
Innovations Syst Softw Eng (2006) 2:147–163
DOI 10.1007/s11334-006-0010-z

ORIGINAL PAPER

Symbolic approximation: an approach to verification
in the large

Peter T. Breuer · Simon Pickin

Received: 2 July 2006 / Accepted: 14 August 2006 / Published online: 28 October 2006
© Springer-Verlag London Limited 2006

Abstract This article describes symbolic approxima-
tion, a theoretical foundation for techniques evolved
for large-scale verification – in particular, for post hoc
verification of the C code in large-scale open-source pro-
jects such as the Linux kernel. The corresponding tool-
set’s increasing maturity means that it is now capable of
treating millions of lines of C code source in a few hours
on very modest support platforms. In order to explicitly
manage the state-space-explosion problem that bedevils
model-checking approaches, we work with approxima-
tions to programs in a symbolic domain where approxi-
mation has a well-defined meaning. A more approximate
program means being able to say less about what the
program does, which means weaker logic for reason-
ing about the program. So we adjust the approximation
by adjusting the applied logic. That guarantees a safe
approximation (one which may generate false alarms
but no false negatives) provided the logic used is weaker
than the exact logic of C. We choose the logic to suit the
analysis.

1 Introduction

In recent years, our group has developed a static analy-
sis tool for use in the post hoc verification of properties
in the Linux kernel ([3,4]) and other large open-source
projects. Initially, it was a matter of some pride that the

P. T. Breuer (B) · S. Pickin
Area de Ingenieria Telematica, Dpto. Ingenieria,
Universidad Carlos III de Madrid, Butarque 15,
Leganes, Madrid 28911, Spain
e-mail: ptb@inv.it.uc3m.es

S. Pickin
e-mail: spickin@it.uc3m.es

prototype could efficiently deal with some 30,000 lines
or so of source code at a time, which was about the size
of the source code of a small Linux kernel driver of some
500 lines or so of C code, once referenced header files
had been included and all macros expanded.

But taking the development onwards to deal with
first hundreds of thousands and then millions of lines
of source code has not been merely a question of linear
improvement – the tool had to be coupled with a logic
compiler in order to allow the programming logic that
it used to be reconfigured for different analyses, and the
way the tool applied that logic to a parsed program syn-
tax tree was made configurable via a trigger–action rule
system, again compiled into the tool on demand. The
coverage of the tool also had to be extended repeat-
edly to deal with unexpected C code constructions that
the gcc C compiler allows and the Linux kernel makes
use of. The analysis now copes with the mix of C and
assembler in the Linux kernel source (and the analysis
tool itself is written wholly in C, thus making it easy to
compile and distribute in an open source environment;
the code itself is licensed under an open source license).

We call the context in which we understand the tech-
niques we have successfully employed for this setting
symbolic approximation. The underlying idea is to place
the semantics of a C (or other language) program into
an abstract domain where an analysis using symbolic
logic can be carried out. However, the abstract domain
contains a native notion of the approximation of pro-
grams to one another, so we can decide how accurate
– or inaccurate – to make the program being analysed
with respect to the real program, and in what direc-
tion, in informed tradeoffs. These approximations are
abstract interpretations [7] of the original, and one of
them is an exact interpretation, although it is never used

148 P. T. Breuer, S. Pickin

Fig. 1 Testing for sleep
under spinlock in the 2.6.3
Linux kernel

in practice, as it would be impossibly unwieldy and per-
haps not expressible within the range of approximations
that we can manage. The approximations of interest are
those that we can express using our tools and which
simplify the analysis.

After obtaining a representation of the C code in
the abstract domain, the abstract states that result from
running (in an abstract sense) the abstract program
are subjected to simultaneous interpretations in several
different perspectives, ultimately deriving good or bad
(or other similar humanly meaningful qualifications) in
various perspectives at each point in the code. The word
perspective is chosen here to denote a projection that
detects some condition such as reading memory before
assigning to it, or calling a function that may sleep under
lock, or accessing a file via a handle that has been closed,
and so on. Each perspective looks at the same symbolic
representation of the abstract state at each point in a
different way, hence the name.

For example, Fig. 1 shows the result of checking about
1,000 (1,055) of the 6,294 C source files in the Linux
2.6.3 kernel for a condition known as “sleep under spin-
lock”, which is a potential deadlock on a multiprocessor
system (indeed, also on a uniprocessor system, but the
same source code is usually compiled for a uniproces-
sor system in a different way which removes from the
object code the locks that are dangerous). At that time,
2 years ago, the test run took 24 hours running on a
550 MHz (dual) symmetric multiprocessor (SMP) per-
sonal computer (PC) with 128 MB random-access mem-
ory (RAM). Now, 2 years later, the same run takes about
1/4 of the time (about 6 hours).

To explain the test a little, the property being looked
for is a call to a function that can sleep (i.e., that can
be scheduled out of the CPU) from a thread that holds
a spinlock (a locking mechanism that causes a waiting
thread to enter a busy loop until the lock is released to it)
at the time of the call. Trying to take a locked spinlock
on one CPU provokes a busy wait (known as a spin)
that occupies the CPU until the spinlock is released on
another CPU. If the thread that has locked the spinlock
is scheduled out of its CPU while the lock is held, then
the only thread that was intended to release the spinlock

is not running. If by chance that thread is rescheduled
into the CPU before any other thread tries to take the
spinlock, then all is well, but if another thread tries for
the spinlock first, then it will spin uselessly, occupying
the CPU and keeping out the thread that would have
released the spinlock. If yet another thread tries for the
spinlock, then on a two-CPU SMP system, the machine
is dead, with both CPUs spinning forever waiting for a
lock that will never be released. Such vulnerabilities are
denial-of-service opportunities that any user can exploit
to take down a system. Two-CPU machines are also
common – any Pentium 4 of 3.2 GHz or more has a
hyper-threading core that presents itself as two CPUs.

Clearly, calling a function that may sleep while hold-
ing the lock on a spinlock is a serious matter. Yet the test
detected three real cases of sleep under spinlock (out of
18 alarms raised) in the tested portion of the Linux 2.6.3
kernel source, and those abuses had remained unde-
tected under the scrutiny of thousands of eyes for time-
scales of years (one of the faults was in the snd_sb_
csp_load() function in sb16_csp.c, the Sound
Blaster sound card driver; another was in the midi_
outc() function insound/oss/sequencer.c, in the
sound sequence generator code; the latter problem
would have made an SMP machine liable to deadlock
when receiving mail for the administrator that triggered
several “you have mail” system sound advisories at once
– see Fig. 2). Two of the problems detected were mon-
itored until they were detected and removed by con-
tributors or maintainers in releases of the kernel about
6 months later, and the third (in sequencer.c) was
not removed until the kernel maintainers were notified
at release 2.6.12.5 of the kernel.

What problem are we solving by our approach? In the
first instance, we are aiming to avoid the state-space-
explosion problem that bedevils full model-checking
techniques by deliberately targeting the notion of
approximation, and understanding and controlling the
way in which we approximate. People working with
model checking and applying the techniques to similar
repositories as we do (David Wagner and colleagues’
work at Berkeley comes to mind, see for example [14],
where Linux user space and kernel space memory

Symbolic approximation 149

Fig. 2 Sleep under spinlock
instances in kernel 2.6.3

pointers are given different types, so that their use can be
distinguished, and [15], where C strings are abstracted
to a minimal and maximal length pair and operations
on them abstracted to produce linear constraints on
these numbers) also have to make approximations in
order to apply their tools. Our approach is to make
the approximation itself a rigorously understood area.
The approach we have followed assigns a customisable
abstract approximation semantics to C programs, via a
customisable program logic for C. In general we decide
to approximate on the safe side of reality, generating
approximations in which we can only say that a program
may do something bad, not that it must do something
(good or bad). In that approach, any alarm sounded may
err in possibly shouting where there is nothing to shout
about, but will not be quiet when there is really some-
thing to be alarmed about (always within the parame-
ters of the analysis itself – we cannot for example cope
with self-altering C code, because the analysis inherently
assumes the code does not change, and indeed that mem-
ory for particular data does not overstep memory areas
for other data).

