
Innovations Syst Softw Eng (2009) 5:231–241
DOI 10.1007/s11334-009-0096-1

ORIGINAL PAPER

Software monitoring through formal specification animation

Hui Liang · Jin Song Dong · Jing Sun · W. Eric Wong

Received: 31 March 2009 / Accepted: 13 July 2009 / Published online: 5 August 2009
© Springer-Verlag London Limited 2009

Abstract This paper presents a formal specification-based
software monitoring approach that can dynamically and con-
tinuously monitor the behaviors of a target system and explic-
itly recognize undesirable behaviors in the implementation
with respect to its formal specification. The key idea of our
approach is in building a monitoring module that connects a
specification animator with a program debugger. The require-
ments information about expected dynamic behaviors of the
target system are gathered from the formal specification ani-
mator, while the actual behaviors of concrete implemen-
tations of the target system are obtained through the
program debugger. Based on the information obtained from
both sides, the judgement on the conformance of the concrete
implementation with respect to the formal specification is
made timely while the target system is running. Furthermore,
the proposed formal specification-based software monitoring
technique does not embed any instrumentation codes to the
target system nor does it annotate the target system with any
formal specifications. It can detect implementation errors in
a real-time manner, and help the developers and users of
the system to react to the problems before critical failure
occurs.

H. Liang · J. S. Dong
School of Computing, National University of Singapore,
Singapore, Singapore

J. Sun (B)
Department of Computer Science,
The University of Auckland, Auckland, New Zealand
e-mail: j.sun@cs.auckland.ac.nz

W. E. Wong
Department of Computer Science,
University of Texas at Dallas, Texas, USA

1 Introduction

With the capabilities of detecting, diagnosing, and recover-
ing from software faults, program monitoring provides addi-
tional defense against catastrophic software failure. It can be
used as a complement to formal verification and software
testing in which higher reliability of software systems can be
achieved. Recently, there has been increasing attention from
the research community to the development of techniques
and tools for runtime monitoring of software systems [1–8].
For example, Java with Assertions (Jass) [3] extends Java to
allow annotating Java programs with specification in the form
of assertions such as method pre- and post-conditions, class
invariants, and so on. A pre-compiler translates the annotated
program into pure Java code. Compliance with the specified
annotation is dynamically tested during runtime. jContrac-
tor [1,9] allows contracts to be associated with any Java clas-
ses or interfaces. Contract methods can be included directly
within the Java class or written as a separate contract class.
Before loading each class, jContractor detects the presence
of contract code patterns in the Java class byte code and per-
forms on-the-fly byte code instrumentation to enable check-
ing of contracts during the program’s execution. Spec# [2] is
a Design-by-Contract extension of C#. The type system of
C# is extended to include non-null types and checked excep-
tions.It also uses method contracts in the form of pre- and
post-conditions as well as object invariants. With the Spec#
compiler, the user can perform run-time checks for method
contracts and invariants. ProTest [10] is an automatic test
environment for B specifications. After generating a set of
test cases, ProTest simultaneously performs animation of the
B machine and the execution of the corresponding imple-
mentation in Java, and assigns verdicts on the test results.

In order to monitor software systems, some of the above-
mentioned techniques add instrumentations to the target

123

232 H. Liang et al.

Fig. 1 Formal
specification-based software
monitoring system

Formal
Specification

Inconformity
report

&
User’s decision

Execution
sequences

Specification-based Monitoring

Specification
Animator

Debugging
Module

Concrete
Implementation

Analyzer
Module

Controller
Module

Monitoring
Module

program, while others annotate the concrete implementation
with extra formal specifications to obtain dynamic informa-
tion about the target programs. There are a few disadvantages
of such approaches. First of all, adding instrumentation code
is itself a difficult task involving all the complexities of pro-
gramming. Moreover, it generally leads to changes in the
program, which raises the possibility that through collecting
information to analyze target system behavior, the monitor-
ing system is actually altering that behavior of the target sys-
tem. Finally, annotating the concrete implementation with
extra formal specifications leads to the lack of separation
between the concrete implementation of target systems and
their high-level requirements specification.

In this paper,1 we propose a novel formal specification-
based software monitoring approach. As shown in Fig. 1, the
key idea of our approach is to build a monitoring module
that connects a specification animator and a program debug-
ging module. Based on the information obtained from the
specification animator and the debugging module, the mon-
itoring module, which consists of a controller and an ana-
lyzer, dynamically checks the conformance in behaviors of
the particular implementation with respect to the formal spec-
ification. The checking results are then fed back to the users
of the system. One of the major advantages of our proposed
approach is that it does not embed any instrumentation codes
to the target system, nor does it annotate the target system
with any formal specifications. The implementation and the
specification are still kept separated at different abstract lev-
els. It is only during the monitoring process the two behaviors
are extracted and compared for consistencies.

