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Abstract For wireless sensor networks, monitoring large
inaccessible areas where deterministic node deployment is
not possible, self-organized techniques are in demand to
cover an area using optimal number of nodes. In this paper,
given an initial random deployment of mobile sensor nodes,
we propose a simple and novel technique for self-organized
node movement to satisfy the coverage of the given region
of interest using a least number of nodes, such that the max-
imum node displacement is minimized. We present a simple
centralized algorithm and also a distributed version of it for
node placement.Moreover, in case of a node failure, a distrib-
uted fault recovery algorithm is proposed to replace it locally
utilizing the available free nodes. Analysis, simulation, and
comparison studies show that the proposed algorithms with
less neighborhood information result in significant improve-
ment in terms of average and maximum displacement of a
node, rounds of communication, and number of active nodes.

Keywords Area coverage · Node deployment · Sensing
radius · Wireless sensor networks · Hexagonal tessellation

1 Introduction

In many applications of pervasive computing from home
and health care to environment monitoring and intelligent
transport systems, it is often required to place the sensors
or computing nodes or access points to offer services over
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a predefined area. In wireless sensor networks (WSN), a
large number of sensor nodes are spatially distributed over
an area to collect ground data for various purposes such
as habitat and ecosystem monitoring, weather forecasting,
smart health-care technologies, precision agriculture, home-
land security and surveillance. For all these applications,
some active nodes should always cover the area to be moni-
tored. Hence, for these networks, the coverage problem has
emerged as an important issue to be investigated. So far,many
authors have modeled the coverage problem in various ways,
but most of them considered static nodes, where basically the
region is overdeployed and a minimal set of nodes is selected
to remain active to ensure coverage. In various forms, the
problem is NP-hard, and it is more challenging to achieve
even near-optimal solutions with limited amount of compu-
tation, communication and energy in the tiny sensor nodes.

In some cases, like mobile surveillance, mobile ad hoc
networks, wireless sensor networks, etc., the nodes may
have limited mobility, though displacement also needs some
energy and should be kept minimum to save energy. To
avoid message overhead for information gathering in a cen-
tral node, these networks are preferred to be self-organized,
so that nodes can take decision based on their local informa-
tion only.

In this paper, given an initial random deployment of n
mobile sensor nodes over a 2-D region, the area is dynami-
cally tessellated by regular hexagons, and a few target points
are identified to be filled up by an optimal number of nodes
mutually exclusively such that the maximum node displace-
ment is minimized. In WSNs, maximum node displacement
is an important parameter. Since node movement exhausts
energy, minimization of maximum node displacement helps
to enhance the network lifetime. An O(m2 + n) centralized
heuristic and a simple self-organized distributed algorithm
with O(d · k2) computation in each node are developed to
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satisfy the coverage of a given region of interest, where m is
the total number of target points, d is the maximum degree
of a node, and k is an application parameter, a small integer,
usually 1 or 2. After deployment, each node computes its
nearby target points and respective distances. Next, a unique
node is selected in a distributed fashion based on local posi-
tion information only, to fill up each target point mutually
exclusively, such that the maximum displacement of nodes
is minimized to make the procedure energy efficient. The set
of selected nodes is made active to cover the area. Compared
to theworks in [2], the computation involved in this algorithm
is significantly simple; it requires no location information of
its neighbors and converges faster in two rounds only. Sim-
ulation results show that the proposed method outperforms
the earlier techniques in terms of number of nodes activated,
computation and communication rounds, andfinally the aver-
age and maximum displacement experienced by the nodes.

The rest of the paper is organized as follows. Sec-
tion 2 presents the literature survey and our contribution.
Section 3 defines the problem. Section 4 presents the
movement-assisted centralized anddistributed algorithms for
self-deployment. Section 5 briefly describes the fault recov-
ery technique. Section 6 evaluates the performance of the
proposed algorithmsby simulation. Finally, Sect. 7 concludes
the paper.

2 Related work

For deterministic node deployment, centralized algorithms
can be followed to maximize the area coverage assuming
the area covered by each node to be circular, square, etc.
[11,16,17]. Many authors solved the coverage problem by
deterministic node placement techniques to maximize the
network lifetime and to minimize the application-specific
total cost. In paper [4], the authors investigated the node
placement problem and formulated a constrained multi-
variable nonlinear programming problem to determine the
locations of the nodes and data transmission pattern to opti-
mize the network lifetime and the total power consumption.