A more lightweight technique still is exemplified by
Jeffrey Foster’s work with CQual,1 which extends the
type system of C in a customisable manner. In partic-
ular, CQual has been used to detect double-spinlock
takes, a subcase of one of the analyses performed by our
tool.

The SLAM project [1] originating at Microsoft also
analyses C programs using a mixture of model-checking,
abstract interpretation and deduction in a way that is
related to our approach (except that we do not use
model-checking). That technology is an order or more of
magnitude slower than ours, but also works by creating
an abstraction of the program code, and also generates
intermediate state descriptions mechnically. It differes
in that it iterates at a global level, improving the fineness
of its abstraction each time in order to successively rule
out more false alarms, and we don not iterate.

1 http://www.cs.umd.edu/˜jfoster/cqual/. See [12,13].

Static analysis techniques generally abstract away
some details of the program state, generating an abstract
interpretation [7] of the program. Examples include
ignoring a state in favour of the time taken to gener-
ate it, or restricting to a particular set of program vari-
ables (known as slicing), or looking only at the condition
of certain logical assertions rather than the state itself.
Abstract interpretation in a symbolic domain forms a
fundamental part of the analysis here. In that domain,
approximation in the sense of abstract interpretation
can be defined exactly, and deliberate approximations
on our part serve to simplify the description of the state
that is propagated by the analysis; for example, “don’t
know” is a valid literal in the analysis domain, thus a pro-
gram variable which may take any of the values 1, 2, or
3 in reality may be described as having the value “don’t
know” in the symbolic abstraction, leading to a state s
described succinctly by one atomic proposition, not a
disjunct of three. And although the logic of compound
statements like for, while, etc. manipulates the logic
of the component statements with genericity in the stan-
dard configuration, the logic of atomic statements like
assignment is usually configured by the user to provide
some simplification; for example an assignment to pro-
gram variable x may be configured to delete references
to the old value of x in the state, but not to assign a (par-
ticular) new value, thus giving an abstraction in which
only the fact of assignment and reference is visible, not
the value assigned or read.

Model checking [9] is the technique presently best
know for semanitcally-based analyses. In model-checking
a large transition graph is constructed to represent how
the program may move from one state to another. The
graph is then analysed to see if it satisfies required prop-
erties. However, even for simple programs or protocols,
the data structures involved are so large that verifiction
becomes intractable – the problem is know as “state-
space explosion”

In practice, very large programs are either abstracted
[10] or otherwise approximated or interpreted before
model checking is applied. For example, a 32-bit inte-
ger variable may be represented as having just two

150 P. T. Breuer, S. Pickin

abstract states: zero, and non-zero. Our approach like-
wise abstracts the program and it takes it into a symbolic
domain where approximation of programs also has a
well-understood meaning.

The remainder of this article is structured as follows:
the setting will be introduced slowly through Sects. 2, 3,
4 and 5; the full theory used will be described in Sect. 6,
and the detail of the treatment of C will be given in
Sect. 7, along with the definitions that customise the
analysis. Section 8 will discuss how the analysis is inter-
preted through different perspectives; configurations of
the analyser for a small variety of problems and the
results are discussed in Sect. 9.

2 The simple approach

We introduce the concepts involved in our approach
by way of an initial simple view of programs, based on
classical Hoare semantics. In that approach a program
fragment is represented by the relation the code estab-
lishes between a predicate p ∈ P describing the initial
state of the system before the code has run, and a pred-
icate q ∈ P describing the final state of the system after
the code has run. That is, the representation falls in the
space of relations with domain and co-domain P:

P ↔ P

where P is some sufficiently expressive domain of pred-
icates on the finite state space of the C program, closed
under logical conjunction and disjunction, and contain-
ing at least the atomic predicates involving equality, vari-
ables, and literal integer constants in the range of 32-bit
integers, [−231, 231 − 1]. E.g. (x = 1) ∧ (y = 2) ∨ (z = 3)

is a predicate.
Let T be a domain of terms representing at least sub-

ranges of integer elements from [−231, 231 − 1]. Terms
(i.e. integer ranges) are compared via subset, the full
range being the most underspecified term, written ⊥,
and the empty range being the overspecified term, writ-
ten �. Subset comparison t1 ⊇ t2 is written the other
way round in terms of refinement, t1 � t2 (i.e., t2 refines
t1) , so that � (the empty range) is the top (most refined)
element in the lattice ordered by refinement – “refine-
ment is confinement” may be used to help remember
which way round it goes. Terms include at least the sin-
gle integer constants and variables representing single
integer values, and have a formal finite meet operator
(which may or may not be the set union – [a, b]	 [c, d] =
[min{a, b}, max{c, d}] is an alternative, for example, when
the terms include only the contiguous ranges).

Now let (P, T) be the space of paired predicates and
terms, written p
 t. For example, (x = 1) ∧ (y = 2)
 x

represents a term defined over the range defined by
(x = 1) ∧ (y = 2), taking value x (i.e. 1) on that range;
(x = 1) ∨ (z = 2)
]0[represents a term defined over
the range (x = 1) ∨ (z = 2) and it takes any value there
from the whole range [−231, 231 − 1] excluding 0.

There is then a ready-made notion of refinement on
the domain (P, T) obtained by regarding p
 t as being
bound to t on p but bound to the empty range on the
complement of p. That is, imagine that P = P(S), the
power set for some state space S, and use the refinement
induced by comparing the p
 t as though they were the
functions s �→ t for s ∈ p, s �→ � for s ∈ p, using the
(pointwise) comparison from the function space TS:

Definition 1 The refinement ordering � on (P, T) is
defined by

p1
 t2 � p2
 t2 iff p1 − p2 ⇒ t1 = �
and p1 ∧ p2 ⇒ t1 � t2

	�
This definition implies

p1 ⇒ p2

p1
 t � p2
 t
t1 � t2

p
 t1 � p
 t2

and thus this notion of refinement extends the refine-
ment induced on the cross-product; i.e., if the predicate
part is more confined, then the pair is more refined. If
the term part is more confined, then the pair is more
refined.

Lemma 1 Refinement as defined above on (P, T) is a
partial order relation, extending the product partial order
relation induced from the refinements on P and T (refine-
ment on P is implication, with T (true) being most unre-
fined and F (“false”) being most refined).

We can now represent simple C programs by their
Hoare semantics with respect to this domain, as rela-
tions in

(P, T)↔(P, T)

Example (Post-increment) x++ changes the value of x
stored in the state, and returns the old value x − 1 of x:

p
 t x++; p[x − 1/x]
 x − 1

In contrast, pre-increment ++x returns the new value
of x:

p
 t ++x; p[x − 1/x]
 x

In both cases, the initial returned value term t is dis-
carded. 	�

Symbolic approximation 151

Example The empty program has the action of the iden-
tity operator:

p
 t ; p
 t
	�

The result term is explicitly used in GNU C when a
statement is made into an expression by surrounding
the code with ({…}), as for example in the macro that
calculates the minimum of two values as follows in order
to avoid double evaluation:

#define MIN(x, y)

({typeof(x)x = (x); typeof(y)y = (y); x<y?x :y; })
This macro is used in practice in order to guarantee
that the generated code be inlined. By convention, pro-
grammers do not use variable names that start with an
underscore, so the code is safe. The problem with writ-
ing instead the simpler ((x)<(y)?(x):(y)) is that
the smaller of the expressions x and y will be eval-
uated twice, once in the comparison, and once as a
result. Since either of x or ymay be complicated expres-
sions (e.g. a+=2 for x) at the point where the macro
is used, both the result and the side-effect may vary
according to the number of evaluations of the macro
parameters.

Some C code statements have always been able to be
used as expressions with minor modification. For exam-
ple, discarding the trailing semicolon fromx=x+1; gives
the valid C expression x=x+1, which may be used like
any other expression and has the new value of x after
the assignment (and which changes the program state
to reflect the assignment). Thus, binding a term to rep-
resent the result of a statement, as well as that of an
expression, is a natural thing to do.

Further, in GNU C, the result can be remembered
from one statement to another. Consider the following
GNU C (for gcc 2.95) expression-statement:

({ int x; x=1; goto foo; foo: })

Experiment will show that it returns the value 1, thus the
value returned by the assignment early on in the block is
remembered until the end of the block (note, however,
that the gcc 2.95 semantics is ill-defined near here, since
the very similar (int x;x=1; goto foo; x=2;
foo:) returns 2. Labels at the end of compound state-
ments have been outlawed in gcc 3.4 and 4.0, but adding
empty statements instead perfectly satisfies both gcc 3.4
and 4.0, and still returns 1; try (int x; x=1; ; ;),
which illustrates how the empty statement preserves and
remembers the bound result).

