Innovations Syst Softw Eng (2017) 13:201-217
DOI 10.1007/s11334-017-0295-0

@ CrossMark

ORIGINAL PAPER

The application of ROC analysis in threshold identification, data
imbalance and metrics selection for software fault prediction

Raed Shatnawi!

Received: 7 March 2016 / Accepted: 26 July 2017 / Published online: 2 August 2017

© Springer-Verlag London Ltd. 2017

Abstract Software engineers have limited resources and
need metrics analysis tools to investigate software quality
such as fault-proneness of modules. There are a large number
of software metrics available to investigate quality. However,
not all metrics are strongly correlated with faults. In addi-
tion, software fault data are imbalanced and affect quality
assessment tools such as fault prediction or threshold values
that are used to identify risky modules. Software quality is
investigated for three purposes. First, the receiver operating
characteristics (ROC) analysis is used to identify threshold
values to identify risky modules. Second, the ROC analysis
is investigated for imbalanced data. Third, the ROC analysis
is considered for feature selection. This work validated the
use of ROC to identify thresholds for four metrics (WMC,
CBO, RFC and LCOM). The ROC results after sampling
the data are not significantly different from before sampling.
The ROC analysis selects the same metrics (WMC, CBO and
RFC) in most datasets, while other techniques have a large
variation in selecting metrics.

Keywords ROC analysis - Imbalanced data - Feature
selection - Fault-proneness models - Software metrics

1 Introduction

Software quality engineers must exploit tools to monitor,
audit and verify the software fault-proneness during the
life cycle of a project. Software engineers keep records
of fault data in a special repository such as Bugzilla. The

B<I Raed Shatnawi
raedamin @just.edu.jo

Software Engineering Department, Jordan University of
Science and Technology, Irbid 22110, Jordan

fault data can be used to find where faults are likely to
occur. However, the fault data may not be recorded or
available for many reasons. There is a need for indirect
measurement of the software, which can be used as a sur-
rogate of software fault-proneness. Software metrics, for
example the Chidamber and Kemerer metrics (CK) [15],
were validated as indicators of fault-proneness of classes.
CK metrics found to have significant relationships with
faults using many machine learning and statistical tech-
niques [2,4,18,19,28,37,48,54,63]. Machine learning and
statistical techniques are rigorous, and dedicated software
tools are needed to analyze such relationships. However,
software engineers need more easy tools to investigate fault-
proneness in modules. Identifying which classes are more
likely to have faults is necessary to guide software testers
to improve their performance and reduce the costs of activ-
ities such as testing and maintenance [18]. The presence of
faults can be used to profile software modules into several
risk levels (threshold value or reference value). However,
we face some problems in the quality of data. Fault data
may not be collected for part of the system because the
costs of collection may be extremely expensive [11]. Two
major issues are considered in analyzing the fault-proneness
in classes: (1) few classes have faults, while the majority
do not have faults (imbalance fault distribution) [42,57],
and (2) many metrics already exist and can be used to
evaluate software fault-proneness. Khoshgoftaar et al. [38]
proposed two techniques to confront these issues: a data
sampling technique to overcome the class imbalance prob-
lem in fault distribution and a feature selection technique for
selecting the important metrics. According to Khoshgoftaar
et al. [38], the performance of a prediction model depends
on both the selected metrics and faults distribution in mod-
ules.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-017-0295-0&domain=pdf
http://orcid.org/0000-0001-7777-1370

202

R. Shatnawi

In this study, we propose to use the receiver operating
characteristic (ROC) analysis as a quality assurance tool.
The ROC analysis is proposed as a quality assurance tool
in selecting software metrics as fault-proneness indicators.
The ROC identifies a threshold value that separates software
modules into two areas: low quality (fault-prone) and high
quality (not fault-prone). The results of ROC analysis can be
used in quality assurance tools such as JArchitect! to identify,
for example, the most coupled classes or the lowest cohesive
classes in a system. JArchitect uses thresholds to identify bad
quality areas and allows the user to change thresholds. The
tool reports all classes that exceed thresholds and requires
more quality inspection. In a white paper, Gronback [27]
reported on using threshold values to identify bad smells in
a commercial quality assurance tool (Borland together). The
tool uses threshold values to identify potential bad smells
such as god classes, god methods and data class. The used
threshold values were subjectively reported to be used to
identify bad smells in code [44]. This study introduces ROC
analysis to investigate the relationship between the CK met-
rics and the faults in five open-source systems. The study aims
to validate the use of ROC in threshold identification. We also
validate the consistency of the ROC analysis after two major
sampling techniques: oversampling and undersampling. The
ROC is used to select metrics to include in learners, and the
stability of selection is assessed and compared with other tra-
ditional feature selection methods. Finally, we use the metrics
that are selected via the ROC analysis to build fault-proneness
models using four well-known learners: logistic regression,
naive bayes, the nearest neighbors and C4.5 decision trees
[10].

The rest of this paper is organized as follows: In Sect. 2,
we discuss the related work on fault prediction and identifica-
tion of threshold values. Section 3 discusses the experimental
design of this research and provides a detailed description of
the research methodology. In Sect. 4, we present and discuss
the results of this work. Finally, we conclude this work.

2 Related work

Studies on fault-proneness categorized software classes into
several groups based on the number of faults. Usually, classes
are divided into two groups: faulty classes that have one or
more faults in the current release under investigation and non-
faulty classes that do not have any faults. Other researchers
utilized the threshold values of software metrics in many
applications. Metric threshold values can help developers in
identifying the most risky classes in software design. Using
threshold values, a developer can bookmark such classes dur-
ing the daily development tasks and make quick decisions

I www.jarchitect.com.

@ Springer

whenever needed. However, there were only few empirical
studies on threshold values. Erni et al. [21] proposed to use
normal distribution parameters (average and standard devia-
tion) to determine thresholds. Erni et al. calculated threshold
values as follows, Tmin = pu — s and Tmax = u + s,
being 1 the average of a metric and s the standard deviation.
However, these thresholds were not empirically validated.
Daly et al. [16] studied the effect of two arbitrary levels
of inheritance (three and five) on maintenance time. Other
researchers, [8,30,49], replicated the study of Daly et al. with
different systems and only considered the effect of three lev-
els of inheritance on maintenance time and found different
results. However, these experiments were conducted on few
undergraduate students. Benlarbi et al. [6] and El Emam et
al. [20] estimated the threshold values using a logistic regres-
sion and could not find valid thresholds. Shatnawi [55] used
a logistic regression method reported in Bender [5] to find
thresholds for the Chidamber and Kemerer suite. Shatnawi
[55] used the derivatives of the logistic regression to iden-
tify several risk levels in software classes, e.g., CBO could
have four different thresholds at four different risk levels,
CBO=6, 9, 16 or 29. In another study, Shatnawi et al. [56]
studied the use of ROC curve to identify threshold values of
object-oriented metrics. They conducted the study on three
releases of a large open-source system—Eclipse. The results
could identify thresholds for only three metrics, RFC=44,
CBO =13 and WMC =24, whereas the LCOM, DIT and NOC
could not have plausible and practical thresholds. Catal et al.
[11] proposed amodified ROC analysis of Shatnawi et al. [56]
to obtain thresholds for structural metrics. Catal et al. [11]
used outlier detection techniques to improve the performance
of fault prediction by labeling non-faulty classes as faulty if
they exceed threshold criteria and faulty classes otherwise.
For example, the threshold values for the SLOC falls in the
range between 11 and 33. Ferreira et al. [23] derived thresh-
olds for some OO metrics using statistical properties, such as
power law behavior, of the metrics. For example, the authors
assigned three rankings based on ranges of metrics: good,
regular and bad. Ferreira et al. [23] found different thresh-
olds for different application domains (11 domains reported
in the study).

To our knowledge, previous studies on identifying thresh-
old values have not addressed the problems of data imbalance
and metric selection. Since the same data are used to build
fault prediction models and threshold identification, we need
to study these two important issues on threshold identifica-
tion. Many studies have already addressed data imbalance in
fault prediction [3,38,42,57].

The ROC analysis was proposed to identify threshold val-
ues in Shatnawi et al. [56]. The objectives of this research
are to extend our previous work [56] on identifying threshold
values using ROC curves to new contexts and to test it under
the effect of data imbalance and feature selection. The previ-

www.jarchitect.com

The application of ROC analysis in threshold identification, data imbalance and metrics... 203

ous and the current works are both empirical but have many
differences. The previous work included only one project
(Eclipse), while we study five projects in this work. How-
ever, the objective of this work is different. In this work, we
provide more evidence on using the ROC to identify thresh-
olds even for imbalanced data which have a major effect on
the validity of the results of fault prediction. In addition, we
introduce the ROC analysis as a method of metric selection,
which is also important to provide a better performance in
quality assurance activities.

3 Experimental design

In this section, we discuss the details of the ROC analysis,
the metrics under investigation, the research objectives, data
sources and feature selection approaches, and finally, we pro-
vide a brief description of classification models.

