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Abstract The Object Management Group (OMG) unified
modeling language (UML) profile for modeling and analysis
of real-time and embedded systems (MARTE) aims at using
the general-purpose modeling language UML in the domain
of real-time and embedded (RTE) systems. To achieve this
goal, it is absolutely required to introduce inside the mainly
untimed UML an unambiguous time structure which MARTE
model elements can rely on to build precise models amenable
to formal analysis. The MARTE Time model has defined
such a structure. We have also defined a non-normative con-
crete syntax called the clock constraint specification lan-
guage (CCSL) to demonstrate what can be done based on
this structure. This paper gives a brief overview of this syn-
tax and its formal semantics, and shows how existing UML
model elements can be used to apply this syntax in a graphical
way and benefit from the semantics.

Keywords Unified modeling language · Time model ·
Constraints · MARTE

1 Introduction

The unified modeling language (UML) [6] aims to be a uni-
fied and general-purpose modeling language. Its semantics
is purposely loose to cover a large domain and introduces
so-called semantic variation points that provide for exten-
sions to refine (or even define) a semantics when required
for a specific domain. These extensions are to be defined
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in the context of a UML profile. In the domain of real-
time and embedded (RTE) systems, the Object Management
Group (OMG) has recently adopted the UML profile for
modeling and analysis of real-time and embedded systems
(MARTE) [7], which is currently in the finalization phase. At
its foundations, MARTE defines a broadly expressive time
model to provide for a generic timed interpretation of UML
models. The idea is to define precisely a semantics within
the profile rather than allowing tools to provide their own,
possibly incompatible with other tools of the same domain.

MARTE Time structure is heavily inspired by the tagged
signal model [4], which intends to define a common frame-
work for comparing several models of computation and com-
munication in the RTE domain, and from various works
around synchronous languages [3] and more generally poly-
chronous/multiclock languages well suited to specify glob-
ally asynchronous and locally synchronous (GALS) systems.
The concrete syntax of our language, which is called the
clock constraint specification language (CCSL), is part of
the MARTE profile but is not normative and not based on
any existing language, to enable tool vendors to choose their
own technology. Our goal has been to use explicit keywords
that denote usual concepts of the domain (periodic, sporadic,
sampling, etc.).

A comprehensive informal description of CCSL has been
presented previously [2] and a partial formal declarative
description is available [1]. Using a declarative mathemat-
ical description enables language independence. When con-
straints are not incompatible they should enforce a causal
relationship between UML model elements and thus provide
a support to build a real-time UML simulator. To implement
CCSL and produce acceptable executions, i.e., compatible
with all constraints, it may be interesting to transform it
into equivalent formalisms that already benefit from analysis
tools. After a brief overview of the semantics of a core CCSL
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constraint subset, this paper proposes several possible graph-
ical UML-compatible representations of these constraints.
These graphical representations are not yet part of MARTE
and may be proposed to the second OMG Finalization Task
Force for integration into the next MARTE revision.

Section 2 starts with a brief overview of MARTE Time
structure, the official OMG profile. Then, Sect. 3 describes
the main aspects of the non-normative constraint language
CCSL. Section 4 compares three different visual representa-
tions of the constraints.

2 MARTE Time subprofile

2.1 Time structure

A clock is a five-tuple 〈I,≺,D, λ, u〉, where I is a set of
instants (possibly infinite), ≺ is a quasi-order relation on I,
named strict precedence, D is a set of labels, λ : I → D is
a labeling function, and u is a symbol, standing for a unit.
In this paper, we only consider the clock temporal structure
(or pure clock), i.e., the ordered set 〈I,≺〉, and the values
are never mentioned. ≺ is a total, irreflexive, and transitive
binary relation on I.

A discrete-time clock is a clock with a discrete set of
instants I. Since I is discrete, it can be indexed by nat-
ural numbers in a way that respects the ordering on I: let
N

� = N\{0}, idx : I → N
�, ∀i ∈ I, idx(i) = k if and

only if i is the kth instant in I. We restrict the discussion to
discrete-time clocks and do not consider dense time at all.
For all operators, we always assume that clocks are discrete,
whereas these operators may have a more general semantics
when applied to dense clocks.

For any discrete-time time structure c = 〈Ic,≺c〉, c[k]
denotes the kth instant in Ic (i.e., k = idxc (c[k])). For any
instant i ∈ Ic, °i is the unique immediate predecessor of i in
Ic and i° is the unique immediate successor of i in Ic, if any.
To simplify computations, we assume a virtual instant c[0],
so that c[0] ≡ °c[1]. Note, these definitions of predecessor
and successor are only possible with a discrete structure.

A time structure is a pair 〈C,�〉, where C is a set of
clocks, � is a binary relation on

⋃
c∈C Ic, named precedence.