The remainder of the paper is organized as follows.
Section 2 introduces the background information about Z for-
mal specification language and specification animation. Sec-
tion 3 presents an overview of the formal specification-based
software monitoring technique, which describes a prototype

1 This paper is a revised/extended version of the conference paper [11].

system that we developed and discusses a few technical chal-
lenges that we encountered during the development. Section
4 demonstrates the effectiveness of the proposed monitoring
technique with a case study. Section 5 analyzes the merits
and the limitations of the proposed approach. Section 6 con-
cludes the paper and discusses the future work.

2 Background

2.1 The Z specification language

The Z specification language has been a widely accepted
formal language for specifying software and hardware sys-
tems. Based on set theory and first order predicate logic, it
models a system by describing its states and the ways in
which the states can be changed. This modeling style makes
Z not only a good match to imperative, procedural program-
ming languages but also a natural fit to object-oriented pro-
gramming [12].

The specification written in Z notation typically includes
a number of state schemas and operation schemas. A state
schema encapsulates variable declarations and related pred-
icates (invariants). The system state is determined by the
values taken by those state variables subject to restrictions
imposed by state invariants. An operation schema defines
the relationship between the ‘before’ and ‘after’ states corre-
sponding to one or more state schemas. Moreover, the schema
calculus of Z notation provides a convenient way to construct
formal descriptions of complex operations from simple oper-
ation schemas. Detailed information about the syntax and
semantics of Z notation can be found in [13,14].

As an example, the Z specification shown in Fig. 2
describes a Queue with a First In First Out (FIFO) behavior
in nature. The state schema declares that Queue is composed
of a sequence of integers and further restrains the size of the
queue to be less than ten. The InitQueue schema describes the
operation that initializes the Queue as empty. The operation

123

Software monitoring 233

Fig. 2 A FIFO Queue in Z notation

schemas Enqueue and Dequeue describe the operation that
attaches a new item to the tail of a queue and the operation
that deletes an item from the head of a queue, respectively.

2.2 Specification animation

Specification animation is a technique to explore and exhibits
the dynamic behaviorial properties of the formal specifica-
tions. It assists system designers in systematically verifying
whether the expected properties and behaviors of a system
are specified correctly and consistently in the specification by
giving the designers an early view of the high-level dynamic
behavior of the formal requirement description. It also pro-
vides a way to validate the formal specifications with the
end users and field experts to ensure that what is formally
described is really what was desired [15,16].

Specification animators are executable systems that inter-
pret a formal specification into a high-level dynamically exe-
cutable form. Animators have been developed for various
formal languages. For example, PiZA [17] is an animator
for Z. Possum [18,19] is an animator for Z and Z-like spec-
ification languages. B-Model animator [20] is an animator
for B Method’s model-oriented specification language. The
specification animator used in our prototype monitoring sys-
tem is Jaza [21]. It is an animator for Z, which has a strong
support for quantifiers and various less-often-used Z con-
structors (such as µ, λ, θ terms). It provides more efficient
and convenient evaluation of schemas on ground data val-
ues. And it has the ability to search for example solutions
of a schema or predicate. Jaza supports many different rep-
resentations of sets, which makes it more advanced in its
execution than other animators for Z. Moreover, Jaza can
handle not only unpredictable performance characteristics
but also nondeterministic schemas.

3 Formal specification-based software monitoring

3.1 Overview

As shown in Fig. 1, our formal specification-based moni-
toring approach gathers the information about the dynamic

behavioral properties of the formal specification through
specification animation. And with the debugging module,
the information about the dynamic behavior of the concrete
implementation is obtained through program debugging.
Taking the execution sequences provided by the user as input,
the monitoring module controls the specification animator
and debugging module so that the concrete implementation
can run in parallel with the animation of the formal
specification. With the information obtained from the specifi-
cation animator and debugging module, the monitoring mod-
ule makes a judgement on the conformance of the concrete
implementation with respect to the formal specification. If
any inconformity is found, it reports to the user. The user
then needs to make a decision about how to deal with such an
inconformity. In our approach, the monitoring module func-
tions as an external observer of the target system. Moreover,
it is designed to monitor the target system and respond in a
timely manner while the target system is running. This means
that our monitoring approach not only gathers information,
but also dynamically interprets the gathered information and
responds appropriately.