3.1 Area under the curve (AUC)

The area under the receiver operating characteristic (ROC)
analysis is used in classifiers evaluation. The ROC curve is
plotted using two variables: one is binary and another is con-
tinuous. The binary variable is the event of faults or not in
software modules (i.e., 1 and 0). The continuous variable is
one of the CK metrics, e.g., WMC metric in Fig. 1. Each
metric is analyzed separately by considering all values as
potential thresholds that can be used to categorize classes
into either faulty (>threshold) or not faulty (<threshold).
For each potential threshold, a classification table (confusion
matrix) is produced as shown in Table 1.

Each table can be used to calculate two important mea-
sures of ROC performance: sensitivity and specificity, which
are defined as follows.

Sensitivity = TP rate = TP/P;
Specificity = TN rate = TN/N.

The area under the curve (AUC), as shown in Fig. 1, shows a
visual trade-off analysis between the rate of correctly classi-
fied classes as fault-prone and the rate of incorrectly classified
classes as not fault-prone. The AUC is a single value thateval-
uates the discrimination power in the curve between the faulty
and not faulty classes. The diagonal line in Fig. 1 represents
the approach of randomly guessing a class. If a classifier ran-
domly guesses the positive class 50% of the time, then half
of the positives and half of the negatives are classified cor-
rectly. The area under the diagonal line is calculated as 0.50.
Therefore, the curve that discriminates well between the two
classes should be larger than 0.5 and should approach the
upper left corner. Hosmer and Lemeshow suggested using

ROC Curve / wmc / AUC=0.789

True positive rate (Sensitivity)

0 0.2 0.4 0.6 0.8 1
False negative rate (1 - Specificity)

Fi

i

g. 1 The ROC curve for the WMC metric in jEdit4.2

Table 1 The confusion matrix based on a threshold value

Actual

Predicted Fault-prone Not fault-prone
Metric > threshold True positives (TP) False positives (FP)
Metric < threshold False negatives (FN) True negatives (TN)
Totals P=TP+FN N=FP+TN

the following rules to evaluate the performance of classifiers
using AUC [31]:

e AUC=0.50: means no good classification and not signif-
icantly different from random classifier;

0.50 < AUC < 0.60: means poor classification;

0.60 < AUC < 0.70: means fair classification;

0.70 < AUC < 0.80: means acceptable classification;
0.80 < AUC < 0.90: means excellent classification;
AUC > 0.9: means outstanding classification.

The ROC analysis is very effective for data with skewed
distributions and unequal classification error costs [22]. The
characteristics of the ROC analysis help researchers in gen-
eralizing results even in case of changing data distributions
[39,40]. In addition, the ROC analysis is preferred both for
practical choices and for drawing scientific conclusions [64].
Koru et al. showed that smaller modules are more fault-prone
than larger modules [39]. Kubat and Matwin found that in
imbalanced dataset, the effect of the negative cases (no bugs
in classes) prevails [40].

3.2 The Chidamber and Kemerer metrics

In this research, the CK metrics are used to build predic-
tive models. Chidamber and Kemerer validated six metrics

@ Springer

204

R. Shatnawi

both theoretically and empirically and proposed to use these
metrics to predict design quality factors. The CK suite is
composed of six metrics that measure the complexity of the
software design by measuring the properties of classes. In
the definition of these metrics, we refer to software modules
as classes. These metrics are summarized as follows:

e Coupling between Objects (CBO): the CBO metric
counts the number of other classes to which a class is
coupled. Larger values of CBO metrics mean that the
class is highly coupled. The developers and testers per-
ceive that the maintainability and testability of highly
coupled classes are difficult, which makes the process of
maintaining and uncovering errors pre-release and post-
release difficult as well.

e Depth of Inheritance Hierarchy (DIT): the DIT measures
the length of the inheritance chain from the root of the
inheritance tree to the measured class. The DIT metric is
an indicator of the number of ancestors of a class. It may
require developers and testers to understand all ancestors
to comprehend all specializations of the class, which is
necessary to maintain or uncover pre- and post-release
faults.

o Number of Child Classes (NOC): the NOC metric counts
the number of descendants of a class. The number of chil-
dren represents the number of specializations and uses of
a class. Therefore, understanding all children is impor-
tant to understand the parent. Large number of children
increases the burden on developers and testers in com-
prehending, maintaining and uncovering both pre- and
post-release faults.

e Lack of Cohesion of Methods (LCOM): the LCOM met-
ric is the number of pairs of methods in the class using no
attributes in common (refer to as P), minus the number of
pairs of methods that do (refer to as Q). The LCOM is set
to zero, if this difference is negative. After considering
each pair of methods:

LCOM = (P > Q)2(P — Q) : 0.

The LCOM metric measures the coherence among local
methods in a class. The class that does one thing (i.e.,
cohesive class) is easier to reuse and maintain than the
class that does many things (i.e., the class provides many
Services).

e Response for Class (RFC): The size of the response set for
the class includes methods in the class inheritance hierar-
chy and methods that can be invoked on other objects. The
RFC metric counts the number of methods in the response
set for a class, which includes the number of local meth-
ods and the number of remote methods invoked by local
methods. The class that has many responsibilities tends
to be large and has many interactions with other classes.

@ Springer

Therefore, such classes are complex and incur more time
and effort to maintain and test than small classes.

o Weighted Methods Complexity (WMC): the WMC met-
ric is the sum of the complexity of all methods for a
class. Normally, many software metrics tools calculate
the WMC metric as simply the number of methods in a
class. This is equivalent to considering all functions have
equal complexity. Therefore, larger values of WMC met-
ric mean large complexity as well.

3.3 Research objectives

We aim to analyze the CK metrics using ROC analysis.
The sensitivity and specificity are calculated for all poten-
tial thresholds and are used to draw the ROC curve as shown
in Fig. 1. One pair, on the ROC curve, is considered better
than another, if it approaches the upper left corner (i.e., TP
rate is higher, FP rate is lower, or both) [22].

This study aims to use ROC analysis to achieve three
objectives:

Objective 1 Study software fault-proneness in open-source
systems using ROC curves. We study whether software
metrics can discriminate between the fault-prone and not
fault-prone classes using ROC curves. The aim of this objec-
tive is to find practical threshold values using ROC analysis.
The search for threshold values has many steps. The first
step in the search for a practical threshold value is to test the
hypothesis Hp; for software metrics. This test is essential
step in ROC analysis and vital to assess whether a particular
ROC curve is usable or not in the first place [31]. The null
hypothesis (Hpp) is proposed to find whether the curve is
significantly different from a random classifier (AUC=0.5).

Hy;: The AUC for a particular metric is equal to 0.5. The
AUC should be significantly different from the diagonal line
to consider the curve as a candidate to identify a threshold.

If the AUC is significantly different from random guessing
(i.e., reject Hpp), then the ROC is usable and we continue the
search for practical threshold values; otherwise, the threshold
identification for the metric stops at this point. The second
step is to identify the metrics that rejected the null hypothesis
(Ho1)- The curves are considered as acceptable classification
when the ROC value is larger than 0.70 [31]. For the selected
curves, many points can be potential threshold values. We
suggest two criteria in identifying the best threshold value:

1. Threshold values should be closer to the ideal point (0,
1). We use the Euclidean distance measure to find the
distance between the ideal point (0, 1) and every possible
threshold. The lowest distance is considered as the closest
to the ideal point.

2. The ROC curve is built using two pairs of values
(sensitivity, 1-specificity) that are used to evaluate the

The application of ROC analysis in threshold identification, data imbalance and metrics... 205

performance of classification. We need to use one value
to evaluate the performance of a particular threshold. The
slope of the tangent line at a threshold on the curve tells
us the ratio of the probability of identifying true positives
over true negatives, i.e., likelihood ratio (LR) for the test
value.

LR = sensitivity/ (1-specificity)

The likelihood ratio shows the ratio of change in the two
values. If the likelihood ratio is equal to one, the selected
threshold does not add additional information to identify the
true positives and it is equal to the diagonal line shown in
Fig. 1. If the likelihood ratio is greater than one, then the
selected threshold helps in identifying the true positive result
[60]. If the ratio is less than one, then the selected threshold
does not help in identifying fault-prone modules. Finally, a
threshold value is selected if it has LR > 1.

Objective 2 Validate the effect of different sampling tech-
niques on using ROC curves and derived thresholds. Several
sampling techniques were used to improve the performance
of fault-proneness models for imbalanced fault distribu-
tion. In this research, the ROC analysis is repeated for all
systems after applying the following sampling techniques:
synthetic minority oversampling (SMOTE) and undersam-
pling (at a rate of 2:1). SMOTE is an oversampling approach
that increases the number of instances of the minority class
(faulty modules in our study) by creating synthetic examples
rather than by oversampling with replacement [14]. In the
implementation of SMOTE, five nearest neighbors are used
to synthesize the new samples. In undersampling, a sample
of the data is created such that the ratio of not faulty to faulty
is kept at 2:1. These sampling techniques were widely used
to improve the performance of fault-proneness models when
the data distribution is imbalanced [9,42,53,57]. The results
of the ROC analysis after sampling are compared with the
ROC results without sampling. Therefore, we test the null
hypothesis Hp; in two scenarios: AUC values in sampling
and SMOTE and AUC values in sampling versus undersam-

pling.

