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Abstract
Many real-life critical systems are described with largemodels and exhibit both probabilistic and non-deterministic behaviour.
Verification of such systems requires techniques to avoid the state space explosion problem. Symbolic model checking and
compositional verification such as assume-guarantee reasoning are two promising techniques to overcome this barrier. In
this paper, we propose a probabilistic symbolic compositional verification approach (PSCV) to verify probabilistic systems
where each component is a Markov decision process (MDP). PSCV starts by encoding implicitly the system components
using compact data structures. To establish the symbolic compositional verification process, we propose a sound and com-
plete symbolic assume-guarantee reasoning rule. To attain completeness of the symbolic assume-guarantee reasoning rule,
we propose to model assumptions using interval MDP. In addition, we give a symbolic MTBDD-learning algorithm to gen-
erate automatically the symbolic assumptions. Moreover, we propose to use causality to generate small counterexamples in
order to refine the conjecture assumptions. Experimental results suggest promising outlooks for our probabilistic symbolic
compositional approach.

Keywords Probabilistic model checking · Compositional verification · Symbolic model checking · Assume-guarantee
paradigm · Model learning

1 Introduction

1.1 Context andmotivation

With the increase in complexity of modern computing sys-
tems, the chances of introducing errors have increased
significantly.Detecting andfixing every error is a very impor-
tant task, especially for safety-critical applications. Themain
approach to verify such systems is model checking [14,15],
which consists to verify systems by exhaustively searching
the complete state space.

Many safety-critical systems exhibit non-deterministic
stochastic behaviour [44], for example, probabilistic protocol
[20], randomized distributed algorithms [28], fault tolerant
systems [43], composition of inter-organizational workflow
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[7]. Probabilistic verification is a set of techniques for for-
mal modelling and analysis of such systems. Probabilistic
model checking [1,4,5] involves the construction of a finite-
state model augmented with probabilistic information, such
as Markov chains or probabilistic automaton [24,34]. This
is then checked against properties specified in probabilistic
extensions of temporal logic, such as probabilistic computa-
tion tree logic (PCTL) [23]. As with any formal verification
technique, one of themain challenges for probabilisticmodel
checking is the state space explosion problem: the number of
system states grows exponentially in the number of concur-
rent components. Indeed, even for small models, the size of
the state space may be massive; and this can cause the failure
of the verification process.

To cope with the state space explosion problem, several
approaches have been proposed such as (1) compositional
verification [21,22,25,36] and (2) symbolic model checking
[9,26,38,39]. Compositional verification suggests a “divide
and conquer” strategy to reduce the verification task into sim-
pler subtasks. A popular approach is the assume-guarantee
paradigm[11,13,41], inwhich individual systemcomponents
are verifiedunderassumptions about their environment.Once
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it has been verified that the other system components do
indeed satisfy these assumptions, proof rules can be used
to combine individual verification results, establishing cor-
rectness properties of the overall system. The success of
assume-guarantee reasoning approach depends on discov-
ering appropriate assumptions. The process of generating
automatically useful assumptions can be solved by using an
active model learning [13], such as L∗ learning algorithm
[3].

Symbolic model checking is also a useful technique to
cope with the state explosion problem. In symbolic model
checking, system states are implicitly represented by pred-
icates, as well as the initial states and transition relation of
the system. Using advanced data structures such as binary
decision diagrams (BDD) or multi-terminal BDD (MTBDD)
[19], a large number of states could efficiently be stored and
explored simultaneously.

The enormous success of assume-guarantee reasoning and
symbolic model checking techniques to cope with the state
space explosion problem motivated us to propose a new
approach based on the combination of assume-guarantee rea-
soning and symbolicmodel checking techniques. For that,we
propose a new approach named probabilistic symbolic com-
positional verification (PSCV) to take advantages of both
approaches. The PSCV is based on a symbolic assume-
guarantee reasoning rule. The main characteristics of our
symbolic assume-guarantee reasoning rule are soundness
and completeness. The completeness is guaranteed by the
use of interval MDP to represent assumption. In addition, to
reduce the size of the state space, PSCV encodes both system
components and assumptions implicitly using compact data
structures, such as BDD and MTBDD. We also adapt the L∗
learning algorithm to generate series of conjecture symbolic
assumptions.

1.2 Contributions

Probabilistic symbolic compositional verification aims to
avoid the state space explosion problem for probabilistic
systems composed of MDP components. Different from the
monolithic verification, in PSCV each system component
is verified in isolation under an assumption about its con-
textual environment. To illustrate the PSCV, we consider a
system S (Fig. 1) composed of two MDP components M0

and M1. In order to guarantee that S satisfies a probabilis-
tic safety property, we first encode the components (M0 and
M1) using symbolic data structures (symbolic MDP); many
works such as [9,19,38,39] show that the symbolic represen-
tation is often more efficient than the explicit representation.
The second step aims to generate a symbolic assumption
SIi , where M0 is embedded in SIi . The notion of embedded,
denoted by M0 � I , means that the symbolic assumption SIi
should be expressive enough to capture the abstract behaviour

Monolithic verification SCV

System S, S = M0 ‖ M1

MDP
M0

MDP
M1

Step 1
SMDP

SM0

SMDP
SM1

Step 2
Symbolic MTBDD-Learning

algorithm generates
symbolic assumption SIi

SIMDP
SIi

SMDP
SM1

Fig. 1 An overview of our approach, step 1 aims to encode MDP using
symbolicMDP and step 2 aims to learn a symbolic assumption SIi , then
the verification process will be established using a symbolic assume-
guarantee reasoning proof rule

of M0 and amenable to automatic generation via algorith-
mic learning. If the size of the symbolic assumption SIi is
much smaller than the size of the corresponding component
M0, then we can expect significant gains of the verification
performance. In addition, we propose a sound and com-
plete symbolic assume-guarantee reasoning proof rule to
define and establish the verification process of SIi ‖ M1.
Moreover, we propose a symbolic MTBDD-learning algo-
rithm to generate automatically the symbolic assumptions
SIi . We developed a prototype tool PSCV4MDP (probabilis-
tic symbolic compositional verification for MDP), which
implements the symbolic MTBDD-learning algorithm. We
evaluate our approach on a several case studies derived from
the PRISM benchmarks, and we have compared the results
of our approach with the symbolic monolithic probabilis-
tic verification [33]. Experimental results suggest promising
outlooks.

The remainder of this paper is organized as follows: In
Sect. 2 we provide some background knowledge aboutMDP,
interval MDP, the parallel composition MDP ‖ IMDP and
the symbolic data structures used to encode MDP and inter-
val MDP. In Sect. 3, we present the PSCV approach, where
we detail our symbolic assume-guarantee reasoning proof
rule, the encoding process of MDP and interval MDP and
the symbolic MTBDD-learning algorithm. Section 4 reports
the experimental results of several case studies. Section 5
describes the most relevant works to ours, and Sect. 6 con-
cludes the paper and talks about future works.

2 Preliminaries

In this section, we give some background knowledge about
MDP, interval MDP, the parallel composition and the sym-
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MDP M0

s0start s1

s2 s4s3

s5
detect 0.8

detect 0.2

warn

warn

send 0.3send 0.7
fail restart 0.5

restart 0.5

send 0.6

send 0.4

MDP M1

t0start t1

t2 t4t3

t5
detect 0.8

detect 0.2

warn

send 0.3send 0.7
fail restart 0.5

restart 0.5

send 0.6

send 0.4

Fig. 2 Example of two MDP, M0 (above) and M1 (below)

bolic data structures used to encode implicitly MDP and
interval MDP.

MDP are often used to describe and study systems exhibit
non-deterministic and stochastic behaviour.

