
Innovations Syst Softw Eng (2011) 7:209–224
DOI 10.1007/s11334-011-0172-1

ORIGINAL PAPER

Algebraic approach to linking the semantics of web services

Huibiao Zhu · Jifeng He · Jing Li ·
Jonathan P. Bowen

Received: 25 May 2009 / Accepted: 5 September 2011 / Published online: 7 October 2011
© Springer-Verlag London Limited 2011

Abstract Web services have become more and more impor-
tant in these years, and BPEL4WS (BPEL) is a de facto stan-
dard for the web service composition and orchestration. It
contains several distinct features, including the scope-based
compensation and fault handling mechanism. We have con-
sidered the operational semantics and denotational semantics
for BPEL, where a set of algebraic laws can be achieved via
these two models, respectively. In this paper, we consider the
inverse work, deriving the operational semantics and denota-
tional semantics from algebraic semantics for BPEL. In our
model, we introduce four types of typical programs, by which
every program can be expressed as the summation of these
four types. Based on the algebraic semantics, the strategy for
deriving the operational semantics is provided and a transi-
tion system is derived by strict proof. This can be considered
as the soundness exploration for the operational semantics

A short version of this paper appeared in SEFM 2007: 5th IEEE
International Conference on Software Engineering and Formal
Methods [53].

H. Zhu (B) · J. He · J. Li
Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, 3663 Zhongshan Road (North),
Shanghai 200062, China
e-mail: hbzhu@sei.ecnu.edu.cn

J. He
e-mail: jifeng@sei.ecnu.edu.cn

J. Li
e-mail: jli@sei.ecnu.edu.cn

J. P. Bowen
Museophile Limited, Oak Barn, Sonning Eye,
Reading RG4 6TN, UK
e-mail: jpbowen@gmail.com
URL: http://www.jpbowen.com

based on the algebraic semantics. Further, the equivalence
between the derivation strategy and the derived transition
system is explored, which can be considered as the com-
pleteness of the operational semantics. Finally, the deriva-
tion of the denotational semantics from algebraic semantics
is explored, which can support to reason about more program
properties easily.

Keywords Web services · BPEL · Algebraic semantics ·
Operational semantics · Denotational semantics · Semantic
linking

1 Introduction

Web services and other web-based applications have
been becoming more and more important in practice. In
this blooming field, various web-based business process lan-
guages have been introduced, such as XLANG [46], WSFL
[30], BPEL4WS (BPEL) [11] and StAC [7], which are
designed for the description of services composed of a set of
processes across the Internet. Their goal is to achieve the uni-
versal interoperability between applications using web stan-
dards, as well as to specify the technical infrastructure for
carrying out business transactions.

The important feature of BPEL is that it supports the long-
running interactions involving two or more parties. There-
fore, it provides the ability to define fault and compensation
handing in application-specific manner, resulting in a feature
called Long-Running (Business) Transactions (LRTs). The
concept of compensation is due to the use of Sagas [4,15]
and open nested transactions [39]. The fault analysis has
been considered in [41,43] for compensation processes. It
addition, BPEL provides two kinds of synchronization tech-
niques for parallel processes. In our model, shared-labels are

123

210 H. Zhu et el.

introduced for the synchronization between a process and
its partners within a single service, while channel commu-
nications are introduced for message transmission between
different services.

As advocated in Hoare and He’s Unifying Theories of
Programming (UTP) [25], three different styles of math-
ematical representation are normally used for a program-
ming language: operational, denotational and algebraic one
[23,40,45]. Moreover, the linking theories [48] between dif-
ferent semantic models for a language are particularly inter-
esting, which can provide the correct understanding for one
semantics based on the viewpoint of another. For BPEL, we
have already explored the denotational semantics [20] and
operational semantics [54], where a set of algebraic laws has
been explored based on the two formal semantics, respec-
tively. This paper considers the inverse work, deriving the
operational semantics and denotational semantics from alge-
braic semantics.

In order to support the linking from the algebraic seman-
tics to the operational and denotational semantics for BPEL,
we introduce four types of typical programs. Based on this,
the summation of these typical programs is introduced, which
is used to construct the head normal form for a program. The
construction is based on the algebraic laws of BPEL. The der-
ivation of operational semantics from algebraic semantics is
based on the head normal form. The derivation strategy is
defined and a set of transition rules is achieved based on the
derivation strategy by strict proof. This can be regarded as
the soundness consideration [49] of the operational semantics
from the viewpoint of algebraic semantics. However, the der-
ivation strategy may derive more transitions, compared with
the strict derived transition system. The equivalence between
the derivation strategy and the derived transition system is
worthy of exploration. This is the completeness consideration
[49] for the operational semantics from the viewpoint of alge-
braic laws. Further, the derivation of denotational semantics
from algebraic viewpoint is also explored based on the head
normal from, which can support to reason about program
properties easily, especially for parallel programs.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the language BPEL. We also explore the
algebraic laws in this section. Four types of typical pro-
grams are introduced and the concept of head normal form
is defined. Section 3 is devoted to the derivation of opera-
tional semantics from the algebraic semantics. The deriva-
tion strategy is defined and a set of transition rules is derived
by strict proof. Further, we also explore the equivalence of
the derivation strategy and the derived operational semantics
in this section. Section 4 studies the derivation of denota-
tional semantics from algebraic semantics. The approach is
based on the head normal form as well. Section 5 discusses
the related work about web services and semantic linking.
Section 6 concludes the paper.

2 Algebraic semantics

2.1 The syntax of BPEL

BPEL is used to model business transactions for web services.
Below is the BPEL model that we have proposed, which con-
tains several interesting features, such as scope-based
compensation and fault handling mechanism. Our language
contains the following categories of syntactic elements:

B A ::= skip | x := e | rec a x | rep a x | throw
A ::= B A | @(g) A | b � l | A; A | A � b � A

| b ∗ A | A ‖ A | A � A | undo
| {A ? A, A}

where

• x := e is the assignment, which assigns the value of e to
local variable x . skip behaves the same as x := x . The
activity throw indicates that the program encounters a
fault immediately. In order to implement the communica-
tions between different services, two statements are intro-
duced; i.e., rec a x and rep a x . Command rec a x
represents the receiving of a value through channel a. The
received value is stored in variable x . rep a x represents
the output of value of x via channel a.
• Several constructs are similar to those in traditional pro-

gramming languages. A; B stands for sequential composi-
tion. A�b� B is the conditional construct and b∗ A is the
iteration construct. A � B stands for the nondeterministic
choice; i.e., either A or B could be executed.
• Shared-labels are introduced to implement the synchroni-

zation between a process and its partner. For @(g)A, if
guard g is evaluated as true, control flow can pass to pro-
cess A. Otherwise, it will wait for guard g to be set true.
Here g is composed of a set of source links; i.e., a set of
read only labels. These source links can be considered as
the target links of other components; i.e., updatable labels.
Besides, b � l assigns the value of b to label l.
• {A ? C, F} stands for the scope activity, where A, C and

F stand for the primary activity, compensation program
and fault handler correspondingly. If A terminates suc-
cessfully, program C is installed in the compensation list
for later compensating. On the other hand, if A encounters
a fault during its execution, the fault handler F will be
activated. Further, the compensation part C does not con-
tain scope activity. For statement “undo”, it activates the
execution of the programs in the compensation list under
the reverse order of their installed sequence.
• A ‖ B stands for the parallel composition. For a shared

label, it is owned by one parallel component; i.e., it can
only be written by one parallel component. However, it
can be read by all other parallel components. Further, the

123

Algebraic approach to linking the semantics of web services 211

communication mechanism via channels obeys the same
rules as those in process algebra CSP [22], which is used
to model message transmission between different services.
Moreover, both of the two parallel components do not have
undo statement.

In order to support parallel expansion laws, we enrich our
language with the concept of guarded choice, expressed in
the form:

{h1 → P1}[] []{hn → Pn}
where

(1) hi can be a skip guard, expressed as bi &skip, where
bi is a Boolean expression. We assume that the disjunc-
tion of all bi in a guarded choice is always satisfied (i.e.,
∨i bi = true).

(2) hi can also be a communication guard, expressed as
rec a x and rep a x , where a is the channel name.

(3) hi can also be expressed as @(gi); i.e, waiting for
Boolean guard gi to be set true.

2.2 Algebraic semantics of BPEL

In order to explore the head normal form, we introduce four
typical forms. The definition of head normal form can be
expressed as one of the four forms. The first form stands for
the general guarded choice, as mentioned above. For each
guarded component, the corresponding guard can be ofskip
guard, event guard or communication guard.

(form-1) []i∈I {bi &skip→ Pi }
[][] j∈J {@(g j)→ Q j }
[][]l∈L{comm al xl → Rl}

where, comm can be rec or rep.
The second form represents for the behaviour which con-

tains two parts sequentially, where the first part can be of
the form assign(x, e), which stands for the assignment of
local variables or the update of shared-labels. It can also be
compen(C), which stands for the behaviour of installing the
compensation program C .

(form-2) X → P

where X can be of the form assign(x, e) or compen(C).
The third and fourth form are special, which are simply

represented by throw and undo commands.

(form-3) throw
(form-4) undo

In order to deal with the scope behaviour, we introduce a
new operator ◦. The subsequent behaviour after ◦ stands for
the fault handler. For A ◦ B, if A terminates successfully, the
whole program also terminates successfully. However, if A

encounters fault during its execution, the fault hander B will
be activated. Based on the understanding of compen(C), a
scope activity can be defined as below. The scope activity can
be explained via the newly introduced command compen(C)

and the ◦ operator.

