⎠ , (3)

where Mx (φ) = Qx (φ) ∪ Ex (φ).
For instance, given example (1), we have Qv={q1, q2, q3}

and Ev = {e1, e2, e3} and the mutual exclusion constraints
are written as:

φM = �¬(q1 ∧ q2) ∧ �¬(q1 ∧ q3) ∧ �¬(q1 ∧ e1)

∧ �¬(q1 ∧ e2)∧
�¬(q1 ∧ e3) ∧ �¬(q2 ∧ q3) ∧ �¬(q2 ∧ e1)

∧ �¬(q2 ∧ e2)∧
�¬(q2 ∧ e3) ∧ �¬(q3 ∧ e1) ∧ �¬(q3 ∧ e2)

∧ �¬(q3 ∧ e3)∧
�¬(e1 ∧ e2) ∧ �¬(e1 ∧ e3) ∧ �¬(e2 ∧ e3).

(4)

Therefore, the LTL formula to be tested for assessing the
consistency of the requirements is

φM ∧ ( �(q1 ∨ q2 ∨ e1 ∨ e2)∧
�(a → ♦(

∨3
i=1 qi ∨ ei ))∧

�(a → �(¬q1 → ♦z))).
(5)

We can now state the following:

Theorem 1 Let φ be an LTL(DC) formula on the set of
proposition Prop and terms T = X(φ) ∪ C(φ); for every
x ∈ X(φ), let Sx (φ), Qx (φ) and Ex (φ) be the correspond-
ing set of thresholds, inequality propositions and equality
propositions, respectively; let φ′ be the LTL formula on the
set of proposition Prop∪⋃

x∈X(φ) Qx (φ)∪ Ex (φ) obtained
from φ by applying substitutions (2) for every x ∈ X(φ) and
ck ∈ Sx (φ), and let φM be the LTL formula obtained as in
(3); then, the LTL(DC) formula φ is satisfiable if and only if
the LTL formula φM ∧ φ′ is satisfiable.

Proof First, we prove that ifφ is satisfiable the same holds for
φM∧φ′. Sinceφ is satisfiable, then there exists a computation
π and an evaluation ν such that π, ν |�DC φ. Let us consider
a generic variable x ∈ X(φ), for which the corresponding
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set of thresholds is Sx (φ) = {c1, . . . , cn}. Considering that
thresholds are ordered in ascending order, we construct the
following sets of time instants:

Nx<c1 = {i ∈ N | π, ν, i |�DC x < c1}
Nx=c1 = {i ∈ N | π, ν, i |�DC x = c1}

Nc1<x<c2 = {i ∈ N | π, ν, i |�DC x > c1 ∧ x < c2}
. . .

Ncn−1<x<cn = {i ∈ N | π, ν, i |�DC x > cn−1 ∧ x < cn}
Nx=cn = {i ∈ N | π, ν, i |�DC x = cn}
Nx>cn = {i ∈ N | π, ν, i |�DC x > cn}

which, given the standard semantics of “<” and “=”, are a
partition of N. Let Nx denote such partition for a specific
variable x ∈ X(φ). We construct a computation π ′ such that,
for all time instants i ∈ N and propositions p ∈ Prop,
we have p ∈ π ′(i) exactly when p ∈ π(i) and, for each
variable x ∈ X(φ), given Qx (φ) = {q1, . . . qn} and Ex (φ) =
{e1, . . . en}, we have also

– q1 ∈ π ′(i) exactly when i ∈ Nx<c1 ;
– e1 ∈ π ′(i) exactly when i ∈ Nx=c1 ;
– q2 ∈ π ′(i) exactly when i ∈ Nc1<x<c2 ;
– . . .

– qn ∈ π ′(i) exactly when i ∈ Ncn−1<x<cn ;
– en ∈ π ′(i) exactly when i ∈ Nx=cn .

Notice that for all i ∈ Nx>cn , we have that π
′(i) ∩ Mx (φ) =

∅, where Mx (φ) = Qx (φ) ∪ Ex (φ). Since Nx is a partition
of N for each variable x ∈ X(φ), it follows that π ′ |� φM

because for all a, b ∈ Mx (φ), there is no time instant i ∈ N

such that π ′, i |� a ∧ b. Now, we show that for every i ∈ N,
π ′, i |� φ′ if and only if π, ν, i |�DC φ by induction on the
set of subformulas of φ. Let ψ and ψ ′ be two subformulas
of φ and φ′, respectively. For every i ∈ N:

– if ψ ≡ p for p ∈ Prop then ψ ′ ≡ p; therefore, for
any given i ∈ N, we have π, ν, i |�DC p if and only if
π ′, i |� p by construction of π ′.

– if ψ ≡ (x < ck) for some variable x ∈ X(φ) and some
constant ck ∈ Sx (φ) then, according to (2),

ψ ′ ≡
k∨

j=1

q j ∨
k−1∨

j=1

e j .

