Innovations Syst Softw Eng (2005) 1: 189-204
DOI 10.1007/s11334-005-0012-2

ORIGINAL PAPER

Omolade Saliu - Guenther Ruhe

Software release planning for evolving systems

Received: 20 April 2005 / Accepted: 1 June 2005 / Published online: 29 July 2005

© Springer-Verlag 2005

Abstract Release planning is a crucial step in incremental
software development. It addresses the issues involved with
assigning features to sequence of releases of a system such
that the most important technical, resource, risk and budget
constraints are met. These problems are difficult to solve for
even mid-sized systems. The issues become even more chal-
lenging in evolving systems where we need to consider the
characteristics of the existing system, as the existing compo-
nents of the system have their own history and status in terms
of size, complexity, health, criticality, and understandability.

In this paper, we present the foundations for handling
release planning for evolving systems in a rigorous manner.
Based on a formalized problem description, we present a new
solution approach for release planning of evolving systems
called S-EVOLVE*. From analyzing and comparing different
characteristics of the target components, where new features
will be implemented, we obtain a more detailed perspective of
the potential impact of implementing one feature or another.
As part of this analysis, we have applied the analytic hierar-
chy process (AHP) to define weighting factors for component
modifiability. The information gained is used for designing
release plans based on thresholds for the relative extent of
modifiability acceptable for a release. A set of structurally
different release plans is generated based on solving a spe-
cialized integer linear-programming problem. The plans are
proven to be semi-optimal for the stated objectives.

A case study is performed to demonstrate the added value
of the approach. The evolving system under consideration
is the intelligent decision-support tool ReleasePlanner. We
compare and discuss results, for planning future releases,
for the cases with and without consideration of system con-
straints.

0. Saliu (X)) - G. Ruhe

Laboratory for Software Engineering Decision Support,
University of Calgary,

2500 University Drive NW, Calgary, AB T2N 1N4,
Canada

E-mail: saliu@cpsc.ucalgary.ca; ruhe @cpsc.ucalgary.ca

Keywords Evolving systems - Release planning - Deci-
sion support - Analytic hierarchy process - Component
modifiability - Case study

1 Introduction

As state-of-the-art software development moves further away
from the rigid and monolithic waterfall model, the impor-
tance of release planning is brought to the forefront. Incre-
mental software development offers sequential releases of
software systems with additive functionalities in each incre-
ment. This approach allows customers to receive parts of a
system early. Thus, each increment is a collection of features
that form a complete system that would be of value to the
customer. A major problem faced by companies developing
or maintaining large and complex systems is deciding which
features should be in which releases of the software [1].

Release planning for incremental software development
assigns features to releases such that the most important tech-
nical, resource, risk, and budget constraints are met. Release
planning, therefore, generalizes prioritization of features or
requirements [2]. Release planning is a very complex prob-
lem involving different stakeholder perspectives, competing
objectives and different types of constraints.

Since all features cannot possibly be delivered in a single
release, some features will be delivered first while others will
have to wait. In a perfect world, software companies would be
able to deliver everything that customers want exactly when
they want it. Unfortunately, this is not realistic. Budgets are
capped, resources are limited, and schedules are constrained.
With real-world constraints in mind, one needs to find a sys-
tematic way to make qualified decisions on which features
need to, and realistically can, be delivered in which release.
Finding the solution to this problem is the very essence of
incremental software release planning.

Large software systems continually evolve to cope with
changing customer requirements. Thus, software develop-
ment typically proceeds as a series of changes to a base set of
software. Most software products evolve as they are put into

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

190

O. Saliu, G. Ruhe

use, because there is a need to extend functionality of the sys-
tem by adding new features and also correcting errors that are
discovered during operation of the software. Such evolution
is achieved by modifying parts of the existing components
of the software system to implement the new features and
required changes.

Release planning in this context must take into consider-
ation the operating environment and quality of existing com-
ponents of the software system. This aspect of planning is
extremely important since we cannot add new functionalities
or change existing functionalities without proper knowledge
of the impact of these changes. This aspect is completely
ignored in current release planning solution approaches.