The authors in [12,18] proposed random and coordinated
coverage algorithms for large-scale WSNs. But unfortu-
nately, in many potential working areas, such as in remote
harsh environments, disaster affected regions, toxic regions,
etc., sensor deployment cannot be done deterministically.

For random node deployment, virtual partitioning is often
used to decompose the query region into square grid blocks
and the coverage problem of each block is investigated
[7,13,14]. But it is evident that whether the node deployment
is deterministic or random, there is little scope of improving
the coverage once the nodes are spatially distributed if they
are static. Hence, mobility-assisted node deployment for effi-
cient coverage has emerged as a more challenging problem.

Many approaches have been proposed so far, based on
virtual force [6,22,23,27], swarm intelligence [8,10], and
computational geometry [19], or some combination of the
above approaches [5,15,20].

In [24], a movement-assisted node placement method is
proposed based on van der Waal’s force where the relation-
ship of adjacency of nodes was established by Delaunay
triangulation and the force is calculated to produce accelera-
tion for nodes tomove. However, the computation involved is
complex and takes a large number of iterations to converge.
The authors in [2] proposed a distributed algorithm for the
autonomous deployment of mobile sensors called push and
pull, where sensors coordinate their movements to achieve a
complete and uniform coverage. In [19], based on Voronoi
diagram, the authors designed and evaluated three distributed
self-deployment algorithms for controlling the movement of
sensors to achieve coverage. In these protocols, the sensors
move iteratively, eventually reaching the final destination.
These iterative procedures are computation intensive, may
cause longer displacement of nodes, and may take longer
time to converge as well. Moreover, each node requires the
location information of its every neighbor to execute the
algorithm demanding more message overhead, energy, and
memory.

Our contribution In this paper, given a random node deploy-
ment over a 2-D region, we focus on a simplemethod to cover
the region by a minimum number of sensor nodes such that
the maximum displacement of nodes is minimized to save
energy in individual nodes for longer life of the network.
Here, we follow a hexagonal tessellation pattern and attempt
to place a node at each vertex and the center of each hexagon
termed here as target points. We first propose an O(m2 + n)

centralized greedy heuristic, where m and n are the total
number of target points and number of nodes, respectively,
and m � n. In the centralized algorithm, we always try
to fill a target point Ti by selecting a nearest node si such
that the maximum displacement is minimized. Next, we pro-
pose a lightweight self-organized distributed algorithm with
O(d · k2) computation in each node, where d is the maxi-
mum degree of a node and k is a parameter. Since, by the
proposed method, the area is minimally covered, fault tol-
erance or fault recovery is an important issue and is to be
addressed with due care. In wireless sensor networks, nodes
often fail due to low energy, hardware degradation, environ-
mental changes, inaccurate readings, etc. If any active node
fails to work, it results in an uncovered region and should be
substituted immediately. To alleviate this problem, we pro-
pose a distributed fault recovery algorithm, by which idle
nodes locally sense the unfilled target point in its neighbor-
hood and execute a distributed algorithm to fill the target
point. We compare our proposed centralized and distributed
algorithms with the algorithm proposed in [2]. Comparison
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studies show that the proposed algorithm with less neighbor-
hood information results in significant improvement in terms
of average and maximum displacement of a node, rounds of
communication, and number of active nodes, respectively.

3 Proposed model and initialization

3.1 Problem overview

Let a set of n nodes S = {s1, s2, . . . , sn} be deployed ran-
domly over a 2-D region A. It is assumed that nodes are
homogeneous and cover a circular area with fixed sensing
radius r . Now, the question is what is the minimum number
of nodes to cover the given area A. To find the answer, we
concentrate on the optimal placement ofminimumnumber of
nodes to cover the area, such that themaximum displacement
of a node is minimized.

3.2 Area tessellation

To cover a given rectilinear area by homogeneous nodes,
each with fixed sensing radius r , it is evident that if nodes
can be placed deterministically at the target points as shown
in Fig. 1, the area is fully covered using a minimum number
of nodes. Here, the nodes are placed in such a way that the
area is fully covered and the overlapped region is minimum.
The positions of all the nodes basically defines a set of regular
hexagons of side

√
3r that tessellates the area as shown in

Fig. 2.

Definition 1 The sensor nodes are placed exactly on the ver-
tices and the centers (where the principal diagonals meet) of
the regular hexagons, termed here as the target points, as
shown in Fig. 1.