Definition 1 Markov decision process (MDP) is a tupleM =
(SM , sM0 ,ΣM , δM )where SM is a finite set of states, sM0 ∈ S
is an initial state, ΣM is a finite set of alphabets and δM ⊆
S×(ΣM∪{τ })×Dist(S) is a probabilistic transition relation.

In a state s of MDP M , one or more transitions, denoted
(s, a) → μ, are available, where a ∈ ΣM is an action label,
μ is a probability distribution over states and (s, a, μ) ∈
δM . A path through MDP is a (finite or infinite) sequence
(s0, a0, μ0) → (s1, a1, μ1) → · · · we denote by FPath a
finite path throughMDPM . To reason aboutMDP,we use the
notion of adversaries, which resolve the non-deterministic
choices in MDP, based on its execution history. We denote
by σM an adversary of MDP M . Formally, an adversary σM

maps any finite path FPath to a distribution over the avail-
able transitions in the last state on the part, i.e. mapping
every FPath to an element σM (FPath) of δM . Indeed, we
distinguish several classes of adversaries: (1) memoryless
adversary, where it always pick the same choice in a state,
i.e. the choice depends only on the current state, (2) finite-
memory adversary, it stores information about the history in a
finite-state automaton, (3) deterministic adversary, an adver-
sary is deterministic if it always selects a single transition, or
(3) randomized adversary, where it maps finite paths FPath
in MDP to a probability distribution over element of δM . In
our case, the class of deterministic adversaries are sufficient
for our problem.

An example of two MDP M0 and M1 is shown in Fig. 2.
Interval Markov chains (IMDP) generalize ordinaryMDP

by using interval-valued transition probabilities rather than
just probability value. In this paper, we use interval MDP

i0start i1

i2 i4i3

i5

detect [0,1]

detect [0,1]

warn [0,1]

warn [0,1]

send [0,1]send [0,1]
fail [0,1] restart [0,1]

restart [0,1]

send [0,1]

send [0,1]

Fig. 3 Example of interval MDP I

to represent the assumptions used on the PSCV verification
process.

Definition 2 Interval Markov Chain (IMDP) is a tuple I =
(SI , s I0 ,ΣI , Pl , Pu) where SI , s I0 and ΣI are defined as for
MDP. Pl , Pu : S×ΣI × S 	→ [0, 1] are matrices represent-
ing the lower/upper bounds of transition probabilities such
that: Pl(s, a)(s′) ≤ Pu(s, a)(s′) for all states s, s′ ∈ S and
a ∈ ΣI .

An example of interval MDP I is shown in Fig. 3.
In Definition 3, we describe how MDP and interval MDP

are composed together. This is done by using the asyn-
chronous parallel operator (‖) defined by [42], where MDP
and interval MDP synchronize over shared actions and inter-
leave otherwise.

Definition 3 Parallel composition MDP ‖ IMDP
Let M and I be MDP and interval MDP, respectively. Their
parallel composition, denoted by M ‖ I , is an interval MDP
MI , where MI = M ‖ I .
MI = {SM×SI , (sM0 , s I0 ),ΣM∪ΣI , Pl , Pu},where Pl , Pu

are defined such that:
(si , s j )

a−→ [Pl(si , a)(s j ) × μi , Pu(si , a)(s j ) × μi ] if and
only if one of the following conditions holds: let si , s′

i ∈ SM
and s j , s′

j ∈ SI .

– si
a,μi−−→ s′

i , s j
Pl (s j ,a)(s′j ),Pu(s j ,a)(s′j )−−−−−−−−−−−−−−−→ s′

j , where a ∈
ΣM ∩ ΣI ,

– si
a,μi−−→ s′

i , where a ∈ ΣM\ΣI ,

– s j
Pl (s j ,a)(s′j ),Pu(s j ,a)(s′j )−−−−−−−−−−−−−−−→ s′

j , where a ∈ ΣM\ΣI .

Example 1 To illustrate the parallel composition, we con-
sider the example of MDP M0 and interval MDP I shown
in Figs. 2 and 3, respectively. The product MI = M0 ‖ I
obtained from their parallel composition is shown in Fig. 4.
M0 and I synchronize over their shared actions ΣM0 ∩ ΣI =
{detect, warn, send, restart, f ail}.

MDP and interval MDP can be implicitly encoded using
compact data structures such as BDD and MTBDD. Let B
denote the Boolean domain {0, 1}. Fix a finite ordered set of
Boolean variables X = 〈x1, x2, . . . , xn〉. A valuation v =
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s0, i0start s1, i1

s2, i2 s4, i4s3, i3

s5, i5

detect [0,0.8]

detect [0,0.2]

warn [0,1]

warn [0,1]

send [0,0.3]send [0,0.7]
fail [0,1] restart [0,0.5]

restart [0,0.5]

send [0,0.6]

send [0,0.4]

Fig. 4 Interval MDP MI result of the parallel composition M0 ‖ I

〈v1, v2, . . . , vn〉 of X assigns the Boolean value vi to the
Boolean variable xi .

Definition 4 A binary decision diagram (BDD) is a rooted,
directed acyclic graph with its vertex set partitioned into
non-terminal and terminal vertices (also called nodes). A
non-terminal node d is labelled by a variable var(d) ∈ X .
Each non-terminal node has exactly two children nodes,
denoted then(d) and else(d). A terminal node d is labelled
by a Boolean value val(d) and has no children. The Boolean
variable ordering < is imposed onto the graph by requiring
that a child d ′ of a non-terminal node d is either terminal, or
is non-terminal and satisfies var(d) < var(d ′).

Definition 5 A multi-terminal binary decision diagram
(MTBDD) is a BDD where the terminal nodes are labelled
by a real number.

In this work, we consider the verification of probabilistic
safety properties specified using PCTL in the formof P≤ρ[ψ]
with ρ ∈ [0, 1] and

φ : : = true|a|φ ∧ φ|¬φ

ψ : : = φU φ

where a is an atomic proposition, φ is a state formula, ψ is
a path formula and U is the Until temporal operator.

We use also the operator ♦ (diamond) operator to specify
probabilistic safety property. Intuitively, a property of the
form ♦φ means that φ is eventually satisfied. This operator
can be expressed in terms of the PCTL until as follows:

♦φ ≡ trueUφ.

3 Probabilistic symbolic compositional
verification

In this paper, we propose a probabilistic symbolic compo-
sitional verification approach (PSCV) to verify whether a
system S composed of MDP components satisfies or not a
probabilistic safety property P≤ρ[ψ]. The PSCV process is
based on our proposed symbolic assume-guarantee reasoning
proof rule, where assumptions are represented using interval
MDP.

Definition 6 Let M = (SM , sM0 ,ΣM , δM ) and I = (SI , s I0 ,

ΣI , Pl , Pu) be MDP and interval MDP, respectively. We
say M is embedded in I , written M � I , if and only if: (1)
SM = SI , (2) sM0 = s I0 , (3)ΣM = ΣI , and (4) Pl(s, a)(s′) ≤
μ(s, a)(s′) ≤ Pu(s, a)(s′) for every s, s′ ∈ SM anda ∈ ΣM .

Example 2 Consider the MDP M0 shown in Fig. 2 and inter-
val MDP I shown in Fig. 3. They have the same state space,
identical initial state (s0, i0) and the same set of actions
{detect, warn, send, restart, f ail}. In addition, the tran-
sition probability between any two states in M0 lies within
the corresponding transition probability interval in I by tak-
ing the same action. For example, the transition probability

between s0 and s1 is s0
detect,0.8−−−−−→ s1, which falls into

the interval [0, 1] labelled the transition i0
detect,[0,1]−−−−−−→ i1

in I , formally Pl(i0, detect)(i1) ≤ μ(s0, detect)(s1) ≤
Pu(i0, detect)(i ′0). Thus, we have M0 � I .