Let Nx,k be the set defined as

Nx,k = Nx<c1 ∪ Nx=c1 ∪ . . . ∪ Nck−1<x<ck .

There are two cases: either i ∈ Nx,k or i /∈ Nx,k . In the
former case, we have that π, ν, i |�DC (x < ck) and, by
construction of π ′, this happens exactly when π ′, i |� q j

for some 1 ≤ j ≤ k or π ′, i |� e j for some 1 ≤ j < k
which, by the semantics of disjunction and construction
of π ′, is also exactly when π ′, i |� ψ ′. In the second
case, π, ν, i �|�DC (x < ck) and, by construction of π ′,
this happens exactly when π ′, i �|� q j for all 1 ≤ j ≤ k
and π ′, i �|� e j for all 1 ≤ j < k which, by the semantics
of disjunction, is also exactly when π ′, i �|� ψ ′.

– if ψ ≡ x = ck for some variable x ∈ X(φ) and some
constant ck ∈ Sx (φ) then, according to (2),ψ ′ ≡ ek . The
time instants i ∈ N in which π, ν, i |�DC x = ck are
contained in the set Nx=ck , so there are two cases: either
i ∈ Nx=ck or i /∈ Nx=ck . In the former case, we have that
π, ν, i |�DC (x = ck) and, by construction of π ′, this
happens exactly when π ′, i |� ek . In the second case,
π, ν, i �|�DC (x = ck) and, by construction of π ′, this
happens exactly when π ′, i �|� ek .

– if ψ = ¬α then ψ ′ = ¬α′; by induction, we can assume
that for every i , we have π, ν, i |�DC α if and only if
π ′, i |� α′, and thusπ, i �|�DC α if and only ifπ ′, i �|� α′.
By the semantics of negation, we have that for any given
i ∈ N, π, i, ν |�DC ¬α if and only if π, i, ν �|�DC α and
this happens exactly when π ′, i �|� α′, i.e., π ′, i |� ¬α′;

– if ψ ≡ (α ∨ β) then ψ ′ ≡ α′ ∨ β ′; by induction, we can
assume that for all i ∈ Nwe have that π, ν, i |�DC α and
π, ν, i |�DC β if and only if π ′, i |� α′ and π ′, i |� β ′,
respectively. By the semantics of disjunction, we have
that, for any given i ∈ N,π, i, ν |�DC α∨β exactlywhen
π, ν, i |� α or π, ν, i |� β ′ and this happens exactly
when π ′, i |� α′ or π ′, i |� β ′, i.e., by the semantics of
disjunction, π ′, i |� α′ ∨ β ′.

– ifψ ≡ X α thenψ ′ ≡ X α′; by induction,we can assume
that for all j ∈ N we have π, ν, j |�DC α if and only if
π ′, j |� α′. By the semantics of the “next” operator, we
have that, for any given i ∈ N, π, i, ν |�DC X α if and
only if π, ν, i + 1 |�DC α which happens exactly when
π ′, i + 1 |� α′, i.e., π ′, i |� X α.

– if ψ ≡ α U β then ψ ′ = α′ U β ′; by induction, we can
assume that, for all j ∈ N, we have π, ν, j |�DC β if and
only if π ′, j |� β ′ and that π, ν, j |�DC α if and only if
π ′, j |� α′. By the semantics of the “until” operator, we
have that, for any given i , π, i, ν |�DC α U β if and only
if for some j ≥ i we have π, ν, j |�DC β and for all k
such that i ≤ k < j we have π, ν, k |�DC α. However,
the former happens exactly when for the same j ∈ N we
have π ′, j |� β ′ and for all k such that i ≤ k < j we
have π ′, k |�DC α′, i.e., π ′, i |� α′ U β ′.

We now prove that the satisfiability of φM ∧ φ′ in LTL
implies the satisfiability of φ in LTL(DC ). First, we observe
that, for a generic variable x ∈ X(φ), and for all time instants
i ∈ N, every computation π ′ such that π ′ |� φM has at most
one proposition p ∈ Mx (φ) for which p ∈ π(i). Therefore,
for all variables x ∈ X(φ) and for every time instant i ∈ N,
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we have the following cases only (where n = |Sx (φ)| =
|Ex (φ)| = |Qx (φ)|):

1. π ′, i |� ek for some ek ∈ Ex (φ); consequently, as long
as k < n, also π ′, i |� ∨k+1

j=1 q j ∨ ∨k
j=1 e j holds.

2. π ′, i |� qk for some qk ∈ Qx (φ), and thus π ′, i |�∨k
j=1 q j ∨ ∨k−1

j=1 e j holds.
3. π ′, i �|� p for every p ∈ Mx (φ); consequently, for all k

it is also the case that π ′, i �|� ∨k
j=1 q j ∨ ∨k−1

j=1 e j and
π ′, i �|� ek .

