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Abstract Test-based model generation by classical automata
learning is very expensive. It requires an impractically large
number of queries to the system, each of which must be
implemented as a system-level test case. Key in the trac-
tability of observation-based model generation are powerful
optimizations exploiting different kinds of expert knowledge
in order to drastically reduce the number of required que-
ries, and thus the testing effort. In this paper, we present a
thorough experimental analysis of the second-order effects
between such optimizations in order to maximize their com-
bined impact.

1 Motivation

Validating complex heterogeneous systems escapes estab-
lished formal approaches, both for system testing and for
design verification. Characteristic here in fact is the lack of
(formal or semiformal) operational models for many of the
hardware and software systems constitute such a scenario.
Typical application domains are telecommunication systems
and systems on a chip, but also EAI (enterprise application
integration) scenarios, which are large software integration
projects suffering from an almost complete lack of usable
models for the components’behaviors (think, e.g., of an SAP
installation with all the customization modules!). This situ-
ation is not only due to a lack of care in the production and
maintenance of up-to-date models of all the system com-
ponents. Rather, there is a policy of hiding intellectual prop-
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erty, since the operational models of the commercial products
would reveal too much about protected techniques and de-
signs. Thus the lack of models and the need to “discover”
them postproduction will accompany system-level design
and testing for a long time to come.

Particularly typical in practice are systems that, addi-
tionally, include different commercial components that come
from various producers and are made available as products,
without any model. Our direct industrial experience stems
from the area of Computer Telephony Integrated (CTI) sys-
tems. In the past we developed a piece of automated
testing equipment (ITE) [14,18] that has been used for indus-
trial system-level testing of over 200 COTS applications that
interoperate with a family of midrange telecommunication
switches. Characteristic here was the absence of any form of
(formal or semiformal) operational model for the hardware
and software systems constitute a CTI scenario, which are
therefore seen and treated as black boxes. In particular, there
is no basis for test coverage considerations, focused test suite
enhancement, or systematic maintenance support.

Fortunately one can observe that the models one needs to
“discover” in order to profitably use the components are far
smaller than the full model of the implementation: they are
much more abstract, since they provide information about
only the interface behavior exposed to the environment. In
this respect, complexity experts often talk of cognitive com-
plexity (i.e., what a user needs to know in order to use a
product), which is much smaller than the technical or inten-
sional complexity, which is the complexity of the design.
Adequate cognitive models are widely considered to be suffi-
cient for interface systems (Web Services technology and
model-driven design development are based entirely on this
assumption). A key enabling factor for such approaches is
an efficient technique for producing cognitive models of sys-
tems that relies on system-level testing.

A pragmatic yet theoretically well-founded and system-
atic solution was proposed in [10,15], where we presented a
method for synthesizing expressive hypothesis models from
observations of a system. The central idea was to exploit our
preexisting automated testing machinery [13,18] as a system
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observation tool for constructing models via (adapted) clas-
sical automata learning algorithms [24].

Classical automata learning algorithms, likeL∗ [1], exper-
iment blindly with a system: they generate a huge number of
test cases that must be executed in order to build structured
models of the system. This is inefficient and impracticable for
real industrial systems as it requires executing a huge num-
ber of test cases, only some of which bring more knowledge
about the system’s behavior. Optimizations that use expert
knowledge [16,27] are very useful in filtering out irrelevant
test cases [15]: these studies have shown that a significant
efficiency gain is possible (measured factors of 400 for some
examples), but the question is how to optimally exploit that
knowledge in a systematic way. Key in the tractability of
observation-based model generation are in fact powerful opti-
mizations exploiting different kinds of expert knowledge to
drastically reduce the number of required experiments and,
thus, the testing effort connected with model learning. In this
paper, we present a thorough analysis of the efficiency as
well as the dependencies and mutual influences (called sec-
ond-order effects in the program optimization community)
between such optimizations in order to maximize their com-
bined impact.

The paper is organized as follows. We recall classical
automata learning in Sect. 2, describe our use of expert knowl-
edge to filter out irrelevant experiments in Sect. 3, and pres-
ent their impact on a practical application in Sect. 4. Then,
Sect. 5 sets the scene for our systematic statistical analysis
before we analyze the impact of the relevant filter compo-
sitions in Sect. 6 and their mutual second-order effects in
Sect. 7. Finally, Sect. 8 presents our discussion of related
work before we conclude in Sect. 9.