3.2 Real-time monitoring versus program debugging

Based on the above design, we have implemented a proto-
type monitoring system to demonstrate our approach. The
prototype works with the formal specification written in the
Z language and the concrete implementation programmed in
the Java language. We use the Jaza [21] animator for explor-
ing the dynamic properties of the Z formal specification and
the jdb [22] debugger for extracting execution information
of Java programs. Note that jdb is a debugger supplied by
Sun in the Java Developer’s Kit (JDK), which is implemented
using the Java Debugger API.

Our monitoring system can be executed in two different
modes, i.e., real-time monitoring mode and program debug-
ging mode. The former provides a on-the-fly and real-time
monitoring of the target systems, which is quite useful in
continuous behavior checking of safety critical systems. The
latter provides a batch mode in examining a sequence of
behaviors of the target systems, which can be used during
software testing phase for running predefined test cases and
oracles. After the formal specification and concrete imple-
mentation are loaded to the monitoring system, the system
extracts the operations and state variables defined in the
formal specification as well as the methods and class vari-
ables defined in concrete implementation. With the assistance
from the users, the monitoring system matches the operations
defined in the formal specification with corresponding meth-
ods defined in the concrete implementation. It also performs
similar matching for the state variables and corresponding
class variables. To briefly illustrate how the prototype works,
the Z specification in Fig. 2 is used as an example.

123

234 H. Liang et al.

In the real-time monitoring mode, as shown in Fig. 3, the
user manipulates the monitoring system by indicating the
methods to be executed and inputting parameters (if nec-
essary) in a step-by-step manner. The commands for exe-
cuting corresponding operations are automatically generated
for the animator. The monitoring system checks the running
result of the implementation execution with the correspond-
ing specification animation result to determine whether there
is any inconsistency. This way, the system can achieve the
on-the-fly monitoring of concrete implementations against
formal specifications.

In the program debugging mode, as shown in Fig. 4, the
user inputs all of the methods that are expected to be exe-
cuted into the monitoring system in a predefined sequence.
The system automatically generates the sequence of corre-
sponding running commands for the animator. It performs
the dynamic checking whenever a method and the corre-
sponding operations schema have been executed/animated
in a parallel way. Figure 4 shows how the monitoring sys-
tem reports the inconformity to users. After the execution
of the operation of deleting an item from the queue, the
monitoring reports an inconformity. With a careful exam-
ination of the implementation we found that the operation
Dequeue is not implemented correctly as in FIFO manner.
Moreover, the monitoring system also provides the users
with two choices to handle the inconformity: (1) stop
monitoring to fix the problem in the implementation;
(2) re-initialize the animator with the corresponding

execution result from the implementation and continue the
debugging process.

4 Case study: monitor a robotic assembly system

To further demonstrate the effectiveness of our approach, we
applied a more realistic and reasonable-sized case study—
a robotic assembly system example [23–25]. Autonomous
Nano-Technology Swarm (ANTS) mission [26–28] is one of
NASA’s future space exploration missions which use intelli-
gent swarms of spacecrafts [29,30]. During the ANTS mis-
sion, a transport spacecraft launched from the earth towards
the Lagrangian point carries an assembling laboratory. The
autonomous, pico-class, low-power, and low-weight space-
crafts that explore the asteroid belt for asteroids with certain
scientific characteristics will be assembled in that laboratory.
Each spacecraft is equipped with a solar sail, which means
it relies primarily on power from the sun, using only tiny
thrusters to navigate independently. Also, each spacecraft
has onboard computation, artificial intelligence, and heuris-
tics mechanism for control at the individual and team levels,
and it has communicating mechanism for the communication
within swarm and the data transfer back to the earth. More-
over, approximately 80% of the spacecrafts will be workers.
The workers will carry a single specialized instrument, such
as a magnetometer and an X-ray, gamma-ray, visible/IR, or
neutral mass spectrometer, for the collection of a specific
type of data from asteroids in the belt [28,31].

Fig. 3 Real-time monitoring
mode

123

Software monitoring 235

Fig. 4 Program debugging
mode

Thus the correct assembly of spacecrafts is crucial to
the ANTS mission. We reuse the framework of the robotic
assembly system which has been studied in [23–25], and
extend it so that it can be used for the assembly of space-
crafts in the ANTS mission. As shown in Fig. 5, an assembly
unit consists of a robot system, a conveyor belt, and an assem-
bly-tray. The conveyor belt normally carries the objects to be
assembled. The robot system consists of two arms, a vision
system, and a stack. The vision system can recognize the
objects to be assembled and record their numbers. The stack
is for temporarily storing the objects. The basic behaviors of
the left/right arms can be described as follows:

• Initially, the arms are free and the stack is empty. When-
ever both arms are free and the stack is empty, and the
vision system recognize an object, then the left/right arm
picks up the item from the conveyor belt and begins the
process of assembly.