A computation π and an evaluation ν such that π, ν |�DC φ

can be constructed as follows. For every p ∈ Prop, and time
instant i ∈ N, let p ∈ π(i) exactly when p ∈ π ′(i). As for
the evaluation ν, for a generic variable x ∈ X(φ), and for
every time instant i ∈ N, we can construct ν considering that
π ′ is bound to satisfy the three cases above :

1. ν(x, i) = ck for the same k s.t. π ′, i |� ek ; consequently,
as long as k < n, both π, ν, i |� x < ck+1 and π, ν, i |�
x = ck hold.

2. ν(x, i) = v and, for the same k s.t. π ′, i |� qk , if k >

1, then ck−1 < v < ck , else if k = 1, then v < c1;
consequently π, ν, i |� x < ck holds and, in case k > 1,
π, ν, i �|� x < c j for all j < k.

3. ν(x, i) = v with v > cn ; consequently π, ν, i �|� x < ck
and π, ν, i �|� x = ck for all k

An induction proof analogous to the one provided for the
“if” part can be provided to show that if π ′ |� φ′, then also
π, ν |� φ, with π and ν constructed as shown above. ��

The proposed translation fromLTL(DC ) to a LTL formula
is also quite compact, i.e., the number of symbols in the LTL
encoding grows at most quadratically with the number of
symbols in the original formula. Let us define the size of a
formula φ, denoted as |φ|, in the usual way, i.e., by counting
the number of symbols in it. We can state the following:

Theorem 2 Let φ be an LTL(DC) formula on the set of
proposition Prop and terms T = X(φ) ∪ C(φ); for every
x ∈ X(φ), let Sx (φ), Qx (φ) and Ex (φ) be the correspond-
ing set of thresholds, inequality propositions and equality
propositions, respectively; let φ′ be the LTL formula on the
set of proposition Prop∪⋃

x∈X(φ) Qx (φ)∪ Ex (φ) obtained
from φ by applying substitutions (2) for every x ∈ X(φ) and
ck ∈ Sx (φ), and φM be the LTL formula obtained as in (3);
the size of φ′ ∧ φM is at most quadratic in the size of φ, i.e.,
O(|φ′ ∧ φM |) = O(|φ|2).

Proof FromEq. (3), for each variable x ∈ X(φ), all combina-
tions of two elements from the set Mx (φ) = Qx (φ)∪ Ex (φ)

are required to build φM . Therefore, if n = |Sx (φ)|, the num-
ber of conjuncts of the form �¬(a ∧ b) in φM is

(
2n

2

)

= 2n!
2!(2n − 2)! = 2n(2n − 1)

2
= n(2n − 1). (6)

If we consider m = maxx∈X(φ) |Sx (φ)| and the number of
conjuncts derived in Eq. (6), it follows that

|φM | = O(|X(φ)| · m(2m − 1)) = O(|X(φ)| · m2). (7)

Now, it remains to show the effect of substitution (2) inφ. For
every variable x ∈ X(φ) and for each constant ck ∈ Sx (φ)

in φ, we have:

– one proposition in φ′ for each occurrence of the term
x = ck in φ;

– a formula of size 2k − 1 in φ′ for each occurrence of the
term x < ck in φ.

Letm = maxx∈X(φ) |Sx (φ)|, and p be the maximum number
of occurrences in φ of any condition x = c or x < c for
specific values of x ∈ X(φ) and c ∈ C(φ). Then, we can
write

|φ| = O(|X(φ)| · p · m + r), (8)

where r is the number of symbols that are not terms. Since
each term in φ is translated to a formula of size O(m) in φ′,
we have that

|φ′| = O(|X(φ)| · p · m2 + r). (9)

Considering (7) together with (9), we obtain

O(|φ′ + φM |) = O(|X(φ)| · m2) + O(|X(φ)| · p · m2 + r)

= O(|X(φ)| · m2 · (1 + p) + r). (10)

Given (8) and the fact that the values of the parameters
|X(φ)|, p and r do not depend on the translation, from (10)
we conclude that O(|φ′ + φM |) = O(|φ|2). ��

4 Inconsistency explanation

Given a set R = {r1, . . . , rn} of inconsistent requirements
written as PSP(DC ), the aim of the algorithms proposed
in this section is to compute a minimal unsatisfiable core
(MUC), i.e., a subset I ⊆ R such that removing any element
ri from I makes the set consistent again. Table 1 shows an
inconsistent specification as a set R = {r1, . . . r7} of seven
requirements. Looking at the table, we can see that there are
4 different MUCs in R, namely {r1, r2}, {r2, r6}, {r3, r4, r5},
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Table 1 Set R of inconsistent PSPs

ri PSP

r1 Globally, it is always the case that A holds

r2 Globally, it is never the case that A holds

r3 Globally, it is always the case that B holds

r4 Globally, it is always the case that if B holds, then C holds as well

r5 Globally, it is never the case that C holds

r6 Globally, it is always the case that A and B holds

r7 After B, D eventually holds

{r4, r5, r6}. In the remainder of the section, we present two
algorithms devoted to the extraction of MUC for PSPs.

