
Innovations Syst Softw Eng (2017) 13:101–115
DOI 10.1007/s11334-017-0303-4

ORIGINAL PAPER

An empirical comparison of developer retention in the RubyGems
and npm software ecosystems

Eleni Constantinou1 · Tom Mens1

Received: 1 August 2017 / Accepted: 3 August 2017 / Published online: 22 August 2017
© Springer-Verlag London Ltd. 2017

Abstract Software ecosystems can be viewed as socio-
technical networks consisting of technical components (soft-
ware packages) and social components (communities of
developers) that maintain the technical components. Ecosys-
tems evolve over time through socio-technical changes that
may greatly impact the ecosystem’s sustainability. Social
changes like developer turnover may lead to technical degra-
dation. This motivates the need to identify those factors
leading to developer abandonment, in order to automate the
process of identifying developers with high abandonment
risk. This paper compares such factors for two software
package ecosystems, RubyGems and npm. We analyse the
evolution of their packages hosted on GitHub, considering
development activity in terms of commits, and social interac-
tion with other developers in terms of comments associated
to commits, issues or pull requests. We analyse this socio-
technical activity for more than 30 and 60k developers for
RubyGems and npm, respectively. We use survival analy-
sis to identify which factors coincide with a lower survival
probability. Our results reveal that developers with a higher
probability to abandon an ecosystem: do not engage in dis-
cussions with other developers; do not have strong social and
technical activity intensity; communicate or commit less fre-
quently; and do not participate to both technical and social
activities for long periods of time. Such observations could
be used to automate the identification of developers with a
high probability of abandoning the ecosystem and, as such,
reduce the risks associated to knowledge loss.

B Eleni Constantinou
eleni.constantinou@umons.ac.be

Tom Mens
tom.mens@umons.ac.be

1 Software Engineering Lab, COMPLEXYS Research Institute,
University of Mons, 7000 Mons, Belgium

Keywords Software ecosystem · Socio-technical interac-
tion · Software evolution · Empirical analysis · Survival
analysis

1 Introduction

In the past, software was mainly developed as part of indi-
vidual and isolated projects [2], while nowadays software
projects become more and more interdependent, forming
large ecosystems. Such software ecosystems are defined by
Lungu as “collections of software projects that are devel-
oped and evolve together in the same environment” [22].
We adhere to this definition, and view software ecosystems
as socio-technical networks comprising a combination of
technical components (e.g., software package dependency
networks and their source code history) and social com-
ponents (e.g., communities of contributors involved in the
development and maintenance of the software). Well-known
examples of software ecosystems are distributions of Linux
operating systems and package managers for specific pro-
gramming languages such as CRAN for R, RubyGems for
Ruby and npm for JavaScript. Projects that are part of a soft-
ware ecosystem differ from isolated software projects in the
sense that they share source code (e.g., by depending on
shared libraries) and developers [27].

While the research community has thoroughly stud-
ied individual project evolution, the evolution of software
ecosystems is still an emerging research topic [28]. In par-
ticular, there is a need to further investigate social aspects
and more precisely, how developers interact in order to keep
their projects up to date as part of a sustainable software
ecosystem. Determining the impact of social characteristics
of the developer community and changes in these charac-
teristics over time is an active topic of study [11,34]. In a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-017-0303-4&domain=pdf


102 E. Constantinou, T. Mens

healthy and sustainable ecosystem, developers can contribute
to multiple projects and migrate to other projects within the
ecosystem, while problems arise when developers abandon
the ecosystem altogether [37]. Considering that developers
are the backbone of successful ecosystem evolution, it is
important to identify factors that affect developer retention.
This knowledge can be used to assist in the future evolution
of an ecosystem by predicting possible abandonment risks
and mitigating them early. This will increase retention of
important developers and reduce the negative effect of such
developers leaving the community [5].

This paper aims to identify factors that indicate devel-
opers with a high probability of abandoning an ecosystem.
In particular, we study the socio-technical evolution of two
long-lived software ecosystems, npm and RubyGems, which
correspond to the package managers of the JavaScript and
Ruby programming language, respectively.We consider their
subset of packages that are developed on GitHub since we
investigate both the social (communication) and technical
(coding) activity of software developers involved in these
ecosystems. The coding activity is extracted from source
code commits, while the social activity (communication
between developers) is based onGitHub commentingmecha-
nisms (commit, issue andpull request comments) that involve
multiple developers.

For each studied ecosystem, we use the statistical tech-
nique of survival analysis to assess the effect of different
types of socio-technical activities in the ecosystem. More
precisely, we explore which factors are indicative of develop-
ers with increased probability of abandoning the ecosystem.
Such information could assist in automating the process of
predicting developers who are likely to abandon the ecosys-
tem. Project managers could use this information to try
to motivate these developers to remain active, or to iden-
tify developers that are able to take over the abandoners’
activities.

The remainder of the paper is structured as follows: Sect. 2
discusses related work and Sect. 3 formulates our research
hypotheses. Section 4 describes the experimental set-up,
including the data collection method and the operational-
isation of our research hypotheses. Section 5 presents the
experimental results, and Sect. 6 reports our findings for core
and peripheral developers. Section 7 discusses the limitations
of our study, and Sect. 8 reports implications and threats to
the validity of our work. Finally, Sect. 9 concludes and pro-
vides directions of future research.

2 Related work

2.1 Developer retention

Developer retention has been investigated by the research
community, including studies aiming to comprehend the

factors behind developers abandoning open-source software
projects [9] and measuring developer turnover [5,10,11,34],
i.e., measuring the size of changes due to socialmodifications
like developers leaving or joining projects.

In a recentwork,Lin et al. [21] studiedfive industrial open-
source projects in order to identify how developer turnover
is affected by the duration and types of contributions. They
applied survival analysis to examine the impact of four fac-
tors on the duration of developer contributions. Their results
show that developers who started contributing earlier stay
longer, developers who maintain their own files stay for
shorter periods of time, developers who mainly modify files
remain in the project longer than those who create files, and
developers who mainly code stay longer. As an extension of
this work, we focus on both the social and technical activity,
as well as the frequency and intensity of each type of activity.

Aué et al. [1] investigated software project growth with
respect to social diversity. They measured project growth
in terms of the number of commits, team members, pull
requests and comments. Their results show a statistically
weak correlation between project success and diversity in
terms of gender and geographical location of contributors.
Foucault et al. [11] characterised patterns of internal and
external turnover to indicate the developer mobility inside
and outside a project, respectively. They used these patterns
to observe a negative effect of external turnover on software
quality, based on an analysis on five open-source systems.
Vasilescu et al. [34] investigated the relationship between
gender and tenure diversity and found that diversity is posi-
tively correlated with productivity.

Constantinou and Mens investigated the socio-technical
evolution of Ruby on Rails [4] and the entire Ruby ecosys-
tem in GitHub [5]. They investigated the effect of permanent
changes on the social and technical aspects of evolution of the
ecosystem. For each aspect they measured the permanently
changed entities with respect to new and obsolete entities and
found that large social changes impact the technical evolution
of the ecosystem. In the current follow-up article,we consider
both RubyGems and npm, and also investigate the factors
affecting developer retention, using the statistical technique
of survival analysis.

