Innovations Syst Softw Eng (2017) 13:219-239
DOI 10.1007/s11334-017-0300-7

@ CrossMark

ORIGINAL PAPER

What is a fault? and why does it matter?

Nafi Diallo! - Wided Ghardallou? - Jules Desharnais® - Marcelo Frias* -

Ali Jaoua® - Ali Milil

Received: 10 June 2016 / Accepted: 26 July 2017 / Published online: 22 August 2017

© Springer-Verlag London Ltd. 2017

Abstract Faults are an important concept in the study of
system dependability, and most approaches to dependabil-
ity can be characterized by the way in which they deal with
faults (e.g., fault avoidance, fault removal, fault tolerance,
fault forecasting). In their seminal work on modeling depend-
able computing, Laprie et al. define a fault as the adjudged
or hypothesized cause of an error. In this paper, we propose
a more formal definition of a fault in the context of software
products and discuss some of its implications.

Keywords Correctness - Partial correctness - Total
correctness - Relative correctness - Absolute correctness -
Software fault - Fault removal - Fault density - Fault depth -
Software testing - Software repair - Software design

1 Motivation and background
1.1 The trouble with faults

This research stems from asking ourselves the question what
is a software fault? and from realizing that the answer to this
question is more than a mere academic exercise.

We argue that a formal definition of faults is indispensable,
given that faults play a crucial role in the study of software
dependability, that they are the basis of the classification of

X Ali Mili

mili @njit.edu

New Jersey Institute of Technology, Newark, NJ, USA
University of Tunis El Manar, Tunis, Tunisia

Laval University, Quebec City, QC, Canada

ITBA, Buenos Aires, Argentina

Qatar University, Doha, Qatar

methods of dependability (fault avoidance, fault removal,
fault tolerance), and that they are at the center of several soft-
ware engineering processes and metrics, such as fault density,
fault proneness, fault forecasting, program repair, mutation
testing, multiple mutation. In [3,22-24] Laprie et al. define
a fault as the adjudged or hypothesized cause of an error [3];
we argue that, as far as software is concerned, this definition is
not sufficiently precise, first because adjudging and hypoth-
esizing are highly subjective human endeavors, and second
because the concept of error is itself insufficiently defined,
since it depends on a detailed characterization of correct sys-
tem states at each stage of a computation (which is usually
unavailable). According to the IEEE Standard IEEE Std 7-
4.3.2-2003 [1], a software fault is An incorrect step, process
or data definition in a computer program. We argue that this
definition is equally inadequate, in the sense that it merely
replaces an undefined concept (fault) by another (correct-
ness/ incorrectness), fails to capture many of the properties
of software faults (as we discuss below) and fails to acknowl-
edge the role of specifications in the definition of a fault (the
same feature of a program may be a fault or not depend-
ing on the specification being considered). In [11], Gartner
distinguishes between two types of state transitions in a com-
puting system: transitions that result from normal system
operation and transitions that result from fault occurrences,
and models a fault as an unwanted, though possible, state
transition of a process. Like Laprie’s definition, this defini-
tion relies on the availability of a precise characterization of
incorrect (unwanted) process states at each step of process
execution.

In fairness, we acknowledge that defining software faults
is fraught with difficulties:

e Discretionary determination Usually we determine that
a program part is faulty because we think we know what

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-017-0300-7&domain=pdf
http://orcid.org/0000-0002-6578-5510

220

N. Diallo et al.

the designer intended to achieve in that particular part,
and we find that the program does not fulfill the designer’s
intent; clearly, this determination is only as good as our
assumption about the designer’s intent.

e Contingent determination The same faulty behavior of a
software product may be repaired in more than one way,
possibly involving more than one part; hence, the deter-
mination that one part is a fault is typically contingent
upon the assumption that other parts are not in question.

e Tentative determination Usually, we determine that a pro-
gram part is faulty because we believe that if we could
change it in some specific way, the program would be
better, but in the absence of a clear definition of what it
means for the program to be better, this determination is
tentative.

In order to overcome the difficulties raised above, we resolve
to proceed as follows: We introduce a concept of relative
correctness, i.e., the property of a program to be more cor-
rect than another program with respect to a specification
[8,31]. Then we define a fault in a program as any program
part (be it a simple statement, a lexical token, an expres-
sion, a compound statement, a block of statements, a set of
non-contiguous statements, etc.) for which there exists a sub-
stitution that would make the program more-correct than the
original with respect to a relevant specification [31]. With
such a definition, we address the difficulties raised above,
namely:

e A Fault as an Intrinsic Attribute The definition of a fault
is not dependent on any design assumptions, but involves
only the (incorrect) program, the faulty program part
and the specification with respect to which correctness
is defined.

e A Fault as a Definite Property If we let a fault be any
program part that admits a substitution that makes the
program more-correct, then the designation of a faultis no
longer contingent on any hypothesis; we need not make
any assumption on whether other parts of the program
are faulty or not.

e Fault Removal as a Verifiable Process By testing a pro-
gram for relative correctness rather than (traditional)
absolute correctness, we can determine with greater
confidence that a particular fault has been removed,
regardless of whether that makes the program correct or
not (due to the presence of other residual faults).

In order to reap these benefits, we must first introduce a defi-
nition of relative correctness; this is the subject of Sect. 3. In
preparation for this objective, we present some mathematical
definitions and notations and some elements of relations-
based program semantics in Sect. 2. In Sect. 4, we consider
in turn several properties that we would want a concept of

@ Springer

relative correctness to satisfy, and prove that our definition
does satisfy all of them. In Sect. 5, we discuss the uses of
the concept of relative correctness and its implications for
relevant software processes. Once we know how to use rel-
ative correctness, the next issue we address is: How do we
establish relative correctness, i.e., how to build the case that
a program is more-correct than another with respect to a
specification; this is the subject of Sect. 6. Section 7 summa-
rizes and assesses our findings, discusses related work and
sketches directions of future research.

2 Mathematics for program analysis

We assume the reader familiar with discrete mathematics,
most notably relational algebra; this section introduces defi-
nitions and notations, but it is our assumption that the reader
is familiar with these concepts [5].

2.1 Relational notations

Dealing with programs, we represent sets using a pro-
gramming-like notation, by introducing variable names and
associated data types. For example, if we represent set S by
the variable declarations { x : X;y: Y;z: Z,} then S is the
Cartesian product X x ¥ x Z. Elements of S are denoted in
lower case s and are triplets of elements of X, Y and Z. Given
an element s of S, we represent its X -component by x (s), its
Y-component by y(s) and its Z-component by z(s). When
no risk of ambiguity exists, we may write x to represent x ()
and x’ to represent x(s’).

A (binary) relation on S is a subset of the Cartesian product
S x §. Special relations on S include the universal relation
L = S x S, the identity relation I = {(s, s")|s’ = s} and the
empty relation ¢ = {}. Operations on relations (say, R and
R’) include the set theoretic operations of union (R U R’),
intersection (RNR"), difference (R\R') and complement (R).
They also include the relational product, denoted by (Ro R’),
(or RR’, for short) and defined by:

RR ={(s.5")|3s" : (s,s") e RA(s",5") € R'}.

The converse of relation R is the relation denoted by R and
deﬁnedbyﬁ: {(s, s")|(s", s) € R}.The domain of arelation
R is defined as the set dom(R) = {s|3s’ : (s,s’) € R}.
A relation R is said to be reflexive if and only if I C R,
antisymmetric if and only if (R N ﬁ) C I, asymmetric if and
only if (R N ﬁ) = ¢ and transitive if and only if RR C R.
A relation is said to be a partial ordering if and only if it is
reflexive, antisymmetric and transitive. Also, a relation R is
said to be fotal if and only if I C RI?, and deterministic (or,
a function) if and only if RR C I. A relation R is said to be

What is a fault? and why does it matter?

221

a vector if and only if RL = R; we use vectors to represent
subsets of S in relational form.

2.2 Relational semantics

Given a program p on space S, we denote by [p] the function
that p defines on its space, i.e.,

[p] = {(s, s")| if program p executes on state s

then it terminates in state s'}.

We represent programs by means of a few simple C-like
programming constructs, which we present below along with
their semantic definitions:

Abort: [abort] = ¢.

e Skip: [skip] = 1.

o Assignment: [s = E(s)] = {(s,5)|s € 8(E) As' =
E(s)}, where 8 (E) is the set of states for which expression
E can be evaluated.

e Sequence: [pi; p2] = [p1l o [p2]. _

e Conditional: [1£ (t) {p}] =T N[p]J]UT NI, where T
is the vector defined as: T = {(s, s)|7(s)}.

e Alternation: [1f (t) {p}else{q}] =T N[plU TN [q],
where 7 is defined as above. .

e Iteration: [while (¢) {b}] = (T N[H])*NT, where T is
defined as above.

e Block: [{x : X; p}1={(s, s"H|3x, x" € X : ({s, x), {s', x))

€ [pl}.

Rather than using the notation [p] to denote the function of
program p, we will usually use upper case P as a shorthand
for [p]. Also we may, when it causes no confusion, refer to
a program and its function by the same name.

2.3 Refinement ordering

The concept of refinement is at the heart of any programming
calculus; the following definition captures our interpretation
of refinement.

Definition 1 Welet R and R’ be two relations on space S. We
say that R’ refines R ifand only if RLNR'LN(RUR') = R.

We write this relation as: R J R or R T R’. Intuitively, R’
refines R if and only if R’ has a larger domain than R and
has fewer images than R inside the domain of R. It is easy
to prove that C is a partial ordering; also, it is easy to prove
that for functions R and R’, R € R’ if and only if R C R’.

2.4 Refinement lattice

Since refinement is a partial ordering between specifications,
it is legitimate to ponder its lattice-like properties. The fol-

lowing proposition, due to [4], provides a useful result with
regard to the lattice of specifications.

Proposition 1 Any two specifications R and R’ that satisfy
the following condition (RN R')L = RL N R'L (called the
consistency condition) admit a least upper bound, denoted
by RUR’ (read: R join R’') and defined by: RUR' = (R'LN
RYURLNRHU(RNR).

Interpretation: The consistency condition between two speci-
fications is the condition under which the specifications admit
ajoint refinement; the join of two specifications R and R’ cap-
tures all the requirements of R and all the requirements of
R’ and nothing else; it is possible to combine R and R’ only
if they do not contradict each other (whence the consistency
condition).