4.1 Linear deletion-basedMUC extraction

The first algorithm we present is based on a deletion-based
strategy, and its pseudo-code is depicted in Algorithm 1. The
procedure works as follows. If the set R′ ← R \ {r} with
r ∈ R is inconsistent, then r is not in the MUC. On the
other hand, if R′ is consistent, then r is part of a MUC and
cannot be removed. Such operation is repeated iteratively and
the algorithm terminates when all requirements have been
checked for inclusion in the MUC.

Algorithm 1 Linear Deletion-Based MUC Extraction Algo-
rithm
1: function findInconsistency(R)
2: R′ ← R
3: for ri ∈ R do
4: R′ ← R′ \ {ri }
5: if isConsistent(R′) then
6: R′ ← R′ ∪ {ri }
7: end if
8: end for
9: return R′
10: end function

It is easy to see that, with |R| = n, the loop iterates n
times, and that at each iteration the isConsistent function
is called once. The input of the function is R′ and its size
is given by

∣
∣R′∣∣. The number of elements in R′ is reduced

by one at each iteration, but ri could be added back again
in R′, depending on the result of isConsistent. The worst
case is obtained when all requirements are part of the MUC,
i.e., each requirement ri is first removed and then reinserted
again. In this case, the model checker is called each time
with n−1 requirements. The overall complexity is therefore
O(n · C(n)), where n is the number of elements initially in
R and C(n) is the complexity for the consistency check of n
requirements. The algorithm is therefore linear in the number
of calls to the model checker.

Example 1 Considering the set R in Table 1, Algorithm 1
works along the following steps. The final result is R′ =

Step ri R′ isConsistent(R′)

1: r1 {r2, r3, r4, r5, r6, r7} false
2: r2 {r3, r4, r5, r6, r7} false
3: r3 {r4, r5, r6, r7} false
4: r4 {r5, r6, r7} true
5: r5 {r4, r6, r7} true
6: r6 {r4, r5, r7} true
7: r7 {r4, r5, r6} false

{r4, r5, r6}. It is worth to notice that this result depends on
the extraction order of the requirements. It is easy to see
that processing the requirements in reverse order would yield
R′ = {r1, r2} as a result instead.

4.2 Dichotomic MUC extraction

Algorithm 2 is based on the same general-purpose structure
of Algorithm 1, but it also exploits the fact that the dimension
of the MUC is often much smaller than |R|. Therefore, it is
possible to exploit a “divide and conquer” strategy to reduce
the search space. Considering Algorithm 2, R is split in two
halves R1 and R2, such that R1∪R2 = R and R1∩R2 = ∅. If
one of the two halves (plus I ) is inconsistent, then there is no
need to explore the other one andwe can proceed recursively.
Otherwise, it means that the MUC has been split into two
halves and further search is needed. This is done by means
of two recursive calls (lines 21–22); the former performs the
search on R2 considering the whole set R1 as inconsistent,
while the latter continues the search on R1, removing from I
the requirements that still need to be checked. The algorithm
terminates when R has 1 or 0 elements.

As for the complexity of the algorithm the best case occurs
when the MUC is always in the first half of R. In such a case,
half of the requirements are discarded at each iteration, and
it is easy to see that complexity is	(log |R|). The worst case
occurs when the set of inconsistent requirements I coincides
with R. Taking into account Table 1, let R be comprised of
{r1, r2, r3, r4} and let MUC be R itself. At the first step, the
algorithm checks R′

1 = {r1, r2} and R′
2 = {r3, r4}, but both

sets are consistent. Therefore, findInconsistency is called
recursively with R = {r3, r4} and I = {r1, r2}. At this point,
we have R′′

1 = {r3} and R′′
2 = {r4}. The algorithm checks the

consistency of {r1, r2, r3} and {r1, r2, r4} and returns to the
previous recursive call. This time findInconsisntency is
called again, but with R = {r1, r2} and I = {r3, r4} and the
same process is applied. In general, if |R| = n andC(n) is the
complexity for the consistency check of n requirements, then
the worst case complexity of this algorithm is O(n · C(n))

– the same as the previous one. However, as we will show
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Algorithm 2 Dichotomic MUC Extraction Algorithm
1: function findInconsistency(R)
2: return findInconsistency(R,∅)
3: end function

4: function findInconsistency(R, I )
5: if |R| ≤ 1 then
6: if isConsistent(I ) then
7: return I ∪ R
8: else
9: return I
10: end if
11: end if
12: (R1, R2) ← split(R)
13: if |R1| > 1 and |R2| > 1 then
14: if ¬ isConsistent(R1 ∪ I ) then
15: return findInconsistency(R1, I )
16: end if
17: if ¬ isConsistent(R2 ∪ I ) then
18: return findInconsistency(R2, I )
19: end if
20: end if
21: I ← findInconsistency(R2, I ∪ R1)
22: I ← findInconsistency(R1, I \ R1)
23: return I
24: end function

in Sect. 5.2, when |I | � |R| it is noticeable faster than the
linear version.