Note that over a finite state space at least, a relation R
in (P, T)↔(P, T) representing a Hoare semantics for a

program is generated by a strongest postcondition oper-
ator, R̂, a function:

p R q iff R̂(p)⇒ q

for some function R̂ that returns a strongest postcondi-
tion q given the initial condition p. This is usually the
convenient representation for practice. The semantic
relation R has the property that it is closed with respect
to loosening of its right-hand-side argument q and with
respect to tightening of its left-hand-side argument p.
That is:

p2
 t2 � p1
 t1 q1
 u1 � q2
 u2 p1
 t1 R q1
 u1

p2
 t2 R q2
 u2

(1)

or, in terms of the strongest postcondition operator:

p1
 t1 � p2
 t2 ⇒ R̂(p1
 t1) � R̂(p2
 t2) (2)

It is also the case that semantics generated from a post-
condition operator is at least well defined as a relation
on every possible input condition:

F
� R T
⊥ (3)

Via weakening, this means ∀a.∃b. a R b. It will always
be the case for real code that the stronger F
� R F
�
holds (dead code cannot rise up and run), but we do not
insist on it as a fundamental axiom.

Often it is appropriate to describe the behaviour of
code piecewise. In the case of the fragment
if (x>0) x++;else x--, for example, the
program variable x is incremented if it is initially posi-
tive, and decremented if initially zero or negative. The
appropriate symbolic representation is

p
 t if (x>0) x++; else x--;

{
x > 1 ∧ p[x − 1/x]
 x − 1
x < 0 ∧ p[x + 1/x]
 x + 1

where the right-hand side expresses the semantics piece-
wise.

To formally express piecewise behaviours, we use
the symbol (disjunction) to denote the composition
piecewise by parts, and form a commutative partially
ordered algebra based on the domain (P, T):

A(P, T, , �)

[for short, A(P, T)] whose terms consist of the pairs from
(P, T) combined using the disjunction symbol, with par-
tial order as described in the paragraphs below. The fol-
lowing domain then forms the appropriate basic setting
for the symbolic semantics of C programs:

(P, T)↔ A(P, T)

152 P. T. Breuer, S. Pickin

Example In this domain, the strongest postcondition
semantics of the fragmentif(x>0) x++; else x--,
is written as follows:

p
 t if (x>0) x++; else x--;
x > 1 ∧ p[x − 1/x]
 x − 1
x < 0 ∧ p[x + 1/x]
 x + 1

	�
Example As an example of using disjunction in a non-
trivial way in a semantics specification, suppose that C
function trylock either increments the global variable
x and returns 1, or leaves it unchanged and returns 0. Its
semantics are

p
 t trylock(&x); p[x − 1/x]
 1 p
 0

This represents the idea that we do not know what
trylock (lock attempt) will do, whether it will succeed
in obtaining a lock or not, until it is tried. Internally,
the function may perhaps test the value of x or perform
other operations that we could unravel, but the specifi-
cation given approximates it as a black box via the idea
that it either gets the lock and returns 1 to the outside
world, or does not and returns 0. 	�

We extend the refinement relation through finite dis-
junctions by considering that p1
 t1 p2
 t2 has bound
value � (void) on the complement of p1 ∨ p2, bound
value t1 on p1 − p2, t2 on p2 − p1, and the joint value
t1	t2 (that is, t1∪t2 when meet in the refinement ordering
is set-theoretic union) on p1 ∧ p2. Then:

Definition 2 The extension of the refinement relation to
A(P, T) is given by:

p
 t �
i
pi
 ti iff

{
p − ∨ipi ⇒ t � �

p ∧ (∧jpj − ∨kpk) ⇒ t � 	jtj

where the j, k separate the (finite) set of the i into two
disjoint subsets, and

a �
i
pi
 ti iff ∀i. a � pi
 ti

To do the generic comparison a � b one decomposes
b into its disjunctive components pi
 ti and compares
a � pi
 ti for each of them. 	�
Recall that t1 � t2 means t1 ⊆ t2 (more confinement
means more refinement). The first half of the definition
is natural in practice; for example, in the case of three
components, the disjunct takes value � on the comple-
ment of p1 ∨ p2 ∨ p3, value t1 on p1 − (p2 ∨ p3), t2 on
p2 − (p1 ∨ p3), t3 on p3 − (p1 ∨ p2), value t1 	 t2 on
p1 ∧p2 −p3, t2 	 t3 on p2 ∧p3 −p1, t1 	 t3 on p1 ∧p3 −p2,
and value t1 	 t2 	 t3 on p1 ∧ p2 ∧ p3, inducing the appro-
priate comparisons.

Lemma 2 (i) Refinement as defined above on the domain
A(P, T) is a partial order relation and extends the order
defined on (P, T); (ii) disjunction as defined on that
domain is a commutative associative operation well
defined with respect to the equality induced by refine-
ment (and its zero is F
� – which equals p
� for any
p); (iii) disjunction gives the greatest lower bound of the
disjuncts with respect to refinement in A(P, T).

As remarked, we expect all Hoare-style semantic
relations F in the extended domain with disjunction
to respect (1) in the new setting. The expectation is
reasonable, thinking of pairs p
 t as (constant-t) par-
tial functions over state with domain p, because further
refinement specifies further the bound term, or the pos-
sible states, resulting in a more specified result of an
applied computation.

It is now possible to represent exactly any operation
on a finite state space.

Example To represent multiplication, x*z, one merely
has to enumerate all the possible values separately, as a
large disjunct:

p x*y p ∧ x = 1 ∧ y = 1
 1 p ∧ x = 2 ∧ y = 1
 2 · · ·

but this level of detail in the description is not feasi-
ble in practice. In practice we would perhaps provide a
symbolic approximation of the form

p x*y p ∧ 0 ≤ x < 10 ∧ 0 ≤ y < 10
[0, 99] · · ·
thus dividing the range up into decades, and stating in
which decade the result must fall given the decades of
the arguments. Or we might simply choose to record the
sign:

p x*y p ∧ 0 ≤ x ∧ 0 ≤ y ∨ 0 ≥ x ∧ 0 ≥ y
[0, +∞] · · ·
Any way of representing multiplication that approxi-

mates (in the sense of �) the exactly intended result is
admissible. 	�

To deal conveniently and formally with programs that
give rise to a disjunction in the symbolic representation
of their semantics, we introduce logical rules that allow
the disjunctive components to be considered separately:

p
 t a f p
 t a g

p
 t a f g
(4)

and conversely:

p
 t a f g

p
 t a f

p
 t a f g

p
 t a g
(5)

Symbolic approximation 153

These rules merely state that semantic relations R arising
from programs a are filters on their right-hand side. That
is, as well as being closed under weakening on the right,
the relation is closed under finite meet [i.e. disjunction,
since that gives the greatest lower bound in A(P, T)] on
the right. This makes sense in terms of a pure Hoare
semantics, since if program a necessarily reaches ter-
mination condition q1 starting from initial condition p
and it also necessarily reaches termination condition q2
starting from p, then it reaches termination condition
q1 ∧ q2. In the present setting, however, p
 t a f should
be understood as the claim that it is possible that end-
condition f may arise, in some trace that program a will
give rise to, or EF f in the notation of temporal logic
(CTL). Then f g is EF f ∧ EF g, i.e. it is both possible
that f may arise and it is possible that g may arise, so it
makes sense that disjunction on the right should behave
like a conjunction.