(scope − 1) {A ? C, F} =d f (A; compen(C)) ◦ F

Now we consider the laws for sequential composition. Firstly
we introduce a function seq1:

seq1(P, Q) =d f

⎧
⎨

⎩

Q if P = II
throw if P = throw
P; Q otherwise

where, II stands for the empty process.
Sequential composition satisfies the following algebraic

laws. We study the laws for the cases that the first component
of sequential composition is one of the four typical forms

(seq-1) []i∈I {hi → Pi }; R = []i∈I {hi → seq1(P, R)}
(seq-2) (X → P); R = X → seq1(P, R)

where, X = compen(C)or assign(x, e)

(seq-3) X; R = X

where, X = throw or X = undo.

The first two laws indicate that sequential composition dis-
tributes backward through the first and second type of typical
forms. The third law (seq-3) indicates that throw (or undo)
is the left zero of sequential composition.

Next, we consider the laws for the newly added operator ◦.
Firstly, we introduce the function seq2:

seq2(P, Q) =d f

⎧
⎨

⎩

II if P = II
Q if P = throw
P ◦ Q otherwise

Operator ◦ satisfies a set of algebraic laws shown below. For
the following laws, the first component of ◦ can also be one
of the four typical forms.

(circ-1) []i∈I {hi → Pi } ◦ R = []i∈I {hi → seq2(P, R)}
(circ-2) (X → P) ◦ R = X → seq2(P, R)

where, X = compen(C)orassign(x, e)

(circ-3) throw ◦ R = R

(circ-4) undo ◦ R = undo

Similarly, the first and second law indicates that operator ◦
distributes backwards through the first and second type of
typical forms. The third law indicates that fault handler can
be immediately fired when an error is encountered. This law
also indicates thatthrow is the unit of operator ◦. The fourth
law indicates that undo is the left zero of operator ◦.

Now we introduce a new construct called summation. It
is denoted as as

⊕{P1, . . . , Pn}, where each Pi is initially

123

212 H. Zhu et el.

deterministic. The selection among all Pi is nondeterminis-
tic. Further, the elements in a summation can be re-arranged,
shown as the law below.
(⊕

−1
) ⊕

{P1, . . . , Pn} =
⊕
{Pi1 , . . . , Pin },

where i1, . . . , in is a permutation of {1, . . . , n}.
Now we consider the transformation of nondeterministic
choice to the form of summation.

(nonde-1) If P =
⊕
{P1, . . . , Pn} and

Q =
⊕
{Q1, . . . , Qm}

then P � Q =
⊕
{P1, . . . , Pn, Q1, . . . , Qm}

The above two laws can assist the transformation of every
program into a summation of a set of initially determinis-
tic processes. Next we consider the laws for conditional and
iteration:

(cond-1) P � b � Q = []{b&skip→ P, ¬b&skip→ Q}
(iter-1) b ∗ P = []{b&skip→ (P; b ∗ P),

¬b&skip→ II }

The above two laws indicate that conditional and iteration
can be expressed in the form of guarded choice via the skip
guarded components.

Now we consider the algebraic laws for parallel compo-
sition. Let

par(P, Q) =d f

⎧
⎨

⎩

Q if P = II
P if Q = II
P ‖ Q otherwise

Parallel composition is symmetric; i.e., P ‖ Q = Q ‖ P .
Our further exploration is based on the four typical forms.

For parallel composition, one case is that two parallel com-
ponents are within one service. This indicates that there is no
message communication between two parallel components;
i.e., the two components do not share the same communica-
tion channels. Law (para-1) reflects this case.

(para-1) Let P = []i∈I {hi → Pi } and

Q = [] j∈J {g j → Q j }.
Assume that P and Q do not have the same communication
channels. Then

P ‖ Q

= []i∈I {hi → par(Pi , Q)}[][] j∈J {g j → par(P, Q j)}
Two parallel components can be from different services. The
parallel composition of sending and receiving messages via
the same channel can be transformed into a local variable
assignment. Law (para-2) reflects this case. The message

communication can be taken place via the common chan-
nels cm (m ∈ M).

(para-2) LetP1 = []i∈I {hi → P1i },
Q1 = [] j∈J {g j → Q1 j },

P = P1[][]m∈M {rec cm um → Rm},
Q = Q1[][]m∈M {rep cm vm → Tm},

Assume that P1 and Q1 do not share the same communica-
tion channels. Then

P ‖ Q
= []i∈I {hi → (P1i ‖ Q)}
[][] j∈J {g j → (P ‖ Q1 j)

[][]m∈M {true&skip→ (um := vm → (Rm ‖ Tm))}
Law (para-3) studies the case that one parallel component
is in the first typical form and another component is in the
second typical form.

(para-3) Let P = []i∈I {hi → Pi } and Q = X → Q′,
where X can be of compen(C) or assign(x, e).

Then

P ‖ Q
= []{hi → par(Pi , Q)}
[][]{true&skip→ (X → par(P, Q′))}

For (para-3), any guard hi (i ∈ I) can be scheduled. On
the other hand, compen(C) (or assign(x, e)) can also have
chance to be scheduled. As compen(C) (or assign(x, e))
does not appear in the form of guarded choice, skip guard
is applied.

(para-4) P ‖ throw = throw

Law (para-4) indicates that throw is the zero of parallel
composition.

(para-5) Let P = X → P ′ and Q = Y → Q′.

Then

P ‖ Q
= []{ true&skip→ (X → P ′ ‖ Q),

true&skip→ (Y → P ‖ Q′)}
where, X = assign(x, e) or compen(C), and Y =
assign(y, f) or compen(D).

Law (para-5) stands for the case that both of the two par-
allel components belong to the second type of typical forms.

2.3 Head normal form

Now we explore the head normal form for BPEL programs.
Our later discussion about deriving operational semantics
and denotational semantics is based on the head normal form.
Head normal form is expressed in the form of one step for-
ward expansion; i.e., its definition is based on the four typical
forms.

123

Algebraic approach to linking the semantics of web services 213

Assignment x := e can be expressed as a guarded choice
comprising of a singleskip guarded component. The subse-
quent behaviour after the skip guard is expressed as
assign(x, e), which purely assigns value e to variable x .

HF(x := e) =d f []{true&skip→ assign(x, e)} (1)

For communication guard, it can be expressed as a guarded
choice comprising of a single communication guard compo-
nent.

HF(rec a x) =d f []{rec a x → II }
HF(rep a x) =d f []{rep a x → II } (2)

For statementthrow andundo, their head normal forms are
themselves. The head normal forms for event guard and label
update are similar to communicating statement and local var-
iable assignment, respectively.

HF(X) =d f X, where, X = throw or X = undo (3)

HF(@(g) A) =d f []{@(g)→ A} (4)

HF(b � l) =d f []{true&skip→ assign(l, b)} (5)

Now we consider the head normal form for A; B and A ◦ B.
The definition is based on the four typical forms for the head
normal form of A. If the head normal form of A is expressed
as a guarded choice, the head normal form of A; B can also be
expressed as a guarded choice comprising with the same set
of guards. The subsequent behaviour after the guard can be
expressed as the sequential combination of the corresponding
subsequent behaviour of A and B via function seq1. Simi-
larly, the corresponding behaviour after the guard for A ◦ B
is via function seq2.

Meanwhile, if A can be expressed as the sequential behav-
iour whose initial behaviour is assign(x, e) (or compen(C)),
then A; B (or A ◦ B) can also be expressed as the sequential
behaviour. The subsequent behaviour can be expressed using
function seq1 and seq2, respectively. Moreover, if the head
normal form of A is throw, the head normal form of A; B
is also throw. In this case, the head normal form of A ◦ B
is B. If the head normal form of A is undo, the head normal
forms for A; B and A ◦ B are also undo.

If HF(A) = []i∈I {hi → Ai },
then HF(A; B) = []i∈I {hi → seq1(Ai , B)}

HF(A ◦ B) = []i∈I {hi → seq2(Ai , B)}
If HF(A) = X → A′,
then HF(A; B) = X → seq1(A′, B)

HF(A ◦ B) = X → seq2(A′, B)

where, X = assign(x, e)or X = compen(C)

If HF(A) = throw, then HF(A; B) = throw
HF(A ◦ B) = B

If HF(A) = undo, then HF(A; B) = undo
HF(A ◦ B) = undo

(6)

For conditional and iteration, their head normal form can be
expressed as a guarded choice comprising of skip
guarded components.

HF(P � b � Q) =d f []{b&skip→ P, ¬b&skip→Q}
HF(b ∗ P) =d f []{b&skip→ (P; b ∗ P),

¬b&skip→ II } (7)

The head normal form of guarded choice is itself.

If P is a guarded choice, then HF(P) =d f P (8)

If the head normal form of P and Q both contain a set of
initially deterministic processes, The head normal form of
their nondeterminism consists of all the typical forms of P
and Q.

If HF(P) =
⊕

i∈I Pi and HF(Q) =
⊕

j∈J Q j ,

then HF(P � Q) =
⊕

i∈I Pi

⊕ ⊕
j∈J Q j (9)

If the head normal form of P and Q both contain a set of
initially deterministic processes, the head normal form of
P ‖ Q consists of the initially deterministic processes gen-
erated from the parallel composition of the typical forms from
P and Q.

If HF(P) =
⊕

i∈I Pi and HF(Q) =
⊕

j∈J Q j , (10)

then HF(P ‖ Q) =
⊕

i∈I, j∈J Pi ‖ Q j

where, HF(Pi ‖ Q j)is defined by applying algebraic

laws (para-1) to (para-5).

The head normal form of HF({A ? C, F}) can be expressed
as the head normal form of HF((A; compen(C)) ◦ F).

HF({A ? C, F}) =d f HF((A; compen(C)) ◦ F) (11)

Moreover, we also define HF(X) =d f X → II , where X
can be of the form assign(x, e), compen(C).