2 Background: classical automata learning

Machine learning deals in general with the problem of how
to automatically generate a system’s description. Besides the
synthesis of static soft- and hardware properties, in particu-
lar invariants [3,7,20], the field of automata learning is of
particular interest for soft- and hardware engineering [5,6,
19,21,26].

Automata learning tries to construct a deterministic finite
automaton (see below) that matches the behavior of a given
target automaton on the basis of observations of the target
automaton and perhaps some further information on its inter-
nal structure. The interested reader may refer to [10,24,27]
for our view on the use of learning. Here we only summa-
rize the basic aspects of our realization, which is based on
Angluin’s learning algorithm L* [1].

Definition 1 A deterministic finite automata (DFA) is a tuple
M = (S, s0, �, δ, F ) where

– S is a finite nonempty set of states,
– s0 ∈ S is the initial state,
– � is a finite alphabet,
– δ : S × � → S is the transition function, and
– F ⊆ S is the set of accepting states.

Intuitively, a DFA evolves through states s ∈ S, but when-
ever one applies an input symbol (or action) a ∈ �, the
machine moves to a new state according to δ (s, a). A word
q ∈ �∗ is accepted by the DFA if and only if the DFA reaches
an accepting state si ∈ F after processing the word starting
from its initial state.

L* learns a finite automaton by posing membership and
equivalence queries to that automaton in order to extract
behavioral information and refining successively its own
hypothesis automaton based on the answers. A membership
query tests whether a string (potential run) is contained in the
target automaton’s language (its set of runs), and an equiva-
lence query compares the hypothesis automaton with the tar-
get automaton for language equivalence to determine whether
the learning procedure was (already) successfully completed
and the experimentation can be terminated.

In its basic form, L* starts with the one-state hypothesis
automaton that treats all words over the considered alphabet
(of elementary observations) alike and refines this automa-
ton on the basis of query results iterating two steps. Here,
L*’s dual way of characterizing (and distinguishing) states is
central:

– From below, by words reaching the states. This charac-
terization is too fine, as different words may well lead to
the same state.

– From above, by the states’ future behavior w.r.t. a dynam-
ically increasing set of words. These future behaviors are
essentially bit vectors, where a ‘1’ means that the cor-
responding word of the set is guaranteed to lead to an
accepting state and a ‘0’ captures the complement. This
characterization is typically too coarse, as the considered
sets of words are typically rather small.

The second characterization directly defines the hypothesis
automaton: each occurring bit vector corresponds to one state
in the hypothesis automaton.

The initial hypothesis automation is characterized by the
outcome of the membership query for the empty observation.
Thus it accepts any word in case the empty word is in the lan-
guage, and no state otherwise. Now the learning procedure
iteratively establishes local consistency after which it checks
for global consistency.

Local consistency. This first step (also referred to as auto-
matic model completion) again iterates two phases: one for
checking whether the constructed automaton is closed under
the one-step transitions, i.e., each transition from each state of
the hypothesis automaton ends in a well-defined state of this
very automaton, and one for checking consistency accord-
ing to the bit vectors characterizing the future behavior as
explained above, i.e., whether all reaching words with an
identical characterization from above possess the same one-
step transitions. If this is not the case, a distinguishing transi-
tion is taken as an additional distinguishing future in order to
resolve the inconsistency, i.e., the two reaching words with
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Fig. 1 Deterministic finite state machines with different characteristics

different transition potentials are no longer considered to rep-
resent the same state.

Global equivalence. After local consistency has been estab-
lished, an equivalence query checks whether the language of
the hypothesis automaton coincides with the language of the
target automaton. If it does, the learning procedure success-
fully terminates. Otherwise, the equivalence query returns a
counterexample, i.e., a word that distinguishes the hypothe-
sis and the target automaton. This counterexample gives rise
to a new cycle of modifying the hypothesis automaton and
starting the next iteration.

In any practical attempt at learning legacy systems, equiv-
alence tests can only be approximated (which we will not
explain here), but membership queries can often be answered
by testing [10,24].

3 Exploiting knowledge to filter irrelevant queries

The learning algorithm uses membership queries extensively
to systematically explore a system’s behavior, until no more
“direct evidence” of inconsistencies between an updated
model and the system behavior is detected. It is the goal of
our work to drastically reduce the number of these queries
in order to open this method to realistic systems. We attack
this problem by exploiting domain and expert knowledge. In
fact, already four observations on the structure of a system’s
behavior, which hold for most practical reactive systems, lead
to the definition of powerful filters on the queries generated
by L*.