3 Program composition in the simple approach

Table 1 gives the simple Hoare-style semantics of the
principal C program constructors as relations in
(P, T)↔ A(P, T). The sequence constructor is compo-
sition of relations, and the empty statement is the iden-
tity embedding. Usually sequential composition entails
dropping the result returned by the first statement for
that returned by the second statement, given the seman-
tics of the individual components. But that is not the
case when one of the statements is the empty state-
ment, which always borrows the remembered result as
its returned value.
If statements produce disjunctions, bound to the

term literal � signifying an invalid result – in GNU C the
type of the value delivered by an if statement or while
loop is void, and it cannot be returned as a result in an
expression:

int y = ({ int x; x=1; while(0); });
test.c:...: void value not
ignored as it ought to be

For the test x in the if, let x be a new condition vari-
able which represents the value returned by x. Rule (8)
means to let q1 be conditions that are true when the test
returns a 1 (or any other nonzero value) and q0 be con-
ditions that are true when the test returns 0 (in an ideal
world, the strongest such), so-called branch hypotheses.
They appear also in rule (9) for a while loop.

How is an invariant condition p′ for the loop discov-
ered in practice? First of all note that there is such a p′,
since T (true) will do (we can validly set both q1 and q0

to T too, in the eventuality of our complete ignorance).
So the question is how to get hold of a good invariant.

Starting from p, we first calculate suitable branch
hypotheses q0 and q1, as set out in the next section,
and then try the p′ calculated from

q1
 x a; p′
 t1

If this p′ ⇒ p, then p itself is an invariant. Otherwise we
replace p with p∨p′ and try again. If this is an invariant,
then we are done. If not, we write p ∨ p′ in disjunctive
normal form and erase components of the conjuncts
in the disjuncts one by one, testing each time to see if
we have an invariant. The procedure ends after a finite
number of steps. At the very worst it terminates with
T, which is an invariant (though normally not a useful
one).

Note that the existential quantification which appears
in rule (10) can be replaced by a (large) finite disjunction
on a finite state space. In practice, there are likely either
no appearances of the bound variable in the quantified
predicate, so the point is moot, or the assignment is an
increment or other simple change that can be effected by
substituting one term for another in the predicate. For
example, if the assignment is x=x+1;, then the predi-
cate on the right of the conclusion in the rule can be
q[x − 1/x].

4 Generating good branch hypotheses

In practice, the predicates q0, q1 (call them negative and
positive, respectively) that say what hypotheses can be
brought to bear when going down the else or then
branches of an if, respectively (and for breaking out of,
or staying in, respectively, a while loop) are generated
from the syntax of the test expression x. For example, if
x is just the program variable x, then q1 and q0 are trivial
(i.e. essentially just the same p as the input condition),
because

p
 t x (x = 0) ∧ p
]0[(x = 0) ∧ p
 0

In general, we will set q1 = pos(p, e), for expression e,
and q0 = neg(p, e), and aim for

p
 t e pos(p, e)
]0[neg(p, e)
 0
(11)

Table 2 shows the major expression constructions and
their decompositions.

Many other propositional expressions in C code may
also translate easily, depending on precisely what is in
the class of predicates P (we may assume that it contains

154 P. T. Breuer, S. Pickin

Table 1 The simple Hoare-style logic of C constructors

p
 t1 a q
 t2 q
 t2 b r
 t3
p
 t1 a;b; r
 t3

(6)

p
 t ; p
 t
(7)

p
 t x (q1
]0[q0
 0) q1
 x a; r1
 t1 q0
 x b; r0
 t0
p
 t if (x) a; else b; r1 ∨ r0
� (8)

p′
 t x (q1
]0[q0
 0) q1
 x a; p′
 t1 p ⇒ p′

p
 t while (x) a; q0
� (9)

p
 t e q
 s
p
 t x = e; ∃ζ .q[ζ/x] ∧ x = s[ζ/x]
 x

(10)

Table 2 Generating branch hypotheses from expressions.

pos(p, x) = (x = 0) ∧ p
neg(p, x) = (x = 0) ∧ p

pos(p,!e) = neg(p, e)

neg(p,!e) = pos(p, e)

pos(p, x>k) = (x > k) ∧ p
neg(p, x>k) = (x ≤ k) ∧ p

pos(p, x++) = (x = 1) ∧ p[x − 1/x]
neg(p, x++) = (x = 1) ∧ p[x − 1/x]

pos(p,a&&b) = pos(pos(p, a), b) pos(p,a||b) = pos(p, a) ∨ pos(neg(p, a), b)

neg(p,a&&b) = neg(p, a) ∨ neg(pos(p, a), b) neg(p,a||b) = neg(neg(p, a), b)

pos(p, e?a:b) = pos(pos(p, e), a) ∨ pos(neg(p, e), b)

neg(p, e?a:b) = neg(pos(p, e), a) ∨ neg(neg(p, e), b)

at least the atomic order and equality predicates com-
paring variables and constants). In our implementation,
we are able to handle exactly only comparisons between
variables and constants.

However, one may choose to make no use whatever
of the information from the test in the branches of the
if statement and use the following default:

p
 t e T
]0[T
 0
(12)

i.e. pos(p, e) = neg(p, e) = T (true). This rule stops any
recursive search.

Example When the if statement has the form
if(x++<=0) a;else b;, the complete semantic rule
for it is:

(x − 1 ≤ 0) ∧ p[x − 1/x]
 1 a; r1
 t1
(x − 1 > 0) ∧ p[x − 1/x]
 0 b; r0
 t0

p
 t if (x++<=0) a; else b; r1 ∪ r0
�
	�

The definitions above lend themselves to an inductive
proof that when the expression e comes out nonzero in
real life, under initial conditions p, then pos(p, e) is true,
and similarly for neg.

Lemma 3 The definitions of pos and neg given reflect the
real semantics of the C expression constructors described,

in that whenever expression e comes out nonzero under
conditions p, then pos(p, e) is true, and whenever e comes
out zero under conditions p, then neg(p, e) is true.

Proof This is true for the induction-stopper pos(p, e) =
neg(p, e) = T. If it is true for e, then it is true, for
example, for !e because whenever !e is nonzero, it is
because e is zero and by induction neg(p, e) holds, which
is pos(p,!e) by definition. Similarly, whenever!e is zero,
it is because e is nonzero and by induction pos(p, e)

holds, which is neg(p,!e) by definition.
In the case of a&&b, for example, when this is non-

zero it is because a is nonzero, meaning that, inductively,
q = pos(p, a) initially holds, and because b is also sub-
sequently nonzero, meaning that pos(q, b) subsequently
holds, which is pos(p, a&&b) by definition. All the other
cases are similar. 	�

5 What is meant by symbolic approximation?

The statement that a given semantics �−�1 [a map from
C programs to the relations in (P, T)↔ A(P, T) that
respect (1)] is an approximation in this setting can be
given a solid formal basis. The formal assertion is that,
for all programs a,

Symbolic approximation 155

�a�1 ⊆ �a�2 (13)

where the left-hand side of the inequality is the seman-
tics of C code a as set out in the purported approxima-
tion, and the right-hand side is the exact semantics of the
C code in the same setting (which in principle, but not as
a practical matter, can be expressed point by point over
the finite state in the program).

Since the semantic relation �a�1 is populated by a
deduction system, what is claimed by (13) is soundness:
the deduction system in question cannot establish more
truths about any program a than are present in exact
reality.

Extending the inequation (13) to the situation where
�−�2 is not an exact semantics of C, but instead some
other semantics given by some other logical deduction
system, the inequation asserts relative soundness, i.e.
that the logical deduction system associated with �−�1
cannot produce more truths about an arbitrary program
a than are produced by the logical deduction system
associated with �−�2.

We take this as the definition of what it means for one
semantics to be more approximate than another.

Definition 3 Semantics �−�i, i = 1, 2 mapping programs
a to �a�i in the domain (P, T)↔ A(P, T) are said to satisfy
the approximation relation

�−�1 � �−�2

if �a�1 ⊆ �a�2 as relations for each a.

We call this the relative soundness of the first inter-
pretation with respect to the second. Relative sound-
ness (with respect to the exact semantics) means the
exact semantics can prove more statements about the
program behaviour. The idea is that the approximating
semantics knows less about what the program will do,
and correspondingly, can say less about it.

The claim (13) that a given semantics approximates
the real semantics in particular, can be proved for a com-
positional semantics by induction on the construction of
the syntax of a.

Definition 4 A semantic interpretation �a� in
(P, T)↔ A(P, T) is compositional, if for every syntactic
constructor F, there is a semantic transformer �F� with

�F(b)� = �F�(�b�) (14)

Note that the constructor must preserve the property of
respecting (1).