In this section, we have studied the head normal form for
each statement of BPEL. For program P , if it has initially
non-deterministic behaviour, its head normal form can be
expressed as the summation of a set of initially deterministic
processes. On the other hand, for each process P , if it is ini-
tially deterministic, its head normal form can be expressed
as one of the four typical forms.

3 Deriving operational semantics from algebraic
semantics for BPEL

In contrast to the standard style of defining operational
semantics, this section is to derive an operational seman-
tics for BPEL from its algebraic semantics. This approach
aims to show the equivalence and consistency between the
operational and algebraic semantics for BPEL.

123

214 H. Zhu et el.

3.1 Derivation strategy

For the operational semantics of BPEL, its transitions are
written in a special notation Structural Operational Seman-
tics (SOS) [40], which are of the four types:

C
τ−→ C ′ or C −→ C ′ or

C
v−→ C ′ or C

a.m−→ C ′

where C and C ′ are the configurations describing the states
of an execution mechanism before and after a step, respec-
tively. The first type models the case that a process does the
nondeterministic selection. The second type is mainly used
to model the assignment of a local variable, whereas the third
type models the update of a shared-label. The fourth type is
used to model the message communication between different
services through channel a, where m stands for the message
for communication.

The configuration can be expressed as 〈P, σ, L , Cpens〉,
where

(1) The first component P is a program that remains to be
executed.

(2) The second element σ is the state for all the local vari-
ables.

(3) The third element L stands for the state for all labels.
(4) The fourth element Cpens stands for a compensation

list; i.e., a sequence of programs to be executed as com-
pensation.

Regarding the program P in configuration 〈P, σ, L ,

Cpens〉, it can either be a normal program. Further, it can
also be one of the following special forms:

II : A program completes all its execution and terminates
successfully. II is used to represent the empty program.

� : A program may encounter a fault and stops at the fault
state. � is used to represent the fault state.

� : The installed compensation programs for the current
process can be activated for execution. After the termi-
nation of the compensating programs, the control will
not be passed to the subsequent activity of the current
process. This is the difference between the termination
of the compensating programs and the termination of the
current process. We use � to represent the undo state;
i.e., the terminating state for the execution of programs
in the compensation list of the current process.

Now we consider the derivation strategy for deriving oper-
ational semantics from algebraic semantics.

Definition 3.1 (Derivation Strategy)
Let HF(P) =⊕

i∈I Pi .

(1) If |I | > 1,
then 〈P, σ, L , Cpens〉 τ−→ 〈Pi , σ, L , Cpens〉

(2) Otherwise,

(a) If HF(P)

= []i∈I {bi &skip→ Pi }[][] j∈J {rec a j x j → Q j }
[][]k∈K {repck xk → Rk}[][]l∈L{@(gl)→ Tl}

Then
〈P, σ, L , Cpens〉 −→ 〈Pi , σ, L , Cpens〉,

if bi (σ)

〈P, σ, L , Cpens〉 ck .σ (xk)−→ 〈Rk, σ, L , Cpens〉
〈P, σ, L , Cpens〉a j .m−→〈Q j , σ [m/x j], L , Cpens〉
〈P, σ, L , Cpens〉 −→ 〈Tl , σ, L , Cpens〉,

if hold(gl)

where, hold(g) is used to represent the satisfactory
of the Boolean guard g.
hold(g(l1, l2, . . . , ln))

=d f g(L(l1), L(l2), . . . , L(ln))

(b) If HF(P) = assign(x, e)→ P ′,
then 〈P, σ, L , Cpens〉−→〈P ′, σ [e/x], L , Cpens〉

(c) If HF(P) = assign(l, b)→ P ′,
then 〈P, σ, L , Cpens〉 v−→〈P ′, σ, L[b/ l], Cpens〉

(d) If HF(P) = compen(C)→ P ′,
then 〈P, σ, L , Cpens〉 −→ 〈P ′, σ, L , Cpenŝ 〈C〉〉

(e) If HF(P) = throw,
then 〈P, σ, L , Cpens〉 −→ 〈�, σ, L , Cpens〉

(f) If HF(P) = undo,
then 〈P, σ, L , Cpens〉 −→ 〈X;undo, σ, L , Y 〉,
〈P, σ, L , ε〉 −→ 〈�, σ, L , ε 〉
where, X = final(Cpens) and
Y = front(Cpens).

Here, final(s) stands for the last element of sequence
s and front(s) stands for all but the final element of
sequence s. ε stands for the empty sequence. ��

If a process is expressed as a summation of at least two
processes, then the process performs the nondeterministic
selection and reaches to any of these processes as shown in
(1). Otherwise, the process is purely expressed as one of those
four typical forms.

If a process is expressed as the form of guarded choice, it
can perform various transitions shown as (2a). On the other
hand, if a process is expressed as the form whose initial
behaviour is the local variable assignment or shared-variable
update, the process can perform the corresponding transition
and reach to the subsequent process. Moreover, if the initial
behaviour is compen(C), the process can perform the transi-
tion dealing with the installation of compensation program C .

Further, if a process is purely expressed as “throw”, it
immediately reaches the fault state. On the other hand, if a
process is expressed as “undo”, it firstly performs the last

123

Algebraic approach to linking the semantics of web services 215

process in the compensation list and will “undo” again with
respect to the compensation list except the last element.

3.2 Deriving operational semantics for BPEL by strict proof

In this section, we will derive the operational semantics for
BPEL statements according to the derivation strategy. This
shows the soundness of our operational semantics. The
derived operational semantics is expressed as theorems to be
proved (Theorems 3.1–Theorem 3.5). Theorem 3.1 considers
the operational semantics for x := e, b�l, g◦P , communica-
tion, throw, undo, conditional and iteration. Theorem 3.2
studies the operational semantics for sequential composition.
Theorem 3.3 focuses on the operational semantics for nonde-
terminism. The operational semantics for parallel composi-
tion is studied in Theorem 3.4. Finally, Theorem 3.5 explores
the operational semantics for scope activity.

From the head normal form and the derivation strategy,
we can directly achieve the transitions below, shown in The-
orem 3.1.

Theorem 3.1

(1) 〈x := e, σ, L , Cpens〉 −→ 〈assign(x, e), σ, L ,

Cpens〉
〈assign(x, e), σ, L , Cpens〉 −→ 〈II, σ [e/x], L ,

Cpens〉
〈b�l, σ, L , Cpens〉−→〈assign(l, b), σ, L , Cpens〉
〈assign(l, b), σ, L , Cpens〉 v−→ 〈II, σ, L[b/ l],
Cpens〉

(2) 〈g ◦ P, σ, L , Cpens〉 −→ 〈P, σ, L , Cpens〉,
if hold(g)

(3) 〈rec a x, σ, L , Cpens〉 a.m−→ 〈II, σ [m/x], L ,

Cpens〉
(4) 〈rep a x, σ, L , Cpens〉 a.σ (x)−→ 〈II, σ, L , Cpens〉
(5) 〈throw, σ, L , Cpens〉 −→ 〈�, σ, L , Cpens〉
(6) 〈undo, σ, L , Cpens〉 −→ 〈X;undo, σ, L , Y 〉
〈undo, σ, L , ε〉 −→ 〈�, σ, L , ε 〉
where , X = final(Cpens) and Y = front(Cpens).

(7) 〈P � b � Q, σ, L , Cpens〉 −→ 〈P, σ, L , Cpens〉,
if b(σ)

〈P � b � Q, σ, L , Cpens〉 −→ 〈Q, σ, L , Cpens〉,
if ¬b(σ)

(8) 〈b ∗ P, σ, L , Cpens〉 −→ 〈P; b ∗ P, σ, L , Cpens〉,
if b(σ)

〈b ∗ P, σ, L , Cpens〉 −→ 〈II, σ, L , Cpens〉,
if ¬b(σ)

The transition rules for x := e and b � l can be divided into
two steps. This consideration is for the aim of linking opera-
tional semantics with denotational semantics. For event guard
@(g), it can be fired if the update of shared-labels makes the
event guard g satisfied. For rec a x, the received message

via channel is stored in variable x . For rep a x, the value
σ(x) is sent out via channel a.
throw makes the program immediately enter into the

fault state while leaving all states unchanged. undo executes
all the stored compensation programs. The execution is in the
reverse order of the previous installed sequence. The transi-
tion rules for conditional and iteration are similar to those in
traditional programming language.

Theorem 3.2

(1) if 〈P, σ, L , Cpens〉 β−→ 〈P ′, σ ′, L ′, Cpens′〉
and P ′
= II , �, �, then

〈P; Q, σ, L , Cpens〉 β−→ 〈P ′; Q, σ ′, L ′, Cpens′〉
(2) if 〈P, σ, L , Cpens〉 β−→ 〈II, σ ′, L ′, Cpens′〉

then

〈P; Q, σ, L , Cpens〉 β−→ 〈Q, σ ′, L ′, Cpens′〉
(3) if 〈P, σ, L , Cpens〉 β−→ 〈x, σ ′, L ′, Cpens′〉

and x = � or �
then 〈P; Q, σ, L , Cpens〉 β−→ 〈x, σ ′, L ′, Cpens′〉

��

The above theorem illustrates the transition rules for
sequential composition. The first two rules are similar to
those in traditional programming languages. The third rule
indicates that if P performs a transition reaching to fault state
or undo state, the whole process P; Q also performs the same
transition reaching to fault state or undo state. The proof can
be proceeded directly by the derivation strategy and head
normal form.

Further, if a process is in the form of guarded choice, its
transition rules are just those in the derivation strategy. Now
we define the function:

stable(〈P, σ, L , Cpens〉
=d f ¬(〈P, σ, L , Cpens〉 τ−→)

The transition of nondeterministic choice can be derived as
a theorem shown below.