In this paper, we present the foundations to handle re-
lease planning for evolving systems more rigorously. Our
initial work in this area [3] focused on using the defect history
derived from operational usage of the system to characterize
the health of software components. In this sequel, we present
a more comprehensive approach to characterize the relative
impact of integrating features into an existing system.

Based on a formalized problem description and follow-
ing the paradigm of software engineering decision support,
we apply the solution approach EVOLVE*. From analyzing
and comparing different characteristics of the target compo-
nents, where the features will be implemented, we receive a
more detailed perspective of the potential impact of imple-
menting one or the other feature. As part of this analysis,
we have applied the analytic hierarchy process (AHP) [4]
to define weighting factors for component modifiability. The
information gained together with that of extent of modifi-
cation to be done on the component is used for designing
release plans based on thresholds for the relative amount of
impact acceptable for a release.

The rest of the paper is organized as follows. In Sect. 2
we present the underlying assumptions and the subsequent
formalization of traditional release planning. We discuss the
challenges raised by consideration of evolving systems. To
address these challenges, we propose a component modifi-
ability evaluation approach based on AHP in Sect. 3. We
extend the former solution approach EVOLVE* by these
results to understand the potential impact of feature imple-
mentation in different parts of the system better. The resulting
approach, called S-EVOLVE* (system EVOLVE star), is de-
scribed in Sect. 4.

A case study was performed to demonstrate the concepts
and the added value of the new approach. The system under
consideration is the intelligent decision support tool Release-
Planner. The results can be found in Sect. 5. Finally, Sect. 6
gives an outlook to future research.

2 Release planning in a nutshell
2.1 Analysis of existing techniques
Release planning can be approached from different perspec-

tives. We have identified two fundamental approaches which
we will call: (1) the art and (2) the science-based planning

of releases. The art of release planning involves mainly rely-
ing on human intuition, communication, and capabilities to
negotiate between conflicting objectives and constraints. The
science of release planning involves emphasizing formaliza-
tion of the problem and applying computational algorithms to
generate best solutions. Both art and science are important to
achieve meaningful release planning results. Our focus here
is on the science-based approach.

A number of release planning methods have been devel-
oped. In [3], we have performed a comparative analysis of
seven methods.

e Estimation-based management framework for enhancive
maintenance [5].

Incremental funding method [6].

Cost—value approach for prioritizing requirements [7].
Optimizing value and cost in requirements analysis [8].
The next release problem [1].

Planning software evolution with risk management [9].
Hybrid intelligence (EVOLVE#) [10].

From performing a comparative analysis, the following
deficits in the existing release planning methods were observed:

1. There is no major focus on addressing system constraints.
The attempt in [9] assumes operational risk of system
failure can be given probabilistic values, without deriv-
ing such information from the architecture, code base,
and other historical data of the system.

2. Except for the technique in [10], there is a generally lack
of stakeholder involvement in release planning. However,
this is of paramount importance to ensure that the right
product is developed.

3. Failure to include resource consumption as an integral
consideration when deriving plans. Many methods just
consider effort while many don’t consider resource con-
sumption at all. Consequently, proposed plans are likely
to fail during implementation.

4. The scope of planning is often limited to just the next
release. However, it is also useful to give an answer to
the question: when is a certain feature supposed to be
released (if not in the next release)?

5. Lack of decision support tools that are fully developed,
based on sound methodology and able to generate and
evaluate meaningful decision alternatives.

6. Release planning has been largely focused on fixed-release
intervals and no current work exists on release planning
with flexible time intervals.

In this paper, we are addressing deficits 1-5 with an
emphasis on the first deficit. The fact that large software sys-
tems can involve the implementation of several hundred fea-
tures constrains the capabilities of pure human judgment in
making decisions about which features should come next and
in which sequence. Human limitations on coping with large
number of features, conflicting stakeholder interests, and the
general complexity of release planning have led to efforts fo-
cused on the formal modeling of the problem [1, 8, 10]. In this
sequel, we give an overview of the main formulation of the

Software release planning for evolving systems

191

optimization-based solution approach of EVOLVE*. This ap-
proach will later be extended to accommodate system specific
characteristics resulting in a method called S-EVOLVE*.