In the following subsection, we briefly discuss these fil-
ters in order of increasing specialization.

3.1 Redundancy (C-filter)

In the classical implementation, which systematically ex-
plores a system’s behavioral capabilities, Angluin’s learning

algorithm may generate redundant membership queries, i.e.,
produce different derivations for the same test case. In or-
der to prevent the automated test equipment from executing
those test cases twice, a cache is used to detect doubles and
filter them out: the C-filter stores every test result in a hash
table T : �∗ → {true, false, unknown}, where the three-val-
ued truth value T (q) expresses the current knowledge about
whether q is a member of the considered language or not. The
corresponding formal filter rules applied to specific member-
ship query MQ(q) are straightforward:

– T (q) = true ⇒ MQ(q) = true
– T (q) = false ⇒ MQ(q) = false

Only if T (q) = unknown is this test case required to answer
the membership query.

3.2 Prefix closure (P-filter)

If the language we want to learn consists of observations
of runs of a real-world system, this language is obviously
prefix closed, i.e., given a run, every prefix of this run is
also in the language (as it is itself also a run of the system).
This observation leads to a very powerful optimization, as the
learning algorithm need not consider continuations of strings
that have already been excluded from the target language by
means of a previous membership query. Also, whenever a
long string is known to be a run of the system (this is typi-
cally the case when the equivalence query presents a positive
counterexample, i.e., a run of the system not yet contained
in the constructed model), we can add all the prefixes of this
string to the model without further testing effort.

Definition 2 A deterministic finite automata (DFA) is prefix
closed if the set of nonaccepting states S\F are closed under
the transition relation:
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∀a ∈ �. ∀s ∈ (S\F) . δ (s, a) ∈ (S\F)

Figure 1a shows a prefix closed DFA: the bottom state is the
only nonaccepting state, and it is a sink. In this example, the
transitions observed through testing are highlighted in black,
and the additional transitions used to complete the DFA are
colored gray. Note that any minimized prefix closed DFA has
at most one nonaccepting state.

The prefix closure filter is also implemented by means of
an optimized cache. The following two filter rules are used by
the P-filter, whereby prefix(q) denotes the set of all prefixes
of q:

– ∃q ′ ∈ �∗. T (q · q ′) = true ⇒ MQ(q) = true
– ∃q ′ ∈ prefix(q). T (q ′) = false ⇒ MQ(q) = false

3.3 Independence of actions (I-filter)

Observable events may be independent in the sense that they
can be executed in any order, leading to the same system
state. Thus if we have observed (or queried) one execution
order, we can deduce that each reordering of independent
events will result in the same system state. In particular, if
one of these execution orders is a run of the system, then so
are all the (equivalent) reorderings. Our independence filter
exploits this observation by only querying the system for one
member of each such equivalence class. Whereas the prefix
closure filter can always be employed, the independence fil-
ter requires the input of an application expert in the form of
an independence relation that specifies which events can be
shuffled in any order. As an example, the deterministic finite
state machine in Fig. 1b contains the pair of independent
actions (a, b), highlighted in black. Formally, independence
is an irreflexive and symmetric relation on pairs of actions.

Definition 3 Two actions a, b ∈ � are independent if and
only if in every state of the system the input sequences a, b
and b, a lead to the same successor state.

∀a, b ∈ �. ∀s ∈ S. δ(δ(s, a), b) = δ(δ(s, b), a)

The independence relation induces an equivalence relation
≡I⊆ �∗ × �∗ on the queries whereby two queries q and
q ′ are equivalent if and only if there exists a reordering of
the events that conforms to the independence relation that
transforms the query q into q ′.

Our independence filter normalizes queries according to
the independence relation: it calculates the lexicographical
smallest equivalent query based on a given ordering on the
actions.

3.4 Symmetry (S-filter)

Hardware and telecommunication systems often contain large
numbers of components that cannot be distinguished from
each other by observation, i.e., without explicitly looking at
their identification number. For example, from an observa-
tional point of view it often does not matter which device

is performing a certain action (e.g., which memory bank is
addressed or which phone calls a certain number); likewise
the precise identification of the counterpart (the requesting
processor or the receiver of the call) is not important as long
as we assume a unique and consistent identification, e.g., that
the called number and the number of the receiver match.

