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Abstract Accurate development effort estimation is a chal-
lenging issue in the management of software projects because
it can considerably affect the planning and scheduling of a
software project. Over the past few years, many algorithmic
and non-algorithmic methods have been proposed to estimate
the development effort in the early stages of project. Due to
simplicity and estimation capability, analogy-based estima-
tion (ABE) method has been widely accepted by researchers
in this area. In spite of the fact that ABE is an efficient esti-
mation method, it suffers from the non-normality and hetero-
geneous nature of software project datasets. Although prior
studies have strived to remedy this issue by weighting, soft
computing, and clustering techniques, the estimate accuracy
is still not convincing and attempts are ongoing to reach more
reliable estimates. The problem is that prior ABE-based stud-
ies have not considered the nature of software projects in the
estimation process. This paper aims to show the effect of
selective project classification and estimation process local-
ization on the performance of ABE. An exhaustive investiga-
tion is conducted based on different development types, orga-
nization types, and development platforms as three underly-
ing attributes in software projects. An evaluation framework
is designed to reveal the ABE performance when it is com-
bined with the proposed classification. A real dataset that
includes 448 software projects is utilized for the evaluation
purposes. The promising results showed that the estimate
accuracy is significantly improved and the estimation process
is considerably expedited if the nature of software projects
is considered in the ABE method.

V. Khatibi Bardsiri (B) · E. Khatibi
Department of Computer Engineering,
Bardsir Branch, Islamic Azad University, Kerman, Iran
e-mail: kvahid2@live.utm.my

Keywords Software projects · Selective classification ·
Effort estimation · Analogy method

1 Introduction

Accurate estimation of development effort has become a
challenging issue in the management of software projects
over the past few years [4,28]. As a matter of fact, the spe-
cial characteristics of software projects make the process of
estimating more difficult than it may seem. The demands
and requirements of software projects are naturally unstable,
software development frameworks and related hardware plat-
forms are changing continuously and the progress of project
is invisible due to logical work. Moreover, unlike other types
of projects (building construction, material production, etc.),
developers are confronted with an intangible product whose
specifications may not be completely obvious at the early
stages of the project.

Due to the above-mentioned problems, numerous stud-
ies have been conducted to find reliable methods to estimate
software development effort at the early stages of software
projects. Researchers are confronted with the major prob-
lem of uncertain information. Since the available informa-
tion is insufficient for use in equations, relations, formulas,
etc., most previous research works in this area have found that
comparison-based estimation is the most adaptable technique
to use for the purposes of software development effort esti-
mation. The selection of previous completed projects similar
in nature to the target project and estimation of effort based
on the effort reported for the selected projects is a widely
accepted procedure. This method is called as analogy-based
estimation (ABE) [39].

ABE is a simple and capable model in the field of soft-
ware development effort estimation. However, the complex-
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ity and non-normality of project attributes decrease the esti-
mate accuracy achieved by this model. Although more than
ten years have passed since the invention of ABE, researchers
are still interested in this model and continue to strive to
improve its performance. In fact, ABE is at center of studies
done in the area of software development effort estimation.

A wide range of statistical techniques and soft computing
methods has been employed in an attempt to increase the
performance of ABE model. Despite improvements in per-
formance, estimate accuracy is still not convincing and there
is no strong agreement as to which individual effort esti-
mation model is the best [19,23]. Consequently, numerous
papers are published in this area every year. The important
issue is that prior studies have not considered the importance
of software projects in the estimation process. In other words,
prior studies have considered software projects as similar to
other types of data and consequently employed techniques
similar to those used to solve other problems.

A comparison between two software projects that are dif-
ferent in underlying attributes is a common mistake fre-
quently seen in the prior studies. In fact, this type of compar-
isons simply leads to based estimates. Recently, researchers
have found that the problem of software development effort
estimation needs to be solved through classification of
projects and localization of estimation process [7,21,32,34].
However, these studies have utilized classical methods for
classification purpose regardless of the nature of projects.
Furthermore, prior studies have relied on regression-based
modes to conduct the localization process.

To consider the nature of software projects in the estima-
tion process, this paper aims to propose selective classifica-
tion instead of classical methods. Moreover, the process of
localization is conducted by ABE which is a widely accepted
estimation model. A combination of ABE and the selective
classification can reveal the lack of attention paid to the dif-
ferent nature of software projects in prior comparison-based
estimation models, which is the main objective of this paper.

The rest of the current paper is organized into eight sec-
tions as follows: Sect. 2 includes the principles of analogy-
based estimation method. Section 3 explains the calculation
of function point. The related work is presented in Sect. 4
and the proposed framework is explained in Sect. 5. The
experimental results are explained in Sect. 6. Section 7 illus-
trates efficiency analysis and Sect. 8 includes threats to valid-
ity. Finally, the conclusion and future work are presented in
Sect. 9.