3 Absolute correctness and relative correctness

Whereas absolute correctness characterizes a program with
respect to a specification, relative correctness ranks two
programs with respect to a specification; for a given spec-
ification, it defines a partial ordering on candidate programs.

3.1 Absolute correctness

Definition 2 Let p be a program on space S and let R be
a specification on S. We say that program p is correct with
respect to R if and only if P (the function of program p on
space S) refines R. We say that program p is partially correct
with respect to specification R if and only if P refines RNP L.

This definition is consistent with traditional definitions of
partial and total correctness [10,16-18,29]. Whenever we
want to contrast correctness with partial correctness, we may
refer to it as fotal correctness.

Proposition 2 A deterministic program p is correct with
respect to specification R if and only if (P N R)L = RL.

This formula is used by Mills et. al. [33] as a definition of
correctness; in [30] we show that it is equivalent to our defi-
nition.

3.2 Relative correctness

3.2.1 Deterministic programs

Definition 3 Let R be a specification on space S and let p and
p’ be two programs on space S whose functions are, respec-
tively, P and P’. We say that program p’ is more-correct

than program p with respect to specification R (denoted by:
p’ dg p)ifandonly if: (RN P')L O (RN P)L. Also, we

@ Springer

222

N. Diallo et al.

=]
=]

i
AW

[NV N N N S =]

0 0
1 1
2 2
3 3
4 4
5 5
6 6

N L (h LN —

(=2}

Fig. 1 Enhancing correctness without imitating behavior

say that program p’ is strictly more-correct than program p
with respect to specification R (denoted by: p’ Jg p) if and
only if (RN P)L D (RN P)L.

Whenever we want to contrast correctness (given in Def-
inition 2) with relative correctness, we may refer to it as
absolute correctness. Note that when we say more-correct
we really mean more-correct or as-correct-as; we use the
shorthand, however, for convenience. We give a simple intu-
itive interpretation of this definition: The relation (actually
a vector) (R N P)L represents the set of initial states for
which program p behaves according to the requirements
of specification R; we refer to this set as the competence
domain of program p with respect to specification R, so
that to be more-correct merely means to have a larger com-
petence domain. See Fig. 1; in this figure, the competence
domains of P and P’ are, respectively, CD = {1, 2, 3, 4}
and CD' = {1, 2, 3, 4, 5}. Hence p’ is (strictly) more-correct
than p with respect to R.

To illustrate this definition, we consider the space S
defined by two integer variables x and y, and we let R be
the following specification on S:

R= {(s, sHx? <x'y < 2x2})

We consider the following candidate programs, denoted pg
through p7. Next to each program p;, we represent its func-
tion P; and then its competence domain (C D;). Figure 2
shows how these candidate programs are ranked by relative
correctness with respect to R; this graph merely reflects the
inclusion relationships between the competence domains.

po: {x=1; y=-1;}.Wefind: Py = {(s,s)|x' = 1Ay =

—1}. Whence,
(PoNR)L ={(s,s)|3s" :x' = 1Ay =—1Ax*<
—1 <2x%} = {}.

p1: {x=2*x; y=0;}. Wefind: P; = {(s,s)|x = 2x A
y’ = 0}. Whence,
(PLNR)L ={(s,s))3s’ :x' =2x Ay =0Ax? <
0 < 2x2) = {(s,s")|x = 0}.

pr {x=x*x; y=0;}. We find: P, = {(s, s)|x’ = x2 A
y’ = 0}. Whence,

@ Springer

P Ps

P3 P4

P1 P2
Py

Fig. 2 Relative correctness relations

(P, NR)L = {(s,5))3" : x’ =x2 Ay =0 A x?
0 < 2x2) = {(s,s")|x = 0}.

p3: {x=2*x; y=1;}. Wefind: P; = {(s,s)|x’ = 2x A
y’ = 1}. Whence,
(PsNR)L = {(s,5)]3s" :x' =2x Ay =1Ax?
2x < 2x%) ={(s,5)|0 < x <2}.

pa: {x=2*x; y=2;}. Wefind: Py = {(s,s)|x = 2x A
y' = 2}. Whence,
(PANR)L = {(s,5)]3s’ :x' =2x Ay =2 A x?
4y <2x = {(s,s)|lx =0Vv2 <x <4}.

ps: {x=2*x; y=x/2;}. We find: P5s = {(s,s)|x =
2x Ay = x}. Whence,
(PsNR)L = {(s,5)]3s" :x' =2x Ay =xAx? <
2x2 <2x?}) = L.

ps: {y=x/2; x=2*x;}. We find: P = {(s,s)|x =
2x Ay = x/2}. Whence,
(PsNR)L = {(s,s)|3s" 1 x' =2x Ay = x/2 A x?
x2 < 2x2} =1L.

p7 {x=x*x; y=2;}. We find: P; = {(s, s)|x' = x2 A
y’ = 2}. Whence,
(PPNR)L = (5,53 :x' =x>Ay =2Ax% <
2x2 <2x?}) = L.

IA

IA

IA

IA

This example illustrates a number of properties:

e Note that this relation is not antisymmetric, so that two
programs may be mutually related and still be distinct
(such is the case for Py and P», for example).

e The top of the graph represents the programs that are
(absolutely) correct with respect to specification R: Ps,
Pg and P7.

e A program may be more-correct than another without
imitating its correct behavior. For example, p3 is more-

What is a fault? and why does it matter?

223

correct than p; and yet it does not behave as p; on the
competence domain of pj.

3.2.2 Non-deterministic programs

So far, we have discussed relative correctness between deter-
ministic programs, i.e., programs whose behavior/outcome
is uniquely determined for each initial state. Yet it is useful
to define relative correctness for non-deterministic programs,
for two distinct reasons:

e First, because we want to discuss relative correctness for
programs that are written in non-deterministic languages
or programs whose behavior is non-deterministic as a
result of, e.g., randomly generated data.

e Second, because we want to reason about the relative
correctness of deterministic programs without having to
compute their function in all its minute detail; their repre-
sentation is then a non-deterministic relation rather than
a function.

The following definition, due to [7], defines relative cor-
rectness for potentially non-deterministic programs; it is
equivalent to Definition 3 when P and P’ are deterministic,
and it satisfies for non-deterministic programs many of the
properties we discuss in Sect. 4 for deterministic programs.

Definition 4 We let R be a specification on set S, and we let
p and p’ be (possibly non-deterministic) programs on space
S. We say that p’ is more-correct than p with respect to R
(abbrev: p’ Jdg p) if and only if:

(RNP)LS(RNP))LA(RNP)LNRNP CP.

Interpretation: p’ is more-correct than p with respect to R
if and only if it has a larger (or equal) competence domain,
and for the elements in the competence domain of p, program
p’ has fewer (or the same) images that violate R than p does.
In other words, a program p’ is more-correct than a program
p with respect to R if and only if p” obeys R more often than
p and violates R less egregiously (in fewer ways) than p. For
the sake of simplicity, we focus on deterministic programs in
the remainder of this paper, and we refer interested readers
to [7].

3.3 Faults and fault removals

Any definition of a fault must be based on a level of gran-
ularity at which we want to isolate faults. Typically, faults
are implicitly isolated at the level of the /ine of code (LOC);
other common levels of granularity include the programming
language statement, the expression, the operator/ operand,
the variable reference, the lexeme. We let feature designate

any program part at the appropriate level of granularity; we
further assume that a feature does not need to be contiguous
and can be made up of two or more program parts at different
locations in the source code.

Definition 5 Let p be a program on space S and R be a
specification on S; let f be a feature in p. We say that f isa
fault in p with respect to specification R if and only if there
exists a substitution f’ of f such that the program p’ obtained
from p by substituting f by f” is strictly more-correct than
p with respect to R.

Of course, we assume that replacing feature f by feature f’
in P does not break the syntactic integrity of the program;
i.e., the new program p’ passes the compilation (in order for
P’ to be defined).

Definition 6 Let p be a program on space S and R be a
specification on S, let f be a fault in p, and let f’ be a
substitute for f. We say that the pair (f, f') is a (monotonic)
fault removal if and only if the program p’ obtained from p
by substituting f by f” is strictly more-correct than p.

For illustration, we consider the following program, say
p, taken from [13] (with some modifications):

#include <iostream> // line 1

void count (char gl]) // 2

{int let, dig, other, i, 1; char c; // 3

i=0;1let=0;dig=0;0other=0;1l=strlen(q); // 4

while (i<1) { // 5

c = qglil; // 6

if ('A’'<=c && 'Z’'>c) let+=2; // 7

else // 8

if (’a’'<=c && 'z’'>=c) let+=1; // 9

else //10

if ('0’'<=c && '9’>=c) dig+=1; //11

else //12

other+=1; //13

i++;1} //14
printf (''%d %4 %d\n’’,let,dig,other);} //15

We let S be the space defined by the declarations of line
3, to which we add variable os which represents the output
stream (in C++ parlance), and we let R be the following
specification:

R={(s,s)lg € list{ap UagUvUo)A
0s' = 05 @ #4(q) D#,(q) ®#5(q)}

whereweletay =" A" ../ Z,a, ="d ../ Z,v=0.."9,
and 0 = {set of ASCII symbols}. Also, we let & denote
the concatenation, we let list(T) denote the set of lists
of type T, and we let #,4, #,, #, and #, be the functions
that to each list [assign (respectively) the number of upper
case alphabetic characters, lower case alphabetic characters,
numeric digits and symbols; also, we let #, be defined as

@ Springer

224

N. Diallo et al.

#o (1) = #,(1) +#4 (). We introduce the following programs,
which are derived from p by some modifications of its source
code:

por The program obtained from p when we replace
(let+=2) by (let+=1).

p1o The program obtained from p when we replace
("Z">c)by (2" >=c).

p11 The program obtained from p when we replace
(let+=2)by (let+=1)and (' Z’'>c) by (' Z’'>=c).

We find the following competence domains for these pro-
grams:

CD = {s|q €list{e, UvUo)}.

CDo1 = {s|q € list{(aa\{'Z'}) Ua, UvUo)}.
CDyo = {sl|g € list{og Uv Uo)}.

CDy = {s|qg € list{aa Uay, Uv Uo)}.

By comparing the competence domains, we draw the follow-
ing conclusions:

e The feature (Let+=2)is a fault in p, and its substitution
by (let+=1) is a fault removal, yielding the more-
correct program po .

e The feature (' Z " >c)is afaultin pg;, and its substitution
by ('Z’>=c) is a fault removal, yielding the more-
correct program pjj.

e The feature defined by the two statements (Let+=2) and
(" Z">c)isafaultin p, and its substitution by (Let+=1)
and ('Z'>=c) is a fault removal, yielding the more-
correct program pyj.

e The program pq; is correct with respect to R.