When we know more about part of a program, then
we know more about the whole program:

Definition 5 A semantic constructor F is monotonic if,
for arbitrary semantics x, y in (P, T)↔ A(P, T), x � y
implies �F�(x) � �F�(y).

Lemma 4 It is sufficient for compositional semantics
�a�1, �a�2 in order to show relative soundness between
them that, for each syntactic constructor F:

(i) �F�1(x) � �F�2(x) for arbitrary semantics x, and
(ii) either or both of �F�1, �F�2 are monotonic semantic

constructors.

Proof Suppose x � y for semantic relations x, y. With (i)
one gets both (a) �F�1(x) � �F�2(x) and (b) �F�1(y) �
�F�2(y), and if (ii) gives one �F�2(x) � �F�2(y), one can
use (a), while if (ii) gives one �F�1(x) � �F�1(y), one
can use (b), thus obtaining

x � y ⇒�F�1(x) � �F�2(y)

For induction, suppose that �a�1 � �a�2. The above then
gives

�F�1(�a�1) � �F�2(�a�2)

which by compositionality is

�F(a)�1 � �F(a)�2

which carries �a�1 � �a�2 through every construction F
of the language. 	�
Lemma 5 Any compositional semantic interpretation �a�
is monotonic (with respect to refinement).

Proof This is simply the case because, by definition,
each semantic constructor �F� creates a semantic rela-
tion [i.e. one satisfying (1)] when its argument does,
which means monotonicity with respect to the refine-
ment relation on pairs p
 t. 	�

Recall that the interpretations of interest here are
defined by what can be deduced about programs in a
given logical deduction system. That is

�a� = {(p
 t, a) : � p
 t a a}
It is the case here that p
 t a a, and hence membership of
�a�, is relatively decidable, in the sense of being reduc-
ible to a question of pure logic not involving programs,
but this will not be proved. Then:

Lemma 6 Any interpretation given by a system of logical
rules for deducing when p
 u a q
 v which admits (1)
provides a semantic relation.

Proof The rule (1) explicitly provides for strengthening
on the left and weakening on the right in each derived
relation pair. 	�
Lemma 7 In interpretations created by systems of logi-
cal deduction rules for p
 u a q
 v, the weaker logical
system gives a more approximate interpretation.

156 P. T. Breuer, S. Pickin

Proof The weaker system generates emptier relations
p
 u a q
 v, which is what “more approximate”
means. 	�
Example Consider a rough semantics for an if(t<0)
statement expressed in terms of its then and else
branches a and b, with semantics x and y, respectively:

�if(t < 0)�1(x, y) = {(p
 u, q
�) : (p
 1) x (q
 s1)

∧(p
 0) y (q
 s0)}
The exact semantics has p = p0 ∪ p1 disjointly, where
p0 makes the test t<0 come out false, and p1 makes
it come out true, then requires that q
 s0 be deducible
from p0
 0 down the else branch and q
 s1 be deduc-
ible from p1
 1 down the then branch:

�if(t < 0)�2(x, y) = {(p
 u, q
�) : (p1
 1) x (q
 s1)

∧(p0
 0) y (q
 s0)}
where p1 = p ∧ t < 0 and p0 = p ∧ t ≥ 0.

The second interpretation (the exact semantics) gives
the bigger set. If one takes (p
 u, q
�) from the first
set, then (p
 1) x (q
 s1) and (p
 0) y (q
 s0).

Now

p0 ⇒ p and p1 ⇒ p

and so

p0
 0 � p
 0 and p1
 1 � p
 1

and we suppose x and y, being semantics, respect (1), so

(p
 0)y(q
 s0)⇒(p0
 0)y(q
 s0) and

(p
 1)x(q
 s1)⇒(p1
 1)x(q
 s1)

which means that (p1
 1) x (q
 s1) and (p0
 0) x (q
 s0),
which puts (p
 u, q
�) in the second set, and estab-
lishes that the first interpretation is an approximation to
the second (the exact semantics). 	�

As to whether p0 and p1 in the example calculation
above are always expressible within the set of predicates
allowed, for any test condition, at worst one may enu-
merate one by one the set of points in the (finite) state
where the test respectively comes out false and true, and
construct the predicates that way.

There is thus nothing special about the test t<0 in
the above reasoning, except that the absence of consid-
eration of a side-effect made for a shorter proof text. If
the test in the if statement has a side-effect, one lets
p0 describe the state after the side-effect has occurred
subject to the condition that the test comes out false,
and lets p1 also describe the state after the side-effect,
but subject to the condition that the test comes out true.

It is an exercise to prove

Proposition 1 The semantics (as defined in (6), (7), (8),
(9), (10), …) of C code is compositional with semantic
constructors that produce semantics that respect (1) and
are monotonic in the semantics they take as arguments.

Proof The table gives the constructors, and the logi-
cal deduction rules connected with each, each of which
respect (1). The question of monotonicity is ostensibly
nontrivial in the case of conditionals and loops, however,
because the branch hypotheses p0, p1, and loop invari-
ant p′ (respectively) are generated by computational
algorithms not explicitly given in the table. The branch
hypotheses for a conditional, however, are generated
independently of the syntax or semantics of the branches
(using the test condition syntax alone as a guide) and the
branch semantics are subsequently applied to these con-
ditions to generate new predicates r0, r1. If the branch
semantics are weakened (in the sense of the approxi-
mation), then they can only generate fewer of the same
or weaker new predicates (since the set of predicates
produced is closed under weakening), which leads to
generating fewer of the possible results r1 ∨ r0
� for
the conditional construction semantics.

The loop invariant, however, is constructed by trying
out the loop body semantics on the branch hypothesis
q1, so it might in principle depend non-monotonically in
some way on that semantics. However, weakening the
loop body semantics just produces fewer (and weaker)
conditions p′ to try as an invariant. So the resulting can-
didate p′ is inevitably weaker than it might otherwise
have been. Our process for finding an invariant given
a candidate (as described in the text) is monotonic in
the candidate, so it terminates with at worst a weaker
invariant, which (since the set of predicates produced is
closed under weakening) means the result generated by
the loop construction semantics is just one of the possi-
bilities created given the stronger loop body semantics,
which is the required approximation result. 	�
Proposition 2 The approximation semantics set out via
Table 1 is an (over-estimating) approximation to the exact
semantics of the corresponding subset of C.

Proof It suffices to note that the logic in Table 1 is
weaker than that of the exact semantics of C, because of
the generation of positive and negative conditions aris-
ing from the test e in the if that are generally cruder
than the exact p0, p1 that form the branch hypotheses in
real life, and for the use of weaker loop invariants than
in real life. Then apply Lemma 6. 	�

That leaves statements which change the flow of con-
trol,break,return,goto etc., which will be dealt with
in the next section. The present section has been ded-
icated to a simpler universe, trying to show there that

Symbolic approximation 157

there is a meaning to the notion of symbolic approxi-
mation. It turns out the notion of approximation in the
symbolic domain amounts to giving weaker (or stron-
ger) logical deduction rules setting out the semantics of
programs as predicate (and bound term) transformers
(or relations, in the wider realm).

6 Black box, grey box

Thus far, programs have been thought of as classical
black boxes, which take an input, and produce an output;
in terms of their effect on state, they accept an initial pro-
gram state, run, and leave a finalised state on termina-
tion. Now they will be opened up for (limited) external
observation of their internals as they run. A grey box
is a program description in which one can metaphori-
cally hit the stop button at some defined points during
execution and observe the intermediate program state.

For C programs, the points at which we can observe
the state during execution are strictly defined via certain
exceptional program exits. The normal (not exceptional)
program exit occurs when execution comes to the end of
a program fragment, and there are three types of excep-
tional exits: a return exit, caused by a program hitting a
return instruction in a subroutine; a break exit, caused
by program execution hitting a break instruction inside
a while, for or do loop, and a goto exit, caused by hit-
ting a goto instruction that causes a jump out of the
program.

These considerations give rise to a logic normal,
return, break, goto (NRBG) that extends the normal
logic set out in the previous section. See Fig. 3 for a
graphical representation of the flows captured in the
sequential and loop parts of the logic. We now write the
logical rules from Sect. 2 with an extra N: qualifier

p
 t N: a q
 s

so that, for example, the rule for sequence reads:

p
 t1 N: a q
 t2 q
 t2N: b r
 t3
p
 t1 N: a;b; r
 t3

The N (“normal”) part of the logic shown in this rule
represents the way code flows by falling off the end of
one fragment and into another, in sequence. To exit nor-
mally with r, the program must flow normally through
fragment a, hitting an intermediate condition q, and then
enter fragment b and exit it normally with r.