� is reflexive and transitive. From � we derive four new
instant relations: coincidence (≡�� ∩ �), strict precedence
(≺��\≡), independence (‖� � ∪ �), and exclusion
(# �≺ ∪ �).

2.2 UML profile

Figure 1 presents a simplified view of the MARTE Time sub-
profile. The green elements are defined outside the profile
itself but are useful to understand the profile. The stereotype
ClockType extends the metaclass Class. It models classes of

Fig. 1 Excerpt of MARTE Time subprofile

compatible clocks, i.e., clocks of the same nature (discrete or
dense) and that use the same set of units. The stereotype Clock

extends the metaclasses InstanceSpecification and Property. It
models a set of instants as defined in the previous subsection.
Clocks can appear either in instance diagrams to represent a
snapshot of a system at a given time or in composite structure
diagrams to represent a family of possible behaviors. Starting
from there, several identified model elements can be associ-
ated with one or several clocks using one of the concrete
stereotype that specializes the abstract stereotype TimedEle-

ment. This association with a clock provides the ability to
the model element to embed expressions or value specifi-
cations identifying precisely instants or durations. Having
different reference clocks is very useful in distributed sys-
tems where different elements use different time bases. It is
also useful in electronic design with many-core architectures
or even mono-core architectures where several time domains
are defined (main clock, bus clock, etc). Locally, it is often
better to consider these time domains/bases (clocks) as inde-
pendent so each part can be designed separately. However,
during integration, it is required to understand the relations
between these clocks to deal with interdomain communica-
tions. Clock constraints have been defined with that objec-
tive. They make explicit relations amongst clocks. Stereotype
ClockConstraint extends metaclass Constraint and the clock
constraint specification language (CCSL) gives a possible
non-normative concrete syntax to specify constraints. CCSL
is briefly introduced in the next section.

3 Clock constraints

The Time structure defines relations between instants. How-
ever, as a clock is an infinite set of instants, it is neither real-
istic nor practical to specify constraints one by one. Based on
instant constraints, it is easy to build more powerful relations
that define infinitely many instant relations. We call these
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relations clock constraints. We can classify clock constraints
into three families: coincident-based, precedence-based, and
mixed constraints.

3.1 Coincidence-based constraints

Coincidence-based clock constraints define infinitely many
coincidence instant relations. Most of the time, this kind of
constraints defines a subclock from a given superclock, i.e.,
a less frequent clock. For instance, we can select every third
instant to create a periodic subclock of period 3. However, as
most clock constraints are relations, as opposed to functions,
they can also do the contrary and define a superclock from
one (or a set of) subclock(s). For example, to model a phase-
lock loop (PLL) system, one may wish to oversample a given
clock four times.

The most frequently used constraint of this family is
isPeriodicOn, whose semantics is given in a mathematical
declarative way by Eq. (1).

A isPeriodicOn B period =P offset =δ

⇐⇒ (1)

(∀k ∈ N
�)(A[k] ≡ B[(k − 1) ∗ P + δ + 1])

This family describes synchronous relations inspired from
operators defined in synchronous languages [3].

3.2 Precedence-based constraints

The precedence-based clock constraints define infinitely
many precedence instant relations. They characterized asyn-
chronous relations. The most frequently used constraint of
this family is alternatesWith. Relation alternatesWith repre-
sents alternation between two clocks. A ∼ B means that
each occurrence of A is followed by an occurrence of B
before any other occurrences of A. The weak form of this
relation allows the i th occurrence of B to be simultaneous
(coincident) with the i th occurrence of A, whereas the strict
form requires A and B to be disjoint.

Typically, an asynchronous communication implies an
alternation between sending and receiving. Let A be the
sender and B the receiver. The data is received after hav-
ing been sent. No other communications can start before the
previous one completes. The weak form allows the sender to
receive data simultaneously with the emission, but does not
enforce the synchronization. The strict form is used to forbid
instantaneous communications. The strict form semantics is
given by Eq. (2), whereas Eq. (3) gives the semantics of the
weak form.

A strictly alternatesWith B

⇐⇒ (2)

(∀k ∈ N
�)(A[k] ≺ B[k] ≺ A[k + 1])

A alternatesWith B

⇐⇒ (3)

(∀k ∈ N
�)(A[k] � B[k] ≺ A[k + 1])

3.3 Mixed constraints

Mixed constraints combine both precedence and coincidence
relations. There are useful when modeling communications
from an asynchronous part of a design to a synchronous part.
The most frequently used constraint of this family is sam-

pledOn. The relation sampledOn represents sampling; it can
be used to model time-triggered communications or for syn-
chronizing asynchronous inputs. A = B � C defines a sub-
clock of C that occurs only after an occurrence of B. The
strict form of sampledOn does not instantaneously sample an
occurrence of B when it is synchronous with an occurrence
of C . In that case, the sampling is postponed.