Note that the statement (' Z’>c) is a fault in pg; but we
conjecture that it is not a fault in p (to assertively claim that
it is not a fault in p, we must prove that no substitute of
(" Z">c) could made p strictly more-correct); also note that
the statement (' Z’ >c), in combination with the statement
(Let+=2) is a fault in p, but we conjecture that it is not a
fault in p by itself (to assertively claim that it is not a fault in
p, we must prove that no substitute of (* Z * >c) could made
p strictly more-correct).

4 Validation of relative correctness

4.1 Litmus tests

How do we know that our definition of relative correctness
is sound? To answer this question, we list some properties

that a definition of relative correctness ought to meet; then
we check that our definition does satisfy them.

@ Springer

e Reflexivity and Transitivity, and non-Antisymmetry. Of
course, we want relative correctness to be reflexive and
transitive; we do not want it to be antisymmetric, since
we want to have programs that are mutually more-correct,
yet distinct (not only syntactically distinct, but computing
different functions as well).

e Absolute Correctness as the Culmination of Relative Cor-
rectness. Relative correctness ought to be defined in such
a way that if a program keeps getting more and more-
correct with respect to a specification, it will eventually
be (absolutely) correct. This property can also be for-
mulated as follows: A program that is absolutely correct
with respect to a specification is more-correct than (or
as-correct-as) any candidate program with respect to the
same specification.

e Relative Correctness as a Sufficient Condition, but not a
Necessary Condition, of Higher Reliability. If program
p’ is more-correct than program p, then of course we
want p’ to be more reliable than p, but we do not want
more-correct to be equivalent to more reliable, as the
former is a logical/functional property, whereas the latter
is a stochastic property.

e Refinement is equivalent to Relative Correctness with
respect to any (all) Specification(s). When program p’
refines program p, we interpret this to mean that what-
ever p can do, p’ can do as well or better; in particular,
it means that p’ is more-correct than (or as-correct-as) p
with respect to any specification R.

4.2 Reviewing the criteria
4.2.1 Reflexivity, transitivity and non-antisymmetry

Program p’ is more-correct than program p if and only if (RN
P")L 2 (RN P)L. Transitivity and reflexivity stem readily
from the definition, as does non-antisymmetry: Indeed, two
functions P and P’ may satisfy (RN P)L = (RN P')L,
while P and P’ are distinct. Consider R = {(0, 1), (0, 2)},
P ={(0, 1)} and P’ = {(0, 2)}.

4.2.2 Absolute correctness as the culmination of relative
correctness

Proposition 3 Let R be a specification on space S, and let
p’ be a program on S. Then p' is correct with respect to R
if and only if p' is more-correct with respect to R than any
candidate program p on S.

Proof Proof of necessity: Let p’ be correct with respect to
R; then, according to Proposition 2, RL = (RN P')L. Let
p be an arbitrary program on space S; by set theory, we have
RL D (P N R)L. Hence p’ is more-correct with respect to
R than p.

What is a fault? and why does it matter?

225

Proof of sufficiency: Let p’ be more-correct with respect
to R than any candidate program p on S. Let p” be a correct
program with respect to R; then (R N P”)L = RL. Since
p’ is more correct with respect to R than p”, (RN P)L D
(RN P")L, hence (RN P’) 2 RL, which is equivalent to
(RN P')L = RL since the inverse inclusion is a tautology.

O

‘We write this as:

PPOR<s (YP:P Tz P)|

4.2.3 Relative correctness and reliability

The reliability of a program p on space S can be defined
with respect to two parameters: a specification R on § and a
probability distribution € on the domain of R. For the sake
of simplicity, we assume that the domain of R is a finite set
and that 6 is a discrete probability distribution.

Definition 7 The reliability of a program p on space S with
respect to specification R on S and probability distribution
0 on dom(R) is the probability that the execution of p on a
random element of dom(R) selected according to distribution
0 satisfies specification R. We denote it by peR (p).

We have the following proposition.

Proposition 4 Let p and p’ be two programs on space S,
and let R be a specification on S. Then p' is more-correct
than p with respect to R if and only if for any probability
distribution 0 on dom(R), p’ is more reliable than p with
respect to R and 0.

Proof The proof of necessity is trivial: According to Def-
inition 7, the reliability of program p with respect to
specification R and probability distribution 6 can be writ-
ten as:

)=y

sedom(RNP)

0(p).

Clearly, the bigger the competence domain, the greater the
reliability.

Proof of sufficiency: Let us assume that p’ is not more-
correct than p; then there exists an element, say so that
belongs to the competence domain of p and does not belong
to the competence domain of p’. If we let 6y () be defined by:

Bo(s0) = 1,
Vs #£ 5o : Op(s) =0,

then we find pX(p) = 1 and pf(p’) = 0, which contra-
dicts the hypothesis that p’ is more reliable than p for any
probability distribution. O

We write:

p'3rp e (V0 :pf(p) = pkp)|

For a given probability distribution 6 relative correctness
logically implies (but is not equivalent to) enhanced reli-
ability, but when we quantify enhanced reliability for all
probability distributions, we obtain equivalence: In other
words, to be more-correct means to be more reliable for any
probability distribution.

4.2.4 Relative correctness and refinement

The following proposition casts relative correctness as a form
of pointwise refinement.

Proposition 5 Let p and p' be programs on space S. Then
p’ refines p if and only if p’ is more-correct than p with
respect to any specification R on S.

Proof Proof of necessity: We have seen in Sect. 2.3 that if
P and P’ are two functions, then P’ refines P if and only
if P/ D P. The condition (P’ N R)L D (P N R)L stems
readily, by set theory.

Proof of sufficiency: Let p’ be more-correct than p with
respect to any specification R on S. Then p’ is more-correct
than p with respect to specification R = P. This can be
written as: (P N P’)L 2 (P N P)L, which we simplify as:
(P N P)YL 2 PL. On the other hand, we have, by con-
struction, (P N P’) € P. Combining the two conditions, we
obtain: (P N P’) = P, from which we infer (by set theory)
P’ 2 P and, by the remark above, P’ 3 P. O

‘We write this as:

PPJP& (YR:P JrpP)|

Hence, relative correctness can be seen as an intermediate
property between enhanced reliability and refinement. Relia-
bility depends on two parameters: the specification R and the
probability distribution 6 on dom(R); when we quantify for 6
we obtain relative correctness and when we further quantify
for R we obtain refinement.

5 Implications and applications

5.1 Measuring faultiness

5.1.1 The difference between software faults and bad apples
A naive interpretation of fault density in a program views the
faults in a program as if they were black balls in a bucket

full of otherwise white balls: They are all visible; they are
intrinsically identifiable (black vs. white); their number is

@ Springer

226

N. Diallo et al.

well defined (and can be estimated); they are independent of
each other (removal of one ball does not change the color of
the others); they can be removed in an arbitrary order; there
is only one way to remove each ball; and whenever one is
removed, their number is reduced by one. In this section, we
see to what extent this analogy is unfounded: Unlike black
balls in a bucket of white balls, faults are highly inter-related;
removal of one fault may affect the nature, number and loca-
tion of other faults; faults are not all visible at once, some
may hide others; there may be more than one way to remove a
fault, and how a fault is removed affects the subsequent fault
configuration of the program; a fault may need to be corrected
at more than one location; and the order in which faults are
removed matters, as does the way faults are removed.

5.1.2 Elementary faults

We consider a program p on space S and a specification R
on S, and we let f; and f> be two features in p for which we
have found substitutes, say f{ and f, that would produce a
program p’ which is strictly more-correct than p with respect
to R. The question we want to consider in this section is: Are
we looking at two single-site faults in p or a single fault
that spans two sites? The answer to this question depends, of
course, on whether f] alone is a fault and whether f, alone
is a fault in p with respect to R. We consider the following
space S, specification R and program p:

S: {x: float; 1i:
of float;}.

R: {(s,s)x" = YN alil).

p: {(x=0;1=0; while(i <=N-1) {x=x+a[i];
i=1i+4+1;}}

int; a: array [0..N]

We compute the function of this program and then its com-
petence domain with respect to R, and we find:

dom(R N P) = {s]a[0] = a[N]}.

Since dom(R N P) is not equal to dom(R), which is S, this
program is not correct. One way to correct this program is
to change {i=0} to {i=1} and to change {i<=N-1} to
{i<=N}. The question that we raise here is: Do we have
two elementary faults here ({1i=0} and {i<=N-1}) or just
one elementary fault that spans two sites? To answer this
question we consider separately the proposed substitutions
and check whether they produce more-correct programs. We
let po; be the program obtained from p by replacing {i=0}
by {i=1}, we let pjo be the program obtained from p by
replacing {i<=N-1} by {i<=N}, and we let pj; be the
program obtained from p by performing the two substitutions

@ Springer

simultaneously; we find the following competence domains
for these programs.

dom(R N Py1) = {s|la[N] = 0}.
dom(R N P1g) = {s]|a[0] = 0}.
dom(R N Pp) = S.

Since the competence domain of p is not a subset of the
competence domains of pg; and pjg, neither pg; nor pig
is more-correct than p. We conjecture: Neither {i=0} nor
{i<=N-1} isafaultin p, butthe composite feature ({1=0},
{i<=N-1})is a fault in program p with respect to R, since
program pj; is more-correct than p with respect to R. We
say that this is a multi-site fault; in this example we do not
have two single-site faults but a single multi-site elementary
fault.
This inspires the following definition.

Definition 8 Let f be a fault in program p on space S with
respect to specification R. We say that f is an elementary
fault in p if and only if no part of f is a fault in p with
respect to R.

So that if we are going to count faults, we need to count ele-
mentary faults rather than arbitrarily large/composite faults.
Implicit in this definition is the premise that all single-site
faults are elementary faults; a multi-site faultis an elementary
fault if and only if no subset of the components that form it is
a fault. For further illustration, we consider program p given
in Sect. 3.3, and we remember that we have found it to have
two faults: First the statement { Let+=2 }; second the combi-
nation of two statements {let+=2, ’Z’>c} (remember,
{"Z">c} is a fault in pg; but is not a fault in p). In this
example, {let+=2, ‘Z’>c} is not an elementary fault,
because {let+=2} by itself is a fault.