2.2 Features and related decision variables

The concept of a feature is applicable and important for any
software development paradigm. However, it is especially
important for any type of incremental product development.
Features are the selling units provided to the customer. Defi-
nitions of features are abundant in the literature. In the context
of this research, we follow the definition given by [11] which
defines a features to be “a logical unit of behavior that is
specified by a set of functional and quality requirements”.

We assume a set of features F={ f (1), f(2), ..., f(n)}.
The goal is to assign the features to a finite number K of
release options, with the option of postponing some features.
A release plan is characterized by a vector of decision vari-
ables x = (x(1),x(2), ..., x(n)) with x(i) = k if feature
f(@@) is assigned to release option k €{1,2, ... ,K}, and
x(i) = K + 1 if the feature f (i) is postponed.

2.3 Stakeholders

Stakeholders are extremely important for performing realistic
and customer-oriented release planning. We assume a set of
stakeholders S = {S(1), ..., S(g)}. Each stakeholder S(p)
can be assigned a relative importance A(p) € {1,...,9}.
The underlying meaning is

A(p) = 1 means extremely low importance,
A(p) = 3 means low importance,

A(p) =5 means average importance,

A(p) =7 means high importance,

A(p) =9 means extremely high importance.

The interpretation of the even values not shown is that
they are refinements of the values above and below them.
We have chosen a nine-point ordinal scale for expressing the
extent of importance as this gives sufficient detail to differ-
entiate between the importance of stakeholders. However,
the whole approach is applicable in the same way for other
scales.

2.4 Prioritization of features by stakeholders

To select and schedule features, there must be an agreed upon
statement of priorities for features. In our proposed model,
prioritization by each stakeholder S(p) is done with respect
to three different types of criteria, each defined on a nine-
point ordinal scale:

— Value (denoted value(i,p) € {1, ..., 9}) assigned by stake-
holder p to feature f(i). The value-based priority mea-
sure is used to express the expected value that the
implementation of this feature will add to the stakeholder.

An increasing order of value corresponds to an increas-
ing value-based priority. The ordinal nine-point scale we
have used for the value is by no means the only type of
measurement that can be used, since the value proposi-
tions may also be expressed in financial terms, or other
measures of value.

— Satisfaction (denoted sat(i,p) € {1, ..., 9}) assigned by
stakeholder p to feature f(i). This priority measure is
used to express the extent of satisfaction with the situation
that f(i) is assigned to the next release. A measure of satis-
faction is different from that of value because it expresses
the urgency with which this stakeholder desires the fea-
ture. An increasing order of satisfaction corresponds to
an increasing satisfaction-based priority.

— Dissatisfaction (denoted dissat(i,p) € {1, ..., 9}) assigned
by stakeholder p to feature f(i). This priority measure
is used to express the extent of dissatisfaction with the
situation that f (i) is not assigned to the next release.
An increasing order of dissatisfaction corresponds to an
increasing dissatisfaction-based priority.

2.5 Technological constraints

A study of requirements repositories in the telecommunica-
tions domain by Carlshmare [12] concluded that only about
20% of the requirements were singular or independent of each
other. The authors have identified different types of depen-
dencies between features. We consider two types of techno-
logical constraints where features can either be in a coupling
relation C or in a precedence relation P. Both relations are
subsets of the product set F x F.

Two features f (i) and f(j) are coupled (written as (i,)
€ C) if they are required to be implemented in the same
release. This dependency can be due to implementation or
usage issues. Simultaneously, feature f (i) is in a precedence
relation to feature f(j) (written as (i, j) € P) if feature f(j)
isnotallowed to be implemented in arelease earlier than f (7).
In terms of the introduced decision variables, this means that

x(@) = x(j) forall (i, j) € C C F x F (Coupling) D
x(i) < x(j) forall (i, j) € P C F x F (Precedence))

2.6 Resource consumptions

Different resources are required for the implementation of
features. In addition, there are capacity bounds on the amount
of resources available in each release cycle. In the general
model, we have considered R types of resources tentatively
involved in the implementation of features. Correspondingly,
we define resource capacities Cap(r,k) for each resource type
r=1,...,Randall releases k = 1, ...,K. To become a fea-
sible plan, decision variables must satisfy

Z _resource (i,r) < Cap (r, k) 3)
x(i)=k

for all releases k = 1,...,K and all resource types r =
1,...R.