• With the assembly in progress, if the object on the left/
right arm is the same as a part of the half-assembled prod-
uct, the left/right arm will push that object into the stack;
otherwise, the object will be assembled.

• Whenever the left/right arm is free but the stack is not
empty and the top item of the stack is not same as any
part of half-assembled product, the left/right arm picks

C
onveyor B

elt

Assembly Tray

Stack

Robot Arms

Vision System

Robot System

Fig. 5 Robotic assembly system

up (pops) an object from the stack rather than picks up
an object from the conveyor belt and installs it in the
half-assembled product.

123

236 H. Liang et al.

• If the assembly of one piece of product has been com-
pleted, the product will be released and placed on an
assembly-tray.

As introduced before, the spacecraft consists of five main
parts, namely, power system, navigation system, control sys-
tem, communication system, and specialized instrument
(e.g., magnetometer or spectrometer). In the extended robotic
assembly system framework, the left arm of the robot will be
responsible for installing the power system, navigation sys-
tem, and control system while the right arm will be in charge
of the installation of the communication system and the spe-
cialized instrument. A formal description of the robotic
assembly system in Z notation is defined as follows:

Part ::= PowerSys | NavigationSys | ControlSys | CommunicationSys |
MagnetoMeter | SpectroMeter

RobotSystem
leftarm, rightarm : seq Part
tempstack : seq Part
currentproduct : Part �→ N

InitRobotSystem
RobotSystem′

leftarm′ = 〈〉 ∧ rightarm′ = 〈〉 ∧ tempstack′ = 〈〉
currentproduct′ = ∅

The behaviors of the left arm can be summarized as fol-
lows. When the left arm is empty, if the stack is also empty
or the item at the top of the stack is not an eligible one to be
picked by the left arm, the left arm will get an item from the
conveyor belt. If the item which was picked up by the left arm
from the conveyor belt is identical to any component existing
in the spacecraft-to-be, the left arm will push it to the stack.
Otherwise, the left arm will install it in a designated position.
On the other hand, when the left arm is empty, if the stack is
not empty and the item at the top of the stack is an eligible
item for the left arm, the left arm will pick the top item of
the stack up and install it rather than grasp any item from the
conveyor belt. The formal specifications are defined in the
following.

LeftArmPick

∆RobotSystem

part? : Part

tempstack = 〈〉 ∨ head tempstack ∈ dom currentproduct ∨
head tempstack �∈ {PowerSys, NavigationSys, ControlSys}
part? ∈ {PowerSys, NavigationSys, ControlSys}
leftarm = 〈〉 ∧ leftarm′ = 〈part?〉
tempstack′ = tempstack ∧ rightarm′ = rightarm

currentproduct′ = currentproduct

LeftArmGetFromStack

∆RobotSystem

#tempstack > 0 ∧ #leftarm = 0

head tempstack �∈ dom currentproduct

head tempstack ∈ {PowerSys, NavigationSys, ControlSys}
leftarm′ = 〈head tempstack〉 ∧ rightarm′ = rightarm

currentproduct′ = currentproduct ∧ tempstack′ = tail tempstack

LeftArmRelease

∆RobotSystem

part! : Part

#leftarm = 1 ∧ leftarm(1) �∈ dom currentproduct

part! = leftarm(1) ∧ leftarm′ = 〈〉
leftarm(1) = PowerSys ⇒

currentproduct′ = currentproduct ∪ {part! 	→ 1}
leftarm(1) = NavigationSys ⇒

currentproduct′ = currentproduct ∪ {part! 	→ 2}
leftarm(1) = ControlSys ⇒

currentproduct′ = currentproduct ∪ {part! 	→ 3}
tempstack′ = tempstack ∧ rightarm′ = rightarm

LeftArmPushToStack

∆RobotSystem

parttopush! : Part

#leftarm = 1 ∧ leftarm(1) ∈ dom currentproduct

parttopush! = leftarm(1) ∧ leftarm′ = 〈〉
tempstack′ = 〈parttopush!〉 � tempstack

rightarm′ = rightarm ∧ currentproduct′ = currentproduct

Generally, the right arm of the robot works in a similar
way as the left one. However, the right arm has to deal with
some more intricate situations since it is in charge of the
installation of not only the communication system but also
the specialized instrument. There are two kinds of specialized
instrument, only one of them will be included in a spacecraft
in the ANTS mission. And, there is no way to replace it with
another one if a specialized instrument has been included
in the spacecraft. Therefore, it has to be checked whether a
specialized instrument has been included in the spacecraft-
to-be when the right arm tries to install or pick up a special-
ized instrument from the stack. The formal specifications are
defined as follows.