In contrast, the R part of the sequence logic (Table 3,
rule (15)) represents the way code flows out of the
sequential parts of a program through a return path.
Thus, if q is the intermediate condition that is attained
after normal termination of a, then one may either return
from program fragment a with r, or else terminate a
normally with q, then enter fragment b and return from
b with r.

The logic of break is (in the case of sequence) exactly
equal to that of return (Table 3, rule (16)). Where break
and return logic do differ is in the treatment of loops.
First of all, one may return from a forever while loop
by returning from its body:

p
 1 R: a; q
⊥
p
 t R: while(1) a; q
�
Or one may go round the loop once, and then return:

p
 1 N: a; q
⊥ q
 1 R: a; r
⊥
p
 t R: while(1) a; r
�

The general rule is given in (17) where p′ is a loop invari-
ant implied by p. We discussed in the last section how to
derive p′.

On the other hand, (counterintuitively at first read-
ing) there is no way of leaving a forever while loop via
a break exit, because a break in the body of the loop
causes a normal exit from the loop itself, not a break
exit. The normal exit from a forever loop is by break
from its body, as rule (18) says.

In a typical application, extra rules deal with code
of special interest to the analysis. For example, if the
precondition p is the claim that a spinlock count (the
total number of locks taken and held so far) ρ is below
or equal to n, for some n: ρ ≤ n. Passing through a

Fig. 3 (Left) Normal and exceptional flow through two program fragments in sequence; (Right) the exceptional break flow from the
body of a forever loop is the normal loop exit.

158 P. T. Breuer, S. Pickin

Table 3 The R and B components of the full logic

p
 t1 R: a q
 t2
p
 t1 R: a;b; q
 t2

p
 t1 N: a q
 t2 q
 t2 R: b r
 t3
p
 t1 R: a;b; r
 t3

(15)

p
 t1 B: a q
 t2
p
 t1 B: a;b; q
 t2

p
 t1 N: a q
 t2 q
 t2 B: b r
 t3
p
 t1 B: a;b; r
 t3

(16)

p ⇒ p′ p′
 1 N: a; p′
⊥ p′
 1 R: a; q
⊥
p
 t R: while(1) a; q
� (17)

p ⇒ p′ p′
 1 N: a; p′
⊥ p′
 1 B: a; q
⊥
p
 t N: while(1) a; q
� (18)

p
 t N: x ((x = 0) ∧ q1
 x (x = 0) ∧ q0
 x)

(x = 0) ∧ q1
 x R: a; r1
 t1 (x = 0) ∧ q0
 x R: b; r0
 t0
p
 t R: if (x) a; else b; r1 ∨ r0
� (19)

p
 t N: x ((x = 0) ∧ q1
 x (x = 0) ∧ q0
 x)

(x = 0) ∧ q1
 x B: a; r1
 t1 (x = 0) ∧ q0
 x B: b; r0
 t0
p
 t B: if (x) a; else b; r1 ∨ r0
� (20)

spin_lock(&x) or spin_unlock(&x) call respec-
tively increments and decrements the total lock count
and the following rules are therefore appropriate:

p
⊥ N: spin_lock(xp) p[ρ − 1/ρ]
�

and

p
⊥ N: spin_unlock(xp) p[ρ + 1/ρ]
�

There are no rules giving a break or return semantics,
since one cannot break or return from a lock or unlock
call. They are atomic (another atomic statement is the
empty statement, which also only has an N semantics,
since there can be no break or return from it).

Definition 6 The domain for the NRB interpretation
semantics of programs is the set of semantic relations
in

(P, T)↔(A(P, T), A(P, T), A(P, T))

(equivalently, triples ((P, T)↔ A(P, T), (P, T)↔A(P, T),
(P, T)↔ A(P, T))) since semantic relations are defined
on every possible left argument, cf. (3), and functions
(f1, f2, f3) map uniquely to the function x �→ (f1(x),
f2(x), f3(x))), in which the first component on the right
represents the N logic, the second component represents
the R logic, and the third the B logic.

Refinement in this domain is the product of the refine-
ment on the projections. The semantic relations in this
domain are those closed with respect to strengthening
of the left-hand-side argument and weakening of any of
the right-hand-side arguments, being defined for any left-
hand-side argument.

Lemma 8 A weaker logical deduction system for NRB
gives a more approximate interpretation.

Proof This is Lemma 6 restated for the product domain.
Again more approximate means a more sparsely pop-
ulated semantic relation (in any and each of the three
components), which means a weaker proof system. 	�

The (fourth) G component of the logic is responsible
for the proper treatment of goto statements. To allow
this, the whole logic – each of the components N, R,
B – works within the additional context of a set e of
labelled goto conditions. These are predicates that will
take effect when the corresponding labelled statement
is encountered.

Thus, for example, the full treatment of the normal
(N) semantics of sequence is written

e � p
 t1 N: a; q
 t2 e � q
 t2 N: b; q
 t3
e � p
 t1 N: a;b; q
 t3

When the analysis gets to a label l, we want to check
that the condition q claimed to hold just after l in the
context does in fact hold given what we have deduced
during the analysis to hold just before the label:

p ⇒ q
l:q, e � p
 t N: l: q
 t

This says that the condition that holds just before the
label according to the analysis places a lower bound on
the assumption, expressed in the context, about what
can hold just after the label. In practice, when we get to
such a logical deduction in the analysis, we update the
environment with q′ = p∪q and carry on, checking only
later on for overall consistency.

Symbolic approximation 159

Other lower bounds are provided by every goto l;
that we encounter in the analysis, because these provide
alternative routes for getting to the label.

p ⇒ q
l:q, e � p
 t N: goto l; F
�
Note that we cannot run past a goto in the normal
sequence of execution – the postcondition is F (false).
One cannot return or break out of a goto either.

If there are backward-going gotos in the program
being analysed, then the context e is the result of a fix-
point calculation, and, at the very worst, one can use
T (true) as the entry in the context for the label. The
technique set out in the previous section for finding a
fixpoint does apply. However, it requires a multi-pass
analysis, and at the present moment our analysis tool
is one-pass, so we cannot do that. Instead we currently
simply treat forward gotos properly and flag backward
gotos as dangerous if the condition generated in the
context (treating it as a forward goto) is not already a
fixpoint.

If there are only forward-going gotos in the program
being analysed, then the correct context is calculated by
starting with no assumptions and loading the context
for label l with the disjunctive union of the conditions
discovered at each goto l;, plus also the condition that
holds just before the label is reached via the normal
sequence of execution. Then one can eventually dis-
charge the accumulated union condition as one passes
by the label.

7 Logic implementation

The static analyser tool that we have created allows the
approximating program logic of C to be configured in
detail by the user. The motive was originally to make
sure that the logic was implemented in a bug-free way
– writing the logic directly in C made for too low-level
an implementation for what is a very high-level set of
concepts. So a compiler into C for specifications of the
program logic was written and incorporated into the
analysis tool.

The logic compiler understands specifications of the
format

ctx pre-context, precondition ->
pre-term :: name(arguments) =
postconditions with ctx
post-context -> post-term;

where the precondition is an input argument, the entry
condition for a code fragment, and postconditions is an
output, a tuple consisting of the N, R, B exit conditions
according to the logic. The pre-context is the prevail-

ing goto context. The post-context is the output goto
context, consisting of a set of labelled conditions. The
pre-term is the value (term) bound on entry to the pro-
gram, and the post-term is the term bound on normal
exit from the program. It is a fact that in the event of
a break or other exceptional exit from a program, the
GNU C compiler carries the void value out with it.

For example, the specification of the empty statement
logic is:

ctx e, p->t::empty() = (p, F, F)
with ctx e -> t;

signifying that the empty statement preserves the entry
conditionpon normal exit (p), and cannot exit via return
(F) or break (F). The context (e) and bound term (t)
are unaltered.