In [3], it is proved that such node placement technique
maximizes the area coverage using a minimum number of
nodes. In this case, the minimum number of nodes to be
placed is the same as the total number of target points and
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Fig. 1 Target points
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Fig. 2 Hexagons with target points over the given area A

can be computed easily as a function of the sensing radius r
as shown below.

Let A be a 2-D axis-parallel rectangle L×W with (0, 0) as
the bottom-left corner point, termed here as the origin of area
A, as shown in Fig. 2. For any arbitrary bottom-left corner
point (x0, y0), the origin is to be translated appropriately. The
area A is tessellated with regular hexagons of side

√
3r . It

is to be noted that the target points lie along some rows and
columns parallel to the x-axis and y-axis, respectively. Rows
are separated by a distance:

δw =
√
3r2 − 3r2

4
= 3

2
r.

Similarly, columns are separated by a distance:

δl =
√
3

2
r.

Hence, given an area A, and assuming that L = p.δl and
W = q.δw, where p and q are integers, from Fig. 2, it is
clear that each even row-i starts with a target point (0, i.δw),
whereas each odd row- j starts with a target point (δl, j.δw),
1 ≤ i, j < q. Hence given the area A, the total number of
target points is

m =
(

2L√
3r

+ 1

)
·
(
2W

3r
+ 1

)
.

Therefore, to cover the area A, the number of nodes to be
deployed is n ≥ m to fill up the target points exclusively.
However, in practice, with random distribution of nodes, the
area to be monitored is overdeployed, and n � m provid-
ing sufficient redundant nodes to ensure coverage and fault
tolerance.

Remark 1 It is interesting to see that the node distribution
shown inFig. 1 essentially covers larger area A′ : (L+√

2r)×
W , as shown in Fig. 3, without hole.

123



230 D. Saha, N. Das
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Fig. 3 Area extension

However, in this paper, the algorithms compute the position
of the target points based on the origin only, without any
dependence on L orW , as has been explained in the following
section.

3.3 Nearest target point

Given the origin of a 2-D area A, the locations of the specific
target points are to be determined so that appropriate nodes
can move toward it for coverage. Distributed procedures are
proposed to avoid the largemessage overhead associatedwith
information gathering at a particular node. Let a set of n
nodes S = {s1, s2, . . . , sn} be deployed randomly over the
2-D region A. Each node-i only have the information of its
physical location (xi , yi ) and the sensing range r . Now, to
estimate the location of its nearest target point, it should have
the knowledge of the origin, i.e., the bottom-left point of the
area. The sink may directly broadcast it to all nodes when
it is a static point. In case the area of interest is dynamic,
or depends on the deployment, the nodes may determine the
origin as the point with minimum abscissa and ordinate of
all the nodes deployed as described below. Here, during ini-
tialization, each node-i broadcasts its own location (xi , yi )
and maintains two variables initialized as xmin = xi and
ymin = yi , to keep the minimum abscissa and ordinate of all
of the deployed nodes. It receives the messages with loca-
tions (x j , y j ) from other nodes- j , and if x j ≤ xmin and/or
y j ≤ ymin the values of xmin (ymin) are changed appropri-
ately, and if there is any update, the new value is broadcast
again, otherwise it is ignored. In this way, after sufficient
time, say T , all the nodes will converge to the same value of
xmin and ymin and consider it as the origin of the area under
consideration. In case of an event, the affected nodes may
define the event area in terms of this origin dynamically. In
the worst case, each nodemay have to transmit nmessages to
complete the procedure. To minimize the message commu-
nication overhead, instead of using all nodes, the boundary
nodes only may perform the task. The boundary nodes com-

pute the origin and broadcast in the network, so that all nodes
may know the origin information and depending upon the ori-
gin it computes its target point. Note that the boundary nodes
can be found by any of the techniques proposed in [9,25], or
[21].

After the initialization phase, the nearest target point is
to be computed by each node. We assume that each node
knows the origin (xmin, ymin) of A. Next, each node i at loca-
tion (xi , yi ), attempts to find out its nearest target point. It
computes

ty(i) = NI

(
yi − ymin

3
2r

)

and

tx (i) = NI

(
xi − xmin√

3r

)
when ty(i) is even,

= |(x − xmin) −
√
3
2 r |√

3r
otherwise.