192

O. Saliu, G. Ruhe

2.7 System constraints

To model the potential impact of implementing feature f (i)
into the existing system S, we assume that S can be
decomposed into M disjoint subsystems (which will be called
components) C(1), C(2), ... ,C(M), e.g.,

S = Um:l,...,MC(m) (4)

To implement a new feature, one or more of these com-
ponents must be modified to integrate the feature. Even when
we identify only one component as the impacted component,
it should be noted that such components might interact with
other components that would need to be modified as well.
Thus, we assume a mapping W from the set of features to
the power set of all components. By that, each feature f (i)
is assigned a set of impacted components W (i) C S.

For each feature f (i), we define two factors describing
the potential impact of integrating this feature into the sys-
tem S. The first one is called the difficulty of modification
DoM(C(m)) and refers to the inherent difficulty in modifying
an affected component C(m) of system S to extend function-
ality of the system by implementing new features. It is an
attribute of the component independent of feature f (i). How-
ever, only components C(m) € W (i) are considered for that
DoM(C(m)). The second factor is called the extent of modi-
fication XoM(C(m), f(i)) and refers to the extent of impact
the implementation of f (i) has on the component C(). This
is mostly related to the extent of modification that would be
done on the component.

XoM(C(m), f(i)), is a local measure that is specific to
each feature and the corresponding components hosting it.
For XoM to be useful for release planning the measure must
be determined by evaluating target components C(m) € W (i)
and projecting estimates of the extent of modification that
would be performed on them. DoM(C(m)), on the other hand,
is a global measure that is a function of the components only.

To determine XoM(C(m), f (i)), we define it to be the
extent to which an existing component is to be changed by
a proposed feature and measure it as a percentage of code
modification relative to the original size of the component.

The two concepts are illustrated in Fig. 1. The system is
assumed to consist of six components, e.g., S = {C(1), ...,
C(6)}. Four components are affected by the assumed imple-
mentation of feature f(i), e.g., ¥ (i) = {C(1), C(2), C(4),
C(6)}. The different grey levels of the components C(m) refer
to the different levels in the difficulty of modification. The
hatched areas within affected components describe the ex-
tent of modification XoM(C(m), f (i)). The larger the hatched
areas, the larger the extent of modification will be.

We will use the functions DoM(S, f (i)) and XoM(S, f (i))
to describe the difficulty of modification and the extent of
modification of feature f (i) with respect to the whole sys-
tem S. In Sect. 3, we will discuss an approach to determine
components modifiability. These results are used in Sect. 4
to determine these values quantitatively.

The total impact of implementing feature f (i) into system
S is denoted by Impact(f (i)). It is determined as the product
of the difficulty of modification and extent of modification

of the components affected by the feature f(i). This is a rel-
ative measure where the detailed formula will be explained
and justified in Sect. 4. We assume that, for each release &, the
total impact of implementing new features (which includes
updating existing ones) is restricted by a user-defined thresh-
old B(k). The actual value of the threshold is problem-spe-
cific and can be varied to study the sensitivity of proposed
solutions with respect to this value.

Doy Impact (8. @) < Bk

for all releases k =1, .. .,K.

S)

2.8 Objective function

A release planning technique must have an approximate defi-
nition of objectives. Typically, it is a mixture of different
aspects such as value, urgency, risk, satisfaction/dissatisfac-
tion, return on investment, etc. The actual form of the explicit
function tries to bring the different aspects together in a bal-
anced way. In our model, we assume a multiplicative rela-
tionship between stakeholder satisfaction and dissatisfaction
with stakeholder value perception. According to this assump-
tion, the objective is the maximization of a function F(x)
among all release plans x satisfying the above technological
and resource constraints. F(x) is defined as

F(x) = Sier..x§ ([Zr(j— WAP ()] (©)
where
WAP() =3, M(p)-[satlj, p)

+ dissat(j, p)] - value(j. p) @

for all features f(j) and releases k = 1...K.