Example 2 Considering again the set R reported in Table 1, in
the followingwe report step-by-step howAlgorithm 2works.
For lack of space in the table, we replace isConsistentwith
isCons.

Step R R1 R2 I isCons(R1∪ I )
isCons(R2∪ I )

1: {r1, . . . , r7} {r1, r2,
r3}

{r4, r5,
r6, r7}

{} False −
2: {r1, r2, r3} {r1} {r2, r3} {} True True
3: {r2, r3} {r2} {r3} {r1} − −
4: {r2} − − {r1} − −
5: {r1} − − {r2} − −

In the first step, the algorithm splits the initial set R into
two subsets R1 and R2 and checks the consistency of the first
one. Since R1 is inconsistent, the algorithm automatically
discards R2 and continue with step 2. Also, in this case the
new set R = {r1, r2, r3} is split into two, but this time both
are consistent and so the two recursive calls in line 21–22 are
executed: the first one is resolved in steps 3 and 4, while the
second one in step 5. In the last two steps, the basic case is
reached (lines 5–11), and since the call to isConsistent(I )
returns true in both cases, r1 and r2 are added to I . There-
fore, I = {r1, r2} is returned as final answer. In this case,
isConsistent is called 6 times instead of 7 as in the previ-
ous example.

5 Analysis with probabilistic requirement
generation

The aim of this section is twofold. On the one hand, we eval-
uate the scalability of our approach for consistency checking,
experimenting the encoding proposed in Sect. 3with a pool of
state-of-the-art LTL model checkers. On the other hand, we
assess the performance of the MUC extraction algorithms
described in Sect. 4, in order to evaluate the possibility of
their usage in contexts of practical interest.

Sincewewant to have control over different dimensions of
the specifications—the kind of requirements, the number of
constraints and the size of the corresponding domains—we
generate artificial specifications using a probabilistic model
that we devised and implemented specifically to carry out the
experiments herein presented.

In particular, the following parameters can be tuned in our
generator of specifications:

– The number of requirements generated (#req).
– The probability of each different body to occur in a pat-
tern.

– The probability of each different scope to occur in a pat-
tern.

– The size (#vars) of the set from which variables are
picked uniformly at random to build patterns.

– The size (dom) of the domain from which the thresholds
of the atomic constraints are chosen uniformly at random.

5.1 Evaluation of LTL(Dc) satisfiability

The goal of this experiment is to evaluate the performance—
in terms of correctness, efficiency and scalability—of LTL
model checkers for the consistency checking task described
in Sect. 3. To this end, we evaluate the performances of state-
of-the-art tools for LTL satisfiability, and then we consider
the best among such tools to assess whether our approach can
scale to sets of requirements of realistic size. All the exper-
iments here reported ran on a workstation equipped with 2
Intel Xeon E5-2640 v4 CPUs and 256GB RAM running
Debian with kernel 3.16.0-4.
Evaluation of LTL satisfiability solvers The tools considered
in our analysis are the ones included in the portfolio solver
polsat [25], namely aalta [28], NuSMV [9], pltl [46]
and trp++ [21].We also consider leviathan [7], a tableau-
based system for consistency checking that has been recently
published. Notice that in the case of NuSMV, we con-
sider two different encodings. With reference to Property 1,
the first encoding defines φM as an invariant—denoted as
NuSMV- invar—andφ′ is the property to check; the second
encoding considers φM ∧ φ as the property to check—
denoted as NuSMV- noinvar. Finally, concerning aalta,
we slightly modified its default version in order to be able
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Table 2 Evaluation of LTL satisfiability solvers on randomly generated requirements

dom 2 4 8 16

#vars 16 32 16 32 16 32 16 32

Tool S T S T S T S T S T S T S T S T
aalta 16 0.0 27 0.1 22 0.1 29 0.4 26 0.6 29 1.4 25 2.8 31 4.9

leviathan 4 0.1 6 0.3 7 0.8 5 0.2 0 – 7 2.3 4 47.7 7 12.8

NuSMV- invar 11 30.4 10 185.1 10 804.2 9 881.3 11 68.1 8 402.9 10 1172.6 8 1001.9

NuSMV- noinvar 11 65.0 10 489.7 7 303.6 7 505.5 11 92.4 10 1277.6 8 660.0 9 1394.5

pltl 8 25.0 11 108.1 9 1.2 10 0.6 10 19.6 11 0.1 11 14.5 14 3.5

The first line reports the size of the domain (dom), while the second line reports the total amount of variables (vars) for each domain size. Then,
for each tool (on the first column), the table shows the total amount of solved problems and the CPU time (in s) spent to solve them (columns “S”
and “T”, respectively)

to evaluate large formulas. In particular, we modified the
source code increasing of two orders of magnitude the input
size buffer.