Here, NI(x) denotes the nearest integer value of x . Next, it
finds the location of its nearest target point (xT i , yT i ) as:

yT i = ty(i) · 3
2
r

xT i = tx (i) · √
3r , when ty(i) is even,

= tx (i) · √
3r +

√
3r

2
otherwise.

Remark 2 Once the origin of the region of interest is known,
nodes can estimate their nearest target points independent of
the dimensions of area A, i.e., L or W .

Lemma 1 After deployment, each node may have one, two,
or at most three nearest target points.

Proof Given the origin of the area A, the positions of the
target points Ti , and hence its circular covered area Ci has
beenfixed.Now, initially, a node si within a circleCi around a
target point Ti may lie either in the region (a) not overlapped
by any adjacent circles, and hence will have just a single
nearest target point Ti , or, (b) within the region overlapped
by an adjacent circle C j , around a target point Tj , and may
be equidistant from both Ti and Tj , and thus have two nearest
target points Ti , and Tj , or, (c) it may lie on the intersection
point of three adjacent circles having three nearest target
points, respectively. �	

3.4 Region of k-influence

Ideally, any node may compete for any target point to cover.
However, it increases the message overhead to co-ordinate

123



Self-organized area coverage in wireless sensor networks by limited node mobility 231
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Fig. 4 Region of k-influence of target point Ti

among nodes that are far away and requires longer node dis-
placement. Unless the network is very sparse, we may limit
the influence of a target point within a region around it, with-
out affecting the optimality of the solution.

Definition 2 Two target points are adjacent or one distance
apart, if their circular covered areas are overlapping.

Definition 3 The target points at distance k from a target
point Ti lie on a hexagon termed as ring-k of Ti , as shown in
Fig. 4.

Definition 4 Region of k-influence of a target point Ti is
defined as the area covered by ring-k of Ti , as shown in
Fig. 4, for k ≥ 1.

Remark 3 For k = 0, the region of k-influence of a target Ti
is the circle Ci of radius r around Ti , i.e., the area covered
by Ti only, as shown in Fig. 4.

Now, let us consider that for a target point Ti , only the nodes
within its region of k-influence can compete, where k is a
small integer. It is evident that depending on the node density,
wemay vary the value of k to achieve a satisfactory coverage.
It is easy to see that the total number of target points within
the region of k-influence of any target point Ti is given by:

N (k) = 1 for k = 0,

N (k) = 1 + 6 + 12 + · · · + (k − 1) · 6
= 3k2 + 3k + 1, for k ≥ 1.

Theorem 1 If there exists at least N (k) number of sensor
nodes within the region of k-influence of each target point
Ti , full coverage without any hole can be achieved with an
upper bound of r for k = 0 and k

√
3r , for k ≥ 1 on node

displacement.

Proof If within the region of k-influence of every target point
Ti , there exists at least N (k) number of sensor nodes, it is
evident that each Ti may get at least one node to fill it up,
since the regionof k-influenceof a target pointTi have exactly
N (k) number of target points. Now fromFig. 4, it is clear that
to fill up the target point Ti , the maximum distance a node
within the region of k-influence of a target point Ti may have
to move is only r for k = 0, and k

√
3r otherwise. Hence, the

proof. �	

3.5 Role of communication range

So far, we have mentioned the sensing range of the sensor
node-i that defines the circular area with radius r , centered
at node-i to be the area covered by node-i . When a node
executes a distributed algorithm, after some computation, it
co-ordinates with its neighbors by communication. Hence,
it is very important to decide the influence of its action, or
its neighborhood with which it can communicate directly.
For that, we should specify the communication range rc of a
node-i which indicates that when a node-i transmits, a node-
j can receive the packet if and only if the distance between
the nodes is d(i, j) ≤ rc. It is important to note that for
all practical purposes, communication range rc is indepen-
dent of the sensing range r , since rc is determined by the
transceiver hardware of node, and on the other hand, r is
the property of the sensing hardware. However, both cov-
erage and connectivity are equally important for the proper
functioning of wireless sensor networks. It has been already
proved that a node distribution satisfying the coverage con-
straint also guarantees connectedness if rc ≥ 2r [26]. Here,
it is evident that as rc increases, a node may directly com-
municate with a larger number of neighbors to fill up a target
point collaboratively, to result in a near optimal solution. In
case of sparse networks, for better coverage, we may need
to apply larger values of k for the region of k-influence to
achieve better coverage. But larger value of k will demand
either larger value of rc, or more number of communication
rounds to exchange messages. Here, we assume that for the
given value of k, the value of rc is sufficiently large, so that
all the nodes within the region of k-influence of each Ti may
communicate directly.