This observation provides an enormous optimization po-
tential that grows with the number of identical components
in a system. We implemented a corresponding filter that in
its essence leads to a symbolic treatment of the devices: we
number the actors (processors, memories, phones) accord-
ing to their appearance in a particular run, and we match runs
according to this numbering. Moreover, the symbolic num-
bers are “freed” whenever the corresponding actor reaches
its initial state again. The resulting model is at most as com-
plicated as the real-world scenario with n actors (of a kind),
where n is the maximum number of actors being active (not
idle) in the model at the same time. Just as for independence
of actions, it is the expert who determines which devices are
considered equivalent in the sense above.

The implementation of the symmetry filter normalizes the
queries as well. This is done by choosing a permutation that
maps a given query to the lexicographically smallest equiv-
alent query. In contrast to the independence filter, which is
local in the sense that it shuffles single actions on a query, the
scope of the symmetry filter is global: it acts on the whole
context of a query.

Figure 1c shows an example of DFA where (a, b) and the
identity define a group of valid permutations.

4 Results: test-based model learning in practice

We have carried out model-construction experiments on sev-
eral typical installations of the call-center application of [18].
For illustration purposes, we present four simple scenarios,
each consisting of a telephone switch connected to a number
of telephones (called “physical devices”). In each of these
scenarios, the focus of the model was restricted to include a
few actions of the telephones (inputs to the switch, formally
denoted by AI) and some responses of the switch (outputs,
denoted by AO). In the simplest scenario (S1), just one phone
is permitted to lift (↑) and hang up (↓) the receiver; in the
last scenario (S4), there are three phones where two (A and
B) may establish a connection. For each of the first three, we
also considered a variant scenario S ′

i that includes an addi-
tional state-description output of the switch ([hookswitchD]
for each device D).

S1 One physical device (A),
AI = {A ↑, A ↓},
AO = {initiatedA, clearedA, [hookswitchA]}.

S2 Two physical devices (A, B),
AI = {A ↑, A ↓, B ↑, B ↓},
AO = {initiated{A,B}, cleared{A,B},

[hookswitch{A,B}]}.
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Fig. 2 Split of the membership queries by filter type for all scenarios

Fig. 3 Percentual filtering of membership queries per class of filter for the simplest scenarios

S3 Three physical devices (A, B, C),
AI = {A ↑, A ↓, B ↑, B ↓, C ↑, C ↓, },
AO = {initiated{A,B,C}, cleared{A,B,C},

[hookswitch{A,B,C}]}.
S4 Three physical devices (A, B, C),

AI = {A ↑, A ↓, A → B, B ↑, B ↓, C ↑, C ↓},
AO = {initiated{A,B,C}, cleared{A,B,C},

originatedA, establishedB}.
In the following subsection, we discuss the impact of the

filters to these scenarios.

4.1 Experimental analysis

Figure 2 lists in the second column the number of member-
ship queries of the model relevant for the learning process
and, in the last column, the number of membership queries
L* needs to learn the model. Roughly speaking, the number
of membership queries is polynomial (between quadratic and
cubic) in the number of states. Columns 3–6 show the results
of our optimized learning procedure, which exploits cach-
ing of posed queries (Duplicates column) as well as filtering
according to the specific profile of our application scenario.
Each of these columns lists the number of queries filtered
out by the corresponding optimization when applied in the
order given in the figure. As we see in the detailed diagrams
of Figs. 3 and 4, a combination of input determinism of the

systems, prefix closure of the language, and independence of
certain actions allows one to significantly reduce the num-
ber of tests. In the most drastic case (S3′), we only needed
a fraction of a percent of the number of membership que-
ries required by basic L*. In fact, learning the corresponding
automaton without any optimization would have taken about
4.5 months of computation time.

4.2 Discussion of results

The prefix reduction has a similar impact in all considered
scenarios, as shown by the factors measured in Fig. 5, (col-
umn 5). This seems to indicate that it does not depend so much
on the nature of the example and on its number of states.

The other two reductions (input determinism and partial
order) vary much more in their effectiveness: the saving fac-
tor increases with the number of states. Shifting attention to
the number of outputs and the lengths of output sequences
between inputs seems to have a particularly high impact on
the effects of the determinism filters. This can be seen by
comparing the scenarios Si with their counterparts S ′

i , which
are much more laborious to learn. In these counterparts an
additional output event is modeled, the hook-switch event,
which occurs very frequently, that is, after each of the per-
mitted inputs.