2 Analogy-based estimation (ABE)

ABE model was proposed by [39] to be used instead of algo-
rithmic models. In this model, the development effort is esti-
mated by a comparison process in which the projects similar

to a new project are selected. The selected projects effort is
then utilized to estimate the effort of new project. Due to
simplicity and estimation capability, ABE has been exten-
sively used in terms of software development effort estima-
tion. Basically, ABE includes four components:

(i) historical dataset
(ii) similarity function

(iii) the associated retrieval rules
(iv) solution function

The ABE estimation process is carried out according to
the following steps:

1. Gathering previous projects information and producing
a historical dataset

2. Choosing attributes such as FP and LOC for comparison
purpose

3. Retrieving previous projects similar to new project
4. Estimating the effort of new project

2.1 Similarity function

ABE uses a similarity function that compares the attributes
of two projects to determine the level of similarity. There are
two popular similarity functions, Euclidean similarity (ES)
and Manhattan similarity (MS) [39]. Equation 1 shows the
Euclidean similarity function.

Sim(p, p′) = 1[√∑n
i=1 wi Dis( fi , f ′

i ) + δ
] δ = 0.0001

Dis( fi , f ′
i )

=
⎧
⎨
⎩
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i )
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0 if fi and f ′
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i
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i are nominal and fi �= f ′
i

⎫
⎬
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Where p and p′ are the projects to be compared while wi is
the weight assigned to each attribute. The weight can vary
between 0 and 1. Moreover, fi and f ′

i display the ith attribute
of each project and n demonstrates the number of attributes. δ
is utilized for obtaining a non-zero result. The MS formula is
very similar to that of ES but it computes the absolute differ-
ence between the attributes. Equation 2 shows the Manhattan
similarity function.
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In addition, there are other similarity functions such as
rank mean similarity [41], maximum distance similarity and
Minkowski similarity [2]. In some studies, several types of
similarity functions have been employed to determine the
best performance of ABE because there is no strong agree-
ment as to which similarity function is the best [8,20,25–
28,39].

2.2 Solution function

Solution function is utilized to estimate the software develop-
ment effort by considering the similar projects found by the
similarity function. The popular solution functions are: clos-
est analogy as the most similar project [42], average of most
similar projects [39], median of most similar projects [2] and
inverse distance weighted mean [18]. The average describes
the average value of effort obtained from K most similar
projects, where K >1. The median describes the median value
of effort obtained from K most similar projects, where K >2.
The inverse distance weighted mean adjusts the portion of
each project in kth estimation by means of Eq. 3.

C p =
K∑

k=1

Sim(p, pk)∑K
i=1 Sim(p, pi )

C pk (3)

Where p shows the new project, pk illustrates the kth most
similar project, C pk is the effort value for the kth most similar
project (pk), Sim (p,pk) is the similarity between projects pk

and p while K is the total number of most similar projects.
Different types of solution functions have been employed in
the previous studies. Several studies used only one solution
function [14,17,26,42] while some other studies used several
types of solution function [2,28,31].

3 Function point size estimates

Function point (FP) metric was introduced by [1] to mea-
sure the functionality of a project. FP estimates are made by
determining the indicators of user inputs, user outputs, logi-
cal files, inquiries and interfaces. A complexity degree, varies
between 1 and 3, is defined to assign to each indicator. 1, 2
and 3 stand for simple, medium and complex degree, respec-
tively. In addition, it is necessary to define a weight for each
indicator, which can be determined between 3 and 15. In the
first stage, the number of indicator should be counted and
it must then be multiplied by the related weight. In general,
unadjusted function point (UFP) computed through Eq. 4.

UFB =
∑5

i=1

∑3

j=1
Ni j Wi j (4)

Where Ni j is the number of indicator i with complexity j
while Wi j is the weight of indicator i having complexity j .
According to the previous experiences, the function point

Table 1 Function point components

F1 Reliable back-up and recovery F8 Data communications

F2 Distributed functions F9 Performance

F3 Heavily used configuration F10 Online data entry

F4 Operational ease F11 Online update

F5 Complex interface F12 Complex processing

F6 Reusability F13 Installation ease

F7 Multiple sites F14 Facilitate change

is useful for estimation in software projects because it can
be computed based on the requirement specifications at the
early stages of a project. To compute FP, UFP should be
multiplied by a technical complexity factor (TCF) which is
obtained from the components described in Table 1.

A component value varies in a 0–5 range in which 0 indi-
cates that the associated component has no effect on the
project while 5 means that the component is very impor-
tant. The range of TCF is between 0.65 (if all Fi are 0) and
1.35 (if all Fi are 5). Equations 5 and 6 show TCF and FP
computation procedure, respectively.

TCF = 0.65 + 0.01(SU M(Fi)) (5)

FP = UFP × TCF (6)

4 Related work

Due to simplicity and flexibility, ABE has been frequently
used in the hybrid effort estimation models proposed over
the past few years. In the ABE method, the development
effort of a new project is estimated through a comparison
between the new project and those completed in the past.
Similarity and solution functions are the main components
of ABE to measure the similarity level between two projects
and to estimate the development effort using similar projects,
respectively. The combinations of ABE and the genetic algo-
rithm [8,14,29,33], ABE and PSO [22,43], ABE and ANN
[21,28], ABE and grey [5,13,40], ABE and outlier elimina-
tion techniques [38], ABE and principle component analysis
(PCA) [16], ABE and regression [35] as well as ABE and
rough set theory [26] are some instances of hybrid models
constructed using ABE.