For example with k = 1, each node should cooperate with
its neighbor nodes which are within a distance of 2

√
3r , as

shown in Fig. 5. Hence, to communicate with all these nodes
directly, rc ≥ 2

√
3r .
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√
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√
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si

sj

Fig. 5 Communication range between node si and s j

4 Movement-assisted algorithms for area coverage

Given a random deployment of n nodes over a region withm
target points, n � m, our objective is to place unique nodes
to each target point minimally such that the maximum node
displacement is minimized.

4.1 Centralized algorithm

To select unique node for each target, we consider a bipartite
graph G(T , S, E), where T , S, and E are the set of target
points and sensor nodes, and a set of edges, respectively, and
each edge e(Ti , si ) is associated with a weight d(Ti , si ), the
Euclidean distance between node si , and target point Ti , if
and only if d(Ti , si ) ≤ k.

√
3r for a given k, as shown in

Fig. 6.
It is evident that the problem of finding unique nodes for

each target point is same as the classical problem of finding
maximummatching for the bipartite graphG, to select a set of
edges such that every vertex of the graph is incident to exactly
one edge of the matching. This problem can be solved by [1]
that runs in O(|E | · √

n) time in the worst case, where |E |
is the number of edges in the graph, and n is the number of
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Fig. 6 Bipartite graph G(T , S, E)

vertices of the graph. However, our problem is even harder.
Since over and above the maximum matching, we want to
minimize the maximum displacement of a node, i.e., to keep
the maximum edge weight minimum in the matching.

Here, we propose a centralized greedy heuristic to fill the
target points assuming that the global network information is
available to a central node. In this algorithm, each target point
Ti and each node si are initialized by node_status(si ) = 0,
and target_status(Ti ) = 0, to signify that si is free and Ti is
unfilled.When a node si gets selected for a target point Ti , the
status of both will be 1. Next, we make a list of nodes, N [Ti ]
for each target point Ti . Here, all the nodes located within the
region of k-influence of Ti are included in N [Ti ], sorted by
Euclidean distance from Ti . Now for each target point Ti , we
select a unique node si such that the Euclidean distance of si
from Ti is the maximum among all other target points with
the nearest node si . Then, Ti will be filled by the node si and
si will be deleted from all N [Tj ] of the unfilled target points.
This process is repeated until either target_status(Tj ) = 1
or N [Tj ] = φ, ∀ j, 1 ≤ j ≤ m.

The details of the procedure Algorithm 1 are presented
below.

Algorithm 1: Centralized algorithm
Input: Target points : m; Sensor nodes: n; node_status; target_status; k;
Output: Filled target points;
for each node si do

node_status[si ] ← 0;

for each target point Ti do
target_status[Ti ] ← 0;
f lag[Ti ] ← 0;

for each target point Ti do
for each node si do

if Ti lies within the region of k-influence then
include node si in N [Ti ] in sorted ascending order (by Euclidean
distance d(Ti , si ));

terminate ← f alse;
while terminate == f alse do

for each target point Ti do
if target_status[Ti ] == 0 and N [Ti ] �= {φ} then

take first node si ∈ N [Ti ];
for each target point Tj do

take first node s j ∈ N [Tj ];
if si == s j then

if d(si , Ti ) < d(si , Tj ) then
f lag[Ti ] ← 1;

if f lag(Ti == 0) then
target_status[Ti ] ← 1;
node_status[si ] ← 1;

else
Remove si from N [Ti ];

for each target point Ti do
if target_status[Ti ] == 1 then

terminate ← true;

Correctness and complexity analysis By hexagonal tessella-
tion,weplace at least one node at each vertex and center of the
hexagon termed as target points. Now for each target point,
a unique node is selected for the placement by Algorithm 1
that attempts to minimize the maximum possible node dis-
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placement, by selecting a target point Ti nearest to a node si ,
but at maximum distance. There may exist a node s j at less
distance, but if s j fills Ti , si will attempt to fill another target
point Tj , where d(Tj , si ) ≥ d(Ti , si ), thereby increasing the
maximum displacement of a node.When all the target points
are filled, the algorithm is terminated. Note that if any tar-
get point Ti remains unfilled that means the total number of
deployed sensor nodes is less than the total number of target
points within the k-influence region of Ti . The number of
active sensor nodes to cover the region is always bounded by
the total number of target points.