One would expect that the impact of the partial-order and
symmetry impact would increase with the level of
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Fig. 4 Percentual filtering of membership queries per class of filter for scenarios with state descriptor

Fig. 5 Reduction factors of membership queries by filter type

independence. Indeed this is confirmed by the experiments:
S1 has only one actor, so that there is no independence, which
results in a factor of 1. As the number of independent devices
increases, the saving factor increases as well, as shown by
the figures for S2 and S3. The number of states does not seem
to have any noticeable impact on the effectiveness of this fil-
ter, as the reduction factor more or less remains equal when
switching from Si to S ′

i .
Compared to S3, the saving factor in S4 decreases. This

is due to the fact that the action that has been added in S4
(the initiation of a call) can establish dependencies between
two devices, which reduces the partial-order and symmetry
optimization potential.

5 A systematic experimental setting: the filter bench

To analyze the impact of the filters, we applied them to our
automata learning algorithm of [15] and simulated the model
generation process in a number of different scenarios. In what
follows, we summarize how we created the target automata
to be learned and how we set up the experiment with the
different filters and filter compositions, and then we analyze
the results.

5.1 Synthesizing target automata

We built a generator for automata with a realistic distribution
of filter-relevant characteristics in order to have a sufficient

number of target systems. These automata were prefix closed
DFAs with some independent actions and some symmetries.

The automata generator works by first generating prefix
closed DFAs in a random fashion, then taking some of them
in parallel, thereby using the same notion of parallel compo-
sition as is typically used in the areas of hardware verification
and testing, as well as for protocol specification and verifica-
tion. This guarantees nontrivial independence and symmetry
properties.

In the remainder of this section, we consider the scenario
presented in [12]. We discuss in detail the measures on a
DFA kernel automaton with four actions and seven states,
which is taken three times in parallel, whereby the kernel
DFAs synchronize on two actions. This way we generated
1000 prefix closed minimal DFAs, which arose from using
1000 randomly chosen kernel automata, with an average of
57 states, 8 input letters, 12 pairs of independent actions, and
6 valid symmetry reorderings. The presented experimental
data represent the average measured for these 1000 target
automata.

5.2 The filter bench

To analyze the efficiency of the optimization filters under
equal experimental conditions, we ran all ten meaningful
combinations of filters in parallel on the same outputs (mem-
bership queries) produced by the learning algorithm, thus
allowing a direct comparison of their filtering power. The
architecture of this analysis setting is depicted in Fig. 6.
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Fig. 6 The filter bench: filter compositions for efficiency and interfer-
ence analysis

Fig. 7 Comparative filter efficiency by number of test cases

The simple caching for filtering redundancies (C) and the
prefix closure filter (P) store information about queries. Thus
it makes sense to compare their efficiency by running two dis-
tinct batteries of filter compositions, those using P-filtering,
shown in the right-hand side of Fig. 6, and those using simple
caching, shown on the left-hand side. We use the small data-
base symbol to indicate that these filters store information
and therefore require a nontrivial amount of memory.

In contrast, the symmetry (S) and the independence (I)
filters only perform online reorderings of action; thus they
do not need any extra memory. They are represented as small
triangles.

Each filter composition is named after the initials of the
filters it contains, in their order of application.

It is easy to see that several filter compositions do not
make sense: one uses either redundancy caching or the stron-
ger prefix closure, and since the reorderings lead to a higher
probability of hitting cached test cases, the caching filters
should be applied at the end of a composition. This leaves us
with the ten filter combinations shown in Fig. 6.

6 Analysis of relative filter efficiency

Using the filter bench of Fig. 6, we measured for each of
the ten filter compositions their filtering efficiency: given a
target automaton to be efficiently learned, how many mem-
bership queries generated by L* (i.e., test cases for the target

Fig. 8 Filter efficiency by volume of test suite

Fig. 9 Average test length

automaton) are recognized as irrelevant and thus filtered out
by that filter composition?

The results are summarized in Figs. 7 and 8. Two mea-
sures characterize the power of a filter composition: how
many test cases remain and which testing effort remains.