H,: There are no significant differences in AUC values
before and after sampling (undersampling and SMOTE) for
a metric.

Objective 3 Validate the use of the ROC analysis in select-
ing metrics that are more significantly associated with
fault-proneness in modules. Feature selection is another vital
technique in improving the performance of fault prediction
models [26,38]. The metrics selected using ROC are used in
building fault-proneness models. The performance of four
machine learning techniques: logistic regression, decision
trees (C4.5), the nearest neighbors (kNN) and naive bayes, is

used in the validation of ROC analysis in selecting metrics.
The fault-proneness models that use metrics resulting from
the ROC analysis are compared against other models: models
including all the CK metrics and models resulting from three
different feature selection approaches. Therefore, we aim to
test the following hypothesis

Hoz: There are no significant differences in the perfor-
mance of the models resulted from metrics subset selection
(forward selection, Chi-squared and information gain) and
the models resulted from metrics selected via ROC analysis.

3.4 Data sources

Faults are discovered during the software life cycle and espe-
cially in testing phases or throughout system evolution. We
study five open-source systems that are available publicly.
The systems are from different domains and sizes.

e Apache Ant is a Java library and command-line tool
whose mission is to drive processes described in build
files as targets and extension points dependent upon each
other. The main known usage of Antis to build Java appli-
cations. Ant supplies a number of built-in tasks allowing
to compile, assemble, test and run Java applications. Ant
project is publicly available at: (http://ant.apache.org/)

e Apache Camel is a versatile open-source integration
framework based on known enterprise integration pat-
terns. Apache Camel uses URISs to work directly with any
kind of transport or messaging models such as HTTP,
ActiveMQ, JMS, JBI, SCA, MINA or CXF, as well as
pluggable components and data format options. Apache
Camel is a small library with minimal dependencies for
easy embedding in any Java application. Camel project
is publicly available at: (http://camel.apache.org/).

e jEditis a cross platform programmer’s text editor written
in Java. It uses the Swing toolkit for the GUI and can be
configured as a rather powerful IDE through the use of
its plug-in architecture. jEdit project is publicly available
at: (www.jedit.org).

e Apache Lucene is a high-performance, full-featured text
search engine library written entirely in Java. Lucene
provides Java-based indexing and search technology, as
well as spellchecking, hit highlighting and advanced
analysis/tokenization capabilities. Apache Lucene is an
open-source project available for free download (http://
lucene.apache.org/core/).

e Apache Synapse is a lightweight and high-performance
enterprise service bus (ESB). Powered by a fast and asyn-
chronous mediation engine, Apache Synapse provides
exceptional support for XML, Web Services and REST.
In addition to XML and SOAP, Apache Synapse supports
several other content interchange formats, such as plain

@ Springer

http://ant.apache.org/
http://camel.apache.org/
www.jedit.org
http://lucene.apache.org/core/
http://lucene.apache.org/core/

206 R. Shatnawi

E)arb;ﬁ iy:;:;sfault distribution DataSet #classes #Not faulty #Faulty %Not faulty 9oFaulty
Antl.4 178 138 40 78 22
Antl.5 293 261 32 89 11
Antl.6 351 259 92 74 26
Antl.7 745 579 166 78 22
camell.2 608 392 216 64 36
camell.4 872 727 145 83 17
camell.6 965 777 188 81 19
jedit4.0 306 231 75 75 25
jedit4.1 312 233 79 75 25
jedit4.2 367 319 48 87 13
jedit4.3 492 481 11 98 2
Lucene2.0 195 104 91 53 47
Lucene2.2 247 103 144 42 58
Lucene2.4 340 137 203 40 60
Synapsel.0 157 141 16 90 10
Synapsel.1 222 162 60 73 27
Synapsel.2 256 170 86 66 34

text, binary, Hessian and JSON. Apache Synapse is a free
and open-source software (http://synapse.apache.org/).

The fault data for the systems under investigation were col-
lected from repositories of the projects and reported by the
promise data repository [35,36]. The authors used two sepa-
rate tools: BugInfo? and Ckjm.3 BugInfo was used to collect
the fault data, whereas Ckjm was used to collect the CK met-
rics. BugInfo analyzes the history of the classes by studying
the code repositories (Subversion or CVS). If a log contains
a fault fix, then the affected classes are determined from the
full description and marked as faulty. BugInfo uses regular
expressions to extract fault information. If a log descrip-
tion matches a pattern of a regular expression, fault counts
are incremented. The faults distributions are shown for each
system in Table 2. Mostly, these systems have imbalanced
distributions; i.e., the faulty classes are minority, while the
non-faulty classes are the majority. For example, the per-
centages of the classes that have faults are between 11 and
26 in Ant project. The use of sampling techniques helps in
balancing the fault distributions.

We provide, in Table 3, the descriptive statistics for one
release of each software. The inheritance metrics (DIT and
NOC) have low variances, whereas the cohesion metric
(LCOM) has the highest variance. The mean values range
between 8 and 12 for the WMC metric, 11-14 for CBO
metric, 21-40 for RFC metric and 2-3 for DIT metric. The
mean of the NOC metric approaches one due to low variance.

2 https://kenai.com/nonav/projects/buginfo.

3 http://www.spinellis.gr/sw/ckjm/.

@ Springer

The LCOM metric shows totally different means in different
projects.

3.5 Feature selection approaches

There are two main feature selection approaches: filter and
wrapper. In filter approaches, no data mining techniques are
used in the feature selection method. On the other hand, a
wrapper approach depends on the results of the data min-
ing algorithm to determine the effectiveness of the resulted
feature subset. Many software metrics emerged to assess the
fault-proneness in software. These metrics measure differ-
ent dimensions and may not be significantly associated with
fault-proneness of modules. Metrics that are not good indi-
cators of fault-proneness may affect classifiers’ performance
[2,7]. For example, the nearest neighbor algorithm is prone
to the inclusion of irrelevant features, because of their effect
on the calculation of similarity measures. In this research, we
consider the results of ROC analysis in Sect. 4.1 to select fea-
tures to include in fault classification models. The proposed
feature selection technique is compared against three other
feature selection techniques: the forward stepwise greedy
algorithm, Chi-squared feature evaluation and information
gain feature evaluation. The forward greedy feature selection
evaluates subsets by considering the individual predictive
ability of each feature along with the degree of redundancy
between them. Feature subsets that are highly correlated with
the class while having low intercorrelation are preferred. The
Chi-squared selection evaluates features by computing the
value of the chi-squared statistic with respect to the class [17].

http://synapse.apache.org/
https://kenai.com/nonav/projects/buginfo
http://www.spinellis.gr/sw/ckjm/

The application of ROC analysis in threshold identification, data imbalance and metrics... 207
Tab.le.3 The descriptive Antl.7 Lucenc 2.4
statistics for later releases of the
five systems Metric Min Max Mean SD Metric Min Max Mean SD
WMC 0 120 11 12 WMC 1 166 10 13
DIT 1 7 3 1 DIT 1 5 2
NOC 0 102 1 5 NOC 0 17 1 2
CBO 0 499 11 26 CBO 0 128 11 12
RFC 0 288 34 36 RFC 1 392 25 32
LCOM 0 6692 89 350 LCOM 0 6747 69 443
Camel 1.6 Synapse 1.2
Metric Min Max Mean SD Metric Min Max Mean SD
WMC 0 166 11 WMC 0 67 8 9
DIT 0 6 1 DIT 1 5 2
NOC 0 39 3 NOC 0 19 0 2
CBO 0 448 11 23 CBO 0 83 13 12
RFC 0 322 21 25 RFC 0 172 30 26
LCOM 0 13617 79 524 LCOM 0 1931 41 176
jEdit4.3
Metric Min Max Mean SD
WMC 0 351 12 25
DIT 1 8 2
NOC 0 38 <1
CBO 0 346 14 25
RFC 0 540 40 56
LCOM 0 41713 260 2185
Information gain selection evaluates features by measuring 5 (s) = [s| + ’S" -2 |S N S/|
s) — -

the information gain with respect to the class. Information
gain measures how the entropy of the class decreases when
the value of a given feature is already known [17]. The
selected features are used to build fault prediction classifiers.
The resulting classifiers are then compared against the mod-
els that include the metrics selected via the ROC analysis. All
feature subsets are applied on four machine learning tech-
niques: logistic regression, decision trees (C4.5), the nearest
neighbors (kNN) and naive bayes. The stability of feature
selection techniques is an important issue to have consistent
results among different techniques. If a technique produces
a different subset for different datasets, then that technique
becomes unreliable for feature selection [13]. Feature sub-
set stability requires a similarity measure for feature subset.
There are three types of feature stability measures [41]. In the
first type, a weight or score is assigned to each feature indi-
cating its importance. The second type ranks are assigned to
features. The third type consists of sets of selected features
in which no weighting or ranking is considered. In this work,
stability is measured by considering the overlap between two
subsets of features using a straightforward adaptation of the
Tanimoto distance measure as follows.

[s|+[s"| — Is N s’

The Tanimoto distance metric measures the amount of over-
lap between two sets (s and s”). Ss takes values in [0, 1] with
0 meaning that there is no overlap between the two sets, and
1 that the two sets are identical.