Theorem 3.3

(1) If 〈P, σ, L , Cpens〉 τ−→ 〈P ′, σ ′, L ′, Cpens′〉,
then
〈P � Q, σ, L , Cpens〉 τ−→ 〈P ′ � Q, σ ′, L ′, Cpens′〉,
〈Q� P, σ, L , Cpens〉 τ−→ 〈Q� P ′, σ ′, L ′, Cpens′〉

(2) If stable(〈P, σ, L , Cpens〉),
then 〈P �Q, σ, L , Cpens〉 τ−→ 〈P, σ ′, L ′, Cpens′〉
〈Q � P, σ, L , Cpens〉 τ−→ 〈P, σ ′, L ′, Cpens′〉

123

216 H. Zhu et el.

Proof Here we only give the proof for (1).

〈P, σ, L , Cpens〉 τ−→ 〈P ′, σ ′, L ′, Cpens′〉
⇒ {Derivation Strategy}

P ′ ∈ HF(P)

⇒ {Set Calculus}
P ′ ∈ HF(P) ∪HF(Q)

⇒ {Derivation Strategy}
〈P, σ, L , Cpens〉 τ−→ 〈P ′, σ ′, L ′, Cpens′〉 �

Now we define the function:

not f ault (〈P, σ, L , Cpens〉
=d f ¬(〈P, σ, L , Cpens〉 β−→ 〈�, σ, L , Cpens〉)

For parallel composition, the corresponding transition can be
derived as shown below. Note that channel(P) stands for the
channels that process P owns.

Theorem 3.4

(1) if 〈P, σ1, L , Cpens〉 τ−→ 〈P ′, σ ′1, L ′, Cpens′〉 and
stable(〈Q, σ2, L , Cpens〉), then
〈P ‖Q, σ, L , Cpens〉 τ−→〈par(P ′, Q), σ ′, L ′, Cpens′〉
〈Q ‖ P, σ, L , Cpens〉 τ−→〈par(Q, P ′), σ ′, L ′, Cpens′〉
where, σ = σ1 ∪ σ2 and σ ′ = σ ′1 ∪ σ2.

if 〈P, σ1, L , Cpens〉 τ−→ 〈P ′, σ ′1, L ′, Cpens′〉 and

〈Q, σ2, L , Cpens〉 τ−→ 〈Q′, σ ′2, L ′, Cpens′〉,
then 〈P ‖ Q, σ, L , Cpens〉 τ−→ 〈par(P ′, Q′), σ ′, L ′,
Cpens′〉
where, σ = σ1 ∪ σ2 and σ ′ = σ ′1 ∪ σ ′2.

(2) if 〈P, σ1, L , Cpens〉 x−→ 〈P ′, σ ′1, L ′, Cpens′〉
(P ′
= �) and stable(〈Q, σ2, L , Cpens〉)
and not f ault (〈Q, σ2, L , Cpens〉), then

〈P ‖Q, σ, L , Cpens〉 x−→〈par(P ′, Q), σ ′, L ′, Cpens′〉
〈Q ‖ P, σ, L , Cpens〉 x−→〈par(Q, P ′), σ ′, L ′, Cpens′〉
where, σ = σ1 ∪ σ2 and σ ′ = σ ′1 ∪ σ2.

Here,
x−→∈ {−→,

v−→}.
(3) if 〈P, σ1, L , Cpens〉 a.m−→ 〈P ′, σ ′1, L ′, Cpens′〉

anda ∈ channel(P)− channel(Q)

and not f ault (〈Q, σ2, L , Cpens〉), then

〈P ‖ Q, σ, L , Cpens〉 a.m−→ 〈par(P ′, Q), σ ′, L ′,
Cpens′〉
〈Q ‖ P, σ, L , Cpens〉 a.m−→ 〈par(Q, P ′), σ ′, L ′,
Cpens′〉
where, σ = σ1 ∪ σ2 and σ ′ = σ ′1 ∪ σ2.

if 〈P, σ1, L , Cpens〉 a.m−→ 〈P ′, σ ′1, L ′, Cpens〉 and

〈Q, σ2, L , Cpens〉 a.m−→ 〈Q′, σ2, L ′, Cpens〉 and
a ∈ channel(P) ∩ channel(Q) and
m = σ1(v) and σ ′1 = σ1[m/u], then
〈P ‖ Q, σ, L , Cpens〉 −→
〈u := v ; par(P ′, Q′), σ, L , Cpens〉

〈Q ‖ P, σ, L , Cpens〉 −→
〈u := v ; par(P ′, Q′), σ, L , Cpens〉

where, σ = σ1 ∪ σ2 and σ ′ = σ ′1 ∪ σ2.
(4) if 〈P, σ1, L , Cpens〉 −→ 〈�, σ ′1, L ′, Cpens′〉 and

stable(〈Q, σ2, L , Cpens〉)
then 〈P ‖ Q, σ, L , Cpens〉 −→〈�, σ ′, L ′, Cpens′〉
〈Q ‖ P, σ, L , Cpens〉 −→ 〈�, σ ′, L ′, Cpens′〉
where, σ = σ1 ∪ σ2 and σ ′ = σ ′1 ∪ σ2.

Proof Here we only give the proof for the channel commu-
nication transition (i.e., item (3) of this theorem). For others,
their proofs are similar. Firstly we consider the proof for
the first case of channel communication. From the assump-
tion, we know that P can perform communication transition.
Therefore, P can only be of the form below.

[]i∈I {bi &skip→ Pi }[][] j∈J {@(g j)→ U j }
[][]l∈L{comm al xl → Rl}

On the other hand, Q can be one of the following forms
below:

• []kinK {ck&skip→ Vk}[][]m∈M {@(hm)→ Qm}
[][]n∈N {comm dn yn → Tn}

• assign(x, e)→ E
• compen(C)→ F

By using the parallel algebraic laws, HF(P ‖ Q) can also
be of the forms below

• []i∈I {bi &skip→ Pi }[][]{ck&skip→ Vk}
[][] j∈J {@(g j)→ U j }[][]m∈M {@(hm)→ Qm}
[][]l∈L{comm al xl → Rl}[][]n∈n{comm dn yn → Tn}

• []i∈I {bi &skip→ Pi }[][] j∈J {@(g j)→ U j }
[][]l∈L{comm al xl → Rl}
[][]{true&skip→ (assign(x, e)→ P ‖ E)}

• []i∈I {bi &skip→ Pi }[][] j∈J {@(g j)→ U j }
[][]l∈L{comm al xl → Rl}
[][]{true&skip→ (compen(C)→ P ‖ F)}

From the derivation strategy, we know that P ‖ Q can do the
first type of communication transition.

Next we consider the proof for the second case of channel
communication. From the assumption, for simplicity, P can
only have the following form:

[]{bi &skip→ Pi }[][] j∈J {@(g j)→ U j }
[][]l∈L{comm al xl → Rl}[]{rec a u → P ′}

Similarly, Q can also only have the following form.

[]{ck&skip→ Vk}[][]m∈M {@(km)→ Qm}
[][]n∈N {comm an xn → Tn}[]{rep a v→ Q′}

123

Algebraic approach to linking the semantics of web services 217

Using the parallel expansion laws, P ‖ Q can only have the
form below:

[]{bi &skip→ Pi }[][]{ck&skip→ Vk}
[][] j∈J {@(g j)→ U j }[][]m∈M {@(km)→ Qm}
[][]l∈L{comm al xl → Rl}[][]n∈n{comm an xn → Tn}
[]{true&skip→ (u := v;par(P ′, Q′))}

This indicates that P ‖ Q can perform the corresponding
communication transition. ��

For Theorem 3.4, the first item considers the
τ−→ transi-

tion for a parallel process. It can be divided into two cases.
The first one models the case that only one parallel compo-
nent can perform

τ−→ transition. The second one models the
case that both of the two parallel branches can perform

τ−→
transitions.

If one parallel branch can perform−→ (or
τ−→), the whole

process can also perform the same type of transition, where
the subsequent process is still the parallel composition. In
this case, we assume another parallel branch is stable and
cannot perform transition leading to fault state. The second
item models this case for parallel composition.

The third item models the communicating transition for
a parallel process. If one parallel branch perform communi-
cation with outside (not another parallel branch), the whole
parallel process can also perform transition with outside. On
the other hand, two parallel branches may perform commu-
nication. It can be regarded as an assignment behaviour.

If a parallel branch can perform action reaching to the fault
state. The whole process can also reach to the fault state. The
fourth item of parallel process transitions reflects this fact.

Theorem 3.5

(1) if 〈A, σ, L , Cpens〉 β−→ 〈II, σ ′, L ′, Cpens′〉,
then

〈{A? C, F}, σ, L , Cpens〉 β−→ 〈X, σ ′, L ′, Cpens′〉
〈X, σ ′, L ′, Cpens′〉 −→ 〈II, σ ′, L ′, Cpens ′̂ 〈C〉〉
where, X = compen(C).