6.1 How many test cases?

Figure 7 compares the test suite generated by pure L* (Total
column) with the test suites arising after filtering in terms of
number of test cases contained in the test suites. The optimal
effort, achieved when all filter combinations are queried in
parallel, is indicated in the column OPT.

We immediately see that the fraction of essential test cases
is extremely low: of the 17.973 test cases requested by the
plain L* application, corresponding to a volume of 153.001
stimuli, only 188 test cases with a total of 1171 stimuli are
essential (see Table 1, rows Total vs. 13)! This confirms that
optimization by filtering is an extremely powerful booster for
the practicality of these techniques.

We also see that the consideration of prefix closure is
extremely powerful in eliminating redundant test cases: all
the compositions containing the P-filter perform much better
than the corresponding C-based composition. In particular,
the combination of the symmetry, independence, and prefix
closure filters leads to a reduction in the learning effort close
to the optimum.

Additionally, we observe that permutations of the normal-
izing filters do have effects on the efficiency of a filter compo-
sition: the SIC filter is more efficient than the ISC filter, and
looking at the measured data, a similar ordering is measured
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Fig. 10 Split of filter efficiency by test case length (logarithmic view)

also for the SIP vs. ISP direct comparison, although it is of
lesser importance. Thus we conclude that there is interference
between the filters resulting in second-order effects.

6.2 Which test cases?

In order to more faithfully model the real effort of the learning
procedure, we measured for each filter composition the num-
ber of required test stimuli of the resulting test suite. Figure 8
shows that of course the volume of the test suite is strongly
related to the number of test cases, but as we see in Fig. 9,
the average test length for each filter composition (computed
as number of test stimuli/number of test cases) varies.

This led us to a more accurate analysis of this behavior by
breaking down the analysis of the testing effort according to
the length of the queries. Figures 10 and 11 provide a spec-
trum of the efficiency of the filter compositions in relation to
the query length, in a logrithmic and a linear scale, respec-
tively. Here we observe, e.g., that among the queries of length
nine, corresponding to test cases with nine stimuli, 90% can
be eliminated by the SIP filter composition, almost 74% can
be eliminated by the SC composition, while the IC, ISC,
and SIC can eliminate only between 45 and 35% of them.
Pure prefix closure can eliminate about 15% of them, SP

Fig. 11 Split of filter efficiency by test case length (linear view)

about 9%, and the remaining filter combinations are almost
ineffective for queries of this length.

We also see that the relevant queries, the OPT curve, are
typically very short, which gives us a good indication that
effective learning of practical systems is realistic.

For the redundancy cache-based filters the situation is
different: the simple cache filter C and the SC- combina-
tion work well for short queries, but not for long ones. But
all cache-based filter combinations that include the indepen-
dence filter are also good in the case of long queries.

7 Analyzing second-order effects in filter compositions

So far we have looked at each filter composition individ-
ually, but our goal is also to analyze the overlaps (due to
dependencies and interferences) among filter compositions.
This allows us to characterize the selectivity of filter com-
binations, i.e., which subset of filter compositions is able to
filter out which queries. Since we have ten meaningful fil-
ter compositions C, SC, IC, SIC, ISC, P, SP, IP, SIP, ISP,
there are 210 possible partitions of the queries according to
this filter selectivity criterion.

Indeed, during the learning process of all 1000 randomly
chosen DFA Models, each single query generated by the plain
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Table 1 Selectivity of filter compositions

Rank Filter Number of queries Size of queries

1 0011111111 3,809 21.2% 40,969 26.8%
2 0000011111 4,311 24.0% 37,320 24.4%
3 1111111111 2,161 12.0% 16,496 10.8%
4 0111111111 1,878 10.5% 15,291 10.0%
5 0101111111 1,312 7.3% 7,611 5.0%
6 0011100111 849 4.7% 7,476 4.9%

. . . . . . . . .
13 0000000000 188 1.0% 1,171 0.8%

. . . . . . . . .
28 0000000010 11 0.1% 84 0.1%

. . . . . . . . .
52 0000000001 1 0.0% 5 0.0%
53 0000001000 1 0.0% 4 0.0%

Other 1,193 6.6% 8,379 5.5%
Total 17,973 100.0% 153,001 100.0%

learning algorithm L* was filtered in parallel in our filter
bench and classified in one of these 1024 partitions accord-
ing to the set of filter combinations that was able to eliminate
that query. The average results of this analysis are shown in
Table 1

The table contains a row for each of the 210 = 1024 pos-
sible partitions of the queries, a selection of which is shown
in Table 1. The second column contains bit vectors that char-
acterize the sets of filter combinations by saying which filters
(in the order given in Fig. 6) belong to that set. The rows are
sorted according to the share of queries filtered out by that
set of filter composition (columns 5 and 6).