3.6 Classification models

There are many classification techniques that can be used.
However, we limit our work to four techniques only: Naive
Bayes (NB), logistic regression (LR), the nearest neighbors
(kNN), and C4.5 decision trees. All selected classifiers are
commonly used in the field of Software Engineering. Weka
is used to train and test these classifiers, and the default set-
tings of these learners are used [29]. The LR model is a
regression model that is suitable for a binary class (faulty
or not faulty). LR is a statistical technique that was widely
used to build fault-proneness models in many studies includ-
ing [33,43]. Naive Bayes (NB) algorithm is a commonly
used classifier in the software defect prediction and is used
as a classifier for defect prediction in many studies including

@ Springer

208

R. Shatnawi

[12,46]. NB is intuitive and simple to build and can be viewed
as a simple Bayesian network that has two assumptions: the
attributes (metrics) are independent given the class (faulty or
faultless) and no hidden or underlying attributes affect the
prediction [34]. The nearest neighbor (kNN) algorithm uses
distance (similarity) metrics to assign the dominant label of
the closest group of k objects in the training set [1]. The K
is usually selected to be an odd value (1, 3, 5, 7, etc.), and
in this research, an arbitrary k = 5 is selected. The selection
of the best k is not an objective of this research. The nearest
neighbors were used as a classifier in fault-proneness models
in many previous papers [25,58,63]. C4.5 is an extension of
the basic ID3 algorithm designed by Quinlan. C4.5 is a well-
known decision tree classifier in the fault prediction domain.
C4.5 uses information-based criteria (information gain) to
build decision trees [50]. The tree grows by selecting the
decision for the attribute with the highest information gain.
C4.5 is used as a classifier in fault-proneness models in many
previous papers [47,51]. The four classification models are
trained and tested using tenfold cross-validation.

4 Results and analysis

4.1 ROC Analysis and Identification of Threshold
Values

In this section, we discuss the results of the ROC analysis and
the significance of the curves in classifying software classes
into faulty or not. In addition, for each metric, we identify
the possible threshold values. For each metric, we conduct
the two-sided t-test to find the significance of the difference
between a curve and the random curve (AUC=0.50) at the
95% significance level. For the curves that are significantly
different from random guessing, we identify threshold values
based on both sensitivity (i.e., represents benefits) and speci-
ficity (i.e., represents costs). A visual assessment of the rela-
tionship between both measurements is shown in Fig. 2. In the
following, we present the threshold values that have the low-
est distance from the optimal point (0, 1). We provide a com-
prehensive analysis of ROC; however, due to limited space
we do not draw all charts as shown in Fig. 2 for every metric;
rather, we provide the candidate thresholds in a tabular for-
mat. At the end of this section, we use the selected thresholds
to classify modules into two groups: faulty and not faulty.

4.1.1 WMC metric

The results of the ROC analysis for the WMC metric in all
releases are shown in Table 4 for the curves that are sig-
nificantly different from the random classifier. The AUC is
calculated, and the p value shows whether there is a signifi-
cant difference from a random classifier (AUC=0.50). If the

@ Springer

Sensitivity / Specificity

0 20 40 60 80 100 120 140

wmc

=== Sensitivity —#— Specificity

Fig. 2 The sensitivity versus specificity for WMC metric in Ant1.7

p value is lower than the significance level (¢ = 0.05), we
reject the null hypothesis Hy .

To identify a practical threshold value, the performance
of the AUC values should be larger than 0.70. We use the
Euclidean distance from the optimal point on ROC curve
(i.e., the distance from 0, 1) to find optimal threshold values.
The selected thresholds also should have a likelihood ratio
larger than one which is satisfied for all systems. Therefore,
we get threshold values that fall in the range 6-11.

Thresholds can be used in profiling software into two lev-
els: the low-risk modules and the high-risk modules. The
modules in high-risk group require more quality investi-
gations such as looking for potential refactorings, or code
improvements. McCabe suggested a threshold for WMC =10
[45]. When the complexity of a given module exceeds 10,
the likelihood of the code being unreliable is much higher.
Shatnawi et al. [56] found a threshold WMC=9 for a large
open-source system using ROC analysis. This particular
threshold falls in the range that was reported in this work.
However, fewer constraints were applied to find a threshold
in Shatnawi et al. [56] work. Previously, Rosenberg preferred
another possible threshold value at WMC =20 or WMC =40
that can be acceptable as well [52], although they found most
classes have values less than 20. The works of McCabe and
Rosenberg are either anecdotal or based on histogram anal-
ysis, which assumes normality of data. The assumption of
normality for OO metrics is not valid as shown in the descrip-
tive analysis of all releases under investigation. In addition,
thresholds are derived in this work based on the relationship
with faults in the system.

4.1.2 CBO metric

The results of the ROC for the CBO metric are shown in
Table 5. The p value are lower than the significance level
except only for one system (jEdit 4.3). Therefore, we should
reject the null hypothesis Hpj. The AUC values should be
larger than 0.70 to consider it practical to identify a threshold

The application of ROC analysis in threshold identification, data imbalance and metrics... 209

Table 4 The ROC analysis for WMC ordered by AUC

System Threshold AUC p value (two-tailed) LB (95%) UB (95%) Sen Spec D LR
Antl.5 8 0.82 <0.0001 0.76 0.88 0.88 0.66 0.37 2.54
Antl.7 8 0.80 <0.0001 0.76 0.85 0.75 0.75 0.36 3.00
jEdit4.2 10 0.79 <0.0001 0.76 0.82 0.70 0.75 0.39 2.75
jEdit4.1 10 0.79 <0.0001 0.74 0.83 0.70 0.81 0.36 3.60
Antl.6 8 0.78 <0.0001 0.70 0.85 0.81 0.69 0.36 2.62
jEdit4.0 11 0.75 <0.0001 0.70 0.81 0.63 0.86 0.40 4.39
Lucene2.0 8 0.72 <0.0001 0.67 0.78 0.64 0.75 0.44 2.55
Synapsel.0 6 0.72 <0.0001 0.61 0.82 0.69 0.65 0.47 1.98
camell.4 7 0.71 <0.0001 0.70 0.72 0.63 0.69 0.48 2.01
Synapsel.2 5 0.69 <0.0001 0.68 0.71 0.65 0.71 0.45 2.26
Lucene2.4 5 0.68 <0.0001 0.68 0.69 0.75 0.54 0.52 1.63
Lucene2.2 6 0.66 <0.0001 0.62 0.69 0.63 0.61 0.54 1.61
Synapsel.1 7 0.63 <0.0001 0.59 0.67 0.52 0.77 0.53 2.26
camell.6 8 0.62 <0.0001 0.58 0.65 0.48 0.72 0.59 1.69
camell.2 5 0.58 0.00 0.53 0.62 0.54 0.54 0.65 1.18
Antl.4 * 0.53 0.55 0.44 0.62 * * * *
jEdit4.3 * 0.46 0.68 0.28 0.64 * * * *
The p values in bold are significantly different from a random classifier

*The results are not reported when the p value >0.05

Table 5 The ROC analysis for CBO ordered by AUC

System Threshold AUC p value (two-tailed) LB (95%) UB (95%) Sen Spec D LR
jEdit4.2 11 0.79 <0.0001 0.74 0.85 0.71 0.70 0.42 2.35
Synapsel.1 11 0.75 <0.0001 0.69 0.80 0.67 0.74 0.42 2.57
Antl.7 7 0.73 <0.0001 0.72 0.74 0.72 0.66 0.44 2.12
Antl.6 7 0.73 <0.0001 0.68 0.78 0.75 0.65 0.43 2.16
Antl.5 7 0.72 <0.0001 0.63 0.80 0.81 0.61 0.43 2.10
jEdit4.0 8 0.71 <0.0001 0.66 0.77 0.68 0.64 0.48 1.89
jEdit4.1 10 0.71 <0.0001 0.65 0.76 0.59 0.72 0.49 2.10
Lucene2.4 6 0.70 <0.0001 0.68 0.73 0.68 0.62 0.49 1.80
Synapsel.2 10 0.69 <0.0001 0.63 0.74 0.65 0.59 0.54 1.60
Synapsel.0 12 0.69 0.01 0.55 0.82 0.63 0.64 0.52 1.73
Lucene2.0 5 0.68 <0.0001 0.63 0.73 0.76 0.54 0.52 1.64
camell.4 7 0.65 <0.0001 0.65 0.66 0.65 0.59 0.54 1.57
camell.6 7 0.65 <0.0001 0.63 0.67 0.62 0.57 0.57 1.45
Lucene2.2 6 0.64 <0.0001 0.59 0.68 0.59 0.63 0.55 1.60
jEdit4.3 * 0.63 0.14 0.46 0.81 * * * *
Antl.4 6 0.61 0.00 0.54 0.68 0.75 0.51 0.55 1.54
camell.2 6 0.57 <0.0001 0.54 0.60 0.56 0.57 0.62 1.28

The p values in bold are significantly different from a random classifier
* The results are not reported when the p value >0.05

value. Therefore, we get threshold values that fall in the range
6-11.