Yamashita et al. [39] analysed migration trends in a col-
lection of GitHub projects to measure their magnetism (the
ability to attract newcomers) and their stickiness (the ability
to retain existing developers). They found that sticky projects
are more frequent than magnet projects. They also analysed
project evolution over time and used quadrant plots to iden-
tify projects that are at risk of becoming obsolete. While our
approach is related, we analyse developer contributions at
the ecosystem level. This implies that developers may con-
tribute to multiple projects and stay in the ecosystem even
though they may abandon some projects or start working on
new projects.

123



An empirical comparison of developer retention in the RubyGems... 103

Zhou and Mockus [40] quantified contributors’ willing-
ness and their environment tomodel the chances of becoming
a valuable contributor to a project. They used issue tracker
data of Mozilla and Gnome to analyse contributor activity
and found that joiners who comment on issues (instead of
reporting new issues) or get at least one reported issue to be
fixed have higher chances of becoming long-term contrib-
utors. They also found that a productive and clustered peer
group increases the odds of becoming long-term contributors
compared to high popularity and low attention from peers. In
contrast to this work, we focus on development activity (in
terms of commits) instead of issue tracker data.

Several studies focus on ways to increase the retention
of newcomers to software projects [29–31]. Steinmacher et
al. [30] conducted a systematic literature review to identify
and classify the barriers that newcomers face. Their study
proposes a model composed of five categories, namely social
interactions, previous knowledge, finding a way to start, doc-
umentation and technical hurdles. They found that the most
evidenced barriers are the lack of social interaction with
project members, not receiving (timely) answers and pre-
vious technical experience. Also, they highlight the lack of
evidence of a causal relationship between the social interac-
tion issues and newcomer success. The current article does
not focus on newcomers since our goal is to recover factors
affecting developers retention based on their past activity in
the ecosystem.

2.2 Survival analysis

Survival analysis [19] has been used in a variety of scientific
domains (such as biomedical and social sciences) where it is
used to study factors affecting the time until an event hap-
pens for a variety of measurable events (such as child birth,
recovering from a disease, switching employment, marriage
or divorce). Survival analysis models estimate the survival
rate of a population over time, considering the notion of cen-
soring. Censoring deals with the fact that some elements of
the population may leave the study, and that for some other
elements the event of interest does not occur during the obser-
vation period. So-called Kaplan–Meier estimations are used
to produce and compare survival functions.

Samoladas et al. [26] applied survival analysis to assess
the expected duration of open-source software projects. After
partitioning projects by type or domain, they compared the
survival function of projects across different domains. They
observed that survivability increases as projects grow larger.

Decan et al. [7] used survival analysis to study the survival
of particular database-related libraries in software projects as
well as to compare the delay between consecutive software
package updates in different software packaging ecosystems
[8]. In contrast to these works, we use survival analysis to
study retention of developers rather than software packages.

3 Research hypotheses

In order to determine the factors affecting developer reten-
tion, we focus on the activity of project developers in both the
technical (i.e., commits) and the social (i.e., communication
through GitHub comments) part of the considered ecosys-
tems. We consider someone to be a developer if (s)he has
committed changes to the project’s source code repository,
regardless of the type of change. This implies that not all
commits necessarily include changes to source code files.

We formulate two sets of research hypotheses concerning
the social and technical activities of individual developers.
Each set consists of specific hypotheses about the effect of
specific characteristics on developer retention. The remain-
der of this section formulates and discusses the rationale
behind each hypothesis. The precise operationalisation of
each hypothesis will be explained in Sect. 4.

3.1 Research hypotheses related to social activity

As mentioned before, we measure social activity of develop-
ers in terms of communication between developers through
GitHub comments that are attached to either project com-
mits, pull requests or issues in the associated issue tracker.
To avoid overestimating the social activity, we ignore mes-
sages in communication threads that involve only a single
developer. In other words, if a developer adds a comment to
which no other developer reacts, we do not consider this as
a communication activity.
H1.0 Developers that do not communicate have a higher
probability of abandoning the ecosystem sooner This
hypothesis considers the characteristic of whether a devel-
oper actually discusses (through GitHub comments) with
other developers in the ecosystem.We distinguish three cate-
gories of developers: (1) socially active; (2) socially inactive;
and (3) social abandoner.
H1.1 Developers that communicate less intensively have a
higher probability of abandoning the ecosystem sooner
This hypothesis explores the communication intensity in
terms of the number of comments contributed by each devel-
oper.We consider four categories of developers in function of
their communication intensity, which can be: (1) very weak;
(2) weak; (3) strong; or (4) very strong.
H1.2 Developers that communicate less frequently have
a higher probability of abandoning the ecosystem sooner
This hypothesis explores the frequency of social activity, i.e.,
the percentage of active time units during which a devel-
oper was socially active, with respect to his entire timespan
of socio-technical activity in the ecosystem. We classify
developers into four categories based on their percentage of
socially active periods of time: (1) very rarely; (2) rarely; (3)
frequently; and (4) very frequently.

123



104 E. Constantinou, T. Mens

H1.3 Developers that do not communicate for a longer
period have a higher probability of abandoning the
ecosystem sooner This hypothesis focuses on the length of
inactive periods of time concerning developers’ social activ-
ity. We measure the length of the largest inactive period of
time and compare it against the duration of the entire socio-
technical activity.We classify developers into four categories
depending on their longest period of social inactivity: (1) very
short; (2) short; (3) long; and (4) very long.

3.2 Research hypotheses related to technical activity

The hypotheses regarding technical activity (measured in
terms of commits) are very similar to those for social activ-
ity, except that there is no counterpart for H1.0. In order to
be considered a developer, one needs to have made commits
in the ecosystem for over 1month. Considering a category of
technically inactive developers would be meaningless.
H2.1 Developers that commit less intensively have a
higher probability of abandoning the ecosystem sooner
This hypothesis focuses on the intensity of the commit activ-
ity of a developer. As for H1.1 we again consider four
categories of developers in function of their commit inten-
sity, which can be: (1) very weak; (2) weak; (3) strong; or (4)
very strong.
H2.2 Developers that commit less frequently have ahigher
probability of abandoning the ecosystem sooner This
hypothesis explores the frequency of technical activity, i.e.,
the percentage of time units that a developer was active in
terms of commits, with respect to the timespan of his socio-
technical activity in the ecosystem. We classify developers
into four categories based on their percentage of technically
active periods of time: (1) very rarely; (2) rarely; (3) fre-
quently; and (4) very frequently.
H2.3 Developers that do not commit for longer periods
have a higher probability of abandoning the ecosystem
sooner This hypothesis focuses on the length of inactive
periods of time concerning developers’ commit activity. We
measure the length of the largest inactive period of time and
compare it against the duration of the entire technical activ-
ity. We classify developers into four categories depending on
their longest period of technical inactivity: (1) very short; (2)
short; (3) long; and (4) very long.