For each release option k, parameter & (k) describes the
relative importance of the release option and its relative impact
on the objective function.

3 An approach to characterize component difficulty of
modification

3.1 Related results

In our attempt to develop a modifiability measure for soft-
ware components, we take a brief overview of related work
in characterizing evolving systems. Several studies using rel-
evant release histories to predict or classify software systems
according to their fault-proneness include those discussed
in [13-19].

Software modules with histories of large numbers of def-
ects are said to be highly likely to always be faulty [19].
As the code base of a system evolves through releases it
begins to decay, which implies that current and/or future
changes to the code are difficult to make such that any change
to a system causes more faults to be introduced into the
system [14,20]. The difficulty in changing decayed code

Software release planning for evolving systems

193

Features f(i)

Impact of feature f(i)
ey

on system components

RREY
[0 0‘:‘0

K
K

XX
gL

4
555254

1250505800505
RIS
betatedetetetel
atetelotelt
22525050

L
o

v, o
505
sletetetets’
R

o alelele
C(2)

Fig. 1 Impact of the implementation of feature f (i) on the system components C(m)

which constitutes part of our modifiability definition have
been noted as affecting three aspects of product evolution [13,
21]: increased cost of implementing a change, increased time
to complete a change, and reduced quality of the changed
product. Ohlsson et al. [22] observed that identification of
such parts of a system that need improvement (i.e., evolu-
tion-sensitive parts [23]) makes planning and managing for
the next release easier and more predictable. Since we want to
make feature selection and scheduling decisions with knowl-
edge about the entire set of components of the system, a
model of modifiability of all the components, and not only
the evolution-sensitive parts, is desirable.

The software systems classification approaches mentioned
above derived one form of metric or another from a collected
set of data about the system under consideration to perform
the classification. Regression analysis has specifically been
formed to be extremel useful in such situations. Unfortu-
nately, data collection and metrics definition are caught with
difficulties: (1) Software engineering data are typically dif-
ficult to collect, (2) Even when the date are available, it is
always difficult to guarantee their quality, (3) Metric defined
on datasets from a specific from a specific software product
cannot always be easily generalized to other products, and
(4) Considering the many metrics available, and that many
are widely criticized, how do we even select the appropriate
ones?

Based on the difficulties we have outlined, we would not
adopt any adhoc collection of metrics from repositories of
software project data in this work. Our metrics to assess DoM
and XoM will be based on the judgement of experienced ex-
perts that are familiar with system. However, previous em-
pirical work in this area will guide our selection of attributes
that describe the characteristics of system components.

3.2 Overview of the characterization model

To perform the quality modeling to characterize the difficulty
of component modification, we contend that there is no uni-
versal measurement that works across all organizations and
projects types. Therefore, local aspects of the measurement

program should be considered depending on what type of
data the organization keeps and the maturity of the organiza-
tion. Based on our survey of existing works that are targeted
at deriving quality measures of a system based on product
release histories [13—18], we will present a high-level modi-
fiability framework that could guide data collection and met-
rics derivation for assessing modifiability.

In the assessment framework shown in Fig. 2, we have
identified five major factors that contribute to the modifiabil-
ity of a component. Most of these factors can be assessed
based on further refinement into lower-level criteria that are
directly measurable and for which data can be easily col-
lected. The metrics for the lower-level factors would need to
be aggregated to provide the assessment values for the upper-
level factors and eventually the topmost modifiability goal.
The definition of the metrics can be performed based on the
level of historical data available in the organization and expe-
riences of the developers and designers of the system under
consideration.

The factors described in Fig. 2 are by no means exhaustive
since several local factors could also contribute to modifiability.
We further explain the meaning of each of these factors below.

3.3 The five key attributes
3.3.1 Size

Most components of a software product exhibit varying sizes
depending on the functionalities implemented in them and
other product factors. Some are very compact and isolated
while others span tens of thousands of lines of code. When
designing and implementing larger components, it is harder
to keep all details and interactions perfectly straight in one’s
mind. Thus, with all other factors being equal, the likelihood
of design/implementation deficiencies in larger components
is greater than it would be for smaller components. Follow-
ing a similar argument, when failures are detected, finding
a defect in a smaller component is normally less time-con-
suming and less complicated than in a component of larger
size.