The analysis propagates a specified initial condition
forward through the program, developing postcondi-
tions after each program statement that are checked
for conformity with a specified objective. The full set of
logic specifications is given in Table 4. To relate it to the
logic presentation in Sect. 6, keep in mind that:

ctx e, p -> t :: k() = (n, r, b) with ctx e′ -> t′;

means
e � · · ·

e′ � p
 t N: k n
 t′
e � · · ·

e′ � p
 t R: k r
�
e � · · ·

e′ � p
 t B: k b
�
written out in the notation of Sect. 6. The space above
the lines in the rules is filled by the antecedents in those
specifications that have where clauses in the table.

The undefined term ⊥ is represented in the table by
NAN, and the over-defined term � is represented in the
table by ! (void). Advantage is taken of the fact that
the R (return) and B (break) logics always return the
term �, so the result value need not be specified per
logic – only the N logic returns a significant term value
result. The fix(n,p) syntax in the specification for a
while loop means to find a fixpoint above the initial p
by increasing p until the n that is calculated comes out
below it. The logic of expressions is not represented in
this table.

8 Perspectives

One or several objective functions for an analysis are
specified by an objective specification, presented
using the same syntax as that used to specify the approx-
imating logic. Each objective function forms part of a
particular perspective on the analysis. For the perspec-
tive which detects sleep under spinlock, for example, the

160 P. T. Breuer, S. Pickin

Table 4 The program logic of C, as specified to the logic compiler
ctx e, p->t::for(stmt) = (n∨b, r, F) with ctx f -> !

where ctx e, p::stmt = (n,r,b) with ctx f;
ctx e, p->t::empty() = (p, F, F) with ctx e -> t;
ctx e, p->t::unlk(label l) = (p[n+1/n], F, F) with ctx e -> !;
ctx e, p->t::lock(label l) = (p[n-1/n], F, F) with ctx e -> !;
ctx e, p->t::assembler() = (p, F, F) with ctx e -> !;
ctx e, p->t::function() = (p, F, F) with ctx e -> NAN;
ctx e, p->t::sleep(label l) = (p, F, F) with ctx e -> 0

{ if (objective(p) ≥ 0) setflags(SLEEP); };
ctx e, p->t::seq(s1, s2) = (n2, r1 ∨r2, b1 ∨b2) with ctx g -> v

where ctx f, n1->u::s2 = (n2,r2,b2) with ctx g -> v
and ctx e, p->t::s1 = (n1,r1,b1) with ctx f -> u;

ctx e, p->t::switch(stmt) = (n∨b, r, F) with ctx f -> !
where ctx e, p->t::stmt = (n,r,b) with ctx f;

ctx e, p->t::if(s1, s2) = (n1 ∨n2, r1 ∨r2, b1 ∨b2) with ctx f1 ∨f2 -> !
where ctx e, p->t::s1 = (n1,r1,b1) with ctx f1
and ctx e, p->t::s2 = (n2,r2,b2) with ctx f2;

ctx e, p->t::while(stmt) = (n∨b, r, F) with ctx f -> !
where ctx e, p->t::stmt = (n,r,b) with ctx f
and fix(n,p);

ctx e, p->t::do(stmt) = (n∨b, r, F) with ctx f -> !
where ctx e, p->t::stmt = (n,r,b) with ctx f
and fix(n,p);

ctx e, p->t::goto(label l) = (F, F, F) with ctx e∨{l::p} -> t;
ctx e, p->t::continue() = (F, F, p) with ctx e -> !;
ctx e, p->t::break() = (F, F, p) with ctx e -> !;
ctx e, p->t::return() = (F, p, F) with ctx {} -> !;
ctx e, p->t::label(label l) = (p∨e.l, F, F) with ctx e\\l -> t;

Legend
assembler – gcc inline assembly code;
sleep – call to function which can sleep;
function – call to other C functions;
seq – two statements in sequence;
NAN – the undefined value;

if – C conditional statement;
switch – C case statement;
while – C while loop;
do – C do while loop;
label – labelled statements.
! – the void value.

corresponding objective function specification is shown
in Table 6. There, the significant part in the objective
function specification is the term

upper[n:p]

which gives the estimated upper limit of the (spinlock)
counter n subject to the constraints in the state descrip-
tion p at that point. The limit is +∞ if p is true (T). The
predicate must bound n away from positive values if the
objective is not to generate a positive value, and a less
strict predicate will cause a more positive value to be
calculated as the spinlock count upper bound.

The objective function is computed at each node of
the syntax tree. Positive values of the objective func-
tion are reported to the user (if the trigger–action rules
which will be described in the following part of this sec-
tion are in force). In particular, calls to functions which
cansleep at a node where the objective function is pos-
itive are reported (this indicates where a call to a sleepy
function might occur under spinlock).

There is also an initial state description specified to
the logic compiler, also set out in Table 6. For a per-

spective that checks for sleep under spinlock, the initial
proposition that is asserted is:

(n ≤ 0)

It says here that the spinlock counter n is less than or
equal to zero (actually, exactly zero is intended, but the
inequality is just as good and simpler to compute).

Logic propagation through the syntax tree of a pro-
gram source code is complemented by a trigger–action
system which acts whenever a property changes at a
node. For the perspective which detects sleep under
spinlock, the rules in Table 5 are applied. Their principal
aim is to construct the list of sleepy functions, checking
for calls by name of already known sleepy functions and
thus constructing the transitive closure of the list under
the call (by name) graph.

Rule (1) applies whenever a function is newly marked
as sleepy (SLEEP!). Then if the objective function
(here the maximal value of the spinlock count n) has
already been calculated on that node (OBJECTIVE_SET)
and is not negative (OBJECTIVE≥ 0, indicating that the
spinlock count is 0 or higher) then all the known aliases

Symbolic approximation 161

Table 5 Defining initial conditions, and an objective function to
be calculated at every node of the syntax tree.

::initial() = (n≤0);
p::objective() = upper[n:p];

(other syntactic nodes which refer to the same semantic
entity) are also marked sleepy, as are all the known
callers (by name) of this node (which will be the current
surrounding function, plus all callers of aliases of this
node).

The reason why sleepiness is not propagated under
negative spinlock is quite subtle. Consider function f
called from function g called from function h. If the
spinlock count is negative at the call of f in g, then g
is intended to be called under spinlock (releasing an
already released spinlock is a design error). If f is sleepy
then g would ordinarily be marked sleepy too and that
would be marked as an error when g is called under
spinlock in h. But that is wrong when f is under negative
spinlock in g, because then f is not under spinlock when
g is called under spinlock in h and it is not a problem
in h that f chooses to sleep inside g. So, under these
conditions, g should not be marked as sleepy.

Rule (2) in Table 5 is triggered when a known sleepy
function is referenced (REF!). Then all the callers
(including the new referrer) are marked as sleepy if they
were not so-marked before. The REF flag is removed as
soon as it is added so every new reference triggers this
rule. The effect of rules (1) and (2) together is to effi-
ciently create the transitive sleepy call (by name) graph.

A list of all calls to functions that may sleep under a
positive spinlock count is created via rule (3) in Table 5.
Entries are added when a call is (a) sleepy, (b) the spin-
lock count at that node is already known, and (c) is non-
negative (positive counts will be starred in the output
list, but all calls will be listed).

9 More targets

Spinlock-under-spinlock can be detected by first con-
structing the transitive graph of functions which call
functions which take spinlocks, and sounding the alarm
at a call of such a function under spinlock.

Making that graph requires attaching the code

setflags(SPINLOCK)

into the logic of the spin lock function calls in Table 4,
just as in the case of the sleep function call logic specifi-
cation. The trigger–action rules in Table 5 are then dupli-
cated, substituting SPINLOCK for SLEEP in the existing
rules, so that the rules propagate the SPINLOCK flag as
well as the SLEEP flag from called to caller. Then a sin-

Fig. 4 Testing for access to kfreed memory in the 2.6.3 Linux
kernel

gle trigger–action rule is added which outputs an alert
when a function marked with SPINLOCK (i.e. a function
which calls a function which …takes a spinlock) is called
under spinlock:

(SPINLOCK & SPIN_SET & SPIN > 0)! → output()

Why is taking a spinlock twice dangerous? Taking the
same spinlock twice is deadly, as Linux kernel spinlocks
are not reentrant. The result will be to send the CPU
into a busy forever loop. Taking two different spinlocks
one under the other in the same thread is not dangerous,
unless another thread takes the same two spinlocks, one
under the other, in the reverse order. There is a short
window where both threads can take one spinlock and
then busy-wait for the other thread to release the spin-
lock they have not yet taken, thus spinning both CPUs
simultaneously and blocking further process. In general,
there is a deadlock window like this if there exists any
spinlock cycle such that A is taken under B, B is taken
under C, etc. Detecting double-takes flags the potential
danger.