4 Experimental setup

4.1 Data sources

To verify our research hypotheses, we use two data sources
for each ecosystem: information extracted from the package
management system, and development and communication
information extracted from GitHub. Initially, we parse all

the packages from each ecosystem1,2 in order to acquire
the package names, versions, dependencies and information
about the repositories hosting their development. Next, we
use the GHTorrent dataset [13]3 to acquire the development
activity of each package that is hosted on GitHub. In order to
match a package with a GitHub repository, we parsed all the
available links provided by each package in their information
(homepage, bug tracker URI and source code repository link)
to recover the ones that are linked to a GitHub repository.

We found an overlap of 110 packages between the npm
and RubyGems ecosystems, i.e., packages pointing to the
sameGitHub repository. Considering that among these pack-
ages some are very popular and intensively developed (e.g.,
Rails, Selenium, RethinkDB), it is important to assign each
package to a single ecosystem so as to eliminate any bias
when comparing the results of further analyses between the
two ecosystems. To achieve this, we relied on two heuris-
tics: (1) the number of Ruby (.rb) and JavaScript (.js) source
code files of each repository; and (2) the number of commits
touching Ruby and JavaScript source code files, respectively.
For our first heuristic, if the number of files for one program-
ming language is three times higher than for the other, we
assign the package to the respective packaging ecosystem.
If this heuristic fails to assign the package to an ecosys-
tem, we apply the second heuristic: if source code files of
one programming language are touched significantly more
times than the other one (three times more commits), then
the repository is assigned to the respective ecosystem.

To verify our research hypotheses we rely on socio-
technical data extracted from GHTorrent. As technical data
we gather, for each project in the ecosystem, the GitHub
commits, including commit author and commit date. As
social activity data we extract the developers and times-
tamps ofmessages posted through commenting mechanisms
in GitHub commits, issues and pull requests. We exclude all
messages in discussions that do not involve any interaction
with other developers, i.e., where the number of participants
to the discussion was equal to 1.

Wealso removed fromour dataset oneGitHubaccount that
corresponds to a bot, which we identified due to its unusu-
ally large number of commits (163,166) and confirmed by its
account name greenkeeperio-bot. This bot is used by
the Greenkeeper tool for automatically updating npm depen-
dencies.

Open-source project developers can become temporar-
ily inactive in an ecosystem. In order to determine the
(in)active time periods, we use 1-month time units. Choosing
larger time units (e.g., 3 or 6 months) would pose limita-
tions to identifying the frequency of contributions. Firstly, it

1 https://rubygems.org/ for RubyGems.
2 https://www.npmjs.com/ for npm.
3 We use the 2016-09-05 dump of the GHTorrent dataset.

123

https://rubygems.org/
https://www.npmjs.com/


An empirical comparison of developer retention in the RubyGems... 105

Table 1 Descriptive statistics of dataset

Number of … RubyGems npm

Packages 121,960 316,453

Packages hosted in GitHub 69,941 178,879

(57.3%) (56.5%)

Developers (commiters) 56,793 119,114

Developers with >1 month activity 31,347 63,357

Socially active developers 22,148 44,244

GitHub messages 1,548,816 4,187,235

Git commits 2,847,398 7,769,680

would suggest that a developer that commits once every 3
or 6 months is very frequently active. Secondly, in order to
use our approach for developer retention in real-world set-
tings, dayflies and short-lived developers should be excluded.
Considering that it is expected that newcomers abandon
open-source software projects [31], our main interest lies
in identifying why developers that are active longer abandon
the ecosystem.

Our dataset considers development data from January
2001 for RubyGems and December 1999 for npm. For both
ecosystems, the observation period ends in September 2016.
Table 1 summarises descriptive statistics of the two con-
sidered ecosystems, npm and RubyGems. We report the
total number of packages and the number of those pack-
ages that are hosted on GitHub and observe that 57.3% of
all RubyGems and 56.5% of all npm packages are hosted
on GitHub. We also present the number of commit authors
in those projects, and the subset of developers having com-
mit activity for more than 1month, as well as the subset of
developers that are socially active by communicating through
GitHub comments with other developers for each ecosystem.
The final rows in Table 1 show the number of messages reg-
istered using the GitHub commenting mechanisms and the
number of commits of active developers, respectively.

To ensure the reproducibility of our work, a publicly
available dataset for each ecosystem and the R scripts we
used for this study are available on: http://www.econst.eu/
developer-retention-secos.

Next, we explain how we operationalise our research
hypotheses.

4.2 Operationalisation of social activity hypotheses

H1.0 Developers that do not communicate have a higher
probability of abandoning the ecosystem sooner We
distinguish three categories based on the presence and
timestamp of messages contributed by each developer in dis-
cussions with other developers (through GitHub comments).

The three categories we use to characterise social activity
correspond to:

– Socially active developers that discussed at least once,
and remain doing so.

– Socially inactive developers that never discussed.
– Social abandoner developers that initially discussed, but
remained inactive in discussions for over 1year after their
latest message.

H1.1 Developers that communicate less intensively have
a higher probability of abandoning the ecosystem sooner
We rely on the number of comments contributed by a devel-
oper in discussions to measure his communication intensity.
The statistics on socially active developers are presented in
the upper half of Table 2. The distribution of comments is
highly skewed, i.e., most of the developers have a small num-
ber of messages, while only a small portion of the developers
are extremely active.We therefore opted to use the median as
a central tendency measure (as opposed to using the mean),
since it is more robust to outliers and skewed distributions.
Similarly, we use the quartile grouping method to create four
bins that classify each developer based on the intensity of
social activity [20] (we also report the cut-points for each
category and ecosystem):

– Very weak:Developers with a very small number of mes-
sages (RubyGems: 1–3, npm: 1–4)

– Weak: Developers with a small number of messages
(RubyGems: 4–12, npm: 5–15)

– Strong:Developers with a moderate number of messages
(RubyGems: 13–38, npm: 16–50)

– Very strong:Developers with a large number ofmessages
(RubyGems: 39–16,321, npm: 51–14,202)

H1.2 Developers that communicate less frequently have
a higher probability of abandoning the ecosystem sooner
Communication frequency is defined as the percentageof dis-
tinct socially active months with respect to the total duration
of the developer’s socio-technical activity, i.e., the number of
elapsed months from his first till his last contribution. Statis-
tics on communication frequency are presented in the fourth
row of Table 2. We classify each developer based on com-
munication frequency into the following categories:

– Very rarely active developers have engaged in social
activity for a quarter of their overall stay (0–25%)

– Rarely active developers have engaged in social activity
for half of their overall stay (25–50%)

– Frequently active developers have engaged in social
activity for three quarters of their overall stay (50–75%)

– Very frequently active developers have engaged in social
activity throughout their stay (75–100%)

123

http://www.econst.eu/developer-retention-secos
http://www.econst.eu/developer-retention-secos