(2) if 〈A, σ, L , Cpens〉 β−→ 〈�, σ ′, L ′, Cpens′〉,
〈F, σ ′, L ′, Cpens′〉 r−→ 〈F ′, σ ′′, L ′′, Cpens′′〉
then
〈{A? C, F}, σ, L , Cpens〉 r−→ 〈F ′, σ ′′, L ′′, Cpens′′〉

(3) if 〈A, σ, L , Cpens〉 β−→ 〈�, σ ′, L ′, Cpens′〉 and
then

〈{A? C, F}, σ, L , Cpens〉 β−→ 〈�, σ ′, L ′, Cpens′〉
(4) if 〈A, σ, L , Cpens〉 β−→ 〈A′, σ ′, L ′, Cpens′〉 and

A′
= II , �, �
then

〈{A? C, F}, σ, L , Cpens〉 β−→
〈{A′? C, F}, σ ′, L ′, Cpens′〉

Proof (1) For the first rule, we can consider the proof by

analyzing the transition type
β−→. Here, we only give the

proof for the transition type
a.m−→. Then, we can assume

that HF(A) has the form below:

[]i∈I {hi → Ai }[]{comm a x → II }

Then we can have

HF({A ? C, F})
= HF((HF(A); compen(C)) ◦ F)

= []i∈I {hi → seq2(seq1(Ai , compen(C)), F)}[]
[]{comm a x → compen(C)}

Therefore, from the derivation strategy and the commu-
nication component in HF({A ? C, F}), we know that
this scope can also perform the corresponding transi-
tions.

(2) From the assumption, we know that HF(P) = throw.
Then we have

HF({A ? C, F})
= HF((throw; compen(C)) ◦ F)

= HF(throw ◦ F)

= F

This indicates that HF({A ? C, F}) can also perform the
corresponding transition. The proofs of other transition
rules for scope are similar. ��

In Theorem 3.5 (also in Theorem 3.2), “
β−→” stands for the

transition type, i.e., it can be one of the four transition types.
For Theorem 3.5 about the transitions of scope, the analy-
sis can be divided into four cases. The first case models that
the primary activity performs action and reaches to the ter-
minating state. Then the compensation program should be
recorded in the compensation list. The second case models
that the primary activity performs actions and reaches to the
fault state. Then the fault handler will be activated to be per-
formed. The third case models that the primary activity per-
forms actions and reaches to the undo state. Then the whole
scope also reaches to the undo state. The fourth case models
the case that the primary activity performs action and reaches
to the normal state. Then the scope can also perform action
and reach to the normal state.

3.3 Equivalence of derivation strategy and transition system

The last subsection derived a set of transition rules according
to a derivation strategy. The set of transition rules can be con-
sidered as a transition system (i.e., operational semantics) for
BPEL. The soundness of this derived operational semantics is
based on the derivation strategy. There remains an issue: The

123

218 H. Zhu et el.

derivation strategy may derive more transitions, compared
with our transition system (Theorems 3.1–3.5). We want to
show that the set of transitions derived from the derivation
strategy is same as the set of transitions generated from our
transition system. If so, we can say the derivation strategy is
equivalent with the transition system.

In order to study this equivalence problem, we need to
prove the following items for every process.

(1) If transition 〈P, σ, L , Cpens〉 β−→〈P ′, σ ′, L ′, Cpens′〉
exists in the transition system, then it also exists in the
derivation strategy.

(2) If transition 〈P, σ, L , Cpens〉 β−→〈P ′, σ ′, L ′, Cpens′〉
exists in the derivation strategy, then it also exists in the
transition system.

The item (1) is correct because our transition system is
derived from the derivation strategy. Now we consider (2) as
a theorem to be proved.

Theorem 3.6 If transition 〈P, σ, L , Cpens〉 β−→ 〈P ′, σ ′, L ′,
Cpens′〉 exists in the derivation strategy, then it also exists in
the transition system.

Proof Here we give the proof for scope activity (i.e., P =
{A?C, F}), others are similar. For the detailed proof, we can
proceed via the several cases for activity A. Here we only
give the proof for case below.

HF(A)

= []{bi &skip→ Pi }[][] j∈J {@(g j)→ U j }
[][]l∈L{commal xl → Rl}

From the derivation strategy, A can perform the following
transitions.

(p-1) 〈A, σ, L , Cpens〉 −→ 〈Pi , σ, L , Cpens〉, if bi (σ)

(p-2) 〈A, σ, L , Cpens〉 −→ 〈U j , σ, L , Cpens〉, if hold(g j)

(p-3) 〈A, σ, L , Cpens〉 ak .mk−→ 〈Rk , σk , L , Cpens〉
By the induction, we know that these transitions also exist in
our transition system. Further, we can have:

HF(P)

= []{bi &skip→ seq2(seq1(Pi , compen(C)), F)}
[][]{@g j → seq2(seq1(Q j , compen(C)), F)}
[][]{comm ak xk → seq2(seq1(Rk, compen(C)), F)}

Now we do further analysis. Assume that X
= � or X
= �.
Then we have:

If X = II , then
seq2(seq1(X, compen(C)), F) = compen(C).

Otherwise, then
seq2(seq1(X, compen(C)), F) = X ; compen(C).

By using the derivation strategy, P can have the transitions
below:

(l-1)
〈{A?C, F}, σ, L , Cpens〉 −→ 〈compen(C), σ, L , Cpens〉,

if bi (σ) and Pi = II
(l-2)
〈{A?C, F}, σ, L , Cpens〉 −→ 〈{A′?C, F}, σ, L , Cpens〉,

if bi (σ) and Pi
= II
(l-3)
〈{A?C, F}, σ, L , Cpens〉 −→ 〈compen(C), σ, L , Cpens〉,

if hold j (g j) and Q j = II
(l-4)
〈{A?C, F}, σ, L , Cpens〉 −→ 〈{A′?C, F}, σ, L , Cpens〉,

if hold j (g j) and Q j
= II
(l-5)
〈{A?C, F}, σ, L , Cpens〉ak .mk−→〈compen(C), σk, L , Cpens〉,

if Rk = II
(l-6)
〈{A?C, F}, σ, L , Cpens〉 ak .mk−→ 〈{A′?C, F}, σk, L , Cpens〉,

if Rk
= II
(l-7)
〈compen(C), σ, L , Cpens〉 −→ 〈II, σ, L , Cpenŝ 〈C〉 〉

Now we want to prove that the above transitions (l-1–l-
7) also exist in the transition system. This can be directly
achieved from the transition system of scope. ��
Now we present the main result of this section.

Theorem 3.7 Regarding the derived operational semantics
for BPEL, the derivation strategy is equivalent with the tran-
sition system.

This result demonstrates that the transitions from the deri-
vation strategy are the same as those in the transition system.
Together with the theorems achieved in last subsection, it also
shows that our transition system (operational semantics) for
BPEL is sound and complete with respect to the derivation
strategy in the last subsection.

4 Deriving denotational semantics from algebraic
semantics for BPEL

In this section, we study the derivation of denotational seman-
tics for BPEL programs; i.e., calculating the denotational
semantics from the head normal form. This gives us a way
to reason about program equivalence easily.

4.1 Denotational semantic model for BPEL

This section considers the denotational semantic model for
BPEL. Our approach is based on the relational calculus [25].
In order to represent the execution state of a program, we
introduce a pair of variables ←−st and −→st into our semantic
model. Variable←−st stands for the initial execution state of a

123

Algebraic approach to linking the semantics of web services 219

program before its activation, whereas−→st stands for the final
execution state of the program during the current observation.

A program may have five execution states: (1) divergent
state, (2) completed state, (3) waiting state, (4) error state, (5)
undo state. The first three states are similar to those in reac-
tive systems [12,35,36,50]. For “error state”, a program may
encounter a fault during its execution, where compensation
may be executed via fault handling. Further, “undo state” is
introduced to distinguish the termination of a process itself
and the termination of the execution of compensating pro-
grams.

For a parallel process, messages can be transformed from
one service to another. A Boolean guard can be fired by
the update of its associated links. For considering these two
mechanisms, a trace variable tr is introduced, whose ele-
ments has two forms: (1) the message transmission from
different services; (2) the update of the shared-labels. For
message transmission, the element recorded in the trace vari-
able can be expressed in the form a.m. Here, a is the channel
name where communication may go through and m is the
message for transmitting. For the update of a shared-label,
the associated element in the trace variable can be expressed
as a snapshot in the form l : (←−l ,

−→
l), where l is the label

name, and
←−
l and

−→
l stand for the initial and final values of

label l respectively. We use←−tr and−→tr to represent the initial
and final trace of variable tr .

Further, we introduce a variable Cpens in our model,
which records a sequence of programs in the form of stack

(i.e., first installing last compensating). Here, we use
←−−−
Cpens

and
−−−→
Cpens to denote the initial and final compensating

sequence, respectively. Channels are applied in our model
for transmitting messages between different services. Like
CSP [22], we also apply a set variable re f in our semantic
model, which indicates that the elements in the set are refused
by the process currently. Similarly,

←−
re f and

−→
re f stand for the

initial and final refusal set, respectively. Now we start to
consider the healthiness conditions a BPEL program should
satisfy. Two trace variables tr and Cpens are introduced in
our semantic model. They cannot be shortened. A formula
P which identifies a program must satisfy the healthiness
condition below.

(H1) P = P ∧ I nv(tr, Cpens)

where, I nv(tr, Cpens) =d f (
←−
tr � −→

tr) ∧ (
←−−−
Cpens

� −−−→Cpens). Here, s � t denotes that sequence s is a pre-
fix of sequence t .

If a program is initially at the divergent state, the program
cannot be started and its initial values are even unobserv-
able. Therefore, another healthiness condition is required for
BPEL programs.

(H2) P = P ∨ (
←−
st = div ∧ I nv(tr, Cpens))

If a program is activated and finally at the divergent state, this
indicates that the program is totally unpredictable. Therefore,
a healthiness condition should be satisfied:-

(H3) P = P; III

where, III =d f (
←−
st = div ⇒ I nv(tr, Cpens)) ∧ (

←−
st
=

div ⇒ I d). Here I d is the identity relation.
For sequential composition “R; P”, if P is initially at the

“error” state, this means that the predecessor of P (i.e., R)
encounters a fault. Then P cannot have the chance to be
scheduled. Similar considerations also apply to “wait” and
“undo” states. Therefore, it satisfies a further healthiness con-
dition.