Theorem 1 Let M0, M1 beMDP and P≤ρ[ψ] a probabilistic
safety property, then the following proof rule is sound and
complete:

M0 � I (1)
I ‖ M1 |� P≤ρ [ψ] (2)
M0 ‖ M1 |� P≤ρ [ψ] (3)

This proof rule means if we have a system S composed
of two components M0 and M1, where S = M0 ‖ M1, then
we can check the correctness of a probabilistic safety prop-
erty P≤ρ[ψ] over S without constructing and verifying the
full state space. Instead, we first generate an appropriate
assumption I , where I is an interval MDP, then we check if
this assumption could be used to verify S by checking the two
promises:

(1) Check if M0 is embedded in I , M0 � I ,
(2) Check if I ‖ M1 satisfies the probabilistic safety property

P≤ρ[ψ], I ‖ M1 |� P≤ρ[ψ].

If the two promises are satisfied, then we can conclude that
M0 ‖ M1 satisfies P≤ρ[ψ].
Proof Let M0 and M1 be MDP, where M0 = (SM0 , s

M0
0 ,

ΣM0 , δM0), M1 = (SM1 , s
M1
0 ,ΣM1 , δM1), and interval MDP

I , I = (SI , s I0 ,ΣI , Pl , Pu). If M0 � I and based
on Definition 6 we have SM = SI , sM0 = s I0 ,ΣM =
ΣI , and Pl(s, a)(s′) ≤ μ(s, a)(s′) ≤ Pu(s, a)(s′) for
every s, s′ ∈ SM0 and a ∈ ΣM0 . Based on Defini-
tions 3 and 6, M0 ‖ M1 and I ‖ M1 have the same
state space, initial state and actions. Since Pl(s, a)(s′) ≤
μ(s, a)(s′) ≤ Pu(s, a)(s′), and we suppose the transition
probability of M0 ‖ M1 as: μM0‖M1((si , s j ), a)(s′

i , s
′
j ) =
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Input: MDP M0, M1 and probabilistic safety property P≤P [ψ]

Probabilistic symbolic compositional verification (SCV)

Step 1 : Encoding MDP M0 and M1 using Symbolic MDP SM0 and SM1

SMDP SM0 and SM1

Step 2 : Learning based symbolic assume-guarantee reasoning for MDP using IMDP

Symbolic MTBDD-Learning algorithm

Teacher (PRISM Model checker)

Generate initial
symbolic

assumption SI0

Equivalance query (EQuery)

Checki if:
SM0 � SIi and SIi ‖ SM1 |= P≤P [ψ]

SI0

Generate
counterexample

Cex

Analyse

counterexample?
Refine SIi

SIi

if Cex is a real No

Yes

YesNo

Membership query
(MQuery)

BDD ST encodes

Probability value

a transition

Yes, property satisfies

No, property does not
satisfy the system
M0 ‖ M1

the system M0 ‖ M1

Cex

Outputs:
-SIi

-Cex
-False

Outputs:

-True
-Cex
-SIi

Fig. 5 An overview of our approach probabilistic symbolic compositional verification approach (PSCV)

μM0((si ), a)(s′
i ) × μM1((s j ), a)(s′

j ) for any state si , s′
i ∈

SM0 and s j , s′
j ∈ SM1 . Thus, Pl((si , s j ), a)(s′

i , s
′
j ) ≤

μM0‖M1((si , s j ), a)(s′
i , s

′
j ) ≤ Pu((si , s j ), a)(s′

i , s
′
j ) for the

probability between two states (si , s′
i ) and (s j , s′

j ). In I ‖
M1 the probability interval between any two states (si , s j )
and (s′

i , s
′
j ) is restricted by the interval [Pl((si , a)(s′

i ) ×
μM1(s j ), a)(s′

j ), P
u((si , a)(s′

i ) × μM1(s j ), a)(s′
j )], this

implies, if M0 � I and I ‖ M1 |� P≤ρ[ψ] then M0 ‖
M1 |� P≤ρ[ψ] is guaranteed. ��

The main characteristic of our PSCV approach is com-
pleteness:

– If M0 ‖ M1 |� P≤ρ[ψ], then PSCV returns true and an
assumption I , where I ‖ M1 |� P≤ρ[ψ],

– IfM0 ‖ M1 � P≤ρ[ψ], then PSCV returns false, assump-
tion I and a counterexample showing the reason why
P≤ρ[ψ] is violated.

Proof In our approach PSCV, the symbolic learning algo-
rithm targets the component M0, and it will infer an
assumption I eventually. If M0 ‖ M1 |� P≤ρ[ψ], the
MTBDD-learning algorithm always infers I , where M0 �
I . In the worst case, the upper probability value of the
final assumption I will be equal to transition probability
value of M0. Otherwise, if M0 ‖ M1 � P≤ρ[ψ], the
MTBDD-learning algorithmwill start by generating an initial
assumption I0, if I0 is too strong (the upper probability value
is too big), the MTBDD-learning algorithm will refine I
based on a counterexample. The refinement process will lead
to generate a real counterexample showing the reason why
P≤ρ[ψ] is violated. In the worst case, the refinement process

will set the upper probability value of the final assumption I
as for transition probability value in M0. ��

Figure 5 presents an overview of the PSCV approach.
PSCV is based on the symbolic assume-guarantee reason-
ing proof rule. In our approach, assumptions are represented
using interval MDP instead of DFA, and the state space
is encoded using compact data structures. In addition, the
L∗ learning algorithm is adapted to accept the implicit rep-
resentation of the state space. Furthermore, our approach
always terminate. The choice of using interval MDP to
represent assumptions is motivated by: (1) MDP can be
embedded in an interval MDP (Definition 6), this how make
our assume-guarantee reasoning rule sound, where interval
MDPcaptures the abstract behaviour of the originalMDP; (2)
it is amenable to generate assumption represented by inter-
val MDP using the L∗ learning algorithm; (3) the implicit
representation of interval MDP can be more efficient in size
than the corresponding MDP; (4) completeness, it is always
possible to find an interval MDP, where MDP is embedded
on it; and (5) by using interval MDP, we can easily extend
the PSCV to verify properties of the form P≥ρ[ψ].

The first step of PSCV aims to encode components (M0

andM1) bymeans of SMDP. Instead of representing the state
space of MDP explicitly (using explicit representation), we
encode the state space, transitions and actions using symbolic
MDP (SMDP).

In Definition 7, we introduce SMDP and we provide the
different data structures used to encode implicitly MDP.

Definition 7 Symbolic MDP (SMDP) is a tuple SM =
(X , I ni tM ,Y , fSM (yxx ′z), Z) where X , Y and Z are finite
ordered set ofBoolean variableswith X∩Y∩Z = ∅. I ni t(X)
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is an initial predicate over X and fSM (yxx ′z) is a transition
predicate over Y ∪X∪X ′ ∪Z where y, x, x ′, z are valuations
of receptively, Y , X , X ′ and Z . The set X encodes the states
of S, X ′ next states, Y encodes alphabets, and Z encodes the
non-deterministic choice.

More concretely, let M = (SM , s0,ΣM , δM ) be MDP,
n = |SM |, m = |ΣM | and k = �log2(n)�. We can see δM as
a function of the form SM × ΣM × {1, 2, . . . , r} × SM →
[0, 1], where r is the number of non-deterministic choice
of a transition. We use a function enc : SM → {0, 1}k
over X = 〈x1, x2, . . . , xk〉 to encode states in SM and
X ′ = 〈x ′

1, x
′
2, . . . , x

′
k〉 to encode next states. We use also

Y = 〈y1, y2, . . . , ym〉 to encode actions and we represent
the non-deterministic choice using Z = 〈z1, z2, . . . , zr 〉. Let
x, x ′, y, z be valuations of X , X ′,Y and Z , respectively. A
valuation x of X or X ′ encodes a state s by enc(s), s ∈ SM .
A valid (true) valuation y encodes an action a by enc(a), a ∈
ΣM .