123

Software monitoring 237

RightArmPick

∆RobotSystem

part? : Part

tempstack = 〈〉 ∨ head tempstack ∈ dom currentproduct ∨
head tempstack �∈ {CommunicationSys, SpectroMeter, MagnetoMeter} ∨
dom (currentproduct � {5}) ∪ {head tempstack} =

{SpectroMeter, MagnetoMeter}
part? ∈ {CommunicationSys, SpectroMeter, MagnetoMeter}
rightarm = 〈〉 ∧ rightarm′ = 〈part?〉 ∧ tempstack′ = tempstack

currentproduct′ = currentproduct ∧ leftarm′ = leftarm

RightArmGetFromStack

∆RobotSystem

#tempstack > 0 ∧ #rightarm = 0

head tempstack �∈ dom currentproduct

dom (currentproduct � {5}) ∪ {head tempstack} �=
{SpectroMeter, MagnetoMeter}

head tempstack ∈ {CommunicationSys, SpectroMeter, MagnetoMeter}
rightarm′ = 〈head tempstack〉 ∧ leftarm′ = leftarm

currentproduct′ = currentproduct ∧ tempstack′ = tail tempstack

RightArmRelease

∆RobotSystem

part! : Part

#rightarm = 1 ∧ rightarm(1) �∈ dom currentproduct

dom (currentproduct � {5}) ∪ {rightarm(1)} �=
{SpectroMeter, MagnetoMeter}

part! = rightarm(1)

rightarm(1) = CommunicationSys ⇒
currentproduct′ = currentproduct ∪ {part! 	→ 4}

(rightarm(1) = MagnetoMeter ∨ rightarm(1) = SpectroMeter) ⇒
currentproduct′ = currentproduct ∪ {part! 	→ 5}

rightarm′ = 〈〉 ∧ tempstack′ = tempstack ∧ leftarm′ = leftarm

RightArmPushToStack

∆RobotSystem

parttopush! : Part

#rightarm = 1 ∧ (rightarm(1) ∈ dom currentproduct ∨
dom (currentproduct � {5}) ∪ {rightarm(1)} =

{SpectroMeter, MagnetoMeter})

parttopush! = rightarm(1) ∧ rightarm′ = 〈〉
tempstack′ = 〈parttopush!〉 � tempstack

leftarm′ = leftarm ∧ currentproduct′ = currentproduct

Finally, when a product is assembled, the release operation
can be described as follows.

ReleaseProduct

∆RobotSystem

producttorelease! : Part 	→ N

#currentproduct = 5

currentproduct(PowerSys) = 1

currentproduct(NavigationSys) = 2

currentproduct(ControlSys) = 3

currentproduct(CommunicationSys) = 4

(currentproduct(MagnetoMeter) = 5 ∨
currentproduct(SpectroMeter) = 5)

producttorelease! = currentproduct ∧ currentproduct′ = ∅

leftarm′ = 〈〉 ∧ rightarm′ = 〈〉 ∧ tempstack′ = tempstack

Once the implementation of such a robotic assembly sys-
tem has been developed, in order to check whether the imple-
mentation conforms to the system requirements which were
expressed by the formal specification, we can load both the
implementation and the formal specification into our spec-
ification-based monitoring system and perform the check-
ing. As shown in Fig. 6, the system starts monitoring with a
sequence of method execution, i.e., “leftArmPick (“Power-
Sys”); leftArmRelease (); leftArmPick (“ControlSys”); left-
ArmRelease (); rightArmPick (“Magneto-Meter”); right
ArmRelease (); rightArmPick (“CommunicationSys”); right-
ArmRelease(); rightArmPick(“SpectroMeter”); rightArmRe-
lease(); leftArmPick (“Navig-ationSys”); leftArmRelease ()”.
After method rightArmRelease() is executed for the sec-
ond time, which installs the communication system in the
spacecraft, the monitoring system detects an inconformity
and reports to the user that the operation schema RightArm
Release is not implemented correctly. According to the spec-
ification, the operation schema RightArmRelease defines that
if the right arm is holding an item and the held item is
not identical to any existing component of the spacecraft-
to-be, the right arm will install the item to a designated posi-
tion, in this case—the communication system to the fourth
socket. When we double check the corresponding execu-
tion of the Java implementation, i.e., the rightArmRelease()
method shown below, we found that the arm actually puts
the communication system to the second socket. Thus, an
inconsistency between the specification and implementation
is identified.