(H4) P = III � (
←−
st = wait ∨←−st = error ∨
←−
st = undo) � P

where, Boolean expression P �b � Q =d f b∧ P ∨¬b∧Q.
Next we give the definition for H-function:

H(X)

=d f (X ∧ I nv(tr, Cpens) ; III) �
←−
st = completed �

(I nv(tr, Cpens) �
←−
st = div � III)

From this definition, we know that H(X) satisfies all the
healthiness conditions (H1)–(H4). The H-function can be
used in defining the denotational semantics for BPEL pro-
grams.

4.2 Deriving denotational semantics from algebraic
semantics

Firstly, we introduce the alphabet for command c, which is
denoted as:

(Var(c), SLink(c), TLink(c))

where

• Var(c) is the set of program variables owned by c.
• SLink(c) stands for the set of links which can only be

read by c; i.e., the set containing all the source links of
command c.
• TLink(c) represents the set of links which can only be

updated by c; i.e., the set containing all the target links
of command c. Sometimes, without causing confusions,
Var(c), SLink(c) and TLink(c) are simply written as Var,
SLink and TLink for command c respectively.

Further, we use Comm(C) to record all the snapshots
which stand for the update of all the links in set C ; i.e.,
Comm(C) =d f {l : (e1, e2) | l ∈ C}. We use beh(c) to
represent the meaning of command c. Next we give some
preliminary definitions.

123

220 H. Zhu et el.

(1) Rec_Comm =d f ∃t ∈ Comm(SLink)∗ • −→tr = ←−tr · t
(2) same(A) =d f

∧
x∈A
−→x =←−x

(3) VTC =d f Var ∪ Tlink ∪ {Cpens}

Formula Rec_Comm indicates that the source links of
the process may receive updates from other parallel compo-
nents. These updates are recorded in the trace variable. For-
mula same(A) indicates that all variables in set A remain
unchanged during the execution of the program. Further,
VTC stands for the set of the union of all local variables,
target links of a process, together with the denotational var-
iable Cpens.

Next we introduce the behaviours of some fundamental
statements. The execution of x := e terminates immedi-
ately. Variable x is updated, while all other variables remain
unchanged. Further, assignment can also receive the updates
of all its source links. From denotational view, we regard
beh(assign(x, e)) = beh(x := e).

beh(x := e)

=d f H
(−→

st = completed ∧ −→x =←−e ∧
Rec_Comm ∧ same(VTC \ {x})

)

The execution of rec a x can initially be at the waiting
state. At this state, channel a is ready for communication and
the process can receive the updates of all source links. On
the other hand, a message is received via this channel finally
and the process terminates. All variables remain unchanged
except variable x .

beh(rec a x)

=d f H

⎛

⎜
⎜
⎜
⎝

−→
st = wait ∧ Rec_Comm ∧ a /∈ −→re f∨−→
st = completed ∧ same(VTC \ {x})∧
∃s, t ∈ Comm(SLink)∗, ∃m ∈ Type(a)•

(
−→x = m ∧ −→tr =←−tr · s · 〈a.m〉 · t))

⎞

⎟
⎟
⎟
⎠

Similar to rec a x , the execution of rep a x also has two
states. The message for output is stored in the trace variable
tr , which can be received by the corresponding partner.

beh(rep a x)

=d f H

⎛

⎜
⎝

−→
st = wait ∧ Rec_Comm ∧ a /∈ −→re f∨−→
st = completed ∧ same(VTC) ∧
∃s, t ∈ Comm(SLink)∗ • −→tr = ←−tr · s · 〈a.

←−x 〉 · t

⎞

⎟
⎠

The execution of throw makes the process at the error
state. Meanwhile, it can initially receive the updates of all
its source links, while all the corresponding variables remain
unchanged.

beh(throw)

=d f H(
−→
st = error ∧ Rec_Comm ∧ same(VTC))

When the undo statement is scheduled, all the compen-
sated processes will be executed in the reverse order. Finally,
the process will be at the undo state.

beh(undo) =d f exec(
←−−−
Cpens),

where

exec(
←−−−
Cpens)

=d f

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

←−−−
Cpens = ε ⇒ H

⎛

⎝

−→
st = undo ∧
Rec_Comm ∧
same(VTC)

⎞

⎠∧
←−−−
Cpens
= ε ⇒
beh(final(

←−−−
Cpens)) ; exec(front(

←−−−
Cpens))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

If event @(g) does not hold, the process is at the wait-
ing state. On the other hand, when @(g) is satisfied finally,
the process is at the terminating state, with the variables
unchanged. No matter what state the process is at, the process
can receive the updates of all the source links.

beh(g)

=d f H
⎛

⎝

−→
st = wait ∧ Rec_Comm ∧ ¬holds(g)∨−→
st = completed ∧ Rec_Comm∧
same(VTC) ∧ holds(g)

⎞

⎠

Similar to local variable assignment, b � l terminates
immediately. The label update is recorded in the trace var-
iable, which can be shared by its parallel partner. From de-
notational view, we also regard beh(assign(l, b)) = beh
(b � l).

beh(b � l)

=d f H

⎛

⎜
⎝

−→
st = completed ∧ same(VTC \ {l})∧
∃s, t ∈ Comm(SLink)∗•−→
tr = ←−tr · s · 〈l : (←−l ,

−→
l)〉 · t ∧ −→l =←−b

⎞

⎟
⎠

Now we consider the derivation strategy for deriving deno-
tational semantics from algebraic semantics. We use the nota-
tion A(P) to represent the derived denotational semantics
from the algebraic semantics. Here, our derivation approach
is only limited to finite programs.

Definition 4.1 (Derivation Strategy)

(1) If HF(P) = ⊕
i∈I Pi ,

then A(P) =∨
i∈I A(Pi)

(2) Otherwise,

(a) If HF(P)

= []i∈I {bi &skip→ Pi }[][] j∈J {@(g j)→ Q j }
[][]l∈L{comm al xl → Rl}
then

123

Algebraic approach to linking the semantics of web services 221

A(P) =d f

H

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−→
st = wait ∧ (I = ∅) ∧∧

j∈J beh(g j)

∧∧
l∈L beh(comm al xl)

)

∨
⎛

⎜
⎜
⎜
⎜
⎝

∨
i∈I (bi ∧ beh(skip) ; A(Pi))∨∨
j∈J (
−→
st = completed∧

beh(g j) ; A(Q j)) ∨
∨

l∈L(
−→
st = completed∧

beh(comm al xl) ; A(Rl))

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(b) If HF(P) = assign(u, v)→ Q,
then A(P) = beh(assign(u, v))→ A(Q)

(c) If HF(P) = compen(C)→ Q,
then A(P) = beh(compen(C))→ A(Q))

(d) If HF(P) = throw,
then A(P) = beh(throw)

(e) If HF(P) = undo,
then A(P) = beh(undo)

where, the behaviour of compen(C) can be defined as:
beh(compen(C))

=d f

(−→
st = completed ∧ Rec_Comm∧
same(Var ∪ Tlink) ∧ −−−→Cpens =←−−−Cpenŝ 〈C〉

)

��

Furthermore, we also need the consideration A(II) =d f

III when deriving denotational semantics from algebraic
semantics. If the head normal form of a program can be
expressed as the summation of a set of processes, the behav-
iour of the program is just the disjunction of all these pro-
cesses. Otherwise, the head normal form of the program can
be expressed as one of the four typical forms. The analysis
can be proceeded via these four forms. If the head normal
form is expressed in the form of guarded choice, the process
can be either at the waiting state provided that there are no
skip guards in the choice. At this state, the behaviour of
the process is just the conjunction of all the event guards and
communication guards. Further, if any guard is scheduled
or fired, the subsequent behaviour is the following process
after the corresponding guard. The analysis of other forms is
similar.

This gives us a way to calculate the denotational semantics
from the head normal form of a program. Next we want to
study the compositional properties for this derivation strat-
egy.

Theorem 4.2 (1) A(P; Q) = A(P); A(Q)

(2) A(P � b � Q) = A(P) � b � A(Q)

(3) A(P � Q) = A(P) ∨ A(Q)

(4) A({P ? C, F}) = A(P);deal(C, F),

where,

deal(C, F)

=d f

⎛

⎜
⎝

←−
st = completed ⇒ beh(compen(C)) ∧←−
st = error ⇒ A(F)[completed/

←−
st] ∧←−

st ∈ {wait, undo} ⇒ beh(skip)

⎞

⎟
⎠

��
Here we use formula deal(C, F) to deal with compensa-

tion and fault handler. If P terminates successfully, this can be
represented by “←−st = completed” in formula deal(C, F).
At this case, process C is recorded in the compensation list.
On the other hand, if P is at the error state, this can be rep-
resented by “←−st = error” in formula deal(C, F). At this
case, fault handler F is scheduled. Moreover, if process P
is currently at the waiting or undo state, deal(C, F) behaves
like skip.

In this section, we have explored the calculation of deno-
tational semantics from the algebraic semantics for BPEL.
This can help us in reasoning the properties of BPEL pro-
grams easily, especially for parallel programs. Further, this
approach also shows the linking theories between algebraic
semantics and denotational semantics for BPEL programs.

5 Related work

Compensation is one typical feature for long-running trans-
actions. Butler et al. have explored the compensation feature
in the style of process algebra CSP [21,44], namely compen-
sating CSP. The operational semantics and trace semantics
have been studied [5,9]. The compensation was introduced
via a construct P÷Q, where P is the forward process and Q
is its associated compensation behavior. Structured Activity
Compensation (StAC) [6] is another business process mod-
eling language, where compensation acts as one of its main
features. Its operational semantics has also been studied in
[7]. Meanwhile, the combination of StAC and B method [1]
has been explored in [8], which provides the precise descrip-
tion of business transactions. Bruni et al. have studied the
transaction calculi for Sagas [4]. The long-running transac-
tions were discussed and a process calculi was proposed in
the form of Java API, namely Java Transactional Web Ser-
vices [3].