Example 3 We consider the MDP M0 (Fig. 2). M0 con-
tains the set of states SM0 = {s0, s1, s2, s3, s4, s5} and the
set of actions ΣM0 = {detect, warn, send, restart, f ail}.
We use X = 〈x0, x1, x2〉 to encode the set of states
in SM0 : enc(s0) = (000), enc(s1) = (001), enc(s2) =
(010), enc(s3) = (011), enc(s4) = (100), enc(s5) = (101);
and we use the set Y = 〈d, w, s, r , f 〉 to encode the actions
{detect, warn, send, restart, f ail}, respectively. Table 1
summarizes the process of encoding the transition function
δM0 , and its corresponding MTBDD is shown in Fig. 6. In
this figure, the terminal node labelled by the value 0 and its
incoming edges are removed, solid (doted) edges are labelled
by the value 1 (0), respectively.

Following the same process to encode MDP implicitly as
SMDP, we can encode interval MDP as SIMDP.

Definition 8 Symbolic interval MDP (SIMDP) is a tuple
SI = (X , I ni tI ,Y , f lSI (yxx

′z), f uSI (yxx
′z), Z) where X , Y

and Z , I ni tI are defined as for intervalMDP. f lSI (yxx
′z) and

f uSI (yxx
′z) are a transition predicates over Y ∪ X ∪ X ′ ∪ Z

where y, x, x ′, z are valuations of receptively, Y , X , X ′ and
Z . In practice, f lSI (yxx

′z) and f uSI (yxx
′z) are MTBDD

encoding the interval MDP, respectively, with lower and
upper probability values.

As described in proof of Theorem 1,M0 ‖ M1 and I ‖ M1

have the same state space, initial state and actions. The
implicit representation is introduced to reduce the size of the
state space. Indeed, the implicit representation of M0 ‖ M1

and I ‖ M1 may be different. This is due to the proba-
bility values. Assumption I uses interval-valued transition
probabilities rather thanprobability value in the original com-
ponent M0, and if the upper/lower bound is better uniformed
than the probabilities in M0, then we can expect a gain in

Table 1 Encoding the set of states and the transition function of MDP
M0 (Fig. 2)

s ∈ SM0 s0 s1 s2 s3 s4 s5 enc(si )

s0 0 0.8 0.2 0 0 1 000

s1 0 0 0 0 0 1 001

s2 0 0 0 0.7 0.3 0 010

s3 0 0 0 1 0 0 011

s4 0 0 0 0 0.5 0.5 100

s5 0 0 0 0 0.4 0.6 101

δM0 y x0 x ′
0 x1 x ′

1 x2 x ′
2 z

s0
detect−−−→ s1 d 0 0 0 0 0 1 0

s0
detect−−−→ s2 d 0 0 0 1 0 0 0

s0
warn−−−→ s5 w 0 1 0 0 0 1 1

s1
warn−−−→ s5 w 0 1 0 0 1 1 0

s2
send−−→ s3 s 0 0 1 1 0 1 0

s2
send−−→ s4 s 0 1 1 0 0 0 0

s3
f ail−−→ s3 f 0 0 1 1 1 1 0

s4
restart−−−−→ s4 r 1 1 0 0 0 0 0

s4
restart−−−−→ s5 r 1 1 0 0 0 1 0

s5
send−−→ s4 s 1 1 0 0 0 1 0

s5
send−−→ s5 s 1 1 0 0 1 1 0

the size of the state space. This is achieved because the final
nodes in MTBDD encoding I are less than MTBDD encod-
ing M0, for that many non-terminal nodes will be merged
together. In practice, and to improve the performance of our
approach, in term of the size of the state space, our approach
generates the first assumption with transitions, where the
interval probability value is equal to [0, 1], between all states
of the model, this will lead to merge many non-terminal
nodes.

The second step in our approach, PSCV, aims to generate
series of conjecture symbolic assumption SIi . Since we use
symbolic data structures to encodeMDP, in the aim of reduc-
ing the size of the state space, the symbolic assume-guarantee
reasoning rule could be rephrased as follows.

Let SM0 , SM1 be SMDP and P≤ρ[ψ] a probabilistic safety
property; the following proof rule is sound and complete:

SM0 � SIi (1)
SIi ‖ SM1 |� P≤ρ [ψ] (2)
SM0 ‖ SM1 |� P≤ρ [ψ] (3)

The proof of the rephrased symbolic assume-guarantee
reasoning rule follows the same proof of the initial assume-
reasoning rule.
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Fig. 6 MTBDD encoding the transition function δM0 (M0 in Fig. 2)

3.1 Symbolic MTBDD-learning framework

According to the symbolic assume-guarantee rule for MDP,
given an appropriate symbolic assumption SIi , we can check
the correctness of a probabilistic safety property P≤ρ[ψ]
on SM0 ‖ SM1 , without constructing and analysing the full
model. This rule is sound and complete. However, the main
challenge consists of the automatic generation of an appropri-
ate symbolic assumption. The aim of the second step, which
is the symbolicMTBDD-learning framework is to learn such
assumption. Our framework takes the symbolic representa-
tion of M0 and M1 result of the first step as input and uses the
symbolic MTBDD-learning algorithm to generate a series of
conjecture symbolic assumptions SIi . In Sect. 3.1.1,we detail
the process of generating SIi .

3.1.1 The symbolic MTBDD-learning algorithm

The L∗ learning algorithm [3] is a formal method to learn a
deterministic finite automata (DFA) with the minimal num-
ber of states that accepts an unknown language L over an
alphabet Σ (target language). During the learning process,

the L∗ algorithm interacts with a Teacher to make two
types of queries: (i) membership queries and (ii) equivalence
queries. A membership queries are used to check whether
some words w are in the target language or not. Equiva-
lence queries are used to check whether a conjectured DFA
A accepts the target language. If the conjectured DFA is not
correct, the teacher would return a counterexample to L∗ to
refine the automaton being learnt.

The L∗ learning algorithmhas beenwidely used in compo-
sitional verification of non-probabilistic systems. However,
for probabilistic systems such as MDP, it was demonstrated
that it is undecidable to infer MDP under a version of L∗
learning algorithm, and a learning algorithm for general prob-
abilistic systems may not exist after all [31]. In our work, we
propose to use interval MDP to model assumptions instead
of MDP or DFA. Moreover, we adapted the L∗ learning
algorithm to accept the symbolic representation of MDP
(SMDP) and learns a symbolic assumption SIi encoded using
SIMDP.Our proposed symbolicMTBDD-learning algorithm
is shown in Algorithm 1.