In the centralized algorithm, the initialization phase for
n nodes and m target points takes O(n) and O(m) time,
respectively. Next, for each target point Ti , the process of
making the list of nodes N [Ti ] takes O(m.k2 log k) time,
assuming a uniform node density and considering a region
of k-influence. Selection of a suitable node for each target
point takes O(m2) time. Therefore, the total computation
time is O(m2 + n).

4.2 Distributed algorithm

In wireless sensor networks, since nodes have limited com-
puting and communication capabilities, it is always better to
adopt distributed algorithms where nodes may take decisions
with simple computation based on their local information
only to have a global solution.

Algorithm 2: Target point computation
Input: node location: (x, y), Sensing radius: r
Output: target point: (xT i , yT i )
δw ← 3

2 r ;

h ← √
3r ;

ty ← N I ( y
δw

);
if ty is even number then

tx ← N I ( xh );
xT i ← tx × h;

else
tx ← |x − h

2 |;
tx ← N I ( txh );

xT i ← (tx × h) + h
2 ;

yT i ← ty × δw;

Here initially, each node i remains in an active state. It is
assumed that each node i knows its location (xi , yi ) and the
origin (xmin, ymin) of the area to be covered and maintains a
list NL[i] of its neighbors.

In the first round, each node-i assumes a virtual tessella-
tion of the area with hexagonal tiles and computes its nearest
target point Ti (xT i , yT i ) by Algorithm 2. Next, node i com-
putes all target points within the region of k-influence of
Ti , and includes all the target points in a list T L[i], and
sorts them according to the distance from it. Now, node-i
takes the nearest target point (xi1 , yi1) ∈ T L[i] and broad-
casts a target ((xi1 , yi1), di )message, where di is its distance
from the second nearest target point in T L[i]. Next, node-i

waits till it receives target messages from all of its neigh-
bors in NL[i]. Then, it checks only those target messages
containing the same target point. If it finds that its di is
maximum from all its neighbors, node-i broadcasts selected
(i, Ti (x, y))message and moves toward the target point. The
case of tie may be resolved by node-id. If a node i receives a
selected ( j, Tj (x, y)) message from node j , then it removes
j from NL[i] and the target point Tj (x, y) from T L[i]. This
procedure is repeated until T L[i] or NL[i] is empty. Algo-
rithm 4, presented below, describes the sequence of steps of
the procedure.

Algorithm 3: Node selection for target point
Input: node: i
Output: movement: true or false
movement=true;
for each neighbor node j ∈ NL[i] do

if receives (xT j , yT j , d j ) message then
if (xT i , yT i ) == (xT j , yT j ) // same target point then

if di < d j then
movement=false;

if di == d j then
if i > j then

movement=false;

Algorithm 4: Distributed algorithm
Input: node i , NL[i], movement = true, k;
Output: Active or idle mode;
for each node i do

Compute nearest target point (xT i , yT i ) (call Algorithm 2) and compute
all other target points within the region of k-influence. Include all the
target points in T L[i] sorted by distance D[i];
for T L[i] �= {φ} do

Take the first point (xT i , yT i ) and di from T L[i] andD[i + 1]
respectively;
Broadcasts target ((xT i , yT i ), di ) message;
Wait and listen until receives all target message from the neighbors in
NL[i];
Call Algorithm 3;
if movement==true then

Move toward target point (xT i , yT i );
Broadcasts selected(i, (xT i , yT i ) message;

if ST ATUS(i) == 1 then
Goto active Mode;
Free T L[i] and Di ;
Terminate;

else
Remove target point (xT i , yT i ) from T L[i];
if receives selected( j, (xT j , yT j )) message then

Remove target point (xT j , yT j ) from T L[i];
Remove j from NL[i];

Terminate and goto idle Mode;

4.3 Correctness and complexity analysis

From the outline of the distributed algorithm, it is evident
that each node i first computes the nearest target point Ti
and next it computes all other target points within the region
of k-influence of Ti and keeps all the target points in its
target list T L[i] in sorted order (by distance). Next, each
node si broadcasts its nearest target point Ti along with its
distance di from the second nearest target point. If more than
one node computes for the same target point, the node at
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maximum distance di is selected, to minimize the maximum
displacement. If Tj is filled by other neighbor nodes, it is
removed from T L[i]. If a node i finds that T L[i] is empty,
it goes to idle mode, otherwise it attempts to fill the target
point in T L[i]. Note that, in the worst case, each node may
attempt N (k) times for filling a target point. Therefore, the
process takes at most N (k), i.e., O(k2) rounds to terminate.