Again, the selected thresholds for the CBO can be used in
profiling software modules into two levels, the modules with
low coupling and the high coupling. McCabe suggested a
threshold for CBO =6 [45], which is more conservative than

ours. When a module is coupled to more than six modules, the
module can be identified as more fault-prone. Shatnawi et al.
[56] found a threshold at CBO =13 for a large open-source
system using ROC analysis, which falls out of the range.
Previously, Rosenberg preferred another possible threshold
value for CBO=5 [52].

@ Springer

210

R. Shatnawi

Table 6 The ROC analysis for

NOC System AUC p value (two-tailed) System AUC p value (two-tailed)
Antl.4 0.54 0.930 jEdit4.2 0.51 0.974
Antl.5 0.54 0911 jEdit4.3 0.53 0.940
Antl.6 0.53 0.936 Lucene2.0 0.48 0.940
Antl.7 0.54 0.899 Lucene2.2 0.52 0.950
camell.2 0.53 0.940 Lucene2.4 0.53 0.930
camell .4 0.54 0.915 Synapsel.0 0.47 0.950
camell.6 0.56 0.877 Synapsel.1 0.47 0.950
jEdit4.0 0.49 0.980 Synapsel.2 0.51 0.990
jEdit4.1 0.50 0.990
]g?,l[),le 7 The ROC analysis for System AUC p value (two-tailed) System AUC p value (two-tailed)
Antl.4 0.60 0.46 jEdit4.2 0.50 0.97
Antl.5 0.62 0.25 jEdit4.3 0.59 0.40
Antl.6 0.48 0.89 Lucene2.0 0.48 0.90
Antl.7 0.53 0.79 Lucene2.2 0.47 0.88
camell.2 0.49 0.98 Lucene2.4 0.56 0.72
camell.4 0.56 0.70 Synapsel.0 0.48 0.91
camell.6 0.53 0.85 Synapsel.1 0.37 0.57
jEdit4.0 0.50 0.96 Synapsel.2 0.53 0.86
jEdit4.1 0.48 0.89

From this discussion, we do not reach a consensus on a
particular threshold value for the CBO metric. In our work,
we found thresholds in the range 6-11. Only the work of
McCabe suggested a threshold that falls in the range reported
in this work.

4.1.3 NOC metric

The results of the ROC analysis for the NOC metric are shown
in Table 6. As the p value are larger than the significance
level, we should accept the null hypothesis Hp; and reject the
alternative hypothesis Hyj. Therefore, all ROC curves that
were produced for NOC cannot be used to classify software
classes into faulty and not faulty and threshold values can-
not be identified for the NOC metric. The work of McCabe
and Rosenberg did not suggest any thresholds for the NOC
[45,52]. In addition, Shatnawi et al. [56] could not report
a threshold for NOC using ROC analysis. These results are
consistent, and therefore, we can conclude that there are no
thresholds that can be identified for the NOC metric.

4.1.4 DIT metric

The results of the ROC analysis for the DIT metric are shown
in Table 7. As the p value are larger than the significance
level, we should accept the null hypothesis Hy; and reject
the alternative hypothesis H,. Therefore, all ROC curves

@ Springer

that were produced from DIT metric cannot be used to clas-
sify software classes into faulty and not faulty and threshold
values cannot be identified for the DIT metric. Therefore,
ROC analysis is not suitable to identify such thresholds. ROC
analysis can be used to define many thresholds using ordinal
variable (non-binary coding of faults), such as using the 3-
level severity of faults. However, the results are expected to
have monotonic behavior, which is not expected for the DIT.
For example, Rosenberg et al. [52] defined a threshold as fol-
lows 2 < DIT < 5. The modules of DIT < 2 may represent
poor exploitation of inheritance, whereas modules of DIT >
5 have larger complexity. McCabe [45] defined thresholds as
2 < DIT < 6, i.e., DIT > 6 increases the testing effort and
DIT < 2 indicates a poor exploitation of inheritance.

4.1.5 RFC metric

The results of the ROC analysis for the RFC metric are shown
in Table 8. The p value is lower than the significance level
o = 0.05, and we should reject the null hypothesis Hp;.
The AUC values are significantly different from the random
classifier for most releases except in two releases (Ant 1.4
and jEdit 4.3). The thresholds that are identified for the RFC
metric show a wide range (15-40).

Again, the selected threshold for the RFC can be used
in profiling software modules into two levels: the modules
with low responsibilities and high responsibilities. McCabe

The application of ROC analysis in threshold identification, data imbalance and metrics... 211

Table 8 The ROC analysis for RFC ordered by AUC

System Threshold AUC p value (two-tailed) LB (95%) UB (95%) Sen Spec D LR
jEdit4.2 37 0.84 <0.0001 0.79 0.90 0.88 0.75 0.280 3.49
Antl.6 31 0.84 <0.0001 0.80 0.89 0.79 0.78 0.305 3.54
Antl.7 32 0.83 <0.0001 0.79 0.86 0.79 0.75 0.326 3.17
jEdit4.1 31 0.83 <0.0001 0.78 0.88 0.73 0.75 0.364 2.95
Antl.5 40 0.83 <0.0001 0.75 0.91 0.69 0.84 0.353 4.17
Synapsel.0 35 0.81 <0.0001 0.69 0.93 0.81 0.78 0.289 3.70
jEdit4.0 32 0.78 <0.0001 0.72 0.84 0.65 0.77 0.418 2.79
Synapsel.2 29 0.76 <0.0001 0.70 0.82 0.66 0.79 0.398 3.13
Lucene2.0 15 0.76 <0.0001 0.69 0.82 0.76 0.63 0.438 2.08
Lucene2.4 15 0.71 <0.0001 0.66 0.76 0.68 0.64 0.477 1.91
camell .4 20 0.70 <0.0001 0.66 0.74 0.61 0.69 0.497 1.97
Synapsel.1 31 0.69 <0.0001 0.61 0.77 0.58 0.78 0.472 2.63
Lucene2.2 17 0.65 <0.0001 0.59 0.72 0.60 0.62 0.553 1.58
camell.6 17 0.63 <0.0001 0.59 0.67 0.56 0.62 0.581 1.48
Antl.4 * 0.58 0.099 0.48 0.68 * * * *
camell.2 13 0.57 0.001 0.53 0.61 0.58 0.53 0.631 1.23
jEdit4.3 * 0.51 0.940 0.33 0.68 * * * *
The p values in bold are significantly different from a random classifier

*The results are not reported when the p value >0.05

Table 9 The ROC analysis for LCOM ordered by AUC

System Threshold AUC p value (two-tailed) LB (95%) UB (95%) Sen Spec D LR
jEdit4.2 10 0.81 <0.0001 0.75 0.88 0.88 0.63 0.39 2.37
Antl.7 14 0.77 <0.0001 0.75 0.80 0.75 0.69 0.39 245
Antl.6 16 0.77 <0.0001 0.74 0.80 0.68 0.78 0.39 3.06
jEdit4.1 21 0.77 <0.0001 0.71 0.82 0.66 0.81 0.39 3.41
Antl.5 10 0.74 <0.0001 0.66 0.82 0.78 0.68 0.39 2.46
jEdit4.0 20 0.71 <0.0001 0.66 0.76 0.64 0.80 0.41 3.21
Synapsel.0 26 0.71 0.00 0.57 0.84 0.56 0.83 0.47 3.30
camell.4 9 0.67 <0.0001 0.63 0.71 0.63 0.67 0.50 1.90
Synapsel.1 10 0.65 <0.0001 0.59 0.70 0.52 0.80 0.52 2.62
Synapsel.2 6 0.62 <0.0001 0.62 0.63 0.52 0.78 0.53 2.34
Lucene2.2 * 0.60 0.26 0.43 0.77 * * * *
camell.2 4 0.58 0.03 0.51 0.66 0.55 0.58 0.61 1.32
Lucene2.4 * 0.58 0.24 0.45 0.70 * * * *
camell.6 * 0.56 0.10 0.49 0.64 * * * *
Antl.4 * 0.55 0.08 0.49 0.61 * * * *
Lucene2.0 * 0.53 0.70 0.38 0.69 * * * *
jEdit4.3 * 0.48 0.81 0.34 0.63 * * * *

The p values in bold are significantly different from a random classifier
* The results are not reported when the p value >0.05

suggested a threshold for RFC =40 [45]. Shatnawi et al. [56]
found a threshold RFC =44 for Eclipse using ROC analysis.
Previously, Rosenberg preferred another possible threshold
value for CBO=50 [52]. These thresholds fall out of the
range reported in this work.