123

238 H. Liang et al.

public void rightArmRelease() {
if(!rightarm.isEmpty())
{ Object releasedPart = rightarm.get(0);

if (!currentproduct.contains(releasedPart))
{ if(releasedPart == ‘‘CommunicationSys’’)

{ currentproduct.setElementAt(releasedPart, 1);}
else if (releasedPart == ‘‘MagnetoMeter’’||

releasedPart == ‘‘SpectroMeter’’)
{currentproduct.setElementAt(releasedPart, 4);}

rightarm.clear();
}

}
}

If we choose to continue the monitoring, when the method
rightArmRelease() is executed for the third time installing a
spectrometer to spacecraft, the monitoring system detects
another inconformity. To localize the cause of the inconfor-
mity, we revisit the formal specification and the Java code.
The operation schema RightArmRelease specifies that only
one specialized instrument (i.e. magnetometer or spectrom-
eter) will be installed and there is no way to replace it with
another one if a specialized instrument has been included in
the spacecraft. However, in the Java code, there is no state-
ment for checking whether a specialized instrument has been
included in the spacecraft when the right arm tries to install
a specialized instrument to the spacecraft. Thereby, another
error in the implementation was detected. Furthermore, when

the monitoring system proceeds with the methods sequence
leftArmPick(“NavigationSys”); leftArmRelease(); the error
in the method leftArmRelease() can be effectively identified
as well.

5 Discussions and lessons learned

5.1 Merits of the formal specification-based monitoring
technique

The formal specification-based monitoring technique
proposed in this paper gets required information about dyn-
amic behaviors of the formal specification and concrete

Fig. 6 Monitor a robotic
assembly system

123

Software monitoring 239

implementation of the target system through specification
animating and program debugging, respectively. It does not
embed any instrumentation code into the target system; there-
fore, the proposed formal specification-based runtime mon-
itoring technique will not alter the running environment and
the dynamic behaviors of the target system which is being
monitored. Meanwhile, it does not annotate the concrete
implementation with any extra formal specifications either;
consequently, it allows the reuse of a highly abstract for-
mal requirement specification when changes happen to the
implementation of the target system.

Furthermore, the formal specification-based monitoring
technique always monitors the current state of the system,
continuously checks the conformance of implementation
with formal specification and reports any detected inconfor-
mity immediately whenever any failures happen. Therefore,
by ensuring that the current execution is conformable with its
requirements at runtime, formal specification-based runtime
monitoring can provide the developers and users with much
higher confidence in the software than traditional testing.
Besides, although the formal specification-based monitor-
ing technique is weaker than formal verification as far as the
ability to guarantee software correctness is concerned, it pro-
vides a dynamic verification technique by checking that the
actual execution of a system is conformable with the expec-
tation described by the formal specifications. Rather than
checking that the design model of the system satisfies some
properties, as formal verification does, formal specification-
based monitoring checks that the results of particular compu-
tations when the system is executed are correct with respect
to the formal specification. Thus, formal specification-based
monitoring escapes from the state-space explosion problem
that limits the scalability of formal verification techniques.
Therefore, the formal specification-based monitoring tech-
nique can serve as a complement to traditional testing and
formal verification techniques in software quality assurance.

5.2 Limitations of the formal specification-based
monitoring technique

The limitation of the proposed formal specification-based
runtime monitoring approach is often related to the capabil-
ities of the specification animator. It is very likely that some
aspects of the formal specification cannot be simulated by
the animator. For example, Jaza, the animator that we used,
does not support the type of bag and generic constructs in
Z notation. It cannot handle user-defined infix/prefix/postfix
functions or relations either.

There are also limitations resulting from the manner in
which specifications are expressed. State-based specification
languages such as Z and VDM do not allow the developer to
easily express temporal and concurrent properties of a sys-
tem, while process-oriented specification languages such as

CSP and CCS are generally poor at expressing the structure
and state of a system. So far, we focus on working with state-
based specification languages. In the future, the formal spec-
ification-based monitoring system that we have developed
will be extended to verify temporal and concurrent aspects
of software systems.