Figure 2 shows one possible scenario involving the clock
relation sampledOn in both forms, weak and strict. Signal
B counts its occurrences and signal A contains the value
actually sampled from B.

With both forms the first sample has the value 1. How-
ever, with the weak form the first sample occurs on the first
occurrence of C whereas it occurs on the second occurrence
of C with the strict form. The second sample has the value
3 and the input 2 has been lost in both cases. The third sam-
ple occurs at the same time, whatever the form, but does not
carry the same value in both cases. The strict-form semantics
is given by Eq. (4) whereas Eq. (5) gives the semantics of the
weak form.

A = B strictly sampledOn C

⇐⇒ (4)

(∀a ∈ N
�)(∃b, c ∈ N

�)

((A[a] ≡ C[c]) ∧ (C[c − 1] � B[b] ≺ C[c]))

A = B sampledOn C (A = B � C)

⇐⇒ (5)

(∀a ∈ N
�)(∃b, c ∈ N

�)

((A[a] ≡ C[c]) ∧ (C[c − 1] ≺ B[b] � C[c]))

Fig. 2 A = B sampledOn C
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4 Applying constraints to UML models

4.1 Using UML constraints

To apply these constraints, one must first create clocks and
therefore clock types. Some very useful clock types are pro-
vided in the MARTE library, such as IdealClock, which repre-
sents a perfect dense chronometric clock. Other clocks, with
flaws such as jitter, drift, can be derived from IdealClock or
rather from one of its instances (a clock). The clock idealClk

is also provided in the MARTE library and is an instance of
IdealClock. idealClk can be discretized with a given resolution
to build, for instance, a chronometric discrete clock whose
frequency is 100 Hz (see Eq. (6)).

c_100 = idealClk discretizedBy 0.01 (6)

More generally, MARTE also provides support for the use
of logical clocks, i.e., clocks not directly related to physical
time. Anything that has to be compared (before, after, or
coincident) to something else should be considered as a log-
ical clock. For instance, to provide timing information about
thread dispatch, a class Thread can be defined and the stereo-
type ClockType can be applied to it. Doing so, instances of
Thread or properties/parts/ports of type Thread may become
clocks. Note that, being a ClockType does not prevent them
from being something else, such as a SchedulableResource; it
only provides support to build clock constraints and express
causality relations with other clocks.

Figure 3 illustrates such a case where two periodic threads
(t1 and t3) are mixed with an aperiodic thread (t2). The two
clock constraints make the two threads (clocks) periodic rel-
ative to clock c_100. The two threads are harmonic since they
refer to the same clock with an offset 0 and the ratio of their
period is an integer. Thread t2 is aperiodic; no relation relates
it to a clock. Clock c_100 is a shared clock (for instance, a
chronometric discrete clock) and as such appears within a
dashed rectangle. c_100 is not owned by class PeriodicAperi-

odicPeriodic and could be used in another composite structure
diagram. This diagram has been built using Papyrus, an open-
source tool available at http://www.papyrusuml.org.

Fig. 3 Periodic threads with CCSL

This notation using constraints requires the user to know
CCSL concrete syntax. However, a more obvious visual nota-
tion may be more appropriate. Constraints become visually
explicit when all constrained elements appear on the same
diagram. In this particular diagram, we do not see the sub-
programs actually executing on these threads. One purpose
of the Time model is to apply consistency between different
diagrams through clocks. Different timed elements from dif-
ferent diagrams are connected together by clock constraints,
which constrain them to behave in a consistent way. The two
following subsections propose alternative notations where all
clocks are shown on the same diagram.

4.2 Using a CCSL-specific profile

UML profiles can introduce new concepts but can also change
the visual notation. Introducing a new visual language for
clock constraints within MARTE is not practical because
MARTE is very large and there are many other matters to
address. A solution is to define aside, a CCSL-specific profile.
Each often-used CCSL constraint can have its own stereotype
and a specific icon. The most appropriate metaclass to repre-
sent CCSL constraint is probably the metaclass Dependency.

Figure 4 shows a profile that could ease the use of CCSL

constraints. The left-hand side of the figure shows the actual
profile. The right-hand side of the figure shows another com-
posite structure diagram for the same three-thread example.
In this example, the diagram represents three new clocks
(step1, step2, and step3) that are the actual behaviors (sub-
programs) executed by the threads. These clocks could also
have been shown on the previous diagram but this would
have resulted in a very heavy construct. Using the defined
stereotypes and their icons brings simplicity even though the
semantics is exactly the same.