Algorithm 1 Symbolic MTBDD-learning algorithm
1: Input: MDPM0, SMDPSM0 , SM1 and ϕ = P≤ρ [ψ]
2: output: SI MDPSIi , set of counterexamples and a Boolean value
3: Begin
4: SI MDPSI0 = Generate_SI0 (M0,SM0 );
5: Boolean b = EQuery(SI0 , SM0 , SM1 , ϕ);
6: if b == true then
7: return (SI0 , null,true);
8: else
9: i = 1;
10: SIi = SI0 ;
11: repeat
12: Cex = GenerateCex(SI0 , SM1 , ϕ);
13: isRealCex = AnalyseCex(Cex, SM0 , SM1 , ϕ);
14: if isRealCex == true then
15: return (SIi , Cex, false);
16: else
17: i + +;
18: SIi = Ref ine_SIi (SIi , Cex);
19: b = EQuery(SIi , SM0 , SM1 , ϕ);
20: end if
21: until b == true;
22: return (SIi , null, true);
23: end if
24: End

The symbolic MTBDD-learning algorithm starts by gen-
erating an initial assumption SI0 . Since we use symbolic data
structures to represent the system components as well as
assumptions, the function Generate_SI0 accepts MDP M0

andSMDP SM as inputs, and returns SIMDP SI0 . The process
of generating SI0 is described in Algorithm 2. According to
the symbolic assume-guarantee reasoning proof rule, SI0 has
the same state space as M0, i.e. the same initial state, set of
states and actions. Thus, the function Generate_SI0 initial-
izes the same data structures to X I , I ni tI and Y I as for SM0 .
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Algorithm 2 Generate_SI0
1: Input: MDPM0, SMDPSM0

2: output: SI MDPSI0
3: BEGIN
4: We consider SM0 = {XM , I ni tM , Y M , fSM (yxx ′z), ZM } and let

SI0 = {X I , I ni tI , Y I , f lSI (yxx
′z), f uSI (yxx

′z), Z I } be SIMDP.
5: Create a new IntervalMDP I0 equivalent toM0, with transition equal

to [0, 1] between all states. The set of actions in M0 are hold in each
transition of I0.

6: X I = XM ;
7: I ni tI = I ni tM ;
8: Y I = Y M ;
9: f lSI (yxx

′z) = MTBDD with one final node labelled 0;
10: Convert the transition function of I0 to MTBDD f uSI ;
11: return SI0 ;
12: End

Table 2 Comparison between the size of MTBDD encoding the tran-
sition function of M0 and I0 for randomized dining philosophers

No. SM0 SI0
T4MC M. Nodes T4MC M. Nodes

6 0.09 5008 0.25 2832

16 7091 37,523 0.301 20,127

18 11,042 43,472 0.372 25,470

20 16,563 58,565 0.75 31,441

30 64,207 131,260 1.385 70,716

40 169,215 232,655 3.016 125,691

Since the initial assumption have the same state space as SM0 ,
and to optimize the implicit representation of the transition
function of SI0 , Generate_SI0 creates a new interval MDP
I0 equivalent to M0, with transition equal to [0, 1] between
all states, where the set of actions are hold in each transition,
then it converts the transition function of I0 to MTBDD f uSI .
The aim behind the generation of SI0 with transition equal to
[0, 1] between all states is to reduce the size of the implicit
representation of the state space. Indeed, for large proba-
bilistic system, when we use uniform probabilities, 0 and 1
in our case, this will reduce the number of terminal nodes
as well as non-terminal nodes. Adding transition between all
states, will keep our assume-guarantee verified for the initial
assumption, since M0 is embedded in I0, in addition, this
process will help to reduce the size of the implicit represen-
tation of I0 and this by combining any isomorphic sub-tree
into a single tree, and eliminating any nodes whose left and
right children are isomorphic. To illustrate the size gain of
using this process, we consider the example of randomized
dining philosophers [18,35]. (This example is described in
Sect. 4.) The results are reported in Table 2. In this table we
compare the size of MTBDD encoding the transition func-
tion ofM0 and I0 for randomized dining philosophersmodel,
where T 4MC describes the time for model construction and
M. Nodes illustrates the number of model nodes.

Example 4 To illustrate the PSCV approach, we propose the
verification of the system S = M0 ‖ M1 (Fig. 2) against the
probabilistic safety property: ϕ = P≤0.1[♦" f ail"], where
" f ail" stands for the state 〈s3t3〉. The property ϕ means that
themaximumprobability that the system S should never fails,
over all possible adversaries, is less than 0.1. Initially, PSCV
starts by encoding the system components M0 and M1 using
SMDP. Then, it calls the symbolic MTBDD-learning algo-
rithm to generate an appropriate symbolic assumption SIi .
The symbolic MTBDD-learning algorithm generates an ini-
tial conjecture symbolic assumption SI0 .

An equivalence query is made in line 5 (Algorithm 1) to
check whether the initial conjectured symbolic assumption
SI0 could be used in the compositional verification. Like the
L∗ learning algorithm, our symbolicMTBDD-learning algo-
rithm interacts with a teacher to answer two types of queries:
equivalence queries and membership queries. However, in
our case, the interpretation of these latter is different.

3.1.2 Equivalence queries

In our approach, equivalence queries are used to checkwhen-
ever a symbolic conjecture assumption SIi can be used to
establish the two promises of the symbolic assume-guarantee
rule. The first step is to check if SM0 � SIi , this is done by
checking if: (1) SM = SIi , (2) s

M
0 = s I0 , (3) ΣM = ΣI ,

and (4) Pl(s, a)(s′) ≤ μ(s, a)(s′) ≤ Pu(s, a)(s′) for every
s, s′ ∈ SM and a ∈ ΣM (see Definition 6). Since we use
symbolic data structures to encode MDP and interval MDP,
the checking process can be rephrased as follows:
Let SM = (XM , I ni tM ,Y M , fSM (yxx ′z), ZM ) and SIi =
(X I , I ni tI ,Y I , f lSI (yxx

′z), f uSI (yxx
′z), Z I ) be SMDP and

SIMDP, respectively. We say that SM0 � SIi if and only
if: (1) XM = X I , (2) I ni tM = I ni tI , (3) Y M =
Y I , and (4) MQuery(ST , f uSI ) ≤ MQuery(ST , fSM ) ≤
MQuery(ST , f lSI ) for every s ∈ SM , where ST is a BDD

encoding a transition si
a−→ s j (si , s j ∈ SM ). EQuery calls

the function Threshold if:
ProbSM < ProbSI l or ProbSM > ProbSI u . Threshold
changes the final nodes in f lSSI (or f

u
SSI

) to ProbSM following
the BDD ST . Otherwise, if the first promise is valid, then the
function EQuery would check the second promise of the
symbolic assume-guarantee rule, i.e. Does SIi ‖ SM2 satisfy
P≤ρ[ψ]?
The second step is done by applying a symbolic probabilistic
model checking. In practice, to check whether SIi ‖ SM2 |�
P≤ρ[ψ], themodel checker needs first to compute the parallel
composition SIi ‖ SM2 , which results an SIMDP. The sym-
bolic model checking algorithm SPMC used in the function
EQuery (line 12) is described in Sect. 3.1.4. The function
EQuery is illustrated in Algorithm 3.
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Algorithm 3 EQuery
1: Input: SI MDPSIi , SMDPSM0 , SMDPSM1 , P≤ρ [ψ]
2: output: Boolean value
3: Begin
4: for all transition t in SM do
5: BDD ST = Convert t to BDD;
6: Double ProbSI u = MQuery(ST , f uSI );
7: Double ProbSM = MQuery(ST , fSM );
8: Double ProbSI l = MQuery(ST , f lSI );
9: if ProbSM < ProbSI l then
10: Threshold( f lSSI ,<,ST ,ProbSM );
11: end if
12: if ProbSM > ProbSI u then
13: Threshold( f uSI ,>,ST ,ProbSM );
14: end if
15: end for
16: Boolean sat = SPMC(SI , fSM , P≤ρ [ψ]);
17: return sat;
18: End

3.1.3 Membership queries

Membership queries can be seen as a function MQuery
(BDDST , MT BDDfSM ):Double. MQuery tacks a BDD
ST and MTBDD fSM as inputs, where the BDD ST encodes

a transition si
a−→ s j over Y ∪ X ∪ X ′, and returns the proba-

bility value between si
a−→ s j in fSM by applying the function

Apply(∗, ST , fSM ), where apply returns an MTBDD repre-
senting the function ST ∗ fSM . Multiplying the BDD ST with
the MTBDD fSM removes all transitions from fSM which do
not connect states of ST , i.e. the resultMTBDD encodes only
si

a−→ s j with the original probability value in fSM .