1. As we see in the first row, 21.2% of all the queries gen-
erated by L*, corresponding to 26.8% of the total test
patterns, could be filtered by any filter besides C and SC.

2. The second efficient set of filter compositions (rank 2)
contains only those with prefix closure. This means in
particular that a simple prefix closure filter is sufficient
to filter out 24.0% of the queries, saving 24.4% of the
testing effort in terms of test patterns.

3. 12% (almost 1/8) are truly redundant queries: they are
eliminated by any filter.

4. 10% cannot be caught by cache only, but they are elimi-
nated by any other combination.

5. 7.3% cannot be caught by IC, but for example by P (which
are quite different principles, so we see that there is a cer-
tain specific insensitivity of some filter compositions).

6. Almost 5% escape caching (C or P) plus symmetry: they
are clearly independence related.

7. On rank 13 we find the relevant queries: those that cannot
be filtered by any filter. So for this kind of DFA only 1.0%
of the queries generated by L* were relevant to learn the
automaton.

8. Particularly interesting are the sets of combined filters on
rank 28, 52, and 53: these values mean that there are some
queries that can only be filtered by the SIP, ISP, and SP
filters, respectively.

8 Related work

The systematic treatment of complex black box or legacy
systems has attracted increasing attention as most software
systems mutate to legacy systems over time: time constraints
and short update cycles make it impossible to keep specifica-
tions and implementations manually in line. Thus automated
validation techniques for black box systems are required.

The most established area in this respect is that of black
box protocol testing, where one assumes a given finite-state-
machine specification of the intended behavior of a protocol
and intends to derive a test suite that checks that an imple-
mentation conforms to such a specification. There are several
so-called conformance testing techniques for automatically
generating test suites that guarantee that an implementation
under test (IUT) conforms to a specification under certain
hypotheses [4,8,23,25].

A more recent line of development concerns checking
whether an IUT satisfies certain correctness properties in the
absence of a model or specification. Particularly promising
are the approaches that employ techniques of automata learn-
ing, or regular inference [9,10,16,21].

The relationship between machine learning and confor-
mance testing was observed by Lee and Yannakakis [17,
p. 1118], who stated that Angluin’s algorithm can be used
for fault detection. They also suggested an interesting sub-
ject of study, the relationship between conformance testing
without reset (surveyed in [17]) and corresponding work on
machine learning by Rivest and Schapire [22].

Both conformance testing and regular inference address
the need for automated validation methods for black box
systems by aiming at identifying the model structure under-
lying a black box system on the basis of a limited set of
observations. However, there is a significant difference with
strong impact on practicality: whereas conformance testing
checks for equivalence with a given conjecture model, regular
extrapolation1 addresses the corresponding synthesis prob-
lem by means of techniques adapted from automata learn-
ing. Thus regular extrapolation is far more expensive [2]. It
is our goal to exploit any knowledge about the system, like
architecture, input/output structure, and knowledge about the
application for optimization, to pragmatically overcome the
complexity problems [11].

9 Conclusion

We have presented a thorough experimental analysis of the
impact of, and the second-order effects between, a num-
ber of structurally rather different optimizations of a basic
learning method. This systematic experimental investigation
was motivated by observations made earlier in the context of
an industrial project. Our workbench for automated learning
allowed us to easily change the parameters for the random
generation of target automata to be learned, to configure

1 We prefer the notion of regular extrapolation to regular inference.
Please consider these terms as synonyms here.
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different optimization scenarios, and to automatically col-
lect the corresponding analysis results, which confirmed our
expectations. In fact, even using random automata (which
profit much less from the filter technique than the real systems
we had previously investigated), we were able to rank the
filter combinations that reliably provide maximal test suite
reduction, and thus a maximal learning speedup. Our results
indicate that the practical use of automata learning is coming
within reach.

Currently, we are experimenting with further optimiza-
tions. In particular we are starting a similar investigation for
a variant of automata learning based on Mealy machines. We
expect that the optimized Mealy scenario will give us a gain
of another order of magnitude in learning speedup.
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