4.3.1 Time complexity

It is evident thatAlgorithm 2 is computed in constant time. To
make a decision for selecting a unique node for each target
point, each nodewaits until it receives all the targetmessages
from its d neighbors. Each node takes O(d) time to get the
maximum distance value from its d neighbors. Therefore,
Algorithm 3 executes in O(d) time, and d is the maximum
number of neighbors of a node. Finally, each node attempts
to fill up only N (k) target points. Therefore, the computation
in each node (Algorithm 4) is O(d · k2), where k is a small
integer, 1 or 2.

4.3.2 Message complexity

In the distributed algorithm, each node broadcasts at most
O(k2) target messages considering a region of k-influence,
and only one selectedmessage. Therefore, per node, at most
O(k2) messages are needed to complete the procedure. It is
to be noted that for overdeployed networks, the value of k is
1 or 2 only.

4.4 Example

Let us consider a set of nine nodes, {s1, s2, s3, . . . , s9}
deployed over a 2-D region as shown in Fig. 7. Note that
initially, circle C1 with center t1 and radius r is empty. Each
node si , where 1 ≤ i ≤ 9, computes the nearest target point
and also all neighbor target points within the region of k-
influence of Ti , and includes them in its target list T L[ni ] in
sorted order. For k = 1, nodes have the following target lists:

T L[s1] : {t7, t4, t3, t6};
T L[s2] : {t1, t4, t6, t3};
T L[s3] : {t6, t4, t1, t3};
T L[s4] : {t1, t4, t5, t2};
T L[s5] : {t1, t2, t5, t7, t6, t3, t4};
T L[s6] : {t6, t4, t5, t7};
T L[s7] : {t1, t4, t2, t5};
T L[s8] : {t6, t4, t5, t7};
T L[s9] : {t4, t2, t7, t5}.

We assume that all nodes within the region of k-influence
are directly connected. In round one, each node broadcasts

t1 t2

t3 t4 t5

t6 t7

Sensor node
Target point

s1

s9
s3

s6

s4

s8

s2 s5

s7

t1 t2

t3 t4 t5

t6 t7

s3 s4

s8

s2

s5
s7

s9

s6 s1

After node placement

Node deployment

C1

Fig. 7 Placement of nodes

a target message and waits for the target messages from its
neighbors.

In this example, node s1 has the target point t7, and there
is no other claimant for the same target. Therefore, node s1
moves toward t7. On the other hand, nodes s2, s4, s5 and s7
report the same target point t1, but the next target point dis-
tance for s5 is the largest. So, node s5 moves toward t1. It is to
be noted that after completion of round one, four target points
are filled with nodes except the target points t2, t3 and t5.

In the next round, idle nodes have the following target
lists,

T L[s2] : {t3};
T L[s3] : {t3};
T L[s4] : {t5, t2}.
T L[s7] : {t2, t5}.
T L[s8] : {t5}.

Figure 7 shows the final placement.
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5 Fault detection and recovery

In wireless sensor networks, a node may fail to work due to
low energy, hardware degradation, inaccurate readings, envi-
ronmental changes, etc. Since by the proposed algorithm, the
area is minimally covered with minimum overlapping, if any
active node fails to work, it results in an uncovered region
and should be taken care of immediately. This paper focuses
on the fault recovery problem in case of single or multi-
ple node faults due to energy exhaustion only. To recover
from such failures, it can be assumed that when the resid-
ual energy of a node reaches a threshold, it broadcasts a
recovery message. To handle unexpected failures, each idle
node periodically senses whether the target points within its
region of k-influence are filled or not. If not, it broadcasts a
recovery message. In either case, each idle node broadcasts
a target message and waits for all target messages from its
neighboring idle nodes and executes the algorithm defined
in Algorithm 3 to fill up the empty target point. Algorithm 5
shows the brief outline of the process.