Algorithm 4 MQuery
1: Input: BDDST , MT BDDfSM
2: output: double
3: Begin
4: MT BDDR = Apply(∗, ST , fSM );
5: d = get the terminal node of R;
6: return val(d);
7: End

Example 5 It is clear that the initial assumption SM0 is embed-
ded in SI0 . Indeed, the main step in the equivalence query
is the verification if SIi ‖ SM1 satisfies the property ϕ or
not. To model checking the system SI0 ‖ SM1 |�? P≤ρ[ψ],
the function EQuery calls the symbolic probabilistic model
checking SPMC. In our example, EQuery calls the func-
tion SPMC the first time with SI0 , the MTBDD fSM1

and the

property ϕ. After model checking the system SI0 ‖ SM1 |�?

P≤ρ[ψ], SPMC returns f alse, this means that the system
SI0 ‖ SM1 does not satisfy the property ϕ.

The function SPMC used in this paper is described in the
next section (Sect. 3.1.4).

3.1.4 Symbolic probabilistic model checking

Model checking algorithm for interval MDP was considered
in [6,10], where it was demonstrated that the verification of
interval MDP is often more consume, in time as well as in
space, than the verification of MDP. In this work, our ulti-
mate goal is reducing the size of the state space. Therefore,
the verification of interval MDP needs to be avoided. Thus,
we propose rather than verifying intervalMDP SIi ‖ SM1 , we
verify only a restricted SIMDP RI , which is anMTBDDcon-
tains the upper probability value of the probability interval
associate in each transition of SIi . This can be done by taking
the MTBDD f uSIi

of SIi . Then, the verification of RI ‖ SM1

can be done using the standard probabilistic model checking
proposed in [25]. The symbolic probabilistic model checking
used in this work was proposed in [39].

When EQuery returns f alse, this means either the sym-
bolic assumption is too strong (the upper probability value is
big) or the system S does not satisfy the property ϕ. The
symbolic MTBDD-learning algorithm calls the functions
GenerateCex and AnalyseCex to generate and analyse the
counterexamples.

3.1.5 Generate probabilistic counterexamples

The probabilistic counterexamples are generated when a
probabilistic property ϕ is not satisfied. They provide a valu-
able feed back about the reason why ϕ is violated.

Definition 9 The probabilistic property ϕ = P≤ρ[ψ] is
refuted when the probability mass of the path satisfying ϕ

exceeds the bound ρ. Therefore, the counterexample can be
formed as a set of paths satisfying ϕ, whose combined mea-
sure is greater than or equal to ρ.

As denoted in Definition 9, the probabilistic counterex-
ample is a set of finite paths, for example, the verification of
the property “a fail state is reached with probability at most
0.01” is refused by a set of paths whose total probability
exceeds 0.01. The main techniques used for the generation
of counterexamples are described in [29]. The probabilistic
counterexamples are a crucial ingredient in our approach,
since they are used to analyse and refine the conjecture
symbolic assumptions. Thus, our need consist to find the
most indicative counterexample. A most indicative coun-
terexample is the minimal counterexample (which has the
least number of paths). A recent work [16] proposed to use
causality in order to generate small counterexamples. In this
paper, we used the tool DiPro1 to generate counterexamples.
DiPro employs many algorithms to generate counterexam-
ples, among these algorithms we use the K ∗ algorithm [2].

1 https://se.uni-konstanz.de/research1/tools/dipro/.
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In addition, we apply the algorithms in [17] to generate the
most indicative counterexample, denoted by Cex .

3.1.6 Analysis probabilistic counterexamples

The function AnalyseCex aims to check whether the prob-
abilistic counterexample Cex is real or not. Cex is a real
counterexample of the system S if and only if SMCex

0 ‖
SM1 |� P≤ρ[ψ] does not hold. In practice, the function
AnalyseCex creates a fragment of the MDP M0 based on
the probabilistic counterexample Cex , where the MDP frag-
ment MCex

0 contains only transitions present in Cex . Thus,
the fragment MCex

0 is obtained by removing from M0 all
states and transitions not appearing in any path of the set
Cex .

Since we use symbolic data structures to encode the state
space, we encode the MDP fragment using SMDP SMCex

0
(following the same process to encode MDP). AnalyseCex
returns true if and only if the symbolic probabilistic model
cheeking of SMCex

0 ‖ SM1 |� P≤ρ[ψ] returns f alse, or
f alse otherwise. The computing of the product SMCex

0 ‖
SM1 follows the same process as the parallel composition of
MDP ‖ I MPD. The function AnalyseCex is described in
Algorithm 5.

Algorithm 5 AnalyseCex
1: Input: a set of probabilistic counterexample Cex , SM0 , SM1 , ϕ =

P≤ρ [ψ]
2: output: Boolean value
3: Begin
4: MCex

0 = remove from M0 all states and transitions not appearing in
any path of the set Cex ;

5: SMDP SMCex
0 = Encode MCex

0 as SMDP;
6: Boolean sat = SPMC(SMCex

0 , fSM1
, ϕ);

7: return ¬ sat;
8: End

Example 6 The equivalence query for the initial assumption
SI0 returns f alse. ThePSCVcalls the functionGenerateCex
to generate themost indicative probabilistic counterexample.
For our example, since the system SI0 ‖ SM1 does not satisfy
the property ϕ.
GenerateCex returns the set Cex , where Cex = {(s0, t0)
detect,0.2−−−−−→ (s2, t2)

send,0.7−−−−−→ (s3, t3)}. To check whether the
probabilistic counterexample Cex is real or not, the function
AnalyseCex generates anMDP fragmentMCex

0 (see Fig. 7),
and calls the SPMC to model checking the system SMCex

0 ‖
SM1 |� P≤0.1[ψ]. SPMC returns f alse, this means that Cex
is a real counterexample, and the property ϕ does not satisfy
the system S.

s0start s2 s3
detect 0.2 send 0.7

Fig. 7 MDP fragment MCex
0

3.1.7 Refinement process of the conjecture symbolic
assumption SIi

If the probabilistic counterexample is not real, the symbolic
MTBDD-learning algorithm calls the function Ref ine_SIi
to refine SIi . Ref ine_SIi takes the conjecture symbolic
assumption SIi and the probabilistic counterexample Cex
as input. First, Ref ine_SIi searches the maximum probabil-
ity value Maxp in all paths of Cex . Then, it sets the upper
probability value for all probability intervals of SIi present-
ing in Cex to Maxp. The choice of using Maxp to refine SIi
is to keep the upper bounds of the interval probability value
more uniform, i.e. to reduce the number of terminal nodes of
the MTBDD encoding SIi . As described in Algorithm 6, the
refinement process of SIi is based on the set of paths present
inCex . This process could bring the SIi closer to the original
competent M0. In practice, the use of Maxp could lead to
generate a spurious counterexample. To resolve this, and to
guarantee the completeness of our approach, we store the last
set of counterexample Last_Cex and the current set Cex ,
and if a state s is present in the two sets of counterexample,
Cex and Last_Cex , then we set all the upper bounds of the
outgoing transitions to the corresponding probability value
in δM0 . These states are stored to not change their outgoing
transitions in the next refinement iterations.

Algorithm 6 Ref ine_SIi
1: Input: SIi , Cex
2: output: SIi
3: Begin
4: Double Maxp = search the maximum probability value in all paths

of Cex
5: Set the upper probability value in f uSIi

toMaxp if and only if path ∈
Cex

6: return SIi ;
7: End

Our approach PSCV as well as our algorithm, symbolic
MTBDD-learning algorithm, is characterized by:

– Soundness, this means if our symbolicMTBDD-learning
algorithm generates a symbolic assumption SIi , where
SM0 � SIi and SIi ‖ SM1 |� P≤ρ[ψ], then we are
sure that SM0 ‖ SM1 |� P≤ρ[ψ], the soundness of our
approach is based on Theorem 1, this proof rule has been
precisely proven in Sect. 3.