The complexity and non-normality of software project
attributes have been frequently elaborated in prior studies
and the generalization of estimation models has been exten-
sively mentioned as a critical issue. Dolado [12] reported
that mathematical-based effort estimation models are unable
to be an universal model. It was the first alert for researchers
to invent more flexible and reliable estimation models.

Finally, segmented software development effort estima-
tion models were introduced to remedy the problem of incon-
sistency in software projects [10,37]. The authors proposed a
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model in which the projects are divided into several clusters
using a clustering algorithm (EM and M5). For each cluster
a regression-based equation was computed as the estima-
tion model assigned to that cluster. The empirical study of
segmented models showed that they considerably increased
the accuracy of estimates compared to models constructed
on whole data. The authors investigated the proposed seg-
mented models on a large number of datasets to show the
estimate capabilities in a wider space [11].

Although the segmented estimation models are a novel
and helpful idea in the area of software development effort
estimation, there are several serious drawbacks that restrict
the application and adaptation of these models. The proposed
segmented models have been constructed based on math-
ematical equations that are strongly not recommended for
software effort estimation due to low level of flexibility and
adaptability. Relying on regression-based estimation models
is quite risky because these models may fail to reach accurate
estimates in the clusters having complex and non-linear rela-
tionships between attributes. Furthermore, the project clus-
tering has been performed regardless of the software project
type, which can have a negative effect on the accuracy of
estimates.

Recently, [32] have conducted an empirical study to inves-
tigate the performance of the global effort estimation mod-
els on the local areas. The authors classified the projects
into several groups and investigated the performance of a
global model on the obtained groups. The results of this study
showed that a global model may be not a suitable model to be
used in the local areas despite showing a good performance
in the global area.

In another study, the effect of localization was investigated
through the regression-based effort and defect estimation
models [7]. The proposed model was constructed in two sep-
arate steps: using whole projects and classified projects. The
results showed that the accuracy of model was substantially
increased through the local models. Moreover, [34,36] have
reported that localization of estimation process can improve
the accuracy of estimates.

Although researchers have found that the localization
plays a crucial role in the software development effort estima-
tion, the localization domain has restricted to regression and
statistical-based models. Moreover, the nature of software
projects has not been considered in the localization process
because blind and classical classification methods have been
employed to classify the projects.

It must be noted that prior studies have not considered
the underlying differences of software projects in the ABE-
based models. In other words, the effect of localization on
the performance of ABE-based models has not been investi-
gated yet. The problem is that soft computing techniques are
unable to process the software projects unless the underlying
attributes are considered in the estimation process.

The evaluation framework proposed in this paper com-
bines the selective classification of software projects and the
ABE model to show the effect of attention to the nature of
projects, which is a real gap in the area of software develop-
ment effort estimation.

5 Proposed framework

5.1 Selective classification

Inconsistency and non-normality are two important specifi-
cations of software project attributes, which make the effort
estimation difficult and complicated. Therefore, it is seem-
ingly impossible to propose an overall estimation model in
which all types of software projects can be estimated. In
particular, comparison-based models like ABE are strongly
dependent on the quality of data used for the purpose of
estimating. The accuracy of ABE is considerably decreased
when it is utilized on datasets that include heterogeneous and
inconsistent projects.

As stated before, ABE compares the projects attributes to
determine the similarity level. This is the main component
of the estimation process in ABE, which can be significantly
affected by the non-normality of project attributes in his-
torical datasets. The classification of projects into several
groups has attracted the attention of researchers to allevi-
ate the problem of inconsistency in this field. As a matter
of fact, the classification of projects decreases the number
of comparisons performed in ABE because the historical
dataset is decreased to several smaller sets. On the other
hand, it leads to more smooth and consistent sets of projects.
Therefore, it is expected that more reliable comparisons and
more accurate estimates are achieved through classification
process.

Prior studies have utilized classical classification meth-
ods such as c-means [3,21], k-means [30], M5 [11], and
GAC [23] to localize the estimation process. There are several
drawbacks that restrict the application of these methods in the
field of software development effort estimation. First of all,
blind classification of software projects may produce a clus-
ter whose projects are different in underlying attributes and
are similar in worthless attributes. This is because the clas-
sical methods rely on similarity of project attributes regard-
less of the nature and importance of attributes. Therefore,
the smoothness and consistency of projects located in the
clusters cannot be assured using the classical classification
methods.

Moreover, the clusters produced by the classical methods
are meaningless and cannot be interpreted because they are
comprised of different types of software projects. The num-
ber of clusters is also a challenging issue due to lack of a
specified method to determine the best number of clusters.
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The problems related to the classical classification meth-
ods support the idea of the selective classification of software
projects employed by this paper. The selective classification
is performed based on the underlying project attributes. The
underlying attributes refer to those attributes that are very
important in the software development process and have a
considerable effect on the development effort. An underlying
attribute is a categorical attribute which can be determined
in the early stages of a software project.