Algorithm 5: Fault recovery algorithm
Input: Node- i , NL[i],movement = true
Output: Active or Idle modes
each Node i periodically sense whether its target point (xT i , yT i ) is filled with
an active node or not;
if (xT i , yT i ) is unfilled then

if status of node i is active then
broadcast recovery(xT i , yT i ) message;

if a free node i receives an recovery((xT j , yT j )) message from node j then
Compute the distance di ;
broadcasts target ((xT i , yT i ), di ) message;
Wait and listen until receives all target message from the neighbors NL[i];
Call Algorithm 3;
if movement==true then

Move toward target point (xT i , yT i );
broadcasts selected(i, (xT i , yT i ) message;
Goto active Mode;

else
Goto Idle Mode;

Terminate;

Complexity In the first step, each node detects the unfilled
target point in constant time. Next, the free node may exe-
cute Algorithm 3 which takes O(d · k2) time, where d is
the maximum degree of a node. Therefore, the computation

complexity in each node is O(d · k2) considering a region of
k-influence. For overdeployed networks, k is a small integer.

6 Simulation results

In our simulation study, we assume that n nodes, 50 ≤ n ≤
400, are distributed randomly over a 500 × 500 square unit
area with radius r = 28.86 unit, such that the side of the
hexagon is 50 unit. We consider the region of k-influence
with k = 2 only, and it is assumed that rc is sufficiently
large such that all nodes within the region of 2-influence are
directly connected. By simulation, the proposed algorithms
are evaluated in terms of coverage, rounds of computation
needed, and displacement of nodes. The graphs show the
average value of 20 runs for 20 independent random deploy-
ments of nodes.

For typical instance, Figs. 8 and 9 show the displacement
of nodes by the centralized and the distributed algorithms,
respectively. It clearly shows that centralized algorithm per-
forms better in terms of average node displacement, as is
expected. However, the maximum node displacement that
we attempt to minimize is comparable in both.

Figure 10 shows the variation in the number of computa-
tion rounds with n, the total number of nodes. With random
node deployment, if no circular region Ci with center at a
target Ti and radius r is empty, the procedure completes in
a single round only. This fact is exactly revealed in Fig. 10.
For n = 100, 150, 200, target points are filled up in two
rounds, whereas for n > 200, the proposed technique takes a
single round only to complete. Figure 11 shows the variation
of coverage percentage with n, the total number of nodes
deployed. With 105 target points, for n = 50, 100, 150 the
coverage percentage is found to be 47, 84.57, and 99.36%
respectively. It gives an idea that how much an area should
be overdeployed to achieve 100% coverage. To compare
the performance with [2], Fig. 12 shows that our proposed
method always terminates in one or two rounds for an overde-
ployed random deployment, whereas the proposed technique
in [2] takes at least four more number of rounds to complete

Fig. 8 Node displacement by centralized algorithm in comparison with the distance of the nearest node
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Fig. 9 Node displacement by distributed algorithm in comparison with the distance of the nearest node

Fig. 10 Number of rounds for filling the target points

Fig. 11 Coverage rate with the number of nodes

their procedure. For instance, with n = 150, and r = 28.86
unit, Fig. 13 shows the distances traversed by each node to
fill up a target point.

In [2], the displacement due to pull or push of a node is
much greater as shown in Fig. 13. Also, the proposed algo-

Fig. 12 Comparison of computational rounds with [2]

Fig. 13 Comparison of average node displacement with [2]

rithms reduce the maximum displacement of a node by more
than 200%, as shown in Fig.14.

7 Conclusion

In this paper, we propose a self-organized node placement
algorithm to cover a given region of interest in wireless sen-
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Fig. 14 Comparison on maximum node displacement with [2]

sor networks. The area is logically tessellated by regular
hexagonal tiles starting from an origin. To get full cover-
age with random deployment of n nodes over a 2D region,
we need to place unique nodes on every target point, which
are essentially the vertices and the centers of the hexagons.
The objective is to place a unique node to each target point,
such that the maximum displacement of a node is minimized
to enhance the network lifetime. We develop an O(m2 + n)

centralized algorithm, where n andm are the total number of
nodes and target points, respectively. With the knowledge of
its own location and the origin, each node executes a simple
self-organized distributed algorithm with O(d · k2) compu-
tation complexity (d is the maximum number of neighbors
of a node) and O(k2) message complexity considering a
region of k-influence, to fill up all the target points mutu-
ally exclusively to minimize the maximum displacement.
In case of failure of nodes, existing free nodes may take
necessary action to fill up the empty target points to make
the system fault tolerant. We evaluate the performance of
our proposed model by simulation. It shows that the pro-
posed algorithm with less neighborhood information results
in significant improvement in terms of average and maxi-
mum displacement of a node, rounds of communication, and
number of active nodes.
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