In our experimental analysis, we set the range of the
parameters as follows: #vars ∈ {16, 32},dom ∈ {2, 4, 8, 16}
and #req ∈ {8, 16, 32, 64}. For each combination of the
parameters with v ∈ #vars, r ∈ #req and d ∈ dom, we
generate 10 different benchmarks. Each benchmark is a spec-
ification containing r requirements where each scope has
(uniform) probability 0.2 and each body has (uniform) prob-
ability 0.1. Then, for each atomic numerical constraint in
the benchmark, we choose a variable out of v possible ones,
and a threshold value out of d possible ones. In Table 2, we
show the results of the analysis. Notice that we do not show
the results of trp++ because of the high number of failures
obtained. Looking at the table, we can see that aalta is the
tool with the best performances, as it is capable of solving
two times the problems solved by other solvers inmost cases.
Moreover, aalta is up to 3 orders of magnitude faster than
its competitors. Considering unsolved instances, it is worth
noticing that in our experiments aalta never reaches the
granted time limit (10 CPU min), but it always fails before-
hand. This is probably due to the fact that aalta is still in a
relatively early stage of development and it is not asmature as
NuSMV and pltl.Most importantly, we did not find any dis-
crepancies in the satisfiability results of the evaluated tools,
with the noticeable exception of trp++, for which we did
not report performance in Table 2.
Evaluation of scalabilityThe analysis involves 2560 different
benchmarks generated in the previous experiment. The initial
value of #req has been set to 15, and it has been doubled
until 1920, thus obtaining benchmarks with a total amount of
requirements equal to 15, 30, 60, 120, 240, 480, 960 and1920.
Similarly has been done for #vars and #dom; the former
ranges from 5 to 640, while the latter ranges from 4 to 32.
At the end of the generation, we obtained 10 different sets
composed of 256 benchmarks. In Figs. 2 and 3, we present
the results, obtained running aalta. The figure is composed

of 8 plots, one for each value of #vars. Looking at the plots
in Figs. 2 and 3, we can see that the difficulty of the problem
increases when all the values of the considered parameters
increase, and this is particularly true considering the total
amount of requirements. The parameter #dom has a higher
impact of difficulty when the number of variables is small.
Indeed, when the number of variables is less then 40 there
is a clear difference between solving time with #dom = 4
and #dom = 32. On the other hand, when the number of
variables increases, all the plots for various values of #dom
are very close to each other. As a final remark, we can see that
even considering the largest problem (#vars = 640, #dom
= 32), more than 60% of the problems are solved by aalta
within the time limit of 10 min.

5.2 Evaluation of MUC extraction

In order to evaluate the algorithms proposed in Sect. 4, we
consider the pool of inconsistent benchmarks resulting from
the experiment presented in Sect. 5.1, for a total amount of
559, having different requirements set dimension as reported
in Table 3. All the experiments reported in this section ran
on a workstation equipped with an Intel Xeon E31245 @
3.30GHz CPU and 16GB RAM running Ubuntu 14.04 LTS.

In Fig. 4, we report the results obtained from the experi-
ment described above. For each plot, we report the median
CPU time (in s) over 10 runs of the same benchmark, grant-
ing for each run 600 CPU s. aalta has been used for the
satisfiability check.

Looking at the plots, we can see that the dichotomic
algorithm is, as expected, overall faster than the linear one.
Despite the fact that they show similar performance for
benchmarks having 8 and 16 requirements (top-most plots
in Fig. 4), looking at the plots in the middle of Fig. 4 we
can see that the dichotomic algorithm is at least one order
of magnitude faster than the linear one for benchmarks hav-
ing 32 and 60 requirements. More, we report that the latter
was able to return MUCs only for 62 out of 65 and 43 out
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Fig. 2 Scalability analysis (Part 1). On the x-axes (y-axes resp.), we
report req (CPU time in s resp.). Both the axes are in logarithmic scale.
In each plot, we consider different values of #dom. In particular, the

diamond green line is for #dom = 4, the light blue line with stars
is for #dom = 8, the blue crossed lines and red circled ones denote
#dom = 16 and #dom = 32, respectively (color figure online)

of 83, while the former returned a solution for all instances
with 32 requirements and 81 out of 83 for instances with 60
requirements.