The numerical attributes cannot be utilized for the classi-
fication purpose. In addition, the categorical attributes such
as architecture, programming language, and standard should
not be considered as the underlying attributes because they
cannot be determined in the early stages of a software project.
A comprehensive evaluation performed by ISBSG company
reviewers [15] on 5,052 software projects (from all over the
world) shows that development type, organization type and
development platform considerably affect the development
effort of software projects. These three attributes are deter-
minable in the early stage of any software projects. Moreover,
a large number of existing software project data sets includes
these attributes, which is suitable to generalize the applica-
tion of the selective classification. Furthermore, recent stud-
ies related to the software development effort estimation
have frequently used the mentioned attributes to construct
the estimation models [6,24,28]. Finally, these attributes are
the fundamental attributes in software development process,
from software engineering perspective. Therefore, develop-
ment type, organization type, and development platform are
considered to conduct the selective classification.

5.2 Evaluation procedure

To clarify the effect of selective project classification, the
performance of ABE must be evaluated in two different steps.
In the first step, the ABE performance is evaluated using
whole historical projects while in the second it is evaluated
using the classified projects. All the projects are classified
into several sets based on the selected underlying attributes,
as seen in Fig. 1. The performance of ABE is then evaluated
using all classified sets and whole dataset. In the proposed
framework, leave-one-out technique is utilized for evaluation
purpose.

For each set (D), a project (pi ) is selected that has not
been visited so far. Pi is considered as a new project to be
estimated while the other projects are considered as the his-
torical dataset (HD) used for comparison purpose. There-
fore, the historical dataset and the new project are applied
to ABE where the development effort is estimated. The esti-
mated effort and actual effort of the new project are recorded
for further investigation. This process is repeated for all the
projects that exist in the set. Once the estimation is completed
for all the projects, the performance metrics are computed for

So�ware Projects (D)

Classifica�on Based on 
Selected A�

ributes

(D1)

Compute the performance metrics for D

Remove Pi from D

Let D-Pi be Historical Dataset (HD)

While an unvisited project Pi exists in Dataset (D)

Mark Pi as a visited project and return it to D

Similarity Func�on

Solu�on Func�on

Es�mated Effort

HD Pi

ABE

For all datasets (D, D1, D2, …, Dn ) Do as the Following:

(D2) (Dn)…

Fig. 1 The proposed framework

the current set. The next set is then selected and the above-
mentioned steps are performed, accordingly.

This process is continued until the performance metrics
are computed for all the classified sets. Therefore, at the end
of this process, the performance metrics related to the clas-
sified sets and whole dataset are available to be compared.

6 Experimental design

6.1 Data preparation

International software benchmarking standard group
(ISBSG) is a company located in Australia. It collects
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Table 2 Description of ISBSG
dataset

Attribute Description Min Max Mean Median Std Dev

InpCont Input count 3 2,221 152.20 72 226.96

OutCont Output count 4 2,455 141.25 65.50 210.06

EnqCont Enquiry count 3 1,306 115.81 64.50 155.39

FileCont File count 7 1,732 130.82 68.50 184.11

IntCont Interface count 5 1,572 70.87 30 147.63

AFP Adjusted function point 29 7,633 625.66 380 770.13

DevType Development type 1 3 – – –

OrgType Organization type 1 6 – – –

DevPlat Development platform 1 4 – – –

NorEffort (h) Normalized effort 64 6,0826 5,588.65 3,216 7,095.64

the information related to software projects from all over
the world. In this paper, ISBSG dataset release 11 [15]
is employed. It contains the detailed information about
5,052 software projects. A filtration process must be con-
ducted to select an appropriate and reliable subset of ISBSG
projects.

In this study, the quality of data is very important because
the proposed models are constructed through an intensive
data analysis. Therefore, poor data validation may lead to
unreliable results and misleading conclusions. Fortunately,
validation process in selected data repository can be easily
performed. ISBSG group has defined four quality levels for
published data, which are described as follows:

A = The data submitted was assessed as being sound with
nothing being identified that might affect its integrity.
B = The submission appears fundamentally sound but
there are some factors which could affect the integrity of
the submitted data.
C = Due to significant data not being provided, it was not
possible to assess the integrity of the submitted data.
D = Due to one factor or a combination of factors, little
credibility should be given to the submitted data.

Since this research was conducted based on in-depth
analysis of data, the most significant data must be selected.
Therefore, the software projects that have quality levels of
A or B were selected in this step. Since there is a doubt in
integrity and validity of projects with quality levels of C or
D, they were removed from the final set of projects.

For the projects whose total effort has not been reported,
ISBSG estimates it in the form of normalized effort and cal-
culates a variable called normalized ratio. The normalized
ratio is obtained from the division of the normalized effort
by the reported effort, which shows the difference between
the reported and estimated effort. According to the recom-
mendations by ISBSG, the projects that have a normalized
ratio greater than 1.2 are considered risky and unreliable.