106 E. Constantinou, T. Mens

Table 2 Descriptive statistics of developer-based measurements

Measurement RubyGems npm

Min Max Median Min Max Median

Comments 1 16,321 13 1 14,202 16

Months of social activity 1 94 6 1 85 6

Largest timespan of social inactivity (in months) 2 82 11 2 71 8

Communication frequency percentage 1% 100% 21% 1% 100% 31%

Social inactivity percentage 2% 100% 33% 100% 100% 36%

Commits 2 8,673 24 2 20,234 26

Months with commits 2 136 4 2 133 4

Largest timespan of commit inactivity (in months) 2 170 7 2 183 5

Commit frequency percentage 2% 100% 28% 2% 100% 4%

% of months without commit activity 2% 100% 67% 2% 100% 67%

H1.3 Developers that do not communicate for a longer
period have a higher probability of abandoning the
ecosystem sooner Social inactivity is defined as the per-
centage of the largest number of consecutive months where
the developer did not communicate with other developers,
with respect to the entire duration of the developer’s socio-
technical activity. We follow this approach since short-term
inactivity periods are expected [3], especially in the presence
of peripheral developers. Similar to the communication fre-
quency, we classify developers based on their percentage of
social inactivity into four categories:

– Very short (0–25%)
– Short (25–50%)
– Long (50–75%)
– Very long (75–100%)

4.3 Operationalisation of technical activity hypotheses

H2.1 Developers that commit less intensively have a
higher probability of abandoning the ecosystem sooner
Commit intensity is measured according to the number of
commits. Similar to communication intensity, commits also
follow a highly skewed distribution (row 8 of Table 2). The
categories and cut-points that stem from quartile grouping
are:

– Very weak: Developers with a very small number of com-
mits (RubyGems: 1–7, npm: 1–8)

– Weak: Developers with a small number of commits
(RubyGems: 8–23, npm: 9–25)

– Strong: Developers with a moderate number of commits
(RubyGems: 24–69, npm: 26–81)

– Very strong: Developers with a large number of commits
(RubyGemts: 69–8,763, npm: 82–20,234)

H2.2 Developers that commit less frequently have ahigher
probability of abandoning the ecosystem sooner Commit
frequency is defined as the percentage of distinct months
of active commits by the developer with respect to the total
duration of the developer’s socio-technical activity (rows 9–
10 of Table 2). Each developer is assigned to one of four
categories:

– Very rarely active developers have commits for up to a
quarter of their overall stay (0–25%)

– Rarely active developers have commits for up to half of
their overall stay (25–50%)

– Frequently active developers have commits for up to three
quarters of their overall stay (50–75%)

– Very frequently active developers have commits through-
out their stay (75–100%)

H2.3 Developers that do not commit for longer periods
have a higher probability of abandoning the ecosystem
sooner Commit inactivity is defined as the percentage of the
largest number of consecutive months where the developer
did not commit with respect to the total duration of the devel-
oper’s coding activity (rows 11–12 of Table 2). We classify
each developer based on the percentage of commit inactivity
where the inactivity periods can be:

– Very short (0–25%)
– Short (25–50%)
– Long (50–75%)
– Very long (75–100%)

5 Results of survival analysis

Our research hypotheses need to be verified or rejected based
on the extracted data. To understand the effect of each activity

123



An empirical comparison of developer retention in the RubyGems... 107

type, including its intensity and frequency, on a developer’s
abandonment in a software ecosystem, we resort to the sta-
tistical technique of survival analysis [19].

Survival analysis models estimate the survival rate of a
population until the occurrence of an event of interest. In
this study, the considered population is all developers in the
ecosystem, and the event of interest is the abandonment of a
developer from the ecosystem. In order to consider a devel-
oper as an abandoner, he must have remained inactive for at
least 1year after his last commit. Given that we have fixed
August 2015 as the end of the observation period for our sur-
vival analyses, developers having any type of activity after
that date are considered as active, while the remaining ones
are marked as abandoners.

This section reports our findings for each research hypoth-
esis based on the respective survival analyses. We visualise
and discuss our results using Kaplan–Meier survival curves
and 95%confidence intervals (the dotted lines accompanying
each survival curve).

We statistically verify each hypothesis using log-rank
tests [38] to ensure that the null hypothesis (assuming that
all survival curves are the same) can be rejected. For each
survival analysis for both ecosystems, we use log-rank tests
to find significant differences between categories of develop-
ers affecting their likelihood of abandoning the ecosystem.
For each considered factor, we carry out a Bonferroni cor-
rection to account for the fact that multiple log-rank tests
are carried out to test each pair of developer categories. To
obtain a confidence level of 95%, the significance level used
per test is α = 0.05

m , where m is the number of considered
pairs of categories within the same factor. For example, for
the factor of communication intensity studied in hypothesis
H1.1, there are four different categories of intensity (i.e., very
weak, weak, strong and very strong), implying that there are
m = 6 tests (one comparison per pair of categories). Hence,
the Bonferroni correction requires to test at a significance
level α = 0.05

6 = 0.008. When presenting our results, sta-
tistical significance with Bonferroni correction is confirmed
unless stated otherwise.

5.1 Survival analysis of social activity

H1.0 Developers that do not communicate have a higher
probability of abandoning the ecosystem sooner Fig-
ure 1 shows the Kaplan–Meier survival curves for developers
belonging to each social activity category for RubyGems and
npm. The survival curve for actively communicating devel-
opers is significantly higher than the ones of the other two
categories for both ecosystems. Additionally, socially inac-
tive contributors and social abandoners are more likely to
abandon the ecosystem from the very beginning of their
involvement in the ecosystem, while less than 10% remain
active for over 10years for both ecosystems. Although the

Fig. 1 H1.0—survival curves of developers based on social activity

Bonferroni correction did not pass all the tests for the
npm ecosystem, there is a statistically significant distinction
between the category of socially active contributors and the
other two categories. These results confirm our hypothesis
that developers who do not communicate or stopped commu-
nicating with other developers at some point are more likely
to abandon the ecosystem sooner.

H1.1 Developers that communicate less intensively have
a higher probability of abandoning the ecosystem sooner

The survival curves for developers of each communication
intensity category are presented in Fig. 2. The survival curves
of strong and very strong communication intensity are higher
than the ones of weak and very weak categories. Less than
20 and 40% of developers with weak and very weak com-
munication intensity are likely to remain in the ecosystem
after 10years for RubyGems and npm respectively, while
the survival probability of developers with strong and very
strong communication intensity corresponds to 25 and 50%
for RubyGems and 40 and 70% for npm, respectively. These
results confirm our hypothesis for both ecosystems that
developers who communicate more intensively with other

123



108 E. Constantinou, T. Mens

Fig. 2 H1.1—survival curves of developers based on communication
intensity

developers in the ecosystem are more likely to remain active
for longer periods of time.

H1.2 Developers that communicate less frequently have
a higher probability of abandoning the ecosystem sooner

Figure 3 presents the survival curves with respect to the
communication frequency. For both ecosystems, developers
who communicate rarely and very rarely have lower survival
curves compared to frequently and very frequently com-
municating developers. Developers in the very rarely and
rarely categories have less than 30 and 50% probability of
surviving in RubyGems and npm, respectively, after 100
months. On the contrary, developers in the frequently and
very frequently categories have less than 60 and 80% proba-
bility of remaining active communicators in RubyGems and
npm. For the RubyGems ecosystem, there was no significant
difference (after Bonferroni correction) between the rarely
and very rarely categories. Neither did we find a signifi-
cant difference between the frequently and very frequently
categories. However, we did find statistically significant
evidence for both ecosystems that developers that commu-
nicate rarely or very rarely are more likely to abandon the

Fig. 3 H1.2—survival curves of developers based on communication
frequency

ecosystem than developers that community frequently or very
frequently.