Transaction-based services are increasingly being applied
in showing many universal interoperability problems. Com-
pensation and failure are typical phenomena of the execu-
tion of long-running transactions. To accommodate these new
program features, He [19] extended the Guarded Command
Language [14] by adding the compensation and coordination
combinators. Such extension has been shown as conservative
because it preserves all the algebraic laws of formula design
[25]. A Galois link between the standard design with this new
model has been established. Lanotte et al. [29] have studied

123

222 H. Zhu et el.

the design and verification of long-running transactions in a
timed framework. They have developed a model of Commu-
nicating Hierarchical Timed Automata, which allows the ver-
ification of long-running transaction’s properties by model
checking.

Compensation and fault handing are also the two main fea-
tures of BPEL. Qiu et al. have provided a deep formal analysis
of the fault behavior for BPEL-like processes [43]. Pu et al.
have formalized the operational semantics for BPEL [42],
where bisimulation has been considered. Further, Cerone et
al. explored the security issues in BPEL framework [10]; i.e.,
Role Based Access Control (RBAC) has been integrated into
BPEL. In this framework, model checking has been applied
to verify the satisfaction of security issues. π -calculus [38]
has been applied in describing various web services models.
Lucchi and Mazzara formalized the semantics of BPEL using
π -calculus [32]. Laneve and Zavattaro [28] also explored the
application of π -calculus in the formalization of the seman-
tics of the transactional construct of BPEL. Breugel and
Koshkina proposed a language called BPE-calculus, which
is based on BPEL4WS for expressing web service orches-
tration. They have applied the Concurrency Workbench in
supporting the verification of web services [27]. Dead-Path-
Ellimination is a key ingredient of BPEL4WS. As DPE may
give rise to unintended side effects. BPE-calculus was mod-
eled both in the absence and in the presence of DPE [47].
Recently, Luo et al. have studied the verification of BPEL
programs using Hoare logic [33,34]. A set of proof rules
were proposed in Hoare logic style. They were proven sound
with respect to the formalized semantics.

We have also done research in applying formal approaches
to BPEL4WS. We have investigated a formal model for
BPEL-like language. Its denotational semantics [20] was
studied via the UTP approach and the operational seman-
tics [51] was also explored. A set of algebraic laws has
been explored, and their soundness can be verified via these
two semantics respectively. We have also studied the link
between the operational semantics and denotational seman-
tics for BPEL [52]. Our approach is to derive the denotational
semantics from operational semantics. The concept of transi-
tion condition and phase semantics was defined for each type
of transition for building the link between these two seman-
tics. This paper investigates the algebraic approach for link-
ing the semantics for BPEL, where our approach is to derive
the operational semantics and denotational semantics from
algebraic semantics.

Unifying Theories of Programming (abbreviated as UTP)
was developed by Hoare and He in 1998 [25]. UTP covers
wide areas of fundamental theories of programs in a formal-
ized style and acts as a consistent basis for the principles of
programming language. For relating operational and alge-
braic semantics, Hoare and He have studied the derivation of
operational semantics from the algebraic semantics [24,25].

An operational semantics of CSP [22] was derived, based
on CSP’s algebraic laws according to a derivation strategy
(called the action transition relation). An operational seman-
tics of Dijkstra’s Guarded Command Language (GCL) was
also derived based on GCL’s algebra according to the deriva-
tion strategy (called the step relation). The total correctness of
the derived GCL’s operational semantics was also discussed
in [26].

Several approaches have been investigated for the equiv-
alence of operational semantics and denotational semantics.
Brookes has given a new denotational semantics for a shared-
variable parallel programming language [2]. The denotation-
al semantics is proved to be fully abstract with respect to the
operational-based partial correctness behaviour. His seman-
tics is adaptable to deal with different levels of granularity or
atomicity. In each of these cases, full abstraction is always
achieved. Equivalence has also been investigated in the book
Control Flow Semantics (abbreviated as CFS) [13]. CFS is
devoted to studying the equivalence of operational semantics
and denotational semantics for 27 languages using the the-
ory of Metric Space. For the equivalence investigation, the
Banach Space theorem is applied.

Glabbeek has investigated the topic of comparative con-
currency semantics, which aims at the classification of pro-
cess semantics [16–18]. He proposed four different kinds of
identification categories; i.e., linear time versus branching
time, interleaving semantics versus partial order semantics,
different treatments of abstraction from internal actions and
different approaches to infinity. For the classification of pro-
cess semantics in the category of linear time versus branching
time [18], there are 12 semantics in total. These semantics
have been compared, with a resulting comparison hierarchy.
The coarsest semantics is the trace semantics, whereas the
finest semantics is the bisimulation semantics.

6 Conclusion

In this paper, we have explored the linking theories between
the three semantics of BPEL, namely, algebraic semantics,
operational semantics and denotational semantics, where our
starting point is algebraic semantics. Our consideration is to
derive the operational semantics and denotational semantics
from algebraic semantics.

Firstly, we considered the algebraic laws for BPEL pro-
grams. Our approach is new. We introduced four types of
typical forms. Among these, a new form “compen(C)” is
introduced, which acts as recording the compensation pro-
gram C in the compensation list. Scope activity is dealt with
using the typical form “compen(C)” and the new introduced
construct “◦”. Based on the explored algebraic laws, we have
defined the concept of head normal form, by which each

123

Algebraic approach to linking the semantics of web services 223

BPEL program is expressed as the summation of a set of
initially deterministic processes.

The derivation of the operational semantics for BPEL has
been studied from its algebraic semantics. We have presented
a general definition of the derivation strategy. Then a tran-
sition system (i.e., operational semantics) for BPEL can be
derived via the derivation strategy. This gives us the confi-
dence for the consistency between the operational seman-
tics and the algebraic semantics. Further, the relationship
between the derivation strategy and the derived operational
semantics has also been investigated. We have proved that
the derived operational semantics is equivalent with the der-
ivation strategy. The result achieved here shows that our
transition system is sound and complete with respect to the
algebraic semantics.

As every program can be expressed as a summation of a set
of initially deterministic processes, the denotational seman-
tics for BPEL programs has also been derived based on the
head normal form of each program. The derivation strategy is
defined and the denotational semantics for every program can
be calculated. This gives us a way to reason about program
properties easily, especially for parallel programs.

For the future, we continue to explore the unifying theories
for web services [25,48], as well as the further web service
models, including the probabilistic web service models [37]
and web service transaction models [31].

Acknowledgments The authors gratefully acknowledge support from
the Danish National Research Foundation and the National Natural
Science Foundation of China (Grant No. 61061130541) for the Dan-
ish-Chinese Center for Cyber Physical Systems. This work was also
supported by National Basic Research Program of China (No. 2011CB
302904), National High Technology Research and Development Pro-
gram of China (No. 2011AA010101) and National Natural Science
Foundation of China (No. 61021004).

References

1. Abrial J-R (1996) The B-book: assigning programs to meanings.
University Press, Cambridge

2. Brookes SD (1996) Full abstraction for a shared-variable parallel
language. Inf Comput 127(2):145–163

3. Bruni R, Ferrari GL, Melgratti HC, Montanari U, Strollo D, Tuosto
E (2005) From theory to practice in transactional composition of
web services. In: Proceedings of EPEW/WS-FM 2005: European
performance engineering workshop and international workshop on
web services and formal methods, Versailles, France, September
1–3, 2005. Lecture notes in computer science, vol 3670. Springer,
Berlin, pp 272–286

4. Bruni R, Melgratti HC, Montanari U (2004) Theoretical foun-
dations for compensations in flow composition languages. In:
Proceedings of POPL 2005: 32nd ACM SIGPLAN-SIGACT
symposium on principles of programming languages, Long Beach,
California, USA, January 12–14, 2005. ACM, USA, pp 209–220

5. Butler M, Ripon S (2005) Executable semantics for compensating
CSP. In: Proceedings of EPEW 2005: international workshop on
web services and formal methods, Versailles, France, September

1–3, 2005. Lecture notes in computer science, vol 3670. Springer,
Berlin, pp 243–256

6. Butler MJ, Ferreira C (2000) A process compensation language.
In: Proceedings of IFM 2000: 2nd international conference on inte-
grated formal methods, Dagstuhl Castle, Germany, November 1–
3, 2000. Lecture notes in computer science, vol 1945. Springer,
Berlin, pp 61–76

7. Butler MJ, Ferreira C (2004) An operational semantics for StAC,
a language for modelling long-running business transactions. In:
COORDINATION 2004: 6th international conference on coordi-
nation models and languages, Pisa, Italy, February 24–27, 2004.
Lecture notes in computer science, vol 2949. Springer, Berlin,
pp 87–104

8. Butler MJ, Ferreira C, Ng MY (2005) Precise modelling of com-
pensating business transactions and its application to BPEL. J Uni-
vers Comput Sci 11(5):712–743

9. Butler MJ, Hoare CAR, Ferreira C (2005) A trace semantics
for long-running transactions. In: Communicating sequential pro-
cesses: the first 25 years, symposium on the occasion of 25 years
of CSP, London, UK, July 7–8, 2004. Lecture notes in computer
science, vol 3525. Springer, Berlin, pp 133–150

10. Cerone A, Zhao X, Krishnan P (2006) Modelling and resource allo-
cation planning of BPEL workflows under security constraints.
Technical report 336, UNU/IIST, P.O. Box 3058, Macau SAR,
China, June