Therefore, all projects with normalized ratio greater
than 1.2 were removed from the final set. Moreover, the
projects with size measurement unit other than IFPUG were
excluded. Finally, the projects having resource level other
than {1, 2: development effort and support effort, respec-
tively} were omitted. The statistical information related to
ISBSG attributes is presented in Table 2. From the table,
there are seven numerical and three nominal attributes in the
selected subset of ISBSG. After removing the projects whose
attribute values have not been reported, a total of 448 soft-
ware projects are achieved as the final set.

6.2 Performance metrics

In this paper, performance evaluation is performed using
a number of widely accepted metrics including magnitude
of relative error (MRE), mean magnitude of relative error
(MMRE), and percentage of the prediction (PRED) [39],
which are computed as follows.

RE = (Estimate-Actual)

Actual
(7)

MRE = |Estimated- Actual|
Actual

(8)

MMRE =
∑N

i=1 MRE

N
(9)

PRED(X) = A

N
(10)

Where A is the number of projects with MRE less than or
equal to X and N is the number of projects that exist in the
testing set. The acceptable performance of a software devel-
opment effort estimation model is defined based on MRE
≤ 0.25 [9]. In other words, the value of 0.25 has been defined
to separate the accurate and inaccurate estimates. The number
of estimates having MRE <=0.25, as the most well-known
performance metric, has been widely accepted by researchers
in this field. For all the estimators, MMRE must be minimized
while PRED(0.25) must be maximized.
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41%

59%

So�ware Projects (441)

New Development (182) Enhancement (259)

Fig. 2 Classification based on development type

0.88
0.80

1.22

0.27 0.30
0.22

New Development Enhancement All Development Types

MMRE PRED(0.25)

Fig. 3 Comparison of performance metrics after classification of
projects

6.3 Classification based on development type

Development type is a key attribute used in the proposed
framework to classify the projects. According to the attributes
that exist in the data repository, the development type is
divided into three main groups: new-development, enhance-
ment and re-development. The term “New-development”
refers to those projects defined to respond a new demand
(no prior history for demand). “Enhancement” means that a
project must be defined to increase and improve the capabili-
ties of existing software. Finally, “re-development” refers to
projects defined to improve the structure of existing software
through new technologies and tools without applying any
changes to software capabilities. This type of development
is commonly used for maintenance purpose. In this study,
the projects are classified based on new-development and
enhancement because there is a few projects whose develop-
ment type has been reported as re-development (in ISBSG
dataset). Figure 2 depicts the distribution of projects based on
development type. After exclusion of unreliable projects and
those include missing attributes, a total of 441 projects are
achieved (182 new-development projects and 259 enhance-
ment projects). Figure 3 shows the results obtained from
applying the selective classification to the dataset. Indeed,
the performance of ABE has been evaluated on whole dataset
and classified projects. As stated in the proposed framework,
the comparison scope is reduced using classification.

New-development, enhancement and all development
types have been treated as D1, D2 and D, respectively (vari-

28%
23%

34% 36%

MMRE PRED(0.25) MMRE PRED(0.25)

New Development Enhancement

Fig. 4 Percentage of improvement achieved by classification

ables utilized in Fig. 1). Therefore, in this case there are
three main sets that must be considered to evaluate the per-
formance of ABE. As seen in Fig. 3, the performance met-
rics of MMRE and PRED(0.25) are computed for all three
sets, separately. The performance of ABE is strongly depen-
dent on the number of projects that exist in the historical
dataset. Therefore, it may seem that ABE estimations on
the whole dataset are more accurate than that of classified
sets.

From Fig. 3, this hypothesis is rejected because accu-
racy of estimates on classified sets is more than that for
whole dataset. The results achieved by the proposed frame-
work implies that however classification reduces the num-
ber of projects in the historical dataset, it can be helpful to
decrease the inconsistency and non-normality of projects and
to increase the quality of comparisons.

Figure 4 depicts the percentage of improvement obtained
from applying the selective classification to ABE. To calcu-
late the percentage of improvement for MMRE and PRED,
Eqs. 11 and 12 are utilized, respectively. As seen in the
figure, both MMRE and PRED(0.25) are improved when
the classification is utilized in the proposed framework.
In terms of new-development projects, the percentage of
improvement for MMRE and PRED(0.25) is 28 and 23 %,
respectively.

MMREWhole − MMREClassified

MMREWhole
(11)

PREDClassified − PREDWhole

PREDWhole
(12)

On the other hand, MMRE and PRED(0.25) have, respec-
tively, been improved by 34 and 36 % for enhancement
projects. The improvement of performance metrics for
enhancement projects is greater than that for the new-
development projects. This implies that the projects with
enhancement development type are more consistent than
another. In other words, the level of normality between
the project attributes and effort in enhancement projects is
greater than that for new-development projects (only valid
for selected projects).
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39%

20%

18%

8%

15%

So�ware Projects (297)

Insurance (115) Banking (61)

Government, Public Administra�on (53) Financial, Property & Business Services (24)

Manufacturing (44)