5.1.3 Fault density and fault depth

We use the term fault density to refer to the number of ele-
mentary faults in a program. The trouble with counting faults
in a program is that the number of faults in a program violates
a simple rule that counting any other commodity satisfies: If
we have ten black balls in a bucket of otherwise white balls,
and we remove one black ball, we are left with nine black
balls. But if we have ten faults in a program and we remove
one fault, the number of remaining faults is undetermined: It
depends on which of the ten faults we have removed, and on
how we have removed it. So that whereas we want to think of
fault density as a measure of program faultiness/imperfection
or as a measure of repair effort, we can argue that it measures
neither imperfection nor repair effort; we consider an alter-
native.

What is a fault? and why does it matter?

227

Definition 9 We let R be a specification on space S and
p be a program on space S. The fault depth of program p
with respect to specification R is the minimal number of
elementary fault removals that are required to transform p
into a correct program.

If program faults were like black balls, then density and
depth would be identical: If we have ten black balls, it
takes ten removals to get rid of them, but faults are dif-
ferent. We consider below a case where several faults can
be removed by a single fault removal, and a case where a
single fault can be remedied multiple times (each produc-
ing a strictly more-correct program) before the program is
correct.

We consider the array sum program discussed in the
previous section (Sect. 5.1.2). We had identified a sin-
gle elementary multi-site fault, which is the aggregate
£1:({1i=0}, {i<=N-11});we argue thatthere isanother
possible fault in this program, namely £2:{x=x+
a[1]}. Indeed, this statement admits a substitution, namely
£27: {x=x+a[1+1]}, that would make the program more
correct (as the reader can easily see). If we replace fault
£1 with the feature £1’: ({1=1}, {i<=N}), then we
find a correct program, say p); hence while £2 is a fault
in p, it is not a fault in p;. On the other hand, if we
replace fault £2 with the feature £2 ', then we find a cor-
rect program, say p5; hence while £1 is a fault in p, it is
not a fault in p/z. But if we substitute both £1 and £2 by,
respectively, £1‘ and £2 ', we would end up with an incor-
rect program (say p’’) that has two faults £1’ and £2 .
Hence program p has a fault depth of 1 and a fault den-
sity of 2. Note, incidentally, that having two faults means
that we have two distinct opportunities to enhance the cor-
rectness of the program. More generally, for a given fault
depth, the higher the fault density the better; hence, not
only is fault density not representative of program imper-
fection, it can actually be seen as representing a quality
attribute of the program. See Fig. 3, where s; represents
the substitution (£1, £1”) and s, represents the substitution
(£2, £2).

The following example shows a case where a fault removal
makes the program strictly more-correct without changing its

p@

51

correct programs

(1
NG

52
51

p p

Fig. 3 Fault density = 2, fault depth = 1

fault density; it is an artificial example, but is illustrative nev-
ertheless. We consider the following space S, specification
R and program p (where N > 2):

S: {int i; float al0..N];}

R: {(s,s"IVj:0<j<N:d[jl=0}

p: {1i=2; while (i<=N) {alil=0; i=i+1;}}
Clearly, the domain of R is S. We compute the competence
domain of p, and we find:

dom(R N P) = {s|a[0] =0 A a[1] = 0}.

Hence p is not correct with respect to R. We can check easily
that {i=2} is a fault in p with respect to R, and we show
that the substitution of {1i=2} by {i=1} produces a more-
correct program:

(1<=N) {alil=0; i=i+1;}},

p':{i=1; while

whose competence domain is:
dom(RN P’) = {s]|a[0] = 0}.

Even though p’ is more-correct than p, it is still not correct,
since its competence domain is not equal to dom(R). We find
that {i=1} isafaultin p’, and that substituting itby {i=0}
yields a program, say p”, which is correct with respect to
R. Even though it is grossly artificial, this example shows
that the same fault may require more than one removal to be
completely eliminated from a program.

Hence we adopt fault depth as a measure of program
faultiness. Unlike fault density, fault depth does decrease
by one whenever we remove a fault that is in the minimal
path. Given a faulty program p and a program p’ obtained
from p by monotonic fault removal, the following formula
holds:

depth(p) < 1 +depth(p).

If the transition from p to p’ is part of a minimal sequence of
fault removals toward a correct program, then we have equal-
ity rather than inequality, i.e., depth(p) = 1 + depth(p’).
Note that neither equality nor inequality holds between
density(p) and density(p’), as we showed above.

In summary, the contrast between fault density and fault
depth reflects the difference between the two statements: Pro-
gram p has N elementary faults (density); program p needs
N elementary fault removals (depth). If faults were like black
balls, then these two statements would be equivalent, but they
are not. We argue that depth is a more meaningful measure
of faultiness than density.

@ Springer

228

N. Diallo et al.

Specifica-
tion R
C
C
C
Imperfect -
Desien Correctness
es1g Preserving
Refinements -
C
Y [
C C C C C —
Incorrect| =8 =R =R =R —f‘ Correct
p rogram (Correctness Enhancing Repairs) Program

Fig. 4 A framework for monotonic fault removal
5.2 Monotonic fault removal

As programmers, we may experience the frustration of try-
ing to remove faults from a program, only to find that we are
running in circles, patching the program at one end only to
break it down at another; as teachers, we often see our stu-
dents go through the same frustration. This would not happen
if we restricted program transformations to provably mono-
tonic fault removals; with such a discipline, we are assured
that with each transformation, the program becomes more-
correct. Of course, ensuring that a program transformation
qualifies as a monotonic fault removal is generally a non-
trivial exercise; we postpone the discussion of how to do
this to Sect. 6. Here we simply argue that in the same way
that stepwise refinement provides a logical framework for
software design, which proceeds monotonically from a spec-
ification to a program through correctness-preserving trans-
formations, relative correctness provides a logical framework
for stepwise fault removal, which starts from an incorrect
program and proceeds monotonically toward a correct pro-
gram through correctness-enhancing transformations. This
process is illustrated in Fig. 4. The concept of relative cor-
rectness ought to play for software fault removal the same
role that refinement plays for software design: first, as a log-
ical framework for reasoning about faults and fault removal,
second, as an ideal process to be followed scrupulously when
the stakes warrant it; and third, as a yardstick against which
large-scale methods and tools can be evaluated.

5.3 Software design

In Sect. 4.2.4, we have found that program p’ refines pro-
gram p if and only if p’ is more-correct than p with respect

@ Springer

tion R

Cr c
C
Correctness c

Correctness Preserving
Enhancing C Transformations C
Transformations =R =
c
Cr YO

Correct Program

Fig. 5 Program derivation by correctness enhancement

to any specification. This sheds new light on program deriva-
tion by successive refinements, which requires that at each
stage of this process, we transform a program into a more-
refined program. According to our discussion of Sect. 4.2.4,
this process requires that at each stage, we transform a pro-
gram, say p, into a program p’ that is more-correct than p
with respect to any specification. But this raises the question:
Why should p’ be more-correct than p with respect to any
specification when we are only interested in specification R?
Is it possible that the requirement of refinement is too strong?
To explore this venue, we revisit the process depicted in
Fig. 4 and imagine that instead of designing a (possibly incor-
rect) program then proceeding with correctness-enhancing
transformations toward a correct program, we start with
the (trivially incorrect) abort program and transform it
into increasingly more-correct (rather than more-refined)
programs until we find a correct program. This process is
depicted in Fig. 5, which can be viewed as a variation on
the process depicted in Fig. 4, where we merely short cir-
cuit the imperfect design step, and replace it by the trivial
initialization to {abort}.

As an illustration of this process, we briefly present an
example borrowed from [9] (to which the interested reader is
referred for further details). We let S be the space defined by
natural variables x, y and n, and we let R be the following
specification (known as Fermat’s factorization):

R ={(s,s)|((nmod 2 = 1) vV (n mod 4 = 0))
/\n:)c/z—y/2 /\0§y/§x/}.

To find a program that is correct with respect to this specifi-
cation, we consider increasingly complex configurations of
x and y and derive the corresponding Fermat factorization;
this yields the following sequence of programs, which are
ranked by relative correctness with respect to R (though not

What is a fault? and why does it matter?

229

by refinement) and culminate in a program that is absolutely
correct with respect to R.

po: abort.
p1: {int r; x=0; vy=0; 1r=0;

while (r<n) {r=r+2*x+l; x=x+1;}}
p2. {int r; x=0; 1r=0;

while (r<n) {r=r+2*«xx+Lix=x+1;}

if (r>n) {y=0; while (r>n) {r=r-2
xww—1;, y=y+1; }}}

p3: {int r; x=0; 1r=0;
while (r<n) {r=r+2*x+1l; x=x+1;}
while (r>n) {int rsave=r; vy=0;
while (r>n) {r=r-2*y-1; vy=y+1;}
if (r<n) {r=rsave+2*x+1; x=x+1;}}}

Imagine a scenario where our goal is not necessarily to pro-
duce a correct program, but rather to produce a sufficiently
reliable program, for a pre-specified reliability threshold.
Now, consider that, according to Proposition 4, relative
correctness logically implies higher reliability. Hence the
programs that we generate in this sequence are more and more
reliable; if we can estimate the reliability of each program that
we generate in this sequence, then we can imagine a scenario
where this stepwise transformation concludes, not when we
obtain a correct program, but rather when we obtain a pro-
gram whose reliability equals or exceeds the pre-specified
reliability threshold. While we have not yet proven the via-
bility of this approach, it certainly sounds like a worthwhile
venue to pursue; as an exercise, we have found that under the
hypothesis of uniform probability distribution of the inputs,
the reliability of the sequence of programs given above (pg,
P1, P2, p3) 1s, respectively, (0.0, 0.0133, 0.1328, 1.0).