H1.3 Developers that do not communicate for a longer
period have a higher probability of abandoning the
ecosystem sooner

The survival curves of each category of communication inac-
tivity are presented in Fig. 4. These curves show that the
shorter the periodof communication inactivity of a developer,
the higher the probability of remaining an active developer
in the ecosystem. More concretely, less than 20 and 40%
of developers with long and very long inactivity periods
are likely to remain active in the ecosystem after 50months
for RubyGems and npm, respectively. On the contrary, the
survival probability of developers with very short and short
periods of communication inactivity corresponds to less than
70 and 40% for RubyGems and less than 80 and 60% for
npm, respectively. These results confirm our hypothesis that
the longer a developer remains socially inactive, the higher
the probability of abandoning the ecosystem.

123



An empirical comparison of developer retention in the RubyGems... 109

Fig. 4 H1.3—survival curves of developers based on social inactivity
length

5.2 Survival analysis of technical activity

H2.1 Developers that commit less intensively have a
higher probability of abandoning the ecosystem sooner

Figure 5 presents the survival curves of commit activity inten-
sity categories for both ecosystems. The survival curves for
strong and very strong commit activity intensity are higher
than the ones of the two weak intensity categories. After
100months since joining each ecosystem, less than 10 and
30% of developers in the two weak commit activity inten-
sity categories are likely to remain active in RubyGems and
npm, respectively. The survival probability of developers
with strong and very strong commit intensity corresponds
to 20 and 60% for RubyGems and 25 and 70% for npm,
respectively. This confirms our hypothesis that the weaker
the commit intensity, the higher the probability of abandon-
ing the ecosystem sooner.

H2.2 Developers that commit less frequently have a
higher probability of abandoning the ecosystem sooner

Figure 6 presents the survival curves of the commit fre-
quency categories. The survival trend differs for RubyGems

Fig. 5 H2.1—survival curves based on commit activity intensity

and npm. (Very) frequently active developers in RubyGems
have lower survival curves for the first months of their activ-
ity. More specifically, only 40% of very frequently active
RubyGems developers remain active past the fifth month
of their activity, while 50% of frequently active develop-
ers will not abandon the ecosystem after 36months. In
npm, the respective probabilities of remaining active in the
ecosystem correspond to 66 and 72%. However, the long-
term survival probability stabilises over time since for both
ecosystems the developers who remain frequently active
for more than 20months have higher survival probabili-
ties. Concerning the (very) rarely active developers in both
ecosystems, their survival probabilities match the ones of
frequently active developers during the first months of their
activity, but on a longer term the probability to abandon
the ecosystem increases (especially for very rarely active
developers). For the npm ecosystem, not all log-rank tests
(after Bonferroni correction) revealed statistically signifi-
cant differences. However, when regrouping into only two
categories of developers (those with frequent or very fre-
quent commit activity on the one hand, and those with
rare or very rare commit activity on the other hand), we
did find statistically significant differences. This confirms
our research hypothesis that developers with less frequent

123



110 E. Constantinou, T. Mens

Fig. 6 H2.2—survival curves based on commit activity frequency

commit activity are more likely to abandon the ecosys-
tem.

H2.3 Developers that do not commit for longer periods
have a higher probability of abandoning the ecosystem
sooner

The survival curves of Fig. 7 show that the longer a
developer remains inactive, the higher the probability of
abandoning the ecosystem. More specifically, RubyGems
and npm developers that remain inactive for (very) long
periods of time have less than 10 and 25% probability
of remaining active after 100months since they joined the
ecosystem, respectively. Developers who remain inactive for
very short periods of time have a probability of remaining
active close to 60 and 80% after 100months for RubyGems
and npm, respectively. The survival probability reduces for
short inactivity periods, but remains larger than the one of
long inactivity categories. The data support our hypothesis
that developers who do not commit for longer periods of
time have a higher probability of abandoning the ecosys-
tem.

Fig. 7 H2.3—survival curves based on commit inactivity length

6 Core versus peripheral developers

Several empirical studies have investigated the socio-techni-
cal structure of open-source projects and have shown that the
majority of the development effort can typically be attributed
to a small percentage of developers [23]. These developers
are referred to as core developers and have a substantial and
long-term involvement [6]. On the other hand, peripheral
developers are contributing more irregularly or their involve-
ment is short-term [6,17].

In this section, we will classify all developers into two
categories of core and peripheral developers within each
ecosystem, in order to assess whether the survival analyses
produce different results considering the different contribu-
tion frequency and involvement of each type of developer. A
commonly used way to separate core and peripheral devel-
opers is to gather their number of commits in the project
and compute a threshold at the 80% percentile [6,23,25,33].
In our work, however, we focus on developer activity that
spanning across multiple projects within the ecosystem.
Project-specific thresholds may introduce bias at an ecosys-
tem level, since a few projects are very intensively developed,
e.g., Rails in RubyGems [32]. Because of this, we prefer to
use measures that do not depend on a threshold, inspired by

123



An empirical comparison of developer retention in the RubyGems... 111

Table 3 Descriptive statistics
of Technical Intensity
and Technical Spread
of ecosystem contributors

Index Contributor category Binning (percentile) RubyGems npm

Technical Intensity Core >50th T I ∈ [3, 578] T I ∈ [3, 1034]
(T I ) Peripheral <50th T I ∈ [1, 2] T I ∈ [1, 2]
Technical Spread Core >65th T S ∈ [2, 24] T S ∈ [2, 39]
(T S) Peripheral <65th T S = 1 T S = 1

the Hirsch index [15] used to measure productivity and cita-
tion impact of scientific publications of a scientific scholar.
More specifically, we define two indices to quantify the
intensity and spread of a developer’s effort in a given ecosys-
tem.

Definition 1 The Technical Intensity (TI) of a developer d in
an ecosystem E is themaximal value n such that d has at least
n commits to a project in E to which at least n developers
committed.

Definition 2 The Technical Spread (TS) of a developer d in
an ecosystem E is themaximal value n such that d has at least
n commits to at least n different projects belonging to E .

By considering the nmost commits, these indices take into
account the skewed distribution of developer contributions
within the ecosystem. Thus, technical intensity TI consid-
ers both the development effort and the project importance
within the ecosystem. On the other hand, technical spread
TS measures both the development effort and the contribu-
tion importance to the entire ecosystem.

For each measure, we split contributors into the cate-
gories of core and peripheral based on the median (50th
percentile) for TI and 65th percentile for TS. The reason we
chose for the 65th percentile for TS is that the 50th percentile
equals to the minimum value of TS=1 since a large portion
of the developer population does not contribute intensively
to many projects. The range of values for T I and T S corre-
sponding to both categories of contributors are summarised
in Table 3.

We replicated our survival analyses and log-rank tests
(withBonferroni correction) for all research hypotheses, con-
sidering the subgroups of core and peripheral developers
based on TI and TS, respectively. Since most of our research
hypotheses were confirmed for the different developer cat-
egories, we will only present those results that differ with
respect to the previously reported results on the entire devel-
oper population of each ecosystem.