Fig. 5 Classification of projects based on organization type

0.56 0.57
0.40

0.59 0.55

1.03

0.45 0.43 0.50 0.46 0.40
0.22

Public
Administra�on

Financial,
Property &

Business Services

Insurance Banking Government, Manufacturing Various
Organiza�on Type

MMRE PRED(0.25)

Fig. 6 Comparison of performance metrics after classification of projects

6.4 Classification based on organization type

Organization type is another attribute considered for projects
classification purpose. This attribute specifies the organiza-
tion where the software project is conducted for. The organi-
zation type can affect the effort required to develop the soft-
ware because complexity and critical level of projects change
from one organization type to another. Priorities, adaptabil-
ity, demand types and limitations are the most important
factors that may differ among different organization types.
According to the data repository, organization type can be
divided into five main groups: Insurance, Banking, Govern-
ment, Financial and Manufacturing. After exclusion of unre-
liable projects and those that include unreported attributes, a
total of 297 projects are achieved, as seen in Fig. 5. Insurance
and financial are the largest and smallest sets with 115 and
24 projects, respectively.

Figure 6 depicts the results of projects classification based
on the organization type. In this case, there are six sets treated
as D1, D2, D3, D4, D5 and D in the proposed framework.
First five sets are the classified projects while the last one
is the whole dataset. As seen in the figure, the performance
metrics of MMRE and PRED(0.25) are improved when the
projects are classified based on the organization type.

The reason behind improvement of performance metrics is
that the classification of projects makes the historical dataset
smooth and consistent for the purpose of comparison per-

formed in ABE. Therefore, high diversity of organization
types is one of the problems ABE suffers from and the classi-
fication of projects based on the organization type can consid-
erably alleviate this problem. It must be noted that if this type
of classification can lead to improvement of performance
metrics, in addition to increase of accuracy, the number of
comparisons is substantially reduced. This implies that the
speed of estimation process is increased in ABE. Therefore,
the results obtained from classification of projects, based
on the development type and organization type, confirm the
decrease of comparisons and increase of accuracy.

Figure 7 displays the percentage of improvement achieved
by classification of projects based on the organization type.
In overall, it is observed that the value of MMRE has been
improved more than 31 % whereas the value of PRED(0.25)
has been improved more than 11 % in all sets. The aver-
age of improvement for MMRE and PRED(0.15) is 43 and
38 %, respectively. Regarding PRED(0.25), the highest and
the lowest percentage of improvement are achieved by gov-
ernment and financial organization types, respectively. On
the other hand, Manufacturing and Banking organization
types reach the highest and lowest percentage of improve-
ment for MMRE. In total, the best performance of ABE is
related to the organization type of government.

Since the performance metrics have been improved in all
different sets, it can be concluded that the selective classi-
fication of projects based on the organization type can be a
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Fig. 7 Percentage of
improvement achieved by
classification
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Fig. 8 Classification of projects based on development platform

solution to the problem of non-normality and inconsistency
that make the process of estimation difficult in ABE. Com-
pared to the classification of projects based on development
type, the results obtained from organization type classifica-
tion show more accurate estimates according to MMRE and
PRED(0.25).

6.5 Classification based on development platform

One of the most important project attributes that consid-
erably affect the development effort is development plat-
form. This attribute includes the requirements such as dis-
tributed systems, parallel computing, multi user stations and
other options related to application environment. As the
platform requirements increase, the development effort is
increased. Therefore, the comparison between the projects
having different development platforms may lead to inac-
curate estimates. According to ISBSG dataset, the devel-
opment platform is divided into four main groups of PC,
Mid-Range, Main Frame and Multi. Figure 8 displays the
classification of software projects based on the development
platform.

As seen in Fig. 8, a total of 448 software projects have
been classified into four groups based on the development
platform. The number of projects whose development plat-
form has been reported Main Frame is 173, which includes
the most percentage of projects (38 %). PC, Mid Range,

Main Frame, Multi and all projects (various development
platforms) are considered as D1, D2, D3, D4 and D, respec-
tively, in the proposed framework. The results achieved by
the classification of projects based on development platform
are depicted in Fig. 9.

According to Fig. 9, both MMRE and PRED(0.25) are
improved when the classified sets are utilized by ABE. The
greatest value of MMRE and the lowest value of PRED(0.25)
are reported for various development platforms. This implies
that lack of paying attention to development platform can
considerably affect the quality of comparisons carried out
in ABE. Indeed, comparison of performance metrics reveals
the important role of development platform in development
effort estimation.

Figure 10 shows the percentage of improvement achieved
by the selective classification of projects based on develop-
ment platform. The average of improvement for MMRE and
PRED(0.25) is 37 and 40 %, respectively. It is observed that
the lowest improvement of MMRE and the highest improve-
ment of PRED(0.25) are achieved by the development plat-
form of Mid Range. The minimum improvement is 31 and
17 % for MMRE and PRED(0.25), which approves that the
classification of projects based on development platform can
significantly affect the accuracy of estimates achieved by
ABE.