5.4 A software testing life cycle

The traditional life cycle of software testing is triggered by an
observation of failure and proceeds by analyzing the failure,
tracing it back to a hypothetical fault, removing the fault,
then testing the program for correctness. We argue that it is
wrong to test the program for correctness at the end of this
process, unless we have reason to believe that the fault we
have just removed is the last fault of the program. Given that
in general we have no way to check such an assumption, there
is no reason we should expect the program to be correct, even
if we assume that the fault was properly removed. Instead, the
most we can hope for is that the new program is more-correct
than the original, and we should be testing it for relative
correctness rather than absolute correctness. This raises the
question: How do we test for relative correctness? and how is
this different from testing for absolute correctness? We argue
that testing a program for relative correctness rather than

absolute correctness affects two separate aspects of testing,
namely test data generation and oracle design.

e Test Data Generation The essence of test data generation
is to approximate an infinite or very large input space by
a small representative test data set; clearly, what input
space we are trying to approximate influences what test
data we select, regardless of the selection criterion that
we apply. When we test a program for absolute correct-
ness with respect to a specification R, the relevant input
spaceis dom(R). By contrast, when we test a program for
relative correctness over program p with respect to spec-
ification R, the relevant input space is the competence
domain of P with respect to R, i.e., dom(R N P).

e Oracle Design Let w(s, s”) be the oracle that we use to
test a program for absolute correctness with respect to
specification R. To test a program p’ for relative cor-
rectness over program p, we need to check that oracle
(s, s") holds only for those inputs s on which program
p runs successfully. Hence the oracle of relative correct-
ness, (s, s'), should be written as follows:

Q(s,5) = (w(s, P(s)) = (s, 5)).

This formula shows how to derive the oracle of relative
correctness (£2) from the oracle of absolute correctness
(w); in [32] we discuss how to derive the oracle of abso-
lute correctness (w (s, s”)) from specification R.

5.5 Software repair

Program repair has been an active research area for over a
decade, offering increasingly sophisticated tools and meth-
ods and producing higher and higher levels of accuracy and
scale [2,6,14,15,36,38]. We argue that relative correctness
ought to play for program repair the role that absolute correct-
ness plays for program derivation; also, we find the practice
of program repair may benefit from insights offered by rela-
tive correctness. In particular,

e Current practice of program repair fails to acknowledge
the concept of elementary fault removal; as a result, it is
prone to cause combinatorial explosion because it makes
no distinction between addressing a multi-site elemen-
tary fault and multiple single-site faults. Indeed, there is
no reason to attempt to remove multiple faults simulta-
neously; with a proper oracle of relative correctness, it is
more efficient to remove faults one at a time. If each gen-
eration of patches produces N candidates, then removing
k faults in the program takes k x O () operations, which
is an O(N) process, if we remove them one at a time.
But if we attempt to remove them all at once, this pro-

@ Springer

230

N. Diallo et al.

cess takes O (N¥) operations, a prohibitively expensive
proposition for high and unbounded fault depth (k).

e In current practice, the patch validation phase proceeds
by applying regression testing to candidate patches; in
[19] we argue that regression tests are a sufficient but an
unnecessary condition of relative correctness. This means
that regression tests are prone to cause a loss of recall of
the patch validation phase.

e Another alternative that is used to select candidate
patches in the patch validation phase is the use of fitness
functions; we find in [19] that fitness functions are an
approximation of reliability. And we find in Sect. 4.2.3

void basep(int& n, inté& x,

We introduce three changes to this program, as shown
below; we do not call them faults yet because we do not
know whether they meet our definition of a fault (Defini-
tion 5). A given number of changes (re: three in this case)
can lead to fewer faults (if some changes cancel each other,
or if one or more changes have no effect on the function of
the program); also, a given number of changes (three in this
case) can also lead to a larger number of faults (the same
change can be remedied either by reversing the change or
by altering the program elsewhere to cancel the change). We
revisit this discussion in the next section. We let p be the
program obtained after introducing the changes to p’:

int& y) |

int r; x = 0; r = 0;
while (r <n) {r =r + 2 x x - 1; /+xchange in rx/ x =x+1;}
while (r > n) {int rsave; rsave = r; y = 0;

while (r > n) {r =r-2+y+l; /+«change in r+/ y =y+1;}

if (r < n)

{r =rsave+2%x-1; /+xchange in r*/ x =x+1;}}}

that reliability is a necessary but insufficient condition
of relative correctness, so that using fitness functions is
prone to cause a loss of precision in the patch validation
phase.

For all these reasons, we argue that the practice of program
repair may benefit from considering relative correctness as
part of its theoretic basis.

5.5.1 Illustration

To illustrate the distinction between program repair by abso-
lute correctness and by relative correctness, we consider the
Fermat decomposition program that we derived in Sect. 5.3,
in which we introduce three changes. We rewrite this pro-
gram (which we call p’) as:

void fermatFactorization() {
int n, x, Vv;

int r; // work variable

x = 0; r = 0;

while (r <n) {r = + 2 * x + 1; x =

while (r > n) {int rsave; vy = 0; rsave
while (r >n) {r = ¢ - 2 * vy - 1;
if (r < n) {r = rsave + 2 * x + 1;

Most program repair methods proceed by generating
patches of the base program and testing them for absolute cor-
rectness; all we are advocating in this paper is that instead of
testing patches for absolute correctness, we ought to test them
for relative correctness. To illustrate our approach, we gener-
ate mutants of program p, test them for absolute correctness
and show that none of them are (absolutely) correct. If abso-
lute correctness were our only criterion, then this would be
the (unsuccessful) end of the experiment. But we find that
while none of the mutants are absolutely correct, some are
strictly more-correct than p; hence, the transition from p to
these mutants represents a fault removal (by Definition 5). If
we take these mutants as our base programs and apply the
mutation generator to them, then test them for strict relative
correctness, we can iteratively remove the faults of the pro-
gram in a stepwise manner, climbing the relative correctness
ordering until we reach a (absolutely) correct program.

// input/output variables

x + 1; }

r;
y + 1; 3}
=x + 1;

113

@ Springer

What is a fault? and why does it matter?

231

Specifically, we start from program p and apply muJava
to generate mutants using the single mutation option with the
AORB operator (Arithmetic Operator Replacement, Binary).
Whenever a set of mutants are generated, we subject them to
three tests:

e A test for absolute correctness, using the oracle w(s, s').

o A test for relative correctness, using the oracle (s, s”).

e A test for strict relative correctness, which in addition to
relative correctness checks the presence of at least one
state in the competence domain of the mutant that is not
in the competence domain of the base program.

The mutants that are found to be strictly more-correct than
the base program are used as new base programs, and the
process is iterated again until at least one mutant is found to
be absolutely correct; we select this mutant as the repaired
version of the original program p. The main iteration of the
test driver is given below. All the details of our experiment
are posted online at https://selab.njit.edu/programrepair/.

int main ()
{for (int mutant =1; mutant<= nbmutants;
{// test mutant vs spec.
bool cumulabs=true;
while (moretestdata)
{int n,x,y; int initn,initx,inity;

test data. For each mutant and test datum, we execute the
mutant and the base program on the test datum and test the
mutant for absolute correctness (abscor), relative correct-
ness (relcor) and strict relative correctness (strict);
these Boolean results are cumulated for each mutant in vari-
ables cumulabs, cumulrel and cumulstrict and are
used to diagnose the mutant. As for the Boolean functions R,
domR and absoracle, they stem readily from the defini-
tion of R and from the oracle definitions given in Sect. 5.4.

5.5.2 Experimental results

Starting with program p, we apply muJava repeatedly to gen-
erate mutants, taking mutants which are found to be strictly
more-correct as base programs and repeating until we gen-
erate a correct program. This proceeds as follows:

e When muJava is executed on program p, it produces 48
mutants, of which two (m12 and m44) are found to be
strictly more-correct than p, and none are found to be

//initial,

mutant++)

R for abs and rel correctness
bool cumulrel=true;

bool cumulstrict=false;

final states

bool abscor, relcor, strict;
initn=td[tdi]; tdi++; // getting test data
n=initn; x=initx; y=inity; // saving initial state

callmutant (mutant, n, x, v):;
abscor = absoracle(initn, initx, inity, n, X, Vy);
cumulabs = cumulabs && abscor;
n=initn; x=initx; y=inity; // re-initializing
basep(n, x, v);
relcor = ! absoracle(initn, initx, inity, n, x, y) || abscor;
strict = ! absoracle(initn, initx, inity, n, x, y) && abscor;
cumulrel = cumulrel && relcor;
cumulstrict = cumulstrict || strict;
I
bool R (int initn, int initx, int inity, int n, int x, int vy)
{return ((initn%2==1) || (initn%4==0)) && (initn==x*x-y*y);}
bool domR (int initn, int initx, int inity)
{return ((initn%2==1) || (initn%4==0));}
bool absoracle (int initn,int initx,int inity,int n,int x,int vy)
{return (! (domR(initn, initx, inity))
|| R(initn, initx, inity, n, x, y));}

The main program includes two nested loops; the outer
loop iterates over mutants, and the inner loop iterates over

absolutely correct with respect to R; we pursue the anal-
ysis of m12 and m44.

@ Springer

https://selab.njit.edu/programrepair/

232

N. Diallo et al.

e Analysis of m44. When we apply muJava to m44, we find
48 mutants, none of them prove to be absolutely correct,
nor relatively correct, nor strictly relatively correct.

e Analysis of m12. We find by inspection that m 12 reverses
one of the modifications we had applied to p’ to find p;
since m 12 is strictly more-correct than p with respect to
R, we conclude that the feature in question was in fact a
fault in p with respect to R. When we apply muJava to
m12, it generates 48 mutants, three of which prove to be
strictly more-correct than m12: We name them m12.19,
m12.20 and m12.28. All the other mutants are found to
be neither absolutely correct with respect to R, nor more
correct than m12.

— Analysis of m12.19. When we apply mulava to
m12.19, it generates 48 mutants, none of which is
found to be absolutely correct nor strictly more-
correct than m12.19, but one (m12.19.24) proves to
be identical to m12.20 and is more-correct than (but
not strictly more-correct than, hence as-correct-as)
m12.19.

— Analysis of m12.20. When we apply mulJava to
m12.20, it generates 48 mutants, none of which is
found to be absolutely correct nor strictly more-
correct than m12.20, but one (m12.20.24) proves to
be identical to m12.19 and is more-correct than (but
not strictly more-correct than, hence as-correct-as)
m12.20.

— Analysis of m12.28. We find by inspection that
m12.28 reverses a second modification we had
applied to p’ to obtain p; since m12.28 is strictly
more-correct than m 12, this feature is a fault in m12;
whether it is a fault in p we have not checked, as
we have not compared m12.28 and p for relative
correctness. When we apply muJava to m12.28, we
find a single mutant, namely m12.28.44 that is abso-
lutely correct with respect to R, more-correct than
m12.28 with respect to R and strictly more-correct
than m12.28 with respect to R.

e Analysis of m12.28.44. We find by inspection
that m12.28.44 is nothing but the original Fer-
mat decomposition program we have started out
with: p’.