Considering the plots in the bottom of Fig. 4, we can see
that the gap between the two algorithms increases even fur-
ther: the linear one was able to return MUCs only for 34 and
12 benchmarks of 120 and 240 requirements, respectively,
while the dichotomic one returned aMUC for 138 out of 147
and 168 out of 210 benchmarks. In addition, it is worth notic-
ing that the MUCs found are usually small in size; indeed, in
all 6 configurations, the median size of the MUCs found by
the two algorithms is 2.

Finally, we report that we involved in our analysis also
benchmarks composed of 480 requirements, but our algo-
rithmswere not able to return a solutionwithin the considered
CPU time limit.

As a final remark, notice that we limit the presentation of
the results to the algorithms presented in Sect. 4 because
state-of-the-art tools able to cope with this task, namely
pltl- mup [20] and trp++uc [45], report the same correct-

ness and scalability issues of their counterparts presented in
Sect. 5.1. For instance, considering the benchmark with 60
requirements—the first one for which we can see a notice-
able difference between the performance of the linear and the
dichotomic algorithm—we report that pltl- mup was not
able to solve any instance, while trp++uc tops its perfor-
mance at 37% of our worst algorithm (the linear one solved
43 instances out of 83). We also involved in our preliminary
analysis also procmine [1], but we do not report its results
for similar motivations.

6 Analysis with a controller for a robotic
manipulator

In this section, as a basis for our experimental analysis,
we consider a set of requirements from the design of an
embedded controller for a robotic manipulator. The con-
troller should direct a properly initialized robotic arm—and
related vision system—to look for an object placed in a
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Fig. 3 Scalability analysis (Part 2). Plots are organized as in Fig. 2

Table 3 Synopsis of the pool of
benchmarks involved in the
analysis of MUC extraction
algorithms

#req N

8 16

16 38

32 65

60 83

120 147

240 210

The table is organized in two
columns, namely the total
amount of requirements for each
benchmark (column “#req”) and
the total amount of benchmarks
falling in the related category
(column “N”)

given position and move to such position in order to grab the
object; once grabbed, the object is to be moved into a bucket
placed in a given position and released without touching the
bucket. The robot must stop also in the case of an unintended
collision with other objects or with the robot itself — colli-
sions can be detected using torque estimation from current

sensors placed in the joints. Finally, if a general alarm is
detected, e.g., by the interaction with a human supervisor,
the robot must stop as soon as possible. The manipulator is
a four-degree-of-freedom Trossen Robotics WidowX arm6

equipped with a gripper: Fig. 5 shows a snapshot of the robot
in the intended usage scenario taken fromV-REP7 simulator.
The design of the embedded controller is currently part of the
activities related to the “Self-Healing System for Planetary
Exploration” use case [35] in the context of the EU project
CERBERO.

In this case study, constrained numerical signals are
used to represent requirements related to various parame-
ters, namely angle, speed, acceleration and torque of the 4
joints, size of the object picked, and force exerted by the
end effector. We consider 75 requirements, including those
involving scenario-independent constraints like joints lim-
its, and mutual exclusion among states, as well as specific
requirements related to the conditions to be met at each state.
The set of requirements involved in our analysis includes 14

6 http://www.trossenrobotics.com/widowxrobotarm.
7 http://www.coppeliarobotics.com/.
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Fig. 4 Performance of the algorithms for MUC extraction. On the x-
axes we report the number of benchmarks, and on the y-axes we report
the time in logarithmic scale. In each plot, we consider different values

of #req. The green and blue lines show median times of the dichotomic
and linear algorithms, respectively (color figure online)
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Fig. 5 WidowX robotic arm
(left) and the simulated arm
moving a grabbed object in the
bucket on the left (right)

Table 4 Robotic use case
requirements synopsis

Pattern Specification Fault injections

after after_until globally after after_until globally

Absence – 12 14 [F4] – [F3]

Existence 9 – – – [F5] [F4, F6]

Invariant – – 29 – – [F2, F6]

Precedence – – 1 – – –

ResponseChain – – 2 – – –

Response 1 – 4 – – [F1]

Universality 2 – 1 – – –

The table is organized as follows: the first column reports the name of the patterns, and it is followed by two
groups of three columns denoted with the scope type: the first group refers to the intended specification, and
the second to the one with fault injections. Each cell in the first group reports the number of requirements
grouped by pattern and by scope type. Cells in the second group categorize the 6 injected faults, labeled with
F1, …, F6

Boolean signals and20numerical ones. InTable 4,wepresent
a synopsis of the requirements, to give an idea of the kind
of patterns used in the specification.8 While most require-
ments are expressed with the invariant pattern, e.g., mutual
exclusiveness of states and safety conditions, the expressiv-
ity of LTL is required to describe the evolution of the system.
Indeed, as shown in [18] and [41], it is often the case that few
PSPs cover the majority of specifications, whereas others are
sparsely used.