The reason behind improvement of performance metrics is
that the classification of projects makes the historical dataset
smooth and consistent for the purpose of efficient compari-
son in ABE. Therefore, the high diversity of software projects
is one of the most important obstacles ABE suffers from.
The classification of projects based on the key attributes
can considerably alleviate this problem. As stated before,
besides increase of accuracy, the selective classification leads
to reduce the number of comparisons because the size of his-
torical dataset is decreased. This implies that the speed of
estimation process is also increased in ABE. Therefore, the
results obtained from the classification of projects, based on
the development type, organization type and development
platform, confirm the decrease of comparisons and increase
of accuracy.
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Fig. 9 Comparison of
performance metrics after
classification of projects
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7 Efficiency analysis

The main part of analogy-based estimation is the compar-
isons performed in the similarity function. As the number of
projects and the number of attributes are increased, the num-
ber of comparisons is also considerably increased. Indeed, the
high number of comparisons is a drawback of ABE because
it leads to increase of estimation time. The investigation pre-
sented in the following sections confirms that the classifica-
tion of projects significantly decreases the number of com-
parisons.

Table 3 shows the number of comparisons performed in
ABE in two different situations: when the classification is
not applied and when the projects are classified based on the
development type. According to the leave-one-out process,
there are n × (n − 1) comparisons for a dataset consisting of
n projects. It is observed that the number of comparisons is
reduced by 49 % when the selective classification is consid-
ered. This implies that the classification of projects based on
the development type can considerably reduce the number of
comparisons in ABE and expedite the process of estimation.

Similar to Tables 3 and 4 shows the number of compar-
isons done in ABE in two different situations: without classi-
fication and with classification of projects based on the orga-
nization type. In the first situation, all the projects are con-
sidered as the historical dataset to be used by the proposed
framework while in the second, the projects are classified
based on the organization type.

Table 3 The number of comparisons performed in ABE based on the
classification of development type

Without classification Classification

New-development Enhancement

441 × 440 = 194, 040 182 × 181 = 32,942 259 × 258 = 66,822

32,942 + 66,822 = 99,764

As seen in the table, the sum of comparisons performed
in five classified sets is significantly less than that for whole
dataset (without classification). In this case, the percentage of
reduction in number of comparisons is around 75. Therefore,
it is confirmed that classification of projects based on the
organization type can decrease the number of comparisons
done in ABE and speed up the process of estimation.

The effect of classification, based on development plat-
form, on the number of comparisons has been investigated in
Table 5. It is observed that the total number of comparisons
for whole dataset is considerably larger than that for classi-
fied sets. The percentage of reduction is 70, which confirms
that the classification of projects based on the development
platform can significantly reduce the total number of com-
parisons performed in ABE.

In general, when the number of projects that exist in the
historical dataset is n, the number of comparisons based on
the proposed framework will be n × (n − 1), which is com-
puted based on the leave-one-out technique. If it is assumed
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Table 4 The number of comparisons performed in ABE based on the classification of organization type

Without classification Classification

Insurance Banking Government Financial Manufacturing

297 × 296 = 87,912 115 × 114 = 13,110 61 × 60 = 3,660 53 × 52 = 2,756 24 × 23 = 552 44 × 43 = 1,892

13,110 + 3,660 + 2,756 + 552 + 1,892 = 21,970

Table 5 The number of comparisons performed in ABE based on the classification of development platform

Without classification Classification

PC Mid range Main frame Multi

448 × 447 = 200,256 62 × 61 = 3,782 62 × 61 = 3,782 173 × 172 = 29,756 152 × 151 = 22,952

3,782 + 3,782 + 29,756 + 22,952 = 60,272

Table 6 The number of comparisons performed in ABE (in overall)

Without
classification

Classification (k >1)

Set 1 Set 2 … Set k

n × (n − 1) n
k

( n
k − 1

) n
k

( n
k − 1

)
... n

k

( n
k − 1

)

k × ( n
k

( n
k − 1

)) = n(n − k)/k

Ifk > 1then n × (n − 1) >
n×(n−k)

k

that the classification of projects based on the key attributes
leads to appearance of k sets so that the size of each set is
n
k . Therefore, the number of comparisons for each set will

be n
k

(
n

k−1

)
. To sum up, the total number of comparisons for

all k sets will be n×(n−k)
k , which is less than n × (n − 1),

for all k > 1. Therefore, it can be concluded that the num-
ber of comparisons is definitely decreased when the projects
are classified based on the key attributes. Table 6 shows the
process in which the number of comparisons is investigated.

To further analysis of results, three parameters of MMRE,
PRED and comparisons ratio are evaluated for the three

attributes of development type, organization type and devel-
opment platform, as seen in Fig. 11. The comparison ratio is
computed through dividing the number of comparisons after
classification by that of all data set. This analysis can be use-
ful to draw a conclusion on influential level of each attribute.
From Fig. 11, it is observed that classification based on devel-
opment type leads to the lowest improvement in both MMRE
and PRED.

Moreover, the comparison ratio is in its highest level for
the development type attribute. Therefore, it can be con-
cluded that development type is not an appropriate selec-
tion in existence of organization type and development plat-
form. Regarding organization type and development plat-
form, making a conclusion is impossible since there is no
significant difference between the improvement percentages
achieved by these types of classification.