The results of this analysis are represented in Fig. 6. Note that
m12 and m44 are strictly more-correct than p with respect
to R; hence (according to Definition 5) the mutations that
produced these programs from p constitute fault removals;
whence we can say that p has at least two faults, which we
write as faultDensity(p) > 2. On the other hand, this
experiment shows that we can generate a correct program
(p’) from p by means of three fault removals; if we let the
Fault Depth of a program be the minimal number of fault

@ Springer

P'=
m12.28.44

m12.20 =
m12.19.24

ml12.19 =
m12.20.24

m44

p
faultDensity(p) > 2, faultDepth(p) < 3

Fig. 6 Relative correctness-based repair: stepwise fault removal

removals that separate it from a correct program, then we
can write: fault Depth(p) < 3.

5.6 Multiple mutation

Debroy and Wong [36] use a single muJava mutation in
order to generate fix candidates. A clear limitation of such
an approach is that many faults will not be fixed; this hap-
pens in the case of multi-site faults (that span through more
than one program location), as well as whenever the program
under analysis has multiple faults. The natural alternative is
to apply multiple mutations. This is the case in tools such
as those presented in [14] and [38]. The impact of relative
correctness on multiple mutation testing depends on the rea-
son for deploying multiple mutations; we see two possible
scenarios, which we will discuss in turn.

e Multiple mutations are deployed to repair multiple faults.
When one uses a test of absolute correctness to assess the
validity of program repairs, one has to remove all faults at
once in order for the test to be meaningful. Multiple muta-
tion proceeds by applying mutation operators at different
places in the program and then testing the resulting pro-
gram for absolute correctness. We argue that with relative
correctness, it is no longer necessary to consider several
faults at once, since we can characterize fault removals
one fault at a time. Managing faults one at a time offers
many advantages: First and foremost, it spares us the
massive combinatorial explosion that stems from apply-
ing several simultaneous mutations through the program;
second, it spares us the trouble of dealing with many fault

What is a fault? and why does it matter?

233

removals at once, when we do not know how each fault
removal affects others.

e Multiple mutations are deployed to repair multi-site ele-
mentary faults. In this case, it is sensible to deploy
multiple mutations, but note that the multiplicity of the
mutation is not the estimated number of faults we are
trying to repair simultaneously but rather the multiplicity
of the multi-site elementary faults we are trying to repair
individually, usually a much smaller number.

6 Proving relative correctness

Given a specification R and two candidate programs p
and p’, how can we prove that p’ is more-correct than
p with respect to specification R? Relying on the def-
inition of relative correctness is impractical because it
requires that we compute the functions P and P’, which
is usually a very difficult proposition. Hence we rely
on inductive approaches: Sect. 6.1 proceeds by induc-
tion on the structure of the program, whereas Sect. 6.2
proceeds by induction on the structure of the specifica-
tion.

6.1 Induction on the program structure

In this section, we discuss some preliminary results that
enable us to prove the relative correctness of a program
over another, not by computing their respective functions,
but rather by reasoning about their structure. We consider
a while loop w on space S, of the form {while (t)
{b}}, and we denote by B the function of the loop body
b and by T the vector that represents the loop condition
T = {(s,5)|t(s)}. An invariant relation of loop w is
a reflexive transitive superset of (7" N B); the interested
reader is referred to [34] for more details on invariant rela-
tions. The following proposition (due to [28]) shows how
we can use invariant relations to prove the correctness or
the incorrectness of a loop with respect to a specifica-
tion.

Proposition 6 Let R be a specification on space S, and let
w be a while statement on S of the form w: {while (t)
{b}}, which terminates normally for any state in S, and let
V be an invariant relation of w.

Sufficient Condition of Correctness If V satisfies the fol-
lowing condition VT N RLN(RUV NT) = R, then w is
correct with respect to R.

Necessary Condition of Correctness If w is correct with
respect to R, then the following condition holds for invariant
relation V: (RN V)T = RL.

Intuitive interpretation The sufficient condition of correct-
ness means in effect that the invariant relation V captures
enough information about the loop to subsume the spec-
ification R; the necessary condition of correctness means
that no loop that admits an invariant relation that violates
this condition can possibly be correct with respect to R.
If we encounter an invariant relation V' that does not sat-
isfy the necessary condition of correctness, we conclude that
the loop w is not correct with respect to specification R.
For the sake of argument, we introduce the following defini-
tion.

Definition 10 Let R be a specification on space S, let w be a
while statement on S of the form w: {while (t) {b}},
which terminates normally for any state in S, and let V be an
invariant relation of w. We say that V is incompatible with
specification R if and only if V fails to satisfy the necessary
condition of correctness (R N V)T = RL.

When a relation does satisfy the necessary condition of
correctness, we say about it that it is compatible with the
specification, even though not incompatible is a better char-
acterization of such a relation.

Given a while loop w and a specification R, we generate
all the invariant relations of w and we divide them into two
classes: compatible relations and incompatible relations. If at
least one relation (say Q) is incompatible with specification
R, then we conclude that the loop is incorrect, and we prepare
to repair it; the following proposition provides the basis for
doing so.

Proposition 7 Let R be a specification on space S and let w
be a while loop on S of the form, w: {while (t) {b}}
which terminates for all s in S. Let Q be an invariant relation
of w that is incompatible with R, and let C be the largest
invariant relation of w such that W = (C N Q) N T. Let
w’ be a while loop that has C as an invariant relation,
terminates for all s in S and admits an invariant relation
Q' that is compatible with R and satisfies the condition
W = (CNQ)NT. Then w' is strictly more-correct than
w.

Interpretation This proposition provides that if we change the
loop in such a way as to replace an incompatible invariant
relation (Q) with a compatible invariant relation (Q")of equal
strengg\l (so that ((CN Q')NT) is deterministic, justas ((CN
Q) N T)), while preserving all the other invariant relations
(C), then we obtain a more-correct (though not necessarily
correct) while loop.

Proof By hypothesis, Q is incompatible with R; hence, we
write:

@ Springer

234

N. Diallo et al.

(RN Q)T #RL

= {by set theory(R N Q)T € (RN Q)L C RL}

(RNQ)T C RL
= {By hypothesis, Q'is compatible}
(RNQ)T Cc (RN QT

= {Taking the intersection with C on both sides}

(RNQNC)T C(RNQ' NO)T

= {For any vector v and relation R, Rv = (RN D)L}

(RNQNCNT)LC(RNQ' NCNT)L
= {associativity}
(RN(QNCNTYL C (RN(Q' NCNT)L
= {substitution}
(RNW)L C (RNW')L.

A fault removal action proceeds through four steps (viz.,
observation of failure, fault localization, fault removal, vali-
dation); we discuss below how we perform each step, using
Propositions 6 and 7.

e Observation of Failure If one of the invariant relations
(say, Q)isincompatible with R, then the loop is incorrect;
hence there is a fault.

e Fault Localization We focus on the variables that are ref-
erenced by relation Q.

e Fault Removal We must change the statements that affect
the identified variables without altering the compatible
invariant relations (C). Let x1, x2, x3,...,Xx, be the vari-
ables of the program, and let us assume thatonly x; and x»
are involved in the definition of Q. In order to know how
to modify x; and x; in the loop, we write the following
condition on x1, x2, x/, x5:

/
X1 xl
/
o ’ . X2 X
Axz, x4, 0 X, X3, X4, 0, X, T) 2yl ec,
/
Xn X,

where C is the intersection of all the compatible invariant
relations.

e Validation Once we change variables x; and xp, we
recompute the new invariant relation Q involving these
variables; if Q' is compatible with R, then the new loop
is strictly more-correct than the original loop, and a fault
has been removed.

This process enables us to remove a fault and prove that
the fault has been removed, all by static analysis rather then
execution; we refer to this process as Debugging without
Testing [12].

@ Springer

6.1.1 Illustration

We consider the following loop, taken from a C++ financial
application, where all the variables except t (of type int) are
of type double, and where a and b are positive constants.

w: while (abs(r-p)>ups) {t=t+l; n=n+x; m=m-1;
1=1*(1+b) ; k=k+1000;yv=n+k;w=w+z;z=(1l+a)+z;
v=w+k; r=(v-y)/y; u=(m-n)/n; d=r-u;}

We consider the following specification, which we are

judging the loop against:

1—(+a)!
iz U+a
a

R={GsHb<a<lanx =xrw =w-—-z2

A =k+1000x (' —t)At <t/ AO<I<IU'Az>0
Alx(1+b)*’:1’x(1+b)*”}.

Analysis of this loop by an invariant relations generator
[28] derives fourteen invariant relations, of which five are
found to be incompatible with the specification. We select the
following incompatible invariant relation for remediation:

0= {(s,s’)u x (1+b) T =1 x (1 +b>f+’a},

We resolve that to remediate this incompatibility, we must
alter variable z and/ or variable /. We compute the condition
on z and / under which a change in these variables does
not alter any of the existing compatible relations, and we
find:

Zzal=0UvIix({ -1 >0).

We focus our attention on variable z and consider the possi-
ble mutations of the statement { z= (1+a) +z} that preserve

What is a fault? and why does it matter?

235

the equation 7 > z; for each mutant of this statement, we
recompute the new invariant relation that substitutes for O
and check whether it is compatible with R. We find that the
statement {z=(1+a) *z} produces a compatible invariant
relation, and conclude, by virtue of Proposition 7, that the
following loop is more-correct with respect to R than the
original loop.

wm: while (abs(r-p)>ups) {t=t+1l; n=n+x; m=m-1;
1=1*(1+4Db) ; k=k+1000;y=n+k;w=w+z;z=(1l+a) *z;

v=w+k; r=(v-y)/y; u=(m-n)/n; d=r-u;}

We have removed a fault from w and shown that the new
program wm is strictly more-correct than the original pro-
gram w. In order to illustrate the difference between absolute
correctness and relative correctness, we ran this program on
randomly generated test data using the oracle of absolute cor-
rectness derived from R; the program fails at the third test
execution. But its failure does not mean that our fault removal
was wrong; rather, it means that while wm is more-correct
than w, it is not yet absolutely correct. When we run this
loop on randomly generated test data using an oracle that
tests for relative correctness rather than absolute correctness
(see Sect. 5.4), it runs for over eight hundred thousand test
data without failure.