11. Curbera F, Goland Y, Klein J, Leymann F, Roller D, Satish Thatte
M, Weerawarana S (2003) Business process execution language
for web service. http://www.siebel.com/bpel

12. Davis J (1993) Specification and proof in real-time CSP. University
Press, Cambridge

13. de Bakker J, de Vink E (1996) Control flow semantics. MIT Press,
Massachusetts

14. Dijkstra EW (1976) A discipline of programming. Prentice Hall
International Series in Automatic Computation

15. Garcia-Molina H, Salem K (1987) Sagas. In: Proceedings of
ACM SIGMOD international conference on management of data,
San Francisco, California, USA, May 27–29, 1987. ACM, USA,
pp 249–259

16. Glabbeek Rv (1993) The linear time—branching time spectrum II;
the semantics of sequential systems with silent moves (extended
abstract). In: Best E (ed) Proceedings of CONCUR’93: 4th inter-
national conference on concurrency theory, Hildesheim, Germany,
August 1993. Lecture notes in computer science, vol 715. Springer,
Berlin, pp 66–81

17. Glabbeek Rv (1996) Comparative Concurrency Semantics and
Refinement of Actions. CWI Tract, vol 109. CWI, Amsterdam
(Second edition of dissertation)

18. Glabbeek Rv (2001) The linear time—branching time spectrum
I; the semantics of concrete, sequential processes. In: Bergstra J,
Ponse A, Smolka S (eds) Handbook of process algebra, chapt 1.
Elsevier, Amsterdam, pp 3–99

19. He J (2008) Modelling coordination and compensation. In: Pro-
ceedings of ISoLA 2008: 3rd international symposium on lever-
aging applications of formal methods, verification and valida-
tion, Porto Sani, Greece, 13–15 October. Communications in
Computer and Information Science, vol 17. Springer, Berlin,
pp 15–36

20. He J, Zhu H, Pu G (2007) A model for BPEL-like languages. Front
Comput Sci China 1(1):9–19

21. Hoare CAR (1978) Communicating sequential processes. Com-
mun ACM 21(8):666–677

22. Hoare CAR (1985) Communicating sequential processes. Prentice
Hall International Series in Computer Science

23. Hoare CAR, Hayes IJ, He J, Morgan C, Roscoe AW, Sanders JW,
Sørensen IH, Spivey JM, Sufrin B (1987) Laws of programming.
Commun ACM 38(8):672–686

123

http://www.siebel.com/bpel

224 H. Zhu et el.

24. Hoare CAR, He J (1993) From algebra to operational semantics.
Inf Process Lett 45:75–80

25. Hoare CAR, He J (1998) Unifying theories of programming. Pren-
tice Hall International Series in Computer Science

26. Hoare CAR, Jifeng H, Sampaio A (1997) Algebraic derivation of
an operational semantics. In: Plotkin G, Stirling C, Tofte M (eds)
Proof, language and interaction: essays in honour of Robin Milner,
foundations of computer science series. The MIT Press, Massa-
chusetts

27. Koshkina M, Breugel Fvan (2004) Modelling and verifying web
service orchestration by means of the concurrency workbench.
ACM SIGSOFT Softw Eng Notes 29(5):1–10

28. Laneve C, Zavattaro G (2005) Web-pi at work. In: Proceedings of
TGC 2005: international symposium on trustworthy global com-
puting, Edinburgh, UK, April 7–9, 2005. Lecture notes in computer
science, vol 3705. Springer, Berlin, pp 182–194

29. Lanotte R, Maggiolo-Schettini A, Milazzo P, Troina A (2008)
Design and verification of long-running transactions in a timed
framework. Sci Comput Program 73(2–3):76–94

30. Leymann F (2001) Web Services Flow Language (WSFL 1.0).
IBM http://www-3.ibm.com/software/solutions/webservices/pdf/
WSDL.pdf

31. Li J, Zhu H, Pu G, He J (2007) Looking into compensable transac-
tions. In: Proceedings of SEW-31: 31st IEEE software engineering
workshop, Baltimore, USA. IEEE Computer Society Press, Los
Angeles, pp 154–166

32. Lucchi R, Mazzara M (2007) A pi-calculus based semantics for
ws-bpel. J Log Algebraic Program 70(1):96–118

33. Luo C, Qin S, Qiu Z (2008) Verifying bpel-like programs with
hoare logic. In: Proceedings of TASE 2008: 2nd IEEE interna-
tional symposium on theoretical aspects of software engineering,
Nanjing, China, June 2008. IEEE Computer Society, Los Angeles,
pp 151–158

34. Luo C, Qin S, Qiu Z (2008) Verifying bpel-like programs with ho-
are logic. Front Comput Sci China 2(4):344–356

35. Manna Z, Pnueli A (1992) The temporal logic of reactive and con-
current systems: specification. Springer, Berlin

36. Manna Z, Pnueli A (1995) Temporal verification of reactive sys-
tems: safety. Springer, Berlin

37. McIver A, Morgan C (2004) Abstraction, refinement and proof of
probability systems. monographs in computer science. Springer,
Berlin

38. Milner R (1999) Communication and mobile system: π -calculus.
University Press, Cambridge

39. Moss J (1981) Nested transactions: an approach to reliable distrib-
uted computing. PhD thesis, Department of Electrical Engineering
and Computer Science, MIT, April

40. Plotkin G (2004) A structural approach to operational semantics.
Technical report 19, University of Aahus, 1981. J Log Algebraic
Program 60–61:17–139

41. Pu G, Zhao X, Wang S, Qiu Z (2006) Towards the semantics
and verification of BPEL4WS. Electron Notes Theor Comput Sci
151(2):33–52

42. Pu G, Zhu H, Qiu Z, Wang S, Zhao X, He J (2006) Theoretical
foundations of scope-based compensation flow language for web
service. In: Proceedings of FMOODS 2005: 8th IFIP international
conference on formal methods for open object-based distributed
systems, Bologna, Italy, 14–16 June, 2006. Lecture notes in com-
puter science, vol 4307. Springer, Berlin, pp 251–266.

43. Qiu Z, Wang S, Pu G, Zhao X (2005) Semantics of BPEL4WS-Like
fault and compensation handling. In: Proceedings of FM 2005:
international symposium of formal methods Europe, Newcastle,
UK, July 18–22, 2005. Lecture notes in computer science, vol 3582.
Springer, Berlin, pp 350–365

44. Roscoe AW (1997) The theory and practice of concurrency. Pren-
tice Hall International Series in Computer Science

45. Scott D, Strachey C (1971) Towards a mathematical semantics for
computer languages. Technical report PRG-6, Oxford University
Computer Laboratory

46. Thatte S (2001) XLANG: Web Service for Business Process
Design. Microsoft, http://www.gotdotnet.com/team/xml_wsspecs
/xlang-c/default.html

47. van Breugel F, Koshkina M (2005) Dead-path-elimination in
bpel4ws. In: Proceedings of ACSD 2005: fifth international confer-
ence on application of concurrency to system design, pp 192–201,
St. Malo, France, June, IEEE Computer Society, Los Angeles

48. Zhu H (2005) Linking the semantics of a multithreaded discrete
event simulation language. PhD thesis, London, South Bank Uni-
versity, February

49. Zhu H, Bowen JP, He J (2002) Soundness, completeness and non-
redundancy of operational semantics for Verilog based on denota-
tional semantics. In: Proceedings of ICFEM 2002: 4th international
conference on formal engineering methods. Lecture notes in com-
puter science, vol 2495. Springer, Berlin, pp 600–612

50. Zhu H, He J (2000) A semantics of Verilog using duration calculus.
In: Proceedings of international conference on software: theory and
practice, pp 421–432

51. Zhu H, He J, Bowen JP (2006) From operational semantics to de-
notational semantics for Verilog. In: Proceedings of ICECCS 2006:
11th IEEE international conference on engineering of complex
computer systems. IEEE Computer Society Press, Los Angeles,
pp 139–151

52. Zhu H, He J, Li J (2007) Unifying denotational semantics with
operational semantics for web services. In: Proceedings of ICDCIT
2007: 4th international conference on distributed computing and
internet technology, Bangalore, India, 17–20 December. Lecture
notes in computer science, vol 4882. Springer, Berlin, pp 225–239

53. Zhu H, He J, Li J, Bowen JP (2007) Algebraic approach to linking
the semantics of web services. In: Proceedings of SEFM 2007: 5th
IEEE international conference on software engineering and formal
methods. IEEE Computer Society Press, Los Angeles, pp 315–326

54. Zhu H, He J, Pu G, Li J (2007) An operational approach to BPEL-
like programming. In: Proceedings of SEW-31: 31st IEEE software
engineering workshop, Baltimore, USA. IEEE Computer Society
Press, Los Angeles, pp 236–245

123

http://www-3.ibm.com/software/solutions/webservices/pdf/WSDL.pdf
http://www-3.ibm.com/software/solutions/webservices/pdf/WSDL.pdf
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.html
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.html

	Algebraic approach to linking the semantics of web services
	Abstract
	1 Introduction
	2 Algebraic semantics
	2.1 The syntax of BPEL
	2.2 Algebraic semantics of BPEL
	2.3 Head normal form

	3 Deriving operational semantics from algebraic semantics for BPEL
	3.1 Derivation strategy
	3.2 Deriving operational semantics for BPEL by strict proof
	3.3 Equivalence of derivation strategy and transition system

	4 Deriving denotational semantics from algebraic semantics for BPEL
	4.1 Denotational semantic model for BPEL
	4.2 Deriving denotational semantics from algebraic semantics

	5 Related work
	6 Conclusion
	Acknowledgments
	References