For H1.1, when considering core developers based on TS
in the npm ecosystem, no statistical difference was found
between the communication intensity categories. This sug-
gests that npm core developers that work onmultiple projects
have a similar probability of remaining active in the ecosys-
tem regardless of their communication intensity. The same

(a)

(b)

Fig. 8 H1.1—survival curves for npm based on communication inten-
sity

results occurred for the peripheral developers based on TI,
suggesting that npm peripheral developers with a low num-
ber of commits to small projects have a similar probability
of remaining active regardless of their communication inten-
sity.

Figure 8 presents the results for both contributor cate-
gories of the npm ecosystem. Compared to the results of
the entire population (see Fig. 2) we observe that, although
peripheral TI developers with very strong communication
intensity have a higher probability of remaining active in
each ecosystem compared to the other intensity categories
of peripheral developers, they have a lower probability of

123



112 E. Constantinou, T. Mens

(a)

(b)

Fig. 9 H1.2—survival curves for npm based on communication fre-
quency. a Core developers based on TS b peripheral developers based
on TI

remaining active when compared to core developers. In
turn, although core TS developers have a similar probabil-
ity of remaining active in the ecosystem regardless of their
communication intensity, the probability of core developers
remaining active is larger compared to peripheral develop-
ers.

Concerning H1.2, we also observed some differences in
the behaviour between core and peripheral developers, but
only for npm. Figure 9 reveals that, compared to the results
for the entire population of npm in Fig. 3, the survival prob-
abilities for peripheral TI developers decrease, suggesting
that peripheral developers with a low number of commits
to small projects are less likely to remain active in the
ecosystem regardless of the frequency of their communica-
tion activity. In contrast, the survival probabilities for core
TS developers suggest that core developers who contribute
to many projects in the ecosystem are more likely to remain
active in the ecosystem regardless of their communication
frequency.

Concerning H1.3, we found differences for core TS devel-
opers in both ecosystems and present these results in Fig. 10.
We did not find any statistical evidence that core developers
who contribute to many projects in the ecosystem have sig-
nificant differences in their probability of remaining active

Fig. 10 H1.3—survival curves based on social inactivity length for
core developers based on TS. a Peripheral developers based on TI b
core developers based on TS

for longer periods of time depending on the length category
of their social inactivity period.

Finally, we found some differences concerning H2.2 for
both ecosystems. More specifically, for npm we found that
both core TI developers with a large number of commits
to large projects and peripheral TI developers with a low
number of commits to small projects are more likely to aban-
don the ecosystem when they commit less frequently. For
RubyGems, however, all groups of core TI developers have
a similar probability of abandoning the ecosystem regard-
less of their commit frequency. Additionally, we found that
both core and peripheral TS developers in RubyGems have
a similar probability of abandoning the ecosystem regard-
less of their commit frequency. These results show that the
effect of commit frequency on developer abandonment dif-
fers among the two ecosystems: in npm frequent commit
activity is indicative of a prolonged contributor presence in
the ecosystem for both core and peripheral TI developers,
while in RubyGems it does not appear to be a useful factor
for distinguishing between core and peripheral contributors
who aremore likely to remain active in RubyGems for longer
periods of time.

123



An empirical comparison of developer retention in the RubyGems... 113

7 Discussion and limitations

Whether and how a software ecosystem successfully evolves
over timedepends to a large extent on the activeness and inter-
action of its developer community. Developer turnover and
abandonment pose important threats with respect to knowl-
edge loss [16,24], and resources and time to familiarise new
members [12]. Such problemsmay have an important impact
in a software ecosystem because of the many interdepen-
dencies between software projects and the risk of project
abandonment affecting its transitive dependents. Therefore,
it is of great importance to determine factors affecting devel-
oper retention, which can be used to predict risks associated
with developer abandonment, and tomitigate such risks early.
Our empirical study is a first step in this direction, by quan-
tifying developer risk/retention based on information stored
in software repositories, thus facilitating the automation of
such approaches.

A limitation of our current work is that we consider as
developer any contributor that actively commits changes
to the project’s source code repository, even though these
changes may not necessarily involve source code files. In
future work we will refine this definition, by taking into
account the types of files touched by each contributor, similar
to the work of Vasilescu et al. [36].

The analysis presented in Sect. 6 reveals that devel-
oper retention can be improved when contributors are
active frequently and have strong contribution intensity,
regardless of whether they are core or peripheral devel-
opers. However, there is not necessarily a causal relation
between the factors we identified and the actual reason
why developers abandon software ecosystems. Therefore,
our quantitative analyses do not allow us to claim that
developers abandon the ecosystem because they do not
engage in discussions. However, we can treat the factors that
affect developer retention as symptoms that can be used to
predict the probability of developers abandoning the ecosys-
tem.

Our analyses were based on the assumption that develop-
ers are considered to have abandoned the ecosystem if they
have not been committing to a project’s repository for at least
1year. Other studies use different thresholds to find aban-
doners. For example, Lin et al. [21] use a threshold of only
180days to determine whether a developer has abandoned a
project. They also used different thresholds (30 and 90days)
and found similar trends in the survival curves. However,
they focused on open-source projects in which a minority
of developers were volunteers, since the considered projects
were supported by software companies for the majority of
tasks. In contrast, our study focuses on two ecosystems with
a large portion of volunteers. Therefore, using similar thresh-
olds as those proposed by Lin et al. [21] would likely exclude
many peripheral developers who contribute consistently, but

might remain inactive for more than 6months between active
periods of time.

Our empirical study is inherently limited by the factors we
have taken into account for affecting developer retention.We
could extend this list with many other possible factors, such
as developer workload, expertise, seniority, gender, activity
type, etc. Including such factors would require a different and
more fine-grained analysis that focuses on developer charac-
teristics, rather than ecosystem activity factors.

Another limitation of our work lies in the fact that we
examined different factors of developer retention indepen-
dently. In our future work, we will combine different factors
in our survival analysis to gain a better understanding of
developer profiles that aremore likely to remain active longer
in an ecosystem.

8 Threats to validity

8.1 Internal validity

We considered factors concerning social and technical activ-
ity of developers in software ecosystems, as well as their
intensity and frequency. However, additional external factors
may influence a developer’s decision to abandon an ecosys-
tem, including factors such as personal issues that cannot be
quantified or predicted.

8.2 Construct validity

Our study only considered developer communication infor-
mation extracted from the GitHub commenting mechanisms.
However, developers might use different platforms to com-
municate such as mailing lists. To mitigate this risk, we
explored one mailing list of npm4 and two of RubyGems5, 6.
However, a requirement to using this information is to match
developer identities between the mailing list participants and
GitHub developers, which can pose additional threats to our
work. Considering that the activity in these mailing lists was
infrequent compared to the activity inGitHub comments, and
considering that a small portion of mailing list discussions
addresses implementation details [14], we omitted this data
source from our study. As another possible threat, we did
not merge developer identities, and thus, different GitHub
accounts might correspond to the same developer. However,
this threat is limited considering that using multiple accounts
in GitHub is not very common [35].