– Completeness, this means that our symbolic MTBDD-
learning algorithm will generate eventually a symbolic
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Table 3 Experimental results for case studies randomized mutual exclusion and client–server

Case study No. Symbolic monolithic verification Symbolic compositional verification Size red (%)

SM0 ‖ SM1 SM0 SI0 SI f ‖ SM1 SMCex
0 SMCex

0 ‖ SM1 TT

T4MC Size Size Size T4MC Size T4MC Size T4MC Size

Mutual 6 0.357 9409 1578 736 0.173 4981 0.015 601 0.072 3166 2.547 47

7 0.556 13,182 3591 1370 0.308 8163 0.021 1229 0.128 4692 2.987 38

8 0.867 17,531 5658 2197 0.487 11,953 0.066 2367 0.163 6974 3.214 32

11 2.270 34,034 7882 3217 1.648 26,779 0.199 7350 0.272 15,587 4.129 21

13 4.010 47,916 10,263 4430 2.739 39,543 0.470 11,867 0.994 22,524 5.214 17

Client–server 2 0.007 616 616 379 0.012 531 0.002 62 0.005 502 0.125 13

3 0.020 1428 1428 987 0.016 1220 0.003 104 0.007 1213 0.185 14

4 0.051 2979 2979 1528 0.031 2506 0.005 152 0.009 1401 0.213 15

5 0.052 4997 4997 3241 0.051 4176 0.009 206 0.012 1600 0.354 16

6 0.069 7439 7439 4987 0.066 6180 0.010 266 0.014 1810 0.398 17

7 0.093 10,684 10,684 6893 0.092 8849 0.014 332 0.015 2031 4.218 17

assumption SIi . Our symbolic MTBDD-learning algo-
rithm always generates a new assumption either by
learning an initial assumption SI0 or by refine SIi .

– Termination, this means that our algorithm will always
terminate. Our symbolic MTBDD-learning algorithm
targets a SIMDP SIi , where SM0 � SIi . Based on
Theorem 1, we can always generate assumptions such
SM0 � SIi ; thus, the learning algorithm will always ter-
minate, either by true if SM0 ‖ SM1 |� P≤ρ[ψ] or false
otherwise. In the worst case, our algorithm will generate
SM0 as a symbolic assumption.

– Complexity, another important point is the complexity of
our symbolic MTBDD-learning algorithm. Indeed, if we
want to apply our algorithm to verify real-life systems
then it needs to check these systems within a polyno-
mial number of queries, thus, in a polynomial time. Our
algorithm infers the symbolic assumption with at most n
equivalence queries, where n = |δM0 |.

As described before, the main goal of our work is to cope
with the state space explosion problem. In the next section
(Sect. 4), we apply our PSCV approach in a several case
studies andwe compare its performance against the symbolic
monolithic probabilistic verification.

4 Implementation and experimental results

We have implemented a prototype tool named PSCV4MDP

(probabilistic symbolic compositional verification forMDP).
Our tool accepts MDP specified using PRISM code and
a probabilistic safety property as input and returns either
true if the MDP satisfies the probabilistic safety property,
or false and counterexample otherwise. In this section, we

give the results obtained for the application of our approach
in a several case studies derived from the PRISM bench-
mark.2 For each case study, we check the model against a
probabilistic safety property using: (1) symbolic monolithic
probabilistic model checking and (2) symbolic probabilis-
tic compositional verification. In addition, we compare, for
each technique, the time for model construction T4MC, and
the size of the state space, i.e. the number of nodes. We have
summarized and compared the results in Tables 3 and 4. In
Table 3 we report the results of the case studies randomized
mutual exclusion andClient–Server; for these two case stud-
ies, it was necessary to generate counterexamples to refine
the initial assumption, contrary to Table 4, where the initial
assumption was sufficient for the verification process. For
both tables, the column (No.) shows the number of com-
ponents and the column [Red (%)] shows the reduction of
model size of our PSCV to the symbolic monolithic verifi-
cation. The tests were carried on a personal computer with
Linux as operating system, 2.30GHz CPU and 4GB RAM.

In addition, for each case study,we report the size of SM0 ‖
SM1 for the symbolic monolithic verification or SI f ‖ SM1

for the symbolic compositional verification, where SI f is the
final symbolic assumption. We also report in Table 3 the
T4MC and the size of SMCex

0 ‖ SM2 and SM2 . We observe
that the PSCV successfully infers symbolic assumptions and
SI f ‖ SM1 are much more compact than SM0 ‖ SM1 in all
cases. For example, in the first case study (mutual N = 11),
SI f ‖ SM1 has 26,779 nodes while SM0 ‖ SM1 has 34,034
nodes; in R. S. stab. (N = 17), |SM0 ‖ SM1 | = 969 while
|SI f ‖ SM1 | = 53. The column T T illustrates the total time
for PSCV to check if the case study satisfies the property or
not, i.e. T T = T 4MC (for PSCV) + Time to generate SI f .

2 http://www.prismmodelchecker.org/casestudies/index.php.
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Table 4 Experimental results for the case studies randomized dining philosophers, randomized self-stabilizing algorithm and dice

Case study No. Symbolic monolithic verification Symbolic compositional verification Size red (%)

SM0 ‖ SM1 SM0 SI0 SI f ‖ SM1 TT

T4MC Size Size Size T4MC Size

R.D. Philos 6 0.090 5008 956 705 0.125 1887 0.192 62

16 7.091 37,523 9215 5035 0.344 20,127 0.521 46

18 11.042 43,472 11,749 6372 0.437 25,470 0.982 41

20 16.563 58,568 14,570 7866 0.50 31,441 1.320 47

30 64.207 131,260 32,980 17,691 1.657 70,716 2.520 46

40 169.215 232,655 58,565 31,441 2.704 125,691 3.391 45

R.S. Stab. 6 0.003 177 117 20 0.003 20 0.010 88

8 0.005 285 285 26 0.004 26 0.010 89

13 0.006 625 625 41 0.005 41 0.012 93

17 0.012 969 969 53 0.007 53 0.015 94

19 0.013 1165 1165 59 0.009 59 0.015 94

Dice 2 0.003 437 71 11 0.009 240 0.011 45

3 0.005 793 203 167 0.011 597 0.015 24

4 0.007 1181 378 268 0.020 986 0.025 17

5 0.029 1601 616 487 0.023 1407 0.029 12

8 0.081 3053 917 770 0.050 2862 0.059 6

12 0.120 5437 1218 1117 0.108 5250 0.102 3

4.1 Randomizedmutual exclusion

Our first case study, randomized mutual exclusion (Mutual),
is based on Pnueli and Zuck’s [40] probabilistic symmet-
ric solution to the n-process mutual exclusion problem. The
model is represented as an MDP. We let No. denotes the
number of processes. We check the system against the prop-
erty: ϕ1 =The probability that two or more processes are
simultaneously in their remainder phases is at most 0.999.
The results for this case study are reported in Fig. 8. The
results show that PSCV performs better then the symbolic
monolithic verification and reduces the model size by 31%
on average. For time to model checking this case study, the
symbolic monolithic verification performs better than PSCV,
and this is due to time to generate counterexample and refine
assumptions.

4.2 Client–server

This case study is a variant of the Client–Server model from
[41]. It models a server and N clients. The server can grant
or deny a client’s request for using a common resource, once
a client receives permission to access the resource, it can
either use it or cancel the reservation. Failures might occur
with certain probability in one or multiple clients, causing
the violation of the mutual exclusion property (i.e. conflict
in using resources between clients). In this case study, we
consider the property: ϕ5 = the probability a failure state is
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Fig. 8 Case study results from the application of symbolic monolithic
verification and PSCV: Mutual

reached is at most 0.98. For this case study, PSCV reduces
the size by 15.33% on average (Fig. 9).