194

O. Saliu, G. Ruhe

Difficulty of modification

Fig. 2 The hierarchical goal-based modifiability assessment framework

3.3.2 Complexity

Lehman’s laws of software evolution [24] states that software
complexity tends to increase while the quality of the product
will tend to decrease. Some of the popular code complexity
measures existing include the McCabe cyclomatic complex-
ity [25] and Halstead’s program volume [26]. A comparison
of several of these complexity measures have been discussed
by Schneidewind and Hoffman in [27] where they also found
that, irrespective of the complexity measures used, programs
with high complexity also have high number of faults and
vice versa. As a matter of fact, the complexity of a code
base is determined by the structure of the code, which is
also largely affected by the coupling (e.g., number of other
interfacing components or communicating components) of
different components of the system. As the coupling value
of a component increases, so does the number of other com-
ponents that need to be modified whenever a change affects
one of them. Empirical studies by Graves et al. [13] and Eick
et al. [14] have equally identified interconnectedness of com-
ponents as part of the factors that could result in the likelihood
of code decay, which in turn makes a component difficult to
modify.

3.3.3 Understandability

This refers to the case with which the component can be
understood by the developers who are modifying it. Empirical
studies have revealed that this criteria is a function of the
expertise of whoever is making the changes [14], the growth
rate of the component from one release to the other [24], and
how long the component has been part of the system [14].
A rapidly growing component at every release may be more
difficult to understand than a component that has minimally
changed across several releases. This is even truer when
different developers have worked on the rapidly growing
components at different release points.

Subject matter experts (SMEs) for some components are
far more familiar with their domain than others, with some
SMEs being the original designers/implementers of those
components who are thus intimately familiar with the rea-
soning behind the choices and decisions made in design-
ing the component. In other cases, original designers have
moved on and component ownership has bounced around

from developer to developer, meaning that understanding of
some components and technical details of their current design
and implementation are lacking.

3.3.4 Health

Health of a component refers to the extent it can be trusted to
exhibit consistency in performance without failures. This is
a function of the failures or defects that have been reported
against that part of the system in the past during the course of
usage, severity of the faults causing the failures, how recent
a failure is, and the number of changes the component has
gone through that are not related to failure. All of this infor-
mation can be derived from the release history of the software
product, which is kept in change-management systems and
version-control systems. If components are unhealthy, they
will be fault-prone, and changing any small part of the code
can be very risky and time-consuming.

Empirical studies [13,14] reveal that correlations exist
between the health (i.e., ability to use or reuse existing code
base [28]) of program code, the quality of the resulting prod-
uct, and the functionality that can be added to the system.
As a code base evolves, it becomes more difficult to add new
features to it [13,20]. In his dissertation, Dayani-Ford [28]
observed that assessing the health of existing products has
received little attention in the literature.

3.3.5 Criticality

In any system, some parts are mission critical while others are
not, and normal operation could still be carried out without
the noncritical parts. Some components add only minor func-
tionality, or functionality that is rarely, if ever, used. Clearly,
deficiencies in these kinds of components, although unpleas-
ant, are not service impacting. Since customers can live with-
out such components, deficiencies in these components can
be addressed when time permits. The criticality of a compo-
nent must be taken into consideration when evaluating the
modifiability because extra effort might be needed to ensure
that mission-critical components achieve their goals. This
also means that, if a bug was inadvertently introduced into
one of these low-priority components while implementing a
new feature, the consequences of this bug are not likely to be
catastrophic. On the other hand, if a bug manifests itself as

Software release planning for evolving systems

195

a failure in a more critical system component, consequences
on the system will likely be far greater and more profound.