Due to the experimental setup of our study, our dataset
consists of a considerable subset of packages of each

4 https://groups.google.com/forum/#!forum/npm-.
5 https://groups.google.com/forum/#!forum/rubygems-org.
6 https://groups.google.com/forum/#!forum/rubygems-developers.

123

https://groups.google.com/forum/#!forum/npm-
https://groups.google.com/forum/#!forum/rubygems-org
https://groups.google.com/forum/#!forum/rubygems-developers


114 E. Constantinou, T. Mens

ecosystem (>56% according to Table 1). However, not all
ecosystem packages are hosted in GitHub even though some
of them may have explicit dependencies to or from the pack-
ages we considered. Although a recent study reports that the
majority of JavaScript and Ruby ecosystems are hosted on
GitHub [18], there is a threat that developers that we have
categorised as abandoners might actually remain active in
other ecosystem projects not hosted on GitHub.

8.3 External validity

Wehave only analysed the socio-technical activity of two dif-
ferent open-source ecosystems. Although this included over
30 and 60k developers for each ecosystem, we cannot gener-
alise our results to other software ecosystems. In particular,
the phenomenon of developer abandonment might be quite
different for smaller and less popular ecosystems. Also, the
resultsmaybedifferent formixed source or proprietary (inner
source) software ecosystems.

9 Conclusion

In this article, we performed an extensive empirical study
over two large, long-lived software ecosystems: RubyGems
and npm. We examined the relationship between the fre-
quency and intensity of socio-technical activity and devel-
oper retention. Social activity wasmeasured in terms of com-
munications involving multiple developers through GitHub
comments, while technical activity was measured through
commits.

Our findings show that developers have a higher prob-
ability of abandoning an ecosystem when they: (1) do not
communicate with other developers; (2) do not have a very
strong social and technical activity intensity; (3) communi-
cate or commit less frequently; and (4) do not communicate
or commit for a longer period of time.

Additionally, we found some notable differences in
developer retention when distinguishing between core and
peripheral developers of each ecosystem. For example, the
frequency of contributions of core developers does not seem
to affect the longevity of their contributions.

We also found differences between the two ecosystems
in which factors are likely to impact developer retention.
For example, in RubyGems, the factor of social communi-
cation frequency does not seem useful to predict developer
abandonment. For npm, on the other hand, it is the factor
of commit frequency that does not seem useful to predict
developer abandonment.

Such observations could be used to build ecosystem-
dependent models to automate the prediction of developers
with a high probability of abandoning the ecosystem and, as
such, reduce the risks associated to knowledge loss.

Acknowledgements This research was carried out in the context of
FNRS crédit de recherche J.0023.16 entitled “Analysis of Software
Project Survival” and the bilateral collaborative research program
FRQ-FNRS 30440672 entitled “Towards an Interdisciplinary Socio-
Technical Methodology and Analysis of Software Ecosystem Health”.

References

1. Aué J,HaismaM,TómasdóttirKF,Bacchelli A (2016) Social diver-
sity and growth levels of open source software projects on GitHub.
In: International symposium on empirical software engineering
and measurement (ESEM), pp 41:1–41:6. doi:10.1145/2961111.
2962633

2. Blincoe K, Harrison F, Damian D (2015) Ecosystems in GitHub
and amethod for ecosystem identification using reference coupling.
In:Working conference onmining software repositories (MSR), pp
202–207

3. Bosu A, Carver JC (2014) Impact of developer reputation on code
review outcomes in oss projects: an empirical investigation. In:
ACM/IEEE international symposium on empirical software engi-
neering and measurement (ESEM), pp 33:1–33:10. doi:10.1145/
2652524.2652544

4. Constantinou E, Mens T (2016) Social and technical evolution of
software ecosystems: a case study of rails. In: European conference
on software architecture workshops (ECSAW), pp 23:1–23:4

5. Constantinou E, Mens T (2017) Socio-technical evolution of the
Ruby ecosystem in GitHub. In: International conference on soft-
ware analysis, evolution, and reengineering (SANER), pp 34–44

6. Crowston K, Wei K, Li Q, Howison J (2006) Core and periph-
ery in free/libre and open source software team communications.
In: Annual Hawaii international conference on system sciences
(HICSS), p 118.1. doi:10.1109/ICSS.2006.101

7. Decan A, Goeminne M, Mens T (2017) On the interaction of rela-
tional database access technologies in open source java projects. In:
CEURworkshop proceedings. Post-proceedings of the 8th seminar
on advanced techniques and tools for software evolution (SAT-
ToSE), vol 1820. pp 26–35

8. Decan A, Mens T, Claes M (2017) An empirical comparison of
dependency issues in OSS packaging ecosystems. In: International
conference on software analysis, evolution, and reengineering
(SANER)

9. Ehls D (2017) Open source project collapse—sources and patterns
of failure. In: Hawaii international conference on system sciences
(HICSS)

10. Ferreira M, Ferreira K, Tulio VM (2017) A comparison of three
algorithms for computing truck factors. In: IEEE international con-
ference on program comprehension (ICPC)

11. Foucault M, Palyart M, Blanc X, Murphy GC, Falleri JR (2015)
Impact of developer turnover on quality in open-source soft-
ware. In: Joint meeting on foundations of software engineering
(ESEC/FSE), pp 829–841. doi:10.1145/2786805.2786870

12. Fritz T, Ou J, Murphy GC, Murphy-Hill E (2010) A degree-
of-knowledge model to capture source code familiarity. In:
ACM/IEEE international conference on software engineering—
(ICSE), vol 1. pp 385–394. doi:10.1145/1806799.1806856

13. Gousios G (2013) The GHTorrent dataset and tool suite. In: Work-
ing conference onmining software repositories (MSR), pp 233–236

14. Guzzi A, Bacchelli A, Lanza M, Pinzger M, Deursen AV (2013)
Communication in open source software developmentmailing lists.
In:Working conference onmining software repositories (MSR), pp
277–286

15. Hirsch JE (2005) An index to quantify an individual’s scientific
research output. Natl Acad Sci USA 102(46):16569–16572

123

http://dx.doi.org/10.1145/2961111.2962633
http://dx.doi.org/10.1145/2961111.2962633
http://dx.doi.org/10.1145/2652524.2652544
http://dx.doi.org/10.1145/2652524.2652544
http://dx.doi.org/10.1109/ICSS.2006.101
http://dx.doi.org/10.1145/2786805.2786870
http://dx.doi.org/10.1145/1806799.1806856


An empirical comparison of developer retention in the RubyGems... 115

16. Izquierdo-Cortazar D, Robles G, Ortega F, González-Barahona JM
(2009) Using software archaeology to measure knowledge loss in
software projects due to developer turnover. In: Hawaii interna-
tional conference on system sciences (HICSS), pp 1–10

17. Joblin M, Apel S, Hunsen C, MauererW (2017) Classifying devel-
opers into core and peripheral: an empirical study on count and
network metrics. In: International conference on software engi-
neering (ICSE)

18. KikasR,GousiosG,DumasM, PfahlD (2017) Structure and evolu-
tion of package dependency networks. In: International conference
on mining software repositories (MSR)