We have also been able to detect accesses to freed
memory (including frees of freed memory). The tech-
nique consists of setting the logic of a kfree call on a
variable containing a memory address to increment a
counter variable a(l) unique to the variable. The (inte-
ger index label l generated by the analysis) Assigning
the variable again resets the counter to zero (p[!a(l)]
means proposition p relaxed to remove references to
the counter a(l); a is treated like a vector where appro-
priate, so initial condition a ≤ 0 has a(l) ≤ 0 too):

ctx e, p ::kfree(label l)
= (p[a(l)-1/a(l)], F, F) with ctx e;
ctx e, p ::assignment(label l)
= (p[!a(l)], F, F) with ctx e;

The alarm is sounded when the symbol with label l
is accessed where the counter a(l) may take a posi-
tive value – a variable with index l may point to freed
memory.

A survey of 1,151 C source files in the Linux 2.6.3
kernel reported 426 alarms but most of these were clus-
ters with a single origin. Exactly 30 of the 1,151 files

162 P. T. Breuer, S. Pickin

Table 6 Trigger–action rules which propagate information through the syntax tree.

1. SLEEP! & OBJECTIVE_SET & OBJECTIVE ≥ 0 → aliases |= SLEEP,
callers |= SLEEP

2. REF! & SLEEP → callers |= SLEEP, ˜REF
3. (SLEEP & OBJECTIVE_SET & OBJECTIVE ≥ 0)! → output()

Fig. 5 Access to kfreed
memory in kernel 2.6.3

were reported as suspicious in total (see Fig. 4). One of
these (aic7xxx_old.c) generated 209 of the alarms,
another (aic7xxx_proc.c) 80, another
(cpqphp_ctrl.c) 54, another 23, another 10, then
8, 7, 5, 4, 2, 2, 2, 2, and the rest 1 alarm each. Three
of the flagged files contained real errors of the type
searched for. Two of the error regions are shown in
Fig. 5. Curiously, drivers/scsi/aic7xxx_old.c is
flagged correctly, as can be seen in the second code seg-
ment in the figure.

All the false alarms were due to a bug in the postcon-
dition logic of assignment at the time of the experiment,
which caused a new assignment to x closely following on
the heels of a kfree(x) to be (erroneously) flagged.

A repeat experiment on 1,646 source files (982,000
lines, unexpanded) of the Linux 2.6.12.3 kernel found
that all the errors detected in the experiment on ker-
nel 2.6.3 had been repaired, and no further errors were
detected. There were eight false alarms given on seven
files (all due to a parser bug at the time which led to a
field dereference being treated like reference to a vari-
able of the same name).

10 Software

The source code of the software described in this arti-
cle is available for download from ftp://oboe.it.
uc3m.es/pub/Programs/c-1.2.13.tgz under
the conditions of the GNU public licence (GPL),
version 2.

11 Summary

The notion of symbolic approximation has been intro-
duced in order to describe the working of a practical

C source static analyser, initially aimed at the Linux
kernel source. The analyser is capable of dealing with
the millions of lines of code in the kernel source on
a reasonable time scale, at a few seconds per file. The
approximating logic is configured by an expert to obtain
different analyses which an unskilled user can then apply
(and several analyses are performed at once). Symbolic
approximation constructs a representation of the pro-
gram in a symbolic domain where a precise meaning
for approximation has been defined which says that less
is deducible about a more approximate representation.
Thus making the analysis logic less powerful makes what
it says about the program into statements about a more
approximate representation of the program, a tradeoff
that can be exploited in order to improve efficiency.

The particular logical analyses described here
(perspectives) have detected about two uncorrected
deadlock situations per thousand files in the Linux 2.6
kernel, and about three per thousand files which access
already freed memory.

Acknowledgements This work has been partly supported by
funding from the EVERYWARE (MCyT No. TIC2003-08995-
C02-01) project, to which we express our thanks.

References

1. Ball T, Rajamani SK (2002) The SLAM project: debugging
system software via static analysis. In: Proc. POPL ’02: Pro-
ceedings of the ACM SIGPLAN-SIGACT conference on
principles of programming languages

2. Breuer PT, Bowen JP (1995) A PREttier compiler–com-
piler: Generating higher order parsers in C. Softw Pract Exp
25(11):1263–1297

3. Breuer PT, Pickin S (2006) One million (Loc) and counting:
static analysis for errors and vulnerabilites in the Linux kernel

Symbolic approximation 163

source code. In: Pinho LM, Harbour MG (eds) Proceedings
of Reliable Software Technologies—Ada-Europe 2006, 11th
Ada-Europe international conference on Reliable Software
Technologies, Ser. LNCS, PP. 56–70

4. Breuer PT, Garcia Valls M (2004) Static deadlock detec-
tion in the Linux kernel. In: Llamosí A, Strohmeier A
(eds.) Reliable software technologies – Ada-Europe 2004,
9th Ada-Europe International Conference on Reliable Soft-
ware Technologies, Palma de Mallorca, Spain, 14–18, June
2004. LNCS vol 3063 Springer, Berlin Heidelberg New York,
pp 52–64.

5. Breuer PT, Delgado Kloos C, Martínez Madrid N, López
Marin A, Sánchez L (1997) A refinement calculus for the
synthesis of verified digital or analog hardware descrip-
tions in VHDL. ACM Trans Program Lang Syst (TOPLAS)
19(4):586–616

6. Breuer PT, Martínez Madrid N, Sánchez L, Marín A,
Delgado Kloos C (1996) A formal method for specification
and refinement of real-time systems. In: Proceedings of the
8th EuroMicro workshop on real time systems, IEEE, New
York, L’aquilla, Italy, pp. 34–42

7. Chaki S, Clarke E, Groce A, Jha S, Veith H (2003) Mod-
ular verification of software components in C. In: Proceed-
ings of the international conference on software engineering,
pp. 385–389

8. Clarke E, Emerson E, Sistla A (1986) Automatic Verifica-
tion of Finite-State Concurrent Systems using Temporal Logic
Specifications. ACM Trans Program alang Syst 16(5):1512–
1542

9. Clarke E, Grumberg O, Long D.A (1994) Model Checking
and Abstraction. ACM Trans Program Lang Syst 16(5):1512–
1542

10. Cousot P, Cousot R (1977) Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In: Proceedings of the 4th ACM
symposium on the principles of programming languages,
pp 238–252

11. Chen H, Dean D, Wagner D (2004) Model checking one mil-
lion lines of C code. In: Proceedings of the 11th annual net-
work and distributed system security symposium, San Diego,
CA

12. Foster JS, Fähndrich M, Aiken A (1999) A theory of type
qualifiers. In: Proceedings of the ACM SIGPLAN confer-
ence on programming language design and implementation
(PLDI’99), Atlanta, Georgia

13. Foster JS, Terauchi T, Aiken A (2002) Flow-sensitive type
qualifiers. In: Proceedings of the ACM SIGPLAN confer-
ence on programming language design and implementation
(PLDI’02), Berlin, Germany, pp 1–12

14. Johnson R, Wagner D (2004) Finding User/Kernel pointer
bugs with type inference. In: Proceedings of the 13th USE-
NIX security symposium, 9–13 August 2004, San Diego,
CA, USA

15. Wagner D, Foster JS, Brewer EA, Aiken A (2000) A first step
towards automated detection of buffer overrun vulnerabili-
ties. In: Proceedings of the network and distributed system
security (NDSS) symposium, 2–4 February 2000, San Diego,
CA, USA

	Symbolic approximation: an approach to verificationin the large
	Abstract
	Introduction
	The simple approach
	Program composition in the simple approach
	Generating good branch hypotheses
	What is meant by symbolic approximation?
	Black box, grey box
	Logic implementation
	Perspectives
	More targets
	Software
	Summary
	References