8 Threats to validity

Any types of research may suffer from internal or external
threats to validity. In particular, experiment-based studies

Fig. 11 Evaluation of
performance parameters in three
types of classification
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are threatened by a number of issues that must be seriously
considered to assure the correct conclusions. In this section,
internal and external threats to validity of the current research
are elaborated.

A common threat to the validity of experiment-based stud-
ies is inaccurate or wrong evaluation process. A very opti-
mistic idea is to consider a part or an entire set of training data
as testing set. In such case, the results do not reflect the real
performance of the model. Another doubtful assumption is
considering a fixed number of unseen data to be evaluated as
the testing set. For instance, in the field of effort estimation,
a number of projects are selected as the testing set and the
remainder as the training set and subsequently a single round
of evaluation is conducted to measure model accuracy.

Although this type of evaluation has been frequently used
in prior studies, it can simply lead to biased and unreliable
results. In contrast, cross validation technique is a widely
accepted method strongly recommended by researchers to
reveal the real performance of the model. This study used
leave-one-out cross validation techniques to avoid any bias
in the results and conclusions.

Measurement metrics must be carefully selected accord-
ing to what the study wants to measure otherwise the direc-
tion of the study goes wrong. Since the current study focused
on accuracy of estimates, two well-known and widely used
metrics, MMRE and PRED(0.25), were utilized to measure
the model accuracy. Although there are other measurement
metrics, selection of the mentioned metrics makes the results
comparable with a wide range of prior studies.

The most important external threat in experiment-based
studies is how the proposed model can be generalized in the
real world. Any limitations or threats against the application
of method must be clarified to avoid incorrect or inappro-
priate use of the model in future studies. This issue is dis-
cussed in the following sections for the method proposed in
the current paper. Since ISBSG data repository contains a
wide range of software projects collected from more than 24
countries, it is a comprehensive resource to be used as the his-
torical dataset in ABE based models. In this study, a total of
448 projects were selected from ISBSG based upon a series
of strict criteria. The number of projects is large enough to
support an extensive range of software projects. The selected
attributes for the classification process are development type,
organization type as well as development platform, which can
be identified at early stages of any software project.

The proposed method is able to estimate the effort of soft-
ware projects whose key attributes are equal to those stated
in the proposed framework (in case of ISBSG, two values
for development type, five values for organization type and
four values for development platform). Since the values of
selected attributes used in the comparison of projects are
so common among the software projects (e.g. new develop-
ment, banking, communication, pc, main frame), it can be

said that the proposed method support a large number of
software projects in a wide domain. The main aim of this
study was to show that the classification of software projects
based on important attributes can lead to more reliable results
and more extensive support of software projects and conse-
quently the proposed method in its current form along with
the selected attributes are able to apply to various types of
software projects.

In conclusion, while having a well-defined method for
attribute selection considerably increases model adoption,
it is not considered as an issue to threaten the use of the
proposed method.

9 Conclusion

Analogy-based estimation is a widely accepted method fre-
quently used for software development effort estimation.
Despite advantages and capabilities, ABE is unable to over-
come the heterogeneous and inconsistent nature of software
projects. This shortcoming leads to inaccurate and unreliable
estimates. The current paper proposed a framework to eval-
uate the role of selective project classification in accuracy
of estimates achieved by ABE. Development type, organi-
zation type and development platform, as three underlying
attributes of software projects, were selected to use for the
classification purpose. To evaluate the combination of ABE
and selective classification, a real dataset that includes 448
software projects was utilized in this study. The classification
of projects based on the development type led to two sets of
new development and enhancement while the organization
type classification led to five sets of insurance, banking, gov-
ernment, financial and manufacturing. PC, Mid Range, Main
Frame and Multi were four sets obtained from the devel-
opment platform classification. According to the proposed
framework, the performance of ABE was evaluated on the
whole dataset as well as the classified sets using the perfor-
mance metrics of MMRE and PRED (0.25).

Although it may seem that decreasing the historical dataset
size leads to insufficient comparisons in ABE, the results of
this paper demonstrated that if classification is performed
based on the underlying attributes, the quality of comparisons
is increased and the accuracy of estimates is considerably
improved. Indeed, the selective classification of projects can
increase the consistency and smooth level of historical dataset
and decrease the number of biased and irrelevant projects
that lead to inaccurate estimates. Besides the increase of
accuracy, the selective classification decreases the number
of comparisons performed in ABE. Therefore, it can be con-
cluded that considering the nature of software projects (by
the selective project classification) in the ABE estimation
process increases the estimate accuracy and expedites the
estimation process. This can open a window for proposing
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insightful models in which the development effort estima-
tion is performed with respect to the underlying attributes of
projects. In this paper, real projects were utilized to demon-
strate the role of localization in improvement of ABE per-
formance. Although considering real projects helps practi-
tioners to believe the impact of proposed classification, a
postmortem analysis is recommended, as well. It can lead to
stable conclusions and appropriate roadmap related to ABE
use. As future work, we are going to improve the accuracy of
estimates achieved by ABE on the classified projects using
soft computing techniques.
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