The relation alternatesWith from the threads to their
assigned subprogram denotes that, every time the thread is
dispatched, the subprogram must execute. Additionally, the
subprogram cannot be executed again before the completion
of the previous execution.

The asynchronous communication from step1 to step2 is
modeled with a alternatesWith relation. Whenever step1 com-
pletes, step2 takes its output data and executes.

Finally, the ternary relation involving step2, step3, and t3

denotes the synchronization of the step2 output with the clock
t3. Every time t3 is dispatched, whatever the current status of
step2 output, the data available is sampled and step3 executes
using this sample. Obviously, this may lead to data loss if the
sampling rate is too low, or to the use of the same sample
data in multiple executions of step3 if the sampling rate is
too high.

This representation requires the definition of a new profile
aside MARTE. In this profile, each CCSL constraint has its
own stereotype and its properties are determined according to
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Fig. 4 Using a CCSL-specific profile

Fig. 5 Using SysML parametric diagrams

the CCSL grammar. An alternative to the creation of another
profile is to use parametric diagrams as described in the fol-
lowing subsection.

4.3 Using SysML parametric diagrams

The UML profile for system engineering (SysML) [8] is
a specification adopted by the OMG to be used at the sys-
tem level. It consists of a subset of UML constructs called
UML4SysML together with few new extensions, including
refinement and parametric diagrams. The former helps to
make explicit system-level requirements and trace their pro-
posed implementations. The latter should be used to represent
noncausal relations among values of the system and possibly
make physical laws required for the design explicit within
the model.

So, we can use this SysML construct to represent laws
related to time, whether physical or logical. SysML recom-
mends building a new “constraint block” for each new law
and then using it in so-called parametric diagrams to apply
this law to relevant design constraint values. In our case, we
have a small number of identified relations among logical
clocks. Consequently, we can construct a library of CCSL-
specific constraint blocks.

Figure 5 illustrates the same example using SysML con-
straint blocks and a parametric diagram. The left-hand side
shows an excerpt of the CCSL-specific library. Three con-
straint blocks (Periodic, Alternation, Sampling) have been
defined for each of the three CCSL relations previously intro-
duced. Each constraint block has two compartments. The
bottom one, called parameters, contains typed formal para-
meters. The upper compartment, called constraints, contains
the constraint itself that applies on the parameters. In our
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case, the constraint is defined in CCSL. However, this library
is built once and for all, so end-users need not being entirely
familiar with the concrete syntax and only need to be familiar
with the underlying concepts.

The right-hand side of the figure presents the three-thread
example as a SysML parametric diagram. In such a diagram,
boxes are properties extracted from the model. Some of the
properties are clocks (t1, step1, etc), while others have inte-
ger values (of f set , t1_p, etc.). These properties may come
from different diagrams and different blocks. The rounded
rectangles are usages of constraint blocks. Their ports, which
represent parameters, are connected with properties using
noncausal connectors. Being noncausal means that there is
no input nor output, whichever value is known causes the
other to update. For instance, considering Alternation, if b
is known, one can deduce (partially) a but similarly, if a is
known, then one can deduce (partially) b.

5 Conclusion

This paper has presented some representative clock con-
straint relations introduced by the MARTE Time model
together with their formal semantics. These clock constraints
bring consistency in the timing information of UML mod-
els. Introducing formal models in UML models is a prob-
lem. OMG specifications are usually large and are not the
right place to put formal specifications. Leaving the formal
semantics outside the specification leaves the interpretation
to tools, possibly resulting in tools for the same domain with
different interpretations. These different interpretations are a
major impediment that reduces interoperability and is one of
the reasons that prevents the acceptance of UML in a wider
community.

With CCSL, we rely on UML constraints. However, con-
straints are not the best visual representation. We propose
herein two visual alternative notations that result in more
compact diagrams. These two solutions are not specific to
CCSL and could be easily extended to other constraint-based
languages such as the Object Constraint Language (OCL).
The limitation lies in finding the right icon or shape that

immediately makes the link with the constraint. Our first
proposition implies the creation of a CCSL-specific profile.
The second relies on SysML parametric diagrams. It is inter-
esting to see that all the proposed notations are composite
structure diagrams or derived notations.

These two notations attempt to replace CCSL concrete
syntax by a visual representation and to allow a represen-
tation of otherwise scattered timing information on a single
diagram.

The next step is to provide analysis support for such dia-
grams. We already have implemented an Eclipse-based sim-
ulator for CCSL constraints [1] and we are trying to integrate
it with parametric diagrams to obtain direct visual feedback
of a simulation run. We have also made some progress in
transforming CCSL constraints into other formalisms, such
as Signal or Petri nets [5], which have their own analysis
techniques and tools.
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