19. Kleinbaum DG, Klein M (2012) Survival analysis: a self-learning
text, 3rd edn. Springer, New York

20. Lanza M, Marinescu R (2006) Object-oriented metrics in practice,
1st edn. Springer, Berlin

21. LinB,RoblesG, SerebrenikA (2017)Developer turnover in global,
industrial open source projects: insights from applying survival
analysis. In: International conference on global software engineer-
ing (ICGSE)

22. Lungu M (2008) Towards reverse engineering software ecosys-
tems. In: International conference on software maintenance
(ICSM), pp 428–431

23. Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies
of open source software development: apache and mozilla. ACM
Trans Softw Eng Methodol (TOSEM) 11(3):309–346. doi:10.
1145/567793.567795

24. Rigby PC, Zhu YC, Donadelli SM, Mockus A (2016) Quantifying
and mitigating turnover-induced knowledge loss: case studies of
Chrome and a project atAvaya. In: International conference on soft-
ware engineering (ICSE), pp 1006–1016. doi:10.1145/2884781.
2884851

25. Robles G, Gonzalez-Barahona JM (2006) Contributor turnover
in libre software projects. In: IFIP international conference
on open source systems (OSS), pp 273–286. doi:10.1007/
0-387-34226-5_28

26. Samoladas I, Angelis L, Stamelos I (2010) Survival analysis on the
duration of open source projects. Inf SoftwTechnol 52(9):902–922.
doi:10.1016/j.infsof.2010.05.001

27. Scacchi W (2007) Free/open source software development: recent
research results and emerging opportunities. In: Joint meeting on
european software engineering conference and theACMSIGSOFT
symposium on the foundations of software engineering: compan-
ion papers (ESEC-FSE companion), pp 459–468. doi:10.1145/
1295014.1295019

28. Serebrenik A, Mens T (2015) Challenges in software ecosystems
research. In: European conference on software architecture work-
shops (ECSAW), pp 40:1–40:6

29. Steinmacher I, Chaves AP, Conte TU, Gerosa MA (2014) Prelim-
inary empirical identification of barriers faced by newcomers to
open source software projects. In: Brazilian symposium on soft-
ware engineering (SBES), pp 51–60. doi:10.1109/SBES.2014.9

30. Steinmacher I, Graciotto Silva MA, Gerosa MA, Redmiles DF
(2015) A systematic literature review on the barriers faced by
newcomers to open source software projects. Inf Softw Technol
59(C):67–85. doi:10.1016/j.infsof.2014.11.001

31. Steinmacher I, Wiese I, Chaves AP, Gerosa MA (2013) Why
do newcomers abandon open source software projects? In: Inter-
national workshop on cooperative and human aspects of soft-
ware engineering (CHASE), pp 25–32. doi:10.1109/CHASE.2013.
6614728

32. Syed S, Jansen S (2013) On clusters in open source ecosystems.
In: International workshop on software ecosystems (IWSECO)

33. Terceiro A, Rios LR, Chavez C (2010) An empirical study on the
structural complexity introduced by core and peripheral develop-
ers in free software projects. In: Brazilian symposium on software
engineering, pp 21–29. doi:10.1109/SBES.2010.26

34. Vasilescu B, Posnett D, Ray B, van den Brand MG, Serebrenik A,
Devanbu P, Filkov V (2015) Gender and tenure diversity in GitHub
teams. In:ACMconference onhuman factors in computing systems
(CHI), pp 3789–3798

35. Vasilescu B, Serebrenik A, Filkov V (2015) A data set for social
diversity studies of GitHub teams. In: Working conference on min-
ing software repositories (MSR), pp 514–517

36. Vasilescu B, Serebrenik A, Goeminne M, Mens T (2014) On
the variation and specialisation of workload—a case study of the
Gnome ecosystem community. Empir Softw Eng 19(4):955–1008.
doi:10.1007/s10664-013-9244-1

37. Wahyudin D, Mustofa K, Schatten A, Biffl S, Tjoa AM
(2007) Monitoring the health status of open source web-
engineeringprojects. Int JWeb InfSyst 3(1):116–139. doi:10.1108/
17440080710829252

38. Wellek S (1993) A log-rank test for equivalence of two survivor
functions. Biometrics 49(3):877–881

39. Yamashit K, McIntosh S, Kamei Y, Ubayashi N (2014) Magnet or
sticky? an OSS project-by-project typology. In: Working confer-
ence on mining software repositories (MSR), pp 344–347. ACM.
doi:10.1145/2597073.2597116

40. Zhou M, Mockus A (2012) What make long term contributors:
willingness and opportunity in OSS community. In: International
conference on software engineering (ICSE), pp 518–528. doi:10.
1109/ICSE.2012.6227164

123

http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/2884781.2884851
http://dx.doi.org/10.1145/2884781.2884851
http://dx.doi.org/10.1007/0-387-34226-5_28
http://dx.doi.org/10.1007/0-387-34226-5_28
http://dx.doi.org/10.1016/j.infsof.2010.05.001
http://dx.doi.org/10.1145/1295014.1295019
http://dx.doi.org/10.1145/1295014.1295019
http://dx.doi.org/10.1109/SBES.2014.9
http://dx.doi.org/10.1016/j.infsof.2014.11.001
http://dx.doi.org/10.1109/CHASE.2013.6614728
http://dx.doi.org/10.1109/CHASE.2013.6614728
http://dx.doi.org/10.1109/SBES.2010.26
http://dx.doi.org/10.1007/s10664-013-9244-1
http://dx.doi.org/10.1108/17440080710829252
http://dx.doi.org/10.1108/17440080710829252
http://dx.doi.org/10.1145/2597073.2597116
http://dx.doi.org/10.1109/ICSE.2012.6227164
http://dx.doi.org/10.1109/ICSE.2012.6227164

	An empirical comparison of developer retention in the RubyGems and npm software ecosystems
	Abstract
	1 Introduction
	2 Related work
	2.1 Developer retention
	2.2 Survival analysis

	3 Research hypotheses
	3.1 Research hypotheses related to social activity
	3.2 Research hypotheses related to technical activity

	4 Experimental setup
	4.1 Data sources
	4.2 Operationalisation of social activity hypotheses
	4.3 Operationalisation of technical activity hypotheses

	5 Results of survival analysis
	5.1 Survival analysis of social activity
	H1.1 Developers that communicate less intensively have a higher probability of abandoning the ecosystem sooner
	H1.2 Developers that communicate less frequently have a higher probability of abandoning the ecosystem sooner
	H1.3 Developers that do not communicate for a longer period have a higher probability of abandoning the ecosystem sooner
	5.2 Survival analysis of technical activity
	H2.1 Developers that commit less intensively have a higher probability of abandoning the ecosystem sooner
	H2.2 Developers that commit less frequently have a higher probability of abandoning the ecosystem sooner
	H2.3 Developers that do not commit for longer periods have a higher probability of abandoning the ecosystem sooner

	6 Core versus peripheral developers
	7 Discussion and limitations
	8 Threats to validity
	8.1 Internal validity
	8.2 Construct validity
	8.3 External validity

	9 Conclusion
	Acknowledgements
	References