To this effect, we write:
(RNP)LNQ=RNQ

Running the invariant relations generator on the new loop
produces fourteen invariant relations, of which only one is
incompatible; it seems that by removing the earlier fault we
have remedied four invariant relations at once. Applying the
same process to the new loop, we find the following loop,
which is absolutely correct with respect to R:

wc: while (abs(r-p)>ups) {t=t+l; n=n+x; m=m+1;
1=1*(1+4Db) ; k=k+1000;y=n+k;w=w+z;z=(1l+a) *z;
v=w+k; r=(v-y)/y; u=(m-n)/n; d=r-u;}

6.2 Induction on the specification structure

In the previous section we have discussed how to prove
relative correctness of p’ over p with respect to some speci-
fication R without having to compute p and p’ (as they may
be too complex). In this section we turn our attention to the
other potential source of complexity, which is specification
R.

Proposition 8 Let p and p’ be two programs on space S,
and let R and Q be two specifications on S. If p' is more-
correct than p with respect to R and with respect to Q, then
it is more-correct than p with respect to (R U Q).

Proof We introduce alemma that will be useful for our proof:

PPCIANQCP=(RNP)LNQ=RNQ

< {(RNP)LNQCQ,RNQC(RNP)L,RNQ C O}

(RNP)LNQCR

&= {Dedekind, [5]}
(RNPNQLYLN(RNP)Q) CR
= {hypothesis: Q C P}
(RNP)YRNP)P CR

&= {monotonicity of intersection }

RPP CR

&= {monotonicity of product}

PPCI

&= {hypothesis: PP cC 1}

true

Using this lemma, we now show the proposition:
P' Jour P

= {definition of relative correctness}
(QUR)NP)L S (QUR)NP)L

& {definition of LI}

((RLNQ)U(QLNR)U(RNR)NP)L
C((RLNQ)U(QLNR)U(RNR))NP)L

=3 {factoring L on both sides}
(RLN(QNP)LYU(QLN(RNP)L)U(QNRNP)L

@ Springer

236

N. Diallo et al.

C(RLN(QNP)HL)U(QLN(RNP)YLYU(QNRNP')L

& {boolean algebra, P’ Jg P and P’ Jp P}

(ONRNP)LC(ONRNPHL

= {for any relations A, B, (AN B)L € AL N BL}

(ONP)LN(RNP)LC(QNRNPHL

{(QNP)LC(QNP)Land (RN P)L C (RN P')L}

(ONPHYLN(RNPHLC(QNRNPHL

{rewriting the first L as LL and factoring L}

(QNPHLN(RNPHHLZ(QNRNP)HL

&= {we apply the lemma above to P’ and (R N P")}
(ONRNPH)LC(ONRNP)L

< {tautology }
true. O

This proposition is interesting in practice, for the follow-
ing reason: We had found in [4] that complex specifications
can be composed from simpler specifications by means of
the join operator; this proposition provides that in order to
prove that a program p’ is more-correct than a program p
with respect to a complex specification R = R’ U R”, it is
sufficient to prove that p’ is more-correct than p with respect
to each component of R.

7 Concluding remarks
7.1 Summary

In this paper we have studied the concept of relative correct-
ness, used it to propose a definition for program faults, then
explored the implications of these two concepts on a vari-
ety of aspects of testing and fault removal. Among the most
salient contributions of this paper, we cite the following:

e A definition of relative correctness, and an analysis of
the proposed definition to ensure that it meets all the
properties that one wants to see in such a concept.

e A definition of fault and fault removal, and the analysis
of monotonic fault removal, as a process that transforms
a faulty program into a correct program by a monotonic
sequence of correctness-enhancing transformations.

e An analysis of program repair, highlighting that when
repair candidates are evaluated by testing them for abso-
lute correctness rather than relative correctness, one runs
the risk of selecting programs that are not adequate
repairs, and rejecting programs that are.

e A critique of the concept of fault density, and the intro-
duction of fault depth as perhaps a more meaningful
measure of the degree of imperfection of a faulty pro-
gram; also the observation that for a given fault depth,
the higher the fault density the better (which is the oppo-
site of what fault density purports to represent).

@ Springer

e An analysis of techniques for testing that a program is
more-correct than another with respect to a specification
and discussion of the difference between testing a pro-
gram for relative correctness and testing it for absolute
correctness.

e A study of techniques for proving, by static analysis, that
a program is more-correct than another with respect to
a given specification, as well as techniques for decom-
posing a proof of relative correctness with respect to a
compound specification into proofs of relative correct-
ness with respect to its building components.

7.2 Related work

In [27] Logozzo et al. introduce a technique for extracting
and maintaining semantic information across program ver-
sions: Specifically, they consider an original program P and
a variation (version) P’ of P, and they explore the ques-
tion of extracting semantic information from P, using it to
instrument P’ (by means of executable assertions) and then
pondering what semantic guarantees they can infer about the
instrumented version of P’. The focus of their analysis is
the condition under which programs P and P’ can execute
without causing an abort (due to attempting an illegal oper-
ation), which they approximate by sufficient conditions and
necessary conditions. They implement their approach in a
system called VMV (Verification Modulo Versions) whose
goal is to exploit semantic information about P in the anal-
ysis of P’ and to ensure that the transition from P to P’
happens without regression; in that case, they say that P’ is
correct relative to P. The definition of relative correctness
of Logozzo et al. [27] is different from ours, for several rea-
sons: Whereas [27] talk about relative correctness between
an original program and a subsequent version in the context
of adaptive maintenance (where P and P’ may be subject
to distinct requirements), we talk about relative correctness
between an original (faulty) software product and a revised
version of the program (possibly still faulty yet more-correct)

What is a fault? and why does it matter?

237

in the context of corrective maintenance with respect to a
fixed requirements specification; whereas [27] use a set of
assertions inserted throughout the program as a specifica-
tion, we use a relation that maps initial states to final states
to specify the standards against which absolute correctness
and relative correctness are defined; whereas [27] represent
program executions by execution traces (snapshots of the
program state at assertion sites), we represent program exe-
cutions by functions mapping initial states into final states;
finally, whereas Logozzo et al. define a successful execution
as a trace that satisfies all the relevant assertions, we define it
as an initial state/final state pair that falls within the relational
specification.

In [21] Labhiri et al. introduce a technique called Differen-
tial Assertion Checking for verifying the relative correctness
of a program with respect to a previous version of the pro-
gram. Lahiri et al. explore applications of this technique as a
trade-off between soundness (which they concede) and lower
costs (which they hope to achieve). Like the approach of
Logozzo et al. [27] (from the same team), the work of Lahiri
uses executable assertions as specifications, represents exe-
cutions by traces, defines successful executions as traces that
satisfy all the executable assertions and targets abort-freedom
as the main focus of the executable assertions. Also, they
define relative correctness between programs P and P’ as
the property that P’ has a larger set of successful traces and a
smallest set of unsuccessful traces than P; they introduce
relative specifications as specifications that capture func-
tionality of P’ that P does not have. By contrast, we use
input/output (or initial state/final state) relations as specifi-
cations, we represent program executions by functions from
initial states to final states, we characterize correct executions
by initial state/final state pairs that belong to the specification,
and we make no distinction between abort-freedom (a.k.a.
safety, in [21]) and normal functional properties. Indeed, for
us the function of a program is the function that the pro-
gram defines between its initial states and its final states; the
domain of this function is the set of states for which execution
terminates normally and returns a well-defined final state.
Hence execution of the program on a state s is abort free if
and only if the state is in the domain of the program function;
the domain of the program function is part of the function
rather than being an orthogonal attribute; hence we view
abort-freedom as a special form of functional attribute, rather
than being an orthogonal attribute. Another important dis-
tinction with [21] is that we do not view relative correctness
as a compromise that we accept as a substitute for absolute
correctness; rather, we argue that in many cases, we ought
to test programs for relative correctness rather than absolute
correctness, regardless of cost. In other words, whereas Lahiri
et al. argue in favor of relative correctness on the grounds that
it optimizes a quality vs. cost ratio, we argue in favor on the
grounds that it optimizes quality.

In [26], Logozzo and Ball introduce a definition of relative
correctness whereby a program P’ is correct relative to P (an
improvement over P) if and only if P’ has more good traces
and fewer bad traces than P. Programs are modeled with trace
semantics, and execution traces are compared in terms of
executable assertions inserted into P and P’; in order for the
comparison to make sense, programs P and P’ have to have
the same (or similar) structure and/or there must be a mapping
from traces of P to traces of P’. When P’ is obtained from P
by a transformation, and when P’ is provably correct relative
to P, the transformation in question is called a verified repair.
Logozzo and Ball introduce an algorithm that specializes in
deriving program repairs from a pre-defined catalog that is
targeted to specific program constructs, such as: contracts,
initializations, guards, floating point comparisons. Like the
work cited above ([21,27]), Logozzo and Ball model pro-
grams by execution traces and distinguish between two types
of failures: contract violations, when functional properties
are not satisfied; and run-time errors, when the execution
causes an abort; for the reasons we discuss above, we do
not make this distinction and model the two aspects with the
same relational framework. Logozzo and Ball deploy their
approach in an automated tool based on the static analyzer
cccheck and assess their tool for effectiveness and efficiency.

In [35], Nguyen et al. present an automated repair method
based on symbolic execution, constraint solving and program
synthesis; they call their method SemFix, on the grounds that
it performs program repair by means of semantic analysis.
This method combines three techniques: fault isolation by
means of statistical analysis of the possible suspect state-
ments; statement-level specification inference, whereby a
local specification is inferred from the global specification
and the product structure; and program synthesis, whereby
a corrected statement is computed from the local specifica-
tion inferred in the previous step. The method is organized
in such a way that program synthesis is modeled as a search
problem under constraints, and possible correct statements
are inspected in the order of increasing complexity. When
programs are repaired by SemFix, they are tested for (abso-
lute) correctness against some pre-defined test data suite; as
we argue throughout this paper, it is not sensible to test a pro-
gram for absolute correctness after a repair, unless we have
reason to believe that the fault we have just repaired is the last
fault of the program (how do we ever know that?). By advo-
cating to test for relative correctness, we enable the tester to
focus on one fault at a time and ensure that other faults do
not interfere with our assessment of whether the fault under
consideration has or has not been repaired adequately.