Our first experiment9 is to run NuSMV- invar on the
intended specification translated to LTL(DC ). The motiva-
tion for presenting the results with NuSMV- invar rather
than aalta is twofold: while its performances areworse than
aalta, NuSMV- invar is more robust in the sense that it
either reaches the time limit or it solves the problem, without
ever failing for unspecified reasons like aalta does at times;
second, it turns out that NuSMV- invar can deal flawlessly
and in reasonable CPU times with all the specifications we
consider in this section, both the intended one and the ones
obtained by injecting faults. In particular, on the intended

8 The full list of requirements and the fault injection examples are
available at https://github.com/SAGE-Lab/robot-arm-usecase.
9 Experiments herein presented ran on a PC equipped with a CPU Intel
Core i7-2760QM @ 2.40GHz (8 cores) and 8GB of RAM, running
Ubuntu 14.04 LTS.

specification, NuSMV- invar is able to find a valid model
for the specification in 37.1 CPU s, meaning that there exists
at least a model able to satisfy all the requirements simul-
taneously. Notice that the translation time from patterns to
formulas in LTL(DC ) is negligible with respect to the solving
time. Our second experiment is to runNuSMV- invar on the
specification with some faults injected. In particular, we con-
sider six different faults, andweextend the specification in six
different ways considering one fault at a time. The patterns
related to the faults are summarized in Table 4. In case of
faulty specifications, NuSMV- invar concludes that there
is no model able to satisfy all the requirements simultane-
ously. In particular, in the case of F2 and F3,NuSMV- invar
returned the result in 2.1 and 1.7 CPU s, respectively. Con-
cerning the other faults, the toolswere oneorder ofmagnitude
slower in returning the satisfiability result. In particular, it
spent 16.8, 50.4, 12.2 and 25.6 CPU s in the evaluation of the
requirements when faults 1, 4, 5 and 6 are injected, respec-
tively.

The noticeable difference in performances when checking
for different faults in the specification is mainly due to the
fact that F2 and F3 introduce an initial inconsistency, i.e., it
would not be possible to initialize the system if they were
present in the specification, whereas the remaining faults
introduce inconsistencies related to interplay among con-
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straints in time, and thus additional search is needed to spot
problems. In order to explain this difference, let us first con-
sider fault 2:

Globally, it is always the case that if state_init
holds, then not arm_idle holds as well.

It turns out that in the intended specification there is one
requirement specifying exactly the opposite, i.e., that when
the robot is in state_init, then arm_idle must hold
as well. Thus, the only models that satisfy both requirements
are the ones preventing the robot arm to be in state_init.
However, this is not possible because other requirements
related to the state evolution of the system impose that
state_init will eventually occur and, in particular, that
it should be the first one. On the other hand, if we consider
fault 6:

Globally, it is always the case that if arm_moving
holds, then joint1_speed > 15.5 holds as well.
Globally, arm_moving and proximity_sensor
= 10.0 eventually holds.

we can see that the first requirement sets a lower speed
bound at 15.5deg/s for joint1 when the arm is moving,
while there exists a requirement in the intended specifi-
cation setting an upper speed bound at 10deg/s when the
proximity sensor detects an object closer than 20cm. In
this case, the model checker is still able to find a valid
model in which proximity_sensor < 20.0 never hap-
pens when arm_moving holds, but the second requirement
in fault 6 prohibits this opportunity. It is exactly this kind of
interplay among different temporal properties which makes
NuSMV- invar slower in assessing the (in)consistency of
some specifications.

7 Conclusions

In this paper,we have extended basic PSPs over the constraint
system DC , and we have provided an encoding from any
PSP(DC ) into a corresponding LTL formula. This enables
us to deal with the satisfiability of specifications of practical
interest and to verify them using state-of-the-art reasoning
tools currently available for LTL. Noticeably, even consider-
ing the largest problem in our experiments (#vars = 640,
#dom = 32), more than 60% of the problems are solved
(by aalta) within the time limit of 10 min. Overall, using
the specifications generated with our probabilistic model
we have shown that our approach implemented on the tool
aalta scales to problems containing more than a thousand
requirements over hundreds of variables. Considering a real-
world case study in the context of the EU project CERBERO,
we have shown that it is feasible to check specifications and
uncover injected faults, even with tools other than aalta.

Inconsistency explanations could be provided for all, but the
largest specifications in our benchmark base. These results
witness that our approach is viable and worth of adoption
in the process of requirement engineering. Our next steps
toward this goal will include easing the translation from nat-
ural language requirements to patterns and extending the
pattern language to deal with other relevant aspects of cyber-
physical systems, such as real-time constraints and related
logics (e.g., signal temporal logic [32]). Further elements
will also include domain-specific strategies to search for
MUCs in requirements aiming at improving the performance
of the algorithm presented in Sect. 4, i.e., discovering or
approximating the minimum set of requirements causing the
inconsistency while looking for the consistency of the set,
instead to do it at the end of the consistency checking, as we
did in Sect. 4.
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