Furthermore, the description granularity of the formal
specification languages determines the granularity of
inconformity detection that the proposed formal specifica-
tion-based approach can achieve. For example, the Z spec-
ification language specifies a system by describing its state
and the way in which the states can be changed. The formal
specification of a system in Z notation consists of a sequence
of state schema and operation schemas. Therefore, the mon-
itoring system which works with specifications in Z notation
can only detect which operation schema in the specification
is not implemented as expected, but cannot determine which
predicate in the specification is violated. Moreover, there
are syntactic and semantic gaps between specification and
programming languages. Usually, implementations address
much more details than formal specifications do. Conse-
quently, the proposed monitoring approach can detect which
method in the program is not implemented correctly with
respect to the corresponding operation schema in the for-
mal specification, but cannot precisely locate the particular
statement in the implementation that contains the error.

6 Conclusion

This paper presents a formal specification-based software
monitoring approach. With the formal specification and con-
crete implementation of the target system, our specification-
based monitoring approach uses a specification animator to
exhibit the dynamic behavior of the formal specification, uses
a program debugger to extract required information about
the dynamic behavior of the concrete implementation, and
checks the conformance of the concrete implementation with
the formal specification, based on the information from the
animator and the debugger.

Our monitoring approach gets required information about
dynamic behaviors of the formal specification and concrete
implementation of the target system through specification
animation and program debugging respectively, rather than
by embedding any instrumentation code into the target sys-
tem or by annotating the concrete implementation with extra
formal specifications. Consequently, our formal specifica-
tion-based runtime monitoring technique will not alter the
running environment and the dynamic behaviors of the target
system which is being monitored. Moreover, our monitoring
technique realizes the clear separation between the imple-
mentation-dependent description of monitored object and the

123

240 H. Liang et al.

highly abstract formal specification of it, which allows the
reuse of a formal requirement specification when changes
happen to the implementation of the target system.

At present, our formal specification-based monitoring
technique works at intra-class level—it can detect the incor-
rect implementation of methods in the class. To improve the
monitoring technique so that it can work at inter-class level
and detect errors caused by the improper invocations of meth-
ods between classes is a part of future work. Furthermore,
monitoring distributed and parallel systems during execution
can provide information that can be used to reconfigure the
system, provide visualization of behavior, or steer its out-
come [32]. Therefore, we also intend to extend our monitor-
ing technique so that it can handle distributed and parallel
systems.

Acknowledgments We would like to express our sincere gratitude
to Professor Roger Duke and Professor Rudolph E. Seviora for their
insightful comments and valuable suggestions on the work presented in
this paper.

References

1. Abercrombie P, Karaorman M (2002) jContractor: Bytecode
instrumentation techniques for implementing design by contract
in Java. In: Proceedings of second workshop on runtime verifica-
tion (RV’02)

2. Barnett M, Rustan K, Schulte W (2004) The Spec# programming
system: an overview. In: Proceedings of international workshop on
construction and analysis of safe, secure, and interoperable smart
devices, pp 49–69

3. Bartetzko D, Fischer C, Moller M, Wehrheim H (2001) Jass—Java
with assertions. In: Proceedings of first workshop on runtime ver-
ification, RV’01

4. Chen F, D’Amorim M, Roşu G (2004) A formal monitoring-based
framework for software development and analysis. In: Proceedings
of the 6th international conference on formal engineering methods
(ICFEM’04), Springer, Heidelberg, pp 357–373

5. Drusinsky D (2000) The temporal rover and the ATG rover. In: Pro-
ceedings of the 7th international SPIN workshop on SPIN model
checking and software verification, pp 323–330

6. Havelund K, Roşu G (2001) Java PathExplorer—a runtime verifi-
cation tool. In: Proceedings of 6th international symposium on arti-
ficial intelligence, robotics and automation in space, ISAIRAS’01

7. Hlady M, Kovacevic R, Li JJ, Pekilis B, Prairie D, Savor T,
Seviora R, Simser D, Vorobiev A (1995) An approach to automatic
detection of software failures. In: Proceedings of sixth international
symposium on software reliability engineering

8. Kim M, Kannan S, Lee I, Sokolsky O (2001) Java-MaC: a run-
time assurance tool for Java. In: Proceedings of first workshop on
runtime verification, RV’01

9. Karaorman M, Abercrombie P (2005) jContractor: introducing
design-by-contract to Java using reflective bytecode instrumenta-
tion. Formal Methods Syst Des 27(3):275–312

10. Satpathy M, Leuschel M, Butler MJ (2005) ProTest: an automatic
test environment for B specifications. Electron. Notes Theor Comp
Sci 111:113–136

11. Liang H, Dong JS, Sun J, Duke R, Seviora RE (2006) Formal Spec-
ification-based Online Monitoring. In: ICECCS ’06: proceedings
of the 11th IEEE international conference on engineering of com-
plex computer systems, Washington, DC, USA, IEEE Computer
Society, Los Alamitos, pp 152–160