3.4 Quantitative evaluation of the difficulty of modification

In our previous work [3], we have limited the measure of a
component’s modifiability to the health of a software compo-
nent, given that the data required on health are easier to col-
lect. Developing generalized modifiability metrics to mea-
sure each of the factors considered in Fig. 2 depends on
how much historical data have been collected over time.
Although this data will be extremely useful, they are not
always available. As an alternative to the situation when we do
not have historical information, we present a method that we
describe later in this section to elicit expert opinions on a set
of components, based on the modifiability factors described.
Expert opinion has been adjudged to be acceptable in sciences
where no accepted measurements are available, as long as
the expert’s opinions are elicited in a formalized way. To this
end, we will use AHP as an acceptable method to elicit expert
opinion in a formalized way. AHP consists of a set of steps
where elements are evaluated pairwise according to a certain
scale to determine which of the two elements being compared
is more important and how much more important it is.

Gathering expert opinion about how these factors deter-
mine the modifiability of chosen components must be done
from the perspective of participating knowledgeable experts
(e.g., developers, designers, etc.) that are familiar with the
architecture of the system under consideration. This in itself
calls for the ranking of the experts’ importance based on
system familiarity.

We will describe the performance of the process to
determine the relative extent of the difficulty of acomponent’s
modification in six steps.

3.4.1 Step 1: Definition of criteria and alternatives

The first step is structuring of the problem in a hierarchical
form, as shown in Fig. 3. At the top level is the overall goal of
difficulty of modifying components. In the second level are
the five factors that contribute to the goal. The third level rep-
resents the alternatives (components) that are to be evaluated
in terms of the factors in the second level.

3.4.2 Step 2: Assignment of priorities to experts

The second step is the assignment of importance values to
the experts that would participate in the assessment of all the
components for modifiability. During aggregation of the final
result, the importance of the experts would be a multiplica-
tive factor of the vectors of relative component modifiability
developed by each participating expert.

3.4.3 Step 3: Prioritization of modifiability factors

The third step is to perform pairwise comparison between
the factors impacting difficulty of modification. This pairwise

comparison is carried out using AHP, which requires the con-
struction of a 5 x 5 matrix made up of the five modifiability
factors in the rows and columns. According to Saaty [4], the
fundamental nine-point scale used for the purpose of this pair-
wise comparison is shown in Table 1. For each pair of factors
(starting with size and complexity, for example) their relative
importance value as described in the intensity of importance
column of Table 1 is inserted in the position where the size
row meets the complexity column. In the position where the
complexity row of and the size column meet, the reciprocal
value is inserted, while all the positions in the main diagonal
of the matrix carries a value of 1 to show equal importance
when comparing a factor to same factor. The question to be
asked at this stage when comparing two factors to get the
intensity of importance value is: of the two factors being
compared, which of them is more important in determining
the difficulty of modifying components?

After completing the pairwise comparison and appropri-
ate values entered in the matrix, the eigenvalues computation
of the matrix is done to establish a priority vector. The com-
ponents of this vector represent the relative importance of the
respective factor. This process is performed independently by
each expert.

3.4.4 Step 4: Prioritization of components for a fixed factor

The fourth step is to carry out a relative pairwise comparison
of the components with respect to each of the modifiability
factor. The questions to ask when comparing two compo-
nents based on the factors are of the following forms: How
much more difficult is it to modify component A than com-
ponent B with respect to size?” The same question applies to
complexity, understandability, health, and criticality.

3.4.5 Step 5: Overall priorities of components

The fifth step is to establish the overall priorities of the com-
ponents from each expert perspective. We lay out the prior-
ities of the components with respect to each factor (i.e., 8,
which are the priority vectors from step four) in a matrix and
multiply each column of the matrix by the priority of the cor-
responding factor in the column (i.e., &;). Then, we add the
result of the multiplication across each row which results in
the desired overall priority vector of the components from a
single expert perspective. The structure of the table is illus-
trated in Table 2 (for Expert A).

3.4.6 Step 6: Aggregation of expert judgments

The sixth step is to establish the final aggregated overall rel-
ative priorities of the components based on their difficulty
of modification from the context of all the experts. That is,
the computed component prioritization vectors from each ex-
perts are linearly combined according to the importance of
the experts to establish the final aggregated priority vector.
The higher the priority value assigned to a component, the
more difficult it is to modify the component.