In[37], Weimer et al. discuss an automated program repair
method that takes as input a faulty program, along with a set
of positive tests (i.e., test data on which the program is known
to perform correctly) and a set of negative tests (i.e., test data
on which the program is known to fail) and returns a set of

@ Springer

238

N. Diallo et al.

possible patches. The proposed method proceeds by keeping
track of the execution paths that are visited by successful exe-
cutions and those that are visited by unsuccessful executions,
and using this information to focus the search for repairs on
those statements that appear in the latter paths and not in the
former paths. Mutation operators are applied to these state-
ments, and the results are tested again against the positive
and negative test data to narrow the set of eligible mutants.

In [25] Le Goues et al. survey existing technology in
automated program repair and identify open research chal-
lenges; among the criteria for automated repair methods, they
cite applicability (extent of real-world relevance), scalability
(ability to operate effectively and efficiently for products of
realistic size), generality (scope of application domain, types
of faults repaired) and credibility (extent of confidence in the
soundness of the repair tool). Among the research issues they
identify, they cite mining specifications for extant software,
introducing formal methods to improve repair quality and
user trust and modeling monotonic fault removal.

In [20] Kim and Smidts review several definitions of terms
pertaining to safety and reliability (including faults), lament
several discrepancies and shortcomings within and between
these definitions, and make recommendations on how to rem-
edy this situation. Whereas we are focused exclusively on
faults, and particularly on software faults, Kim and Smidts
discuss the broader terminology pertaining to safety, relia-
bility and fault tolerance and do so for the broader context of
digital systems. Also, whereas we are concerned with correct-
ness and relative correctness as formally defined properties,
Kim and Smidts are more interested in the ontological aspects
of the debate than the formal semantics aspects.

7.3 Assessment and prospects

The research presented in this paper is clearly in its infancy;
we have merely introduced some new definitions of old
concepts and shown the ramifications that stem from these
definitions. Yet we feel that in doing so, we have opened
up many new venues of investigation, which we envision to
explore:

e Debugging without Testing Traditionally, it is so incon-
ceivable to debug a program without testing it that these
two words are often used interchangeably; yet Sect. 6.1
shows precisely that this can be done, albeit (so far) in a
special context; we envision to broaden the scope of this
line of research.

e Programming without Refinement In Sect. 5.3, we argue
that while refinement-based program derivation is a suffi-
cient condition for producing correct programs, it may be
viewed as unnecessarily strong; as a substitute, we show
how we can derive a program by successive correctness-
enhancing transformations rather than the traditional

@ Springer

process of successive correctness-preserving transforma-
tions. We envision to elaborate on this idea.

e Mutation Testing with Relative Correctness Inlight of the
discussions of Sect. 5.5, it appears that if we deploy muta-
tion testing with relative correctness rather than absolute
correctness, we may significantly improve the precision
and recall of the technique; we envision to test this con-
jecture in practice.

e Measuring Faultiness with Fault Depth The discussions
of Sect. 5.1.3 appear to show that fault depth is a bet-
ter measure of product imperfection (failure rate, repair
effort) than fault density; we envision to test this hypoth-
esis.

e Testing for Relative Correctness We envision to investi-
gate test data generation strategies that are appropriate
for relative correctness and to generate broadly appli-
cable conditions of relative correctness in the style of
Proposition 7.

Acknowledgements The authors are grateful to the anonymous review-
ers for their thoughtful, insightful feedback; the paper has been greatly
enhanced on the basis of their comments and suggestions.

References

1. IEEE Std 7-4.3.2-2003 (2003) Ieee standard criteria for digital
computers in safety systems of nuclear power generating stations.
Technical report, The Institute of Electrical and Electronics Engi-
neers

2. Arcuri A, Yao X (2008) A novel co-evolutionary approach to auto-
matic software bug fixing. In: CEC. pp 162-168

3. Avizienis A, Laprie JC, Randell B, Landwehr CE (2004) Basic
concepts and taxonomy of dependable and secure computing. IEEE
Trans Dependable Secur Comput 1(1):11-33

4. Boudriga N, Elloumi F, Mili A (1992) The lattice of specifications:
applications to a specification methodology. Form Asp Comput
4(6):544-571

5. Brink Ch, Kahl W, Schmidt G (1997) Relational methods in com-
puter science. Springer, Berlin

6. Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation
learned from human-written patches. ICSE 2013:802-811

7. Desharnais J, Diallo N, Ghardallou W, Frias MF, Jaoua A, Mili A
(2015) Relational mathematics for relative correctness. In: RAM-
ICS, 2015, volume 9348 of LNCS, September 2015. Springer,
Braga, Portugal, pp 191-208

8. Diallo N, Ghardallou W, Mili A (2015) Correctness and relative
correctness. In: Proceedings of 37th international conference on
software engineering, NIER track, Firenze, Italy, 20-22 May

9. Diallo N, Ghardallou W, Mili A (2015) Program derivation by
correctness enhancements. In: Refinement 2015, Oslo, Norway,
June 2015

10. Dijkstra EW (1976) A discipline of programming. Prentice Hall,
Upper Saddle River

11. Gaertner FC (1999) Fundamentals of fault tolerant distributed com-
puting in asynchronous environments. ACM Comput Surv 31:1-26

12. Ghardallou W, Diallo N, Mili A, Frias M (2016) Debugging without
testing. In: Proceedings of international conference on software
testing, Chicago, IL, April 2016

What is a fault? and why does it matter?

239

13.

20.

21.

22.

23.

24.

25.

26.

Gonzalez-Sanchez A, Abreu R, Gross HG, van Gemund AJC
(2011) Prioritizing tests for fault localization through ambiguity
group reduction. In: Proceedings of automated software engineer-
ing, Lawrence, KS

Gopinath D, Malik MZ, Khurshid S (2011) Specification based
program repair using sat. In: Proceedings of TACAS, pp 173-188

. Le Goues C, Nguyen T, Forrest S, Weimer W (2012) Genprog: a

generic method for automated software repair. IEEE Trans Softw
Eng 31(1):54-72

Gries D (1981) The science of programming. Springer, Berlin
Hehner ECR (1992) A practical theory of programming. Prentice
Hall, Upper Saddle River

. Hoare CAR (1969) An axiomatic basis for computer programming.

Commun ACM 12(10):576-583

Khaireddine B, Zakharchenko A, Mili A (2017) A generic algo-
rithm for program repair. In: Proceedings of FormaliSE, Buenos
Aires, Argentina

Kim MC, Smidts CS (2015) Three suggestions on the definition
of terms for the safety and reliability analysis of digital systems.
Reliab Eng Syst Saf 135:81-91

Lahiri SK, McMillan KL, Sharma R, Hawblitzel C (2013) Differen-
tial assertion checking. In: Proceedings of ESEC/FSE, pp 345-355
Laprie JC (1991) Dependability: basic concepts and terminology:
In: English, French, German. Italian and Japanese. Springer, Hei-
delberg

Laprie JC (1995) Dependability—its attributes, impairments and
means. In: Predictably dependable computing systems. Springer,
Berlin, pp 1-19

Laprie JC (2004) Dependable computing: concepts, challenges,
directions. In: Proceedings of COMP-SAC

LeGoues C, Forrest S, Weimer W (2013) Current challenges in
automatic software repair. Softw Qual J 21(3):421-443

Logozzo F, Ball T (2012) Modular and verified automatic program
repair. In: Proceedings of OOPSLA, pp 133-146

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Logozzo F, Lahiri S, Fachndrich M, Blackshear S (2014) Verifica-
tion modulo versions: towards usable verification. In: Proceedings
of PLDI, pp 294-304

Louhichi A, Ghardallou W, Bsaies K, Jilani LL, Mraihi O, Mili A
(2014) Verifying loops with invariant relations. Int J Crit Comput
Based Syst 5(1):78-102

Manna Z (1974) A mathematical theory of computation. McGraw-
Hill, New York

Mili A, Desharnais J, Mili F, Frappier M (1994) Computer program
construction. Oxford University Press, Oxford

Mili A, Frias M, Jaoua A (2014) On faults and faulty programs.
In: Hoefner P, Jipsen P, Kahl W, Mueller ME (ed) Proceedings of
RAMICS 2014, volume 8428 of LNCS. pp 191-207

Mili Ali, Tchier Fairouz (2015) Software testing: operations and
concepts. Wiley, Hoboken

Mills HD, Basili VR, Gannon JD, Hamlet DR (1986) Structured
programming: a mathematical approach. Allyn and Bacon, Boston
Mraihi O, Louhichi A, Jilani LL, Desharnais J, Mili A (2013)
Invariant assertions, invariant relations, and invariant functions. Sci
Comput Program 78(9):1212-1239

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) Semfix:
program repair via semantic analysis. In: Proceedings of ICSE, pp
772-781

Debroy V, Wong WE (2010) Using mutation to automatically sug-
gest fixes to faulty programs. In: Proceedings of ICST. pp 65-74
Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automati-
cally finding patches using genetic programming. In: Proceedings
of ICSE. pp 364-374

Zemin L, Guttiérrez S, Perez de Rosso S, Aguirre N, Mili A, Jaoua
A, Frias M (2015) Stryker: Scaling specification-based program
repair by pruning infeasible mutants with sat. Technical report,
ITBA, Buenos Aires, Argentina

@ Springer

	What is a fault? and why does it matter?
	Abstract
	1 Motivation and background
	1.1 The trouble with faults

	2 Mathematics for program analysis
	2.1 Relational notations
	2.2 Relational semantics
	2.3 Refinement ordering
	2.4 Refinement lattice

	3 Absolute correctness and relative correctness
	3.1 Absolute correctness
	3.2 Relative correctness
	3.2.1 Deterministic programs
	3.2.2 Non-deterministic programs

	3.3 Faults and fault removals

	4 Validation of relative correctness
	4.1 Litmus tests
	4.2 Reviewing the criteria
	4.2.1 Reflexivity, transitivity and non-antisymmetry
	4.2.2 Absolute correctness as the culmination of relative correctness
	4.2.3 Relative correctness and reliability
	4.2.4 Relative correctness and refinement

	5 Implications and applications
	5.1 Measuring faultiness
	5.1.1 The difference between software faults and bad apples
	5.1.2 Elementary faults
	5.1.3 Fault density and fault depth

	5.2 Monotonic fault removal
	5.3 Software design
	5.4 A software testing life cycle
	5.5 Software repair
	5.5.1 Illustration
	5.5.2 Experimental results

	5.6 Multiple mutation

	6 Proving relative correctness
	6.1 Induction on the program structure
	6.1.1 Illustration

	6.2 Induction on the specification structure

	7 Concluding remarks
	7.1 Summary
	7.2 Related work
	7.3 Assessment and prospects

	Acknowledgements
	References