12. Jacky J (1997) The way of Z: practical programming with formal
methods. Cambridge University Press, Cambridge

13. Spivey J (1989) The Z notation: a reference manual. Prentice-Hall,
Englewood Cliffs

14. Woodcock J, Davies J (1996) Using Z: specification, refinement,
and proof. Prentice-Hall, Englewood Cliffs

15. Miller T, Strooper P (2000) A framework for systematic specifica-
tion animation. Technical report 02-35, The University of Queens-
land

16. Miller T, Strooper P (2002) Model-based specification anima-
tion using testgraphs. In: ICFEM ’02: proceedings of the 4th
international conference on formal engineering methods, Springer,
Heidelberg, pp 192–203

17. Hewitt MA, O’Halloran C, Sennett CT (1997) Experiences with
PiZA, an animator for Z. In: ZUM ’97: Proceedings of the 10th
international conference of Z users on the Z formal specification
notation, Springer, Heidelberg, pp 37–51

18. Hazel D, Strooper P, Traynor O (1997) Possum: an animator for the
SUM specification language. In: APSEC ’97: proceedings of the
fourth Asia-Pacific software engineering and international com-
puter science conference, IEEE Computer Society, Los Alamitos,
p 42

19. Hazel D, Strooper P, Traynor O (1998) Requirements engineer-
ing and verification using specification animation. In: ASE ’98:
Proceedings of the Thirteenth IEEE Conference on Automated
Software Engineering, IEEE Computer Society, Los Alamitos,
p 302

20. Waeselynck H, Behnia S (1998) B model animation for external
verification. In: Proceedings of the second IEEE international con-
ference on formal engineering methods, ICFEM ’98, pp 36–45

21. Utting M (2000) Data structures for Z testing tools. In: Proceedings
of FM-TOOLS

22. jdb - The Java debugger. (http://java.sun.com/)
23. Achuthan R, Alagar VS, Radhakrishnan T (1995) An object-ori-

ented modeling of real-time robotic assembly system. In: Proceed-
ings of the 1st IEEE international conference on engineering of
complex computer systems (ICECCS ’95), pp 310–313

24. Alagar VS, Ramanathan G (1991) Functional specification and
proof of correctness for time dependent behaviour of reactive sys-
tems. Formal Aspect Comput 3(3):253–283

25. Dong JS, Colton J, Zucconi L (1996) A formal object approach
to real-time specification. In: Proceedings of the 3rd Asia-Pacific
software engineering conference (APSEC’96)

26. Curtis SA, Mica J, Nuth J, Marr G, Rilee ML, Bhat MK (2000)
ANTS (Autonomous Nano-Technology Swarm): an artificial intel-
ligence approach to asteroid belt resource exploration. In: Proceed-
ings of international astronautical federation, 51st Congress

27. Curtis SA, Truszkowski WF, Rilee ML, Clark PE (2003) ANTS
for human exploration and development of space. In: Proceedings
of IEEE aerospace conference

28. Hinchey MG, Dai YS, Rouff CA, Rash JL, Qi MR (2007) Model-
ing for NASA autonomous nano-technology swarm missions and
model-driven autonomic computing. In: AINA ’07: Proceedings
of the 21st international conference on advanced networking and
applications, pp 250–257

29. Truszkowski WE, Hinchey MG, Rash JL, Rouff CA (2004)
NASA’s swarm missions: the challenge of building autonomous
software. IT Prof 6(5):47–52

30. Truszkowski WE, Hinchey MG, Rash JL, Rouff CA (2006) Auton-
omous and autonomic systems: a paradigm for future space

123

http://java.sun.com/

Software monitoring 241

exploration mission. IEEE Trans Syst Man Cybermet Part C Appl
Rev 36(3):279–291

31. Hinchey MG, Rouff CA, Rash JL, Truszkowski WF (2005)
Requirements of an integrated formal method for intelligent
swarms. In: FMICS ’05: Proceedings of the 10th international

workshop on formal methods for industrial critical systems,
pp 125–133

32. Schroeder BA (1995) On-line monitoring: a tutoiral. IEEE Comp
28(6):72–78

123

	Software monitoring through formal specification animation
	Abstract
	1 Introduction
	2 Background
	2.1 The Z specification language
	2.2 Specification animation

	3 Formal specification-based software monitoring
	3.1 Overview
	3.2 Real-time monitoring versus program debugging

	4 Case study: monitor a robotic assembly system
	5 Discussions and lessons learned
	5.1 Merits of the formal specification-based monitoring technique
	5.2 Limitations of the formal specification-based monitoring technique

	6 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