4.1.6 LCOM metric
The results of the ROC analysis for the LCOM metric are

shown in Table 9. The LCOM has different trends than all
other metrics. We notice that the p value is not consistent

@ Springer

212

R. Shatnawi

Table 10 The application of

thresholds on Antl.S Percentage of god classes

Number of god classes

Faulty god classes % Faulty god classes

17.5% 51

21 41%

Table 11 The application of

thresholds on jEdit4.2 Percentage of god classes

Number of god classes

Faulty god classes % Faulty god classes

22.5% 82

37 45%

Table 12 Wilcoxon signed rank tests for Hpp

DataSets WMC p value CBO P value RFC P values Results
Wilcoxon signed rank test on AUC values Original-SMOTE 0.969 0.735 0.821 Cannot reject Hy
Original undersampling 0.806 0.851 0.939 Cannot reject HO2
Wilcoxon signed rank test on threshold values Original- SMOTE 0.231 0.796 0.499 Cannot reject HO2
Original undersampling 0.112 0.722 0.686 Cannot reject HO2

for all systems. Out of seventeen releases, we found eleven
releases that have p value lower than the significance level,
whereas six releases have p value larger than alpha. There-
fore, we should reject the null hypothesis Hp; for the 11
releases only. Again, a threshold is practical when the AUC
values are larger than 0.70. The thresholds that are identified
for the LCOM metric shows a wide range (10-26).

Shatnawi et al. [56] could not find a threshold for LCOM
using ROC analysis. Previously, Rosenberg did not report any
preferred thresholds for the LCOM [52]. McCabe suggested a
threshold for LCOM =75% [45] but for a different definition
of the LCOM metric. From this work and the previously
reported results on LCOM thresholds, we can conclude that
the LCOM metric was not significantly associated with fault-
proneness [4,48].

4.1.7 ROC application in god classes identification

We study the application of the identified threshold values in
profiling software modules into low- and high-risk groups.
Software verification and validation is a lengthy process, and
it should be cost-effective. We expect to identify a small pro-
portion of modules that have a large percentage of faults. A
threshold value separates modules into two groups: low and
high risk. The first group includes the modules with values
less than the threshold; otherwise, modules are placed in the
second group.

Threshold values are used to identify god classes in code.
A god class or large class is one of the important code bad
smells reported in Fowler [24]. A god class has large number
of responsibilities, complexities and interconnections. The
classes that exceed the threshold values are identified as god
classes. In this section, we report only the results of the god
class analysis on two systems: Ant 1.5 and JEdit4.2, as shown
in Tables 10 and 11. The number of god classes identified is

@ Springer

51 and 82 in Ant 1.5 and JEdit 4.2, respectively. The engi-
neers can choose a proportion of these classes for manual
inspection or refactoring. Among the god classes, a large per-
centage of classes have faults (41 and 45%). The god classes
are more fault-prone than other classes, and a large portion
already have faults. These results confirm the relationship
between faults and god classes.

4.2 ROC analysis after sampling

In this section, we conduct an experiment to find the effect
of two sampling techniques: SMOTE and undersampling, on
ROC analysis. The systems under investigation have imbal-
anced fault distributions as shown in Table 2.

We conducted the ROC analysis for all systems under
investigation in three scenarios: original data without sam-
pling, data after SMOTE sampling and data after undersam-
pling. Both the AUC and threshold values after data sampling
are calculated but are not shown for brevity. To test the null
hypothesis (H;), we conducted a pairwise Wilcoxon signed
rank test to find the significance of the differences in AUC
values for two pairs: without sampling against SMOTE and
without sampling against undersampling. The results of the
statistical tests (p values) are shown in Table 12 for only
three metrics. The results of the statistical analysis for WMC,
CBO and RFC do not show significant differences between
the two groups. Therefore, we can conclude that sampling
does not have significant effect on the ROC analysis, i.e., the
null hypothesis (Hp) is accepted. The AUC values are not
statistically different. We also tested the significance of the
differences in threshold values using Wilcoxon signed rank
test as shown in the second part of Table 12. The test results
show no statistically significant differences between thresh-
old values before and after sampling. These results show that
the ROC is robust under imbalanced data; on the other hand,

The application of ROC analysis in threshold identification, data imbalance and metrics... 213

many studies reported the effect of imbalanced data on fault
prediction models. Hall et al. [32] found that fault predic-
tion models using C4.5 underperform for imbalanced data
and recommended not to use imbalanced data. Some other
researchers, Wang et al. [59] and Yu et al. [62], found similar
results to the Hall et al. study and concluded that C4.5 out-
comes are unstable on imbalanced datasets. Yan et al. [61]
performed fuzzy logic and rules to overcome the imbalance
effects on support vector machines. Agrawal and Menzies [3]
introduced a tuned SMOTE technique and found improve-
ments on classifiers such as decision trees, logistic regression,
K-means, naive bayes and support vector machines. The
authors have recommended that any prior study which did not
study the effects of data pre-processing needs to be analyzed
again. However, this work presents evidence of robustness in
using ROC in identifying threshold values under imbalanced
data conditions. The threshold values are not significantly
different before and after sampling.

4.3 Feature selection using ROC

In this section, we train and test fault-proneness models
using four learners: logistic regression (LR), naive Bayes
(NB), the nearest neighbors (SNN) and C4.5 decision trees.
These learners are used to validate the impact of using the
ROC analysis as an alternative attribute (metrics) selection.
The metrics that have thresholds values resulted from ROC
analysis in Sect. 4.1 are only selected to build models. A
metric is included in a fault-proneness model if the AUC
value is significantly different from the random guessing and
AUC > 0.70. These models are then compared with well-
known feature selection techniques that performs a stepwise
search throughout the space of attribute subsets.

First, the results of including all metrics in building clas-
sifiers are summarized in Table 13. The AUC values resulted
from the application of the four classifiers in the Weka data
mining tool. The default settings of the classifiers in Weka are
conducted with tenfold cross-validation, and the results are
repeated ten times. The results do not show acceptable results
(AUC = 0.70) for all releases. In summary, the four clas-
sifiers showed acceptable results for most releases. The LR
and 5NN models showed the best classification performance,
while the models of C4.5 showed the least performance
among all.

Second, the metrics selected via the ROC analysis and the
feature selection are shown in the first column of Table 14.
The metrics that are listed in column two are selected
based on the significance of ROC from random guessing
(AUC=0.5). For example, the CBO metric is the only met-
ric that is selected in Antl.4. Therefore, the classifiers are
trained and tested using the CBO metric only. The met-
rics that are selected using other selection techniques are

Table 13 The area under curve (AUC) values when all metrics are
included

All metrics LR NB SNN C4.5
Antl.4 0.55 0.61 0.59 0.49
Antl.5 0.84 0.77 0.80 0.64
Antl.6 0.84 0.81 0.80 0.74
Antl.7 0.83 0.79 0.76 0.74
Camel 1.2 0.57 0.56 0.64 0.52
Camel 1.4 0.70 0.67 0.67 0.60
Camel 1.6 0.65 0.59 0.66 0.54
jEdit4.0 0.77 0.70 0.81 0.72
jEdit4.1 0.82 0.75 0.80 0.69
jEdit4.2 0.84 0.75 0.77 0.64
Lucene2.0 0.77 0.75 0.70 0.67
Lucene2.2 0.62 0.61 0.70 0.58
Lucene2.4 0.75 0.69 0.73 0.68
Synapsel.0 0.81 0.71 0.75 0.53
Synapsel.1 0.72 0.75 0.77 0.66
Synapsel.2 0.75 0.71 0.73 0.71

The p values in bold are significantly different from a random classifier

shown in Table 14 as well. For example, the CBO metric is
the only metric included in the first model. Several combi-
nations of metric subsets are selected in different datasets.
The inheritance metrics (DIT and/or NOC) are not selected
in ROC selection. In contrast, the stepwise selection has
eleven distinct combinations. Chi-squared and information
gain selection resulted in the same results for all datasets,
and each produced eight different subsets.

To test the significance of the differences in the AUC val-
ues among the models, we conducted a pairwise Wilcoxon
signed rank test at the 95% confidence level and the results
are presented in Table 15. There are no significant differences
between the two pairs of models. However, the ROC analysis
is more consistent in selecting the same metrics in various
datasets than the feature selection techniques. The p values
do not show significant differences between models for the
four classifiers except the logistic regression, which shows
significant differences from the forward stepwise models.
Therefore, we could not find differences in the model’s per-
formance and we reject the null hypothesis (Hp3).

The stability of feature selection is measured to find the
overlap in selected subsets. If a technique produces a differ-
ent subset for different datasets, then that technique becomes
unreliable for feature selection. Table 16 shows the results
of the Tanimoto distance metric. The stable technique has
value close to 1. The ROC analysis provides more stable and
consistent selection subsets than the three feature selection
techniques. The reduction in the number of metrics reduces
the efforts to collect more metrics when less number is suf-
ficient. The ROC analysis selects at most four metrics, while
other techniques select up to six metrics in some models.