4.3 Randomized dining philosophers

The third case study is the randomized dining philosophers
(R.D. Philos). This case study models a randomized solution
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Fig. 9 Case study results from the application of symbolic monolithic
verification and PSCV: client–server

to the dining philosophers problem, proposed by [18,35].
R.D. Philos concerns the problem of resources allocation
between processes. Several philosophers sit around a circu-
lar table. There is a fork between each pair of neighbouring
philosophers. A philosopher can eat if and only if he obtains
the resources from both sides. In this case study, No. denotes
the number of philosophers. We analyse the solution pro-
posed in [18,35] by using the property: ϕ2 = the probability
that philosophers do not obtain their shared resource simul-
taneously is at most 0.980, formally: P≤0.980[♦"err"], where
label “err” sands for every states satisfy: [(sN ≥ 8)&(sN ≤
9)], and N is the component number. Results are reported
in Fig. 10. In this case study, PSCV reduces the model size
by 47.66% on average and improves the verification time as
well.

4.4 Randomized self-stabilizing algorithm

In the fourth case study we consider a number of random-
ized self-stabilizing algorithms (R.S. Stab.). A randomized
self-stabilizing protocol for a network of processes is a pro-
tocol which, when started from some possibly illegal start
configuration, returns to a legal/stable configuration without
any outside intervention within some finite number of steps.
In this paper, we consider the solution of Israeli and Jal-
fon [28] and we analyse the protocol through the following
property: ϕ3 = the probability to reach a stable configura-
tion for all algorithms is at most 0.999. Experimental results
are reported in Fig. 11. For this case study, the verification
time is improved and the model size is reduced by 91.60%
on average.
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Fig. 10 Case study results from the application of symbolic monolithic
verification and PSCV: randomized dining philosophers
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Fig. 11 Case study results from the application of symbolic monolithic
verification and PSCV: randomized self-stabilizing algorithm

4.5 Dice

This case study considers probabilistic programs, due to
Knuth and Yao [30], which model fair dice using only fair
coins. At the implementation, we have used a reimplementa-
tion of the work done by [27]. The probabilistic programs are
modelled using discrete time Markov chain (DTMC), which
constitute a subclass of MDP. We consider the analysis of
the property: ϕ4 = the probability of reaching a state with
s = 7& d = k is at most 0.01, where k ∈ [1 . . . 6]. Perform-
ing the verification of this case study, the PSCV reduces the
size by 17.83% on average (Fig. 12).
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Fig. 12 Case study results from the application of symbolic monolithic
verification and PSCV: dice

4.6 Discussion

Table 3 reports the results for case studiesMutual andClient–
Server. The average size reduction for these case studies is
22.54%. For Mutual model, the reduction size decreases by
the number of components. As described in our paper, the
size reduction depends on the number of terminal nodes and
the combining process of isomorphic sub-tree. For this case
study, the initial assumption SI0 was too string for PSCV to
check if M0 ‖ M1 |� P≤ρ[ψ]; thus, PSCV refined SI0 . At
each refinement iteration, assumptions converge to the origi-
nal component M0, and this could lead to add other terminal
nodes andmanynon-terminal nodes.Contrary to thefirst case
study, the size reduction for Client–Server model is stable.
For the model checking time, the symbolic monolithic verifi-
cation performs better than PSCV, and this is due essentially
to the time needed to analyse and refine the assumptions.
The refinement process and counterexample generation con-
sume more time than the monolithic verification. In Table 4,
we report the results for case studies R.D. Philos, R.S. Stab.
and Dice. For these case studies, SI0 was sufficient for the
PSCV verification process. The average size reduction for
these examples is 50.11. The reduction size for R.S. Stab
model is stable, contrary to R.D. Philos and Dice, where
the size reduction decrease by the number of components.
Indeed, in these examples the size reduction depends on the
number of terminal nodes and the combining process of iso-
morphic sub-tree.

The overall results show that PSCV is more effective than
the symbolicmonolithic verification. The PSCVsuccessfully
generates a symbolic assumption that establish the verifica-
tion process. Moreover, the model size is reduced by 39.25%

on average for the 28 cases (reported in Tables 3 and 4). The
success of our approach, comparingwith the symbolicmono-
lithic verification, comes from the fact that PSCV avoids the
construction of the whole model.

5 Related works

In this section, we review some research works related to
the symbolic probabilistic model checking, compositional
verification and assume-guarantee reasoning. Verification
of probabilistic systems has been addressed by Vardi and
Wolper [44–46], then by Pnueli and Zuck [40] and by Baier
and Kwiatkowska [5]. The symbolic probabilistic model
checking algorithms have been proposed by [12,39]. These
algorithms have been implemented in a symbolic probabilis-
tic model checker PRISM [33]. Model checking algorithm
for intervalMDPwas considered in [6,10]. An important step
in our approach is the generation of small counterexample.
The main techniques used to generate counterexamples were
detailed in [29]. A recent work [16] proposed to use causal-
ity in order to generate small counterexamples; the authors
of this work propose to use the tool DiPro to generate coun-
terexamples; then they applied an aided-diagnostic method
to generate the most indicative counterexample [17]. For
the compositional verification of non-probabilistic systems,
several frameworks have been developed using the assume-
guarantee reasoning approach [11,13,41]. The compositional
verification of probabilistic systems has been a significant
progress in these last years [8,21,22,25,32]. Our approach
is inspired by the work of [21,22]. In this work, assump-
tions are represented as deterministic finite automata (DFA)
and the classical L∗ learning algorithm has been applied to
infer assumptions. However, this work used a non-complete
assume-guarantee reasoning rule, and the generation of an
assumption to establish the compositional verification is not
guaranteed. Another work relevant to ours is [25]. This
work proposed the first sound and complete learning-based
composition verification technique for probabilistic safety
properties, where they used an adapted L∗ learning algo-
rithm to learn weighted automata as assumptions, then they
transformed them into MTBDD. In [37] authors proposed an
algorithm for automatically learning a deterministic labelled
Markov decision processmodel from the observed behaviour
of a reactive system. The proposed learning algorithm adopt a
passive learning model, which was adapted from algorithms
for learning deterministic probabilistic finite automata, and
extended to include both probabilistic and non-deterministic
transitions.
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6 Conclusion

In this paper, we proposed a fully automated probabilis-
tic symbolic compositional verification approach (PSCV) to
verify probabilistic systems, where each component is an
MDP. The PSCV is based on our proposed symbolic assume-
guarantee reasoning rule, which describes the symbolic
compositional verification process. The main characteristics
of our symbolic assume-guarantee reasoning rule are com-
pleteness and soundness. The completeness comes from the
use of IMDP to represent the assumptions. Since we aim
to overcome the state space explosion problem when veri-
fying probabilistic safety properties, the system components
and assumptions are represented by a compact symbolic data
structures, i.e. SMDP and SIMDP. In addition, we proposed a
symbolic MTBDD-learning algorithm to construct automat-
ically these assumptions, where it used causality to generate
small counterexamples in order to refine the conjecture sym-
bolic assumptions. The experimental results are encouraging
and demonstrated that our approach can reduce the state
space by learning symbolic assumptions.

Our actual approach can be applied to sequential proba-
bilistic systems. We plan to propose other assume-guarantee
reasoning rule such as asymmetric rule or circular rule to ver-
ify n-components. Since we use interval MDP to represent
assumptions, our approach can be easily extended to verify
properties of the form ϕ = P≥P [ψ]. Moreover, we plan to
extend the PSCV to verify other probabilistic properties such
as liveness.
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