@ Springer

214

R. Shatnawi

Table 14 Metrics selection via ROC and stepwise selection procedures

ROC selection

Forward stepwise selection

Chi-squared selection

Info. gain selection

Antl.4 CBO CBO

Antl.5 WMC, CBO, RFC, LCOM RFC

Antl.6 WMC, CBO, RFC, LCOM WMC, CBO, RFC, LCOM

Antl.7 WMC, CBO, RFC, LCOM CBO, RFC, LCOM

Camel 1.2 WMC, CBO, RFC, LCOM DIT, NOC

Camel 1.4 WMC, CBO, RFC, LCOM WMC, DIT, CBO, RFC,
LCOM

Camel 1.6 WMC, CBO, RFC DIT, NOC, CBO, RFC,
LCOM

jEdit4.0 WMC, CBO, RFC, LCOM WMC, RFC, LCOM

jEdit4.1 WMC, CBO, RFC, LCOM WMC, RFC, LCOM

jEdit4.2 WMC, CBO, RFC, LCOM WMC, CBO, RFC, LCOM

Lucene2.0 WMC, CBO, RFC WMC, DIT, CBO, RFC,
LCOM

Lucene2.2 WMC, CBO, RFC WMC, DIT, CBO, RFC,
LCOM

Lucene2.4 WMC, CBO, RFC WMC, NOC, CBO, RFC,
LCOM

Synapsel.0 WMC, CBO, RFC, LCOM RFC

Synapsel.1 WMC, CBO, RFC, LCOM DIT, CBO, RFC, LCOM

Synapsel.2 WMC, CBO, RFC, LCOM WMC, CBO, RFC

CBO

RFC

WMC, CBO, RFC, LCOM
RFC

DIT, NOC

WMC, DIT, CBO, RFC,
LCOM

WMC, DIT, NOC, CBO,
RFC, LCOM

WMC, RFC, LCOM
WMC, RFC, LCOM
WMC, CBO, RFC, LCOM
LCOM

WMC, NOC CBO, RFC,
LCOM

WMC, DIT, CBO, RFC,
LCOM

WMC, NOC, CBO, RFC,
LCOM

RFC

WMC, DIT, CBO, RFC,
LCOM

CBO

RFC

WMC, CBO, RFC, LCOM
RFC

DIT, NOC

WMC, DIT, CBO, RFC,
LCOM

WMC, DIT, NOC, CBO,
RFC, LCOM

WMC, RFC, LCOM
WMC, RFC, LCOM
WMC, CBO, RFC, LCOM
LCOM

WMC, NOC CBO, RFC,
LCOM

WMC, DIT, CBO, RFC,
LCOM

WMC, NOC, CBO, RFC,
LCOM

RFC

WMC, DIT, CBO, RFC,
LCOM

Table 15 The Wilcoxon signed rank tests for ROC versus three selection techniques

Model ROC versus all metrics ROC versus forward selection ROC versus Chi-squared ROC versus IG
Logistic regression 0.33 0.001 0.731 0.731

Naive Bayes 0.387 0.798 0.03 0.03

5 Nearest neighbors 0.028 0.504 0.195 0.195

C4.5 trees 0.48 0.231 0.221 0.221

The p values in bold are significantly different from a random classifier

Table 16 Subset overlap measurement

ROC Forward Chi-squared 1G

Stability 0.82 0.46 0.41 0.40

5 Limitations and threats to validity

With regard to internal threats, from the viewpoint of the
application of the results, different interpretations of the soft-
ware metrics represent a threat to the validity of the study.
The definition of a threshold value might not be valid for
every metric, and more investigation is needed. For example,
the DIT metric may need a more detailed definition. As pre-
vious works show, the DIT metric might need two or more
break points, e.g., a bad module might have a DIT < 3 ora

@ Springer

DIT > 5, whereas the rest of the modules are regular. We do
not claim the collection of the metrics and faults. It is possi-
ble that there are mistakes in the fault identification. Faults
were identified from the comments in the source code ver-
sion control system, which are not always well written [36].
The problem with the use of confusion matrix and the ROC
in evaluating the fault-proneness of software modules is that
they are designed to apply to all classification problems and
they do not clearly and directly relate to the cost effectiveness
of using fault-proneness models [2].

With regard to external threats, this study considers
open-source systems developed in Java and might not be
generalized to systems written in other languages. The study
is conducted on five systems only, and further investigation
is still needed for more software systems. In addition, these
systems are representative of open-source systems and might

The application of ROC analysis in threshold identification, data imbalance and metrics... 215

not be representative of commercial products. However, the
systems under investigation are well known and widely used.
Four systems are licensed as Apache products and are used as
third party in commercial products. This study does not pro-
vide a comprehensive investigation of different sampling and
feature selection techniques. In addition, only four learners
were reported in the study, although there are more to inves-
tigate. However, the purpose is not to be comprehensive, but
as a basis for comparison only.

6 Conclusion

Using ROC analysis, we identified threshold values for the
CK metrics to aid software engineers to identify risky classes.
CK metrics are widely validated as predictors of software
fault-proneness. The ROC analysis is used to diagnose the
relationship between software metrics and faults in five open-
source systems. The results of the ROC analysis on five
systems showed significant relationships between four met-
rics (WMC, CBO, RFC and LCOM) and faults on most
releases. For each metric, we identified threshold values via a
statistical test on the significance of the curve. The identified
thresholds are not consistent for all releases under investi-
gation. To validate the consistency of the ROC analysis, we
tested the effect of two sampling techniques (oversampling
using SMOTE and undersampling) on the area under the
ROC curve. The results of oversampling and undersampling
the data are not significantly different from the ROC anal-
ysis when conducted on the data without sampling. These
results confirm our findings in Shatnawi et al. [56] and pro-
vide more evidence of the robustness of the ROC in case of
data imbalance.

The ROC analysis is used to select metrics for inclusion in
fault-proneness models. The metrics that have an area under
the curve that can be considered acceptable, larger than 0.70,
are selected to assess quality further. The selected metrics
are then used to build prediction models using four machine
learning techniques: logistic regression, naive Bayes, the
nearest neighbors and C4.5 decision trees. The performance
of classifiers using the metrics that were selected via the
ROC analysis does not show significant differences from
other models that are built from all metrics and via stepwise
feature selection techniques. However, the ROC selection is
more reliable and consistent in selecting the same metrics
than three feature selection techniques. Therefore, we con-
clude that the ROC analysis can be used to identify which
metrics are strongly related to fault-proneness and to identify
plausible threshold values. Furthermore, the ROC analysis
as proposed in this work can be used to derive thresholds of
other software metrics.

For the future work, we plan to investigate other tech-
niques for threshold identification and to use thresholds in

applications of SQA. We plan to study a larger number of
metrics using many sampling and feature selection tech-
niques to find which technique produces best results. In
addition, we plan to study the effect of data transformation
on the effectiveness of software metrics in building fault-
proneness models.

References

1. Aha D, Kibler D (1991) Instance-based learning algorithms. Mach
Learn 6(1):37-66

2. Arisholm E, Briand L, Johannessen E (2010) A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models. J Syst Softw 83(1):2-17

3. Agrawal A, Menzies T (2017) “Better Data” is better than “Better
Data Miners”, arXiv:1705.03697 [cs.SE]

4. Basili V, Briand L, Melo W (1996) A validation of object-
oriented design metrics as quality indicators. IEEE Trans Softw
Eng 22(10):751-761

5. Bender R (1999) Quantitative risk assessment in epidemiological
studies investigating threshold effects. Biom J 41(3):305-319

6. Benlarbi S, El Emam K, Goel N, Rai S (2000) Thresholds for
object-oriented measures. In: 11th International symposium on
software reliability engineering (ISSRE 2000). IEEE Computer
Society, Los Alamitos, CA, pp 24-38

7. Briand LC, Wii st J, Daly JW, Victor Porter D (2000) Exploring
the relationships between design measures and software quality in
object-oriented systems. J Syst Softw 51(3):245-273

8. Cartwright M (1998) An empirical view of inheritance. Inf Softw
Technol 40:795-799

9. Catal C, Diri B (2008) A Fault prediction model with limited fault
data to improve test process. In: PROFES 2008, LNCS 5089, pp
244-257

10. Catal C (2011) Software fault prediction: a literature review and
current trends. Expert Syst Appl 38:4626-4636

11. Catal C, Alan O, Balkan K (2011) Class noise detection based on
software metrics and ROC curves. Inf Sci 181(21):4867-4877

12. Challagulla VU, Bastani FB, Yen I, Paul RA (2005) Empirical
assessment of machine learning based software defect prediction
techniques. In: Tenth IEEE international workshop on object-
oriented real-time dependable systems, pp 263-270

13. Chandrashekar G, Sahin F (2014) A survey on feature selection
methods. Comput Electr Eng 40(1):16-28

14. Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE,
synthetic minority over-sampling technique. J Artif Intell Res
16:321-357

15. Chidamber S, Kemerer C (1994) A metrics suite for object oriented
design. IEEE Trans Softw Eng 20(6):476-493

16. Daly J, Brooks A, Miller J, Roper M, Wood M (1996) Evaluating
inheritance depth on the maintainability of object-oriented soft-
ware. Empir Softw Eng 1(2):109-132

17. Dessi N, Pes B (2015) Similarity of feature selection methods: an
empirical study across data intensive classification tasks. Expert
Syst Appl 42(10):4632-4642

18. ElEmam KE, Benlarbi S, Goel N, Rai SN (2001a) The confounding
effect of class size on the validity of object-oriented metrics. IEEE
Trans Softw Eng 27(7):630-648

19. ElEmam KE, Melo W, Machado J (2001b) The prediction of faulty
classes using object-oriented design metrics. J Syst Softw 56:63-75

20. El Emam K, Benlarbi S, Goel N, Melo W, Lounis H, Rai S (2002)
The optimal class size for object-oriented software. IEEE Trans
Softw Eng 28(5):494-509

@ Springer

http://arxiv.org/abs/1705.03697

216

R. Shatnawi

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Erni K, Lewerentz C (1996) Applying design-metrics to object-
oriented frameworks. In: Proceedings of the third international
software metrics symposium. Society Press, pp 25-26

Fawcett T (2004) ROC graphs, notes and practical considerations
for researchers. Technical report, HP Laboratories, Page Mill Road,
Palo Alto, CA

Ferreira KAM, Bigonha M, Bigonha R, Mendes L, Almeida H
(2012) Identifying thresholds for object-oriented software metrics.
J Syst Softw 85:244-257

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refac-
toring: improving the design of existing code

Gao K, Khoshgoftaar K, Wang H, Seliya N (2011) Choosing soft-
ware metrics for defect prediction: an investigation on feature
selection techniques. Softw Pract Exp 41(5):579-606

Gondra I (2008) Applying machine learning to software fault-
proneness prediction. J Syst Softw 81(2):186-195

Gronback RC (2003) Software remodeling: improving design and
implementation quality, using audits, metrics and refactoring in
Borland Together ControlCenter, A Borland White Paper
Gyimothy T, Ferenc R, Siket I (2005) Empirical validation of
object-oriented metrics on open source software for fault predic-
tion. IEEE Trans Softw Eng 31(10):897-910

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I
(2009) The WEKA data mining software, an update. Spec Interest
Group Knowl Discov Data Min Explor Newsl 11(1):10-18
Harrison R, Counsell S, Nithi R (2000) Experimental assessment
of the effect of inheritance on the maintainability of object-oriented
systems. J Syst Softw 52(2):173-179

Hosmer D, Lemeshow S (2000) Applied logistic regression, 2nd
edn. Wiley, New York

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A system-
atic literature review on fault prediction performance in software
engineering. IEEE Trans Softw Eng 38(6):1276-1304

Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault
prediction models. Empir Softw Eng 13:561-595

John G, Langley P (1995) Estimating continuous distributions in
Bayesian classifiers. In: Proceedings of the eleventh conference on
uncertainty in artificial intelligence. Morgan Kaufmann Publishers,
San Mateo, pp 338-345

Jureczko M, Madeyski L (2010) Towards identifying software
project clusters with regard to defect prediction. In: Proceedings of
the 6th international conference on predictive models in software
engineering, pp 1-10

Jureczko M, Spinellis D (2010) Using object-oriented design
metrics to predict software defects. In: Proceedings of the Sth
international conference on dependability of computer systems,
pp 69-81

Khoshgoftaar T, Seliya N (2004) Comparative assessment of soft-
ware quality classification techniques, an empirical case study.
Empir Softw Eng 9(3):229-257

Khoshgoftaar TM, Kehan G, Seliya N (2010) Attribute Selection
and imbalanced data: problems in software defect prediction. In:
Proceedings of the 22nd IEEE international conference on tools
with artificial intelligence (ICTAI), pp 137-144

Koru AG, El Emam K, Zhang D, Liu H, Mathew D (2008) Theory
of relative defect proneness. Empir Softw Eng 13:473—498

Kubat M, Matwin S (1997) Addressing the curse of imbalanced
training sets: one-sided selection. In: Proceedings of the fourteenth
international conference on machine learning, pp 179-186
Kalousis A, Prados J, Hilario M (2007) Stability of feature selection
algorithms: a study on high-dimensional spaces. Knowl Inf Syst
12(1):95-116

Ma Y, Cukic B (2007) Adequate evaluation of quality models in
software engineering studies. In: International workshop on pre-
dictor models in software engineering, p 1

@ Springer

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Marcus A, Poshyvanyk D, Ferenc R (2008) Using the conceptual
cohesion of classes for fault prediction in object-oriented systems.
IEEE Trans Softw Eng 34(2):287-300

Marinescu R (2002) Measurement and quality in object-oriented
design. Ph.D. thesis, Politehnica University of Timisoara
McCabe Software (2012) Using code quality metrics in
management of outsourced development and maintenance,
white paper. http://www.mccabe.com/pdf/McCabeCodeQua
lityMetrics-OutsourcedDev.pdf. Accessed Nov 2012

Menzies T, DiStefano J, Orrego A, Chapman R (2004) Assess-
ing predictors of software defects. In: Predictive software models
workshop

Mertik M, Lenic M, Stiglic G, Kokol P (2006) Estimating software
quality with advanced data mining techniques. In: International
conference on software engineering advances, p 19

Olague H, Etzkorn L, Gholston S, Quattlebaum S (2007) Empirical
validation of three software metrics suites to predict fault-proneness
of object-oriented classes developed using highly iterative or
agile software development processes. IEEE Trans Softw Eng
33(8):402-419

Prechelt L, Unger B, Philippsen M, Tichy W (2003) A controlled
experiment on inheritance depth as a cost factor for code mainte-
nance. J Syst Softw 65:115-126

Quinlan JR (1993) C4.5, Programs for machine learning. Morgan
Kaufmann, San Mateo

Riquelme JC, Ruiz R, Rodri guez D, Moreno J (2008) Finding
defective modules from highly unbalanced datasets. Actas del 8°
taller sobre el apoyo a la decisié n en ingenieri a del software, pp
67-74

Rosenberg LH, Stapko R, Gallo A (1999) Risk-based object ori-
ented testing. In: 24th Annual software engineering workshop,
Goddard Space Flight Center

Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2008)
Building useful models from imbalanced data with sampling and
boosting. In: Proceedings of the twenty-first international FLAIRS
conference, pp 206-311

Shatnawi R, Li W (2008) The effectiveness of software metrics in
identifying error-prone classes in post-release software evolution
process. J Syst Softw 81(11):1868—1882

Shatnawi RA (2010) Quantitative investigation of the acceptable
risk levels of object-oriented metrics in open-source systems. IEEE
Trans Softw Eng 36(2):216-225

Shatnawi R, Li W, Swain J, Newman T (2010) Finding software
metrics threshold values using ROC curves. J Softw Maint Evol
Res Pract 22(1):1-16

Van Hulse J, Khoshgoftaar TM, Napolitano A (2007) Experimental
perspectives on learning from imbalanced data. In: Proceedings of
the 24th international conference on machine learning, Corvallis,
OR, pp 935-942

Wang H, Khoshgoftaar TM, Seliya N (2011) How many software
metrics should be selected for defect prediction? In: Murray RC,
McCarthy, PM (eds) FLAIRS conference. AAAI Press

Wang S, Yao X (2013) Using class imbalance learning for software
defect prediction. IEEE Trans Reliab 62(2):434—443

XLStat, Creating an ROC curve and identify the optimal
threshold value for a detection method. http://www.xlstat.com/
en/learning-center/tutorials/creating-an-roc-curve-and-identity-
the-optimal-threshold- value- for-a-detection-method.html.
Accessed 8/2/2014

Yan Z, Chen X, Guo P (2010) Software defect prediction using
fuzzy support vector regression. In: International symposium on
neural networks. Springer, Berlin, pp 17-24

Yu Q, Jiang S, Zang Y (2017) The performance stability of defect
prediction models with class imbalance: an empirical study. IEICE
Trans Inf Syst E100(2):265-272

http://www.mccabe.com/pdf/McCabeCodeQualityMetrics-OutsourcedDev.pdf
http://www.mccabe.com/pdf/McCabeCodeQualityMetrics-OutsourcedDev.pdf
http://www.xlstat.com/en/learning-center/tutorials/creating-an-roc-curve-and-identify-the-optimal-threshold-value-for-a-detection-method.html
http://www.xlstat.com/en/learning-center/tutorials/creating-an-roc-curve-and-identify-the-optimal-threshold-value-for-a-detection-method.html
http://www.xlstat.com/en/learning-center/tutorials/creating-an-roc-curve-and-identify-the-optimal-threshold-value-for-a-detection-method.html

The application of ROC analysis in threshold identification, data imbalance and metrics... 217

63. Zhou Y, Leung H (2006) Empirical analysis of object-oriented 64. Zweig M, Campbell G (1993) Receiver-operating characteristic
design metrics for predicting high and low severity faults. IEEE (ROC) plots, a fundamental evaluation tool in clinical medicine.
Trans Softw Eng 32(10):771-789 Clinl Chem 39(4):561-577

@ Springer

	The application of ROC analysis in threshold identification, data imbalance and metrics selection for software fault prediction
	Abstract
	1 Introduction
	2 Related work
	3 Experimental design
	3.1 Area under the curve (AUC)
	3.2 The Chidamber and Kemerer metrics
	3.3 Research objectives
	3.4 Data sources
	3.5 Feature selection approaches
	3.6 Classification models

	4 Results and analysis
	4.1 ROC Analysis and Identification of Threshold Values
	4.1.1 WMC metric
	4.1.2 CBO metric
	4.1.3 NOC metric
	4.1.4 DIT metric
	4.1.5 RFC metric
	4.1.6 LCOM metric
	4.1.7 ROC application in god classes identification

	4.2 ROC analysis after sampling
	4.3 Feature selection using ROC

	5 Limitations and threats to validity
	6 Conclusion
	References