196

O. Saliu, G. Ruhe

Difficulty of modification

Fig. 3 Decomposition of the problem into a hierarchy

Table 1 Scale for pairwise comparisons using AHP

Intensity of importance Definition Explanation
1 Equal importance The two activities or variables (i and j) are of equal importance
3 Moderate importance of

one over another
5 Strong importance
7 Very strong importance
9 Extreme importance

Experience slightly favor one activity over another

Experience strongly favors one activity over another

An activity is strongly favored and its dominance demonstrated in practice
The evidence favoring one over another is of highest possible order of

affirmation

2,4,6,8 Intermediate values between
the two adjacent judgments
Reciprocals If activity i has one of the above

numbers assigned to it when compared
with activity j, thenj has the reciprocal
value when compared with i

When compromise is needed

Table 2 Overall priorities of the components from the perspective of Expert A

Complexity (§;) Understandability (§,) Health (§3) Criticality (§4) Functionality (§s5) Priority vector (Expert-A)
Component 1~ 8y 821 831 841 51 Dbl = An
COIIIpOl’lel'lt 2 812 822 532 542 852 Z E[*Sﬂ =)\.12
Component 3 §;3 823 833 843 853 D &bz = A1z
Component N 8y Son S3n San Ssn D Eibin = Mn

4 S-EVOLVE#*: A method for planning releases of
evolving systems

4.1 Overview

Our proposed method S-EVOLVE* is an extension of the
EVOLVE* approach presented in [4]. It adds on EVOLVE*
in that it takes into account the characteristics of the target
system for feature implementation. In what follows, we pres-
ent the process model and describe the individual steps of this
model in more detail.

Figure 4 shows a generic process model describing main
release planning activities and their related inputs and out-
puts. Therein, three roles that contribute to the process and
products of release planning are identified—project manag-

ers, stakeholders, and the support environment. Activities oc-
cur directly under the roles that are actively involved. For
example, project managers and stakeholders’ roles are in-
volved in feature elicitation, while a support environment
maintains the group of features elicited. Major activities of
the process model are described by rounded rectangles and
the intermediate results of each activity are shown in ovals.
The key generic functions of the model are described in Sub-
sect. 4.2. These functions work seamlessly together to pro-
vide release plan alternatives for the decision maker. Their
workflow is shown in Fig. 4.

The major extension constituting S-EVOLVE* are the
activities that appear in the shaded region of Fig. 4. The over-
all process model is an extension of [29].

Software release planning for evolving systems

197

4.2 Main steps
4.2.1 Feature elicitation

A variety of techniques are known to determine what the users
and customers really want. Features should be described so
they are understandable, consistent, complete, and correct.
Collecting meaningful features is a complex problem in itself,
and it is not studied in this paper. For an overview we refer
the reader to [29].

4.2.2 Problem specification

Release planning should have an approximate definition of
objectives. The focus could be related to maximizing the
value of releases or maximizing the weighted sum of stake-
holder satisfaction. This step formalizes the objective func-
tion that models the underlying problem and identifies all
the constraints present in the features. These constraints may
be related to interdependencies among the features, or on
dependencies of features on the existing system environment
when planning an evolving system. The result of this task is
the objective definition and the identified constraints.

4.2.3 Resource estimation

There is always a limit to the resources available for software
projects. Resource estimation activity in release planning is
aimed at determining the likely amount of effort, cost, and
schedule required to implement the features. This task is cru-
cial to the success of the release planning process, since it
matches the resource requirements of the problem with the
available project resources. The products from this task are
estimates of effort, cost, and schedules required to imple-
ment features. Some of the stakeholders may be interested
in the result from the resource estimation activity in order to
assign their votes reflecting their preferences. Resource esti-
mation is also one of the bases upon which final prioritization
and selection of features will be done during the release-plan
generation activity.

4.2.4 Stakeholder voting

Stakeholders are the people who directly or indirectly influ-
ence, or are influenced by the software project plan. They may
include developers, managers, customers, and users. Giving
stakeholders the opportunity to vote on features according to
their preferences is important because they decide the evalu-
ation criteria for a product’s or system’s success. Prioritiza-
tion of stakeholders is necessary to differentiate their relative
importance levels. The result of this activity is a set of priori-
ties assigned to features according stakeholders preferences.

4.2.5 Component modifiability assessment

As this activity goes somewhat beyond the traditional release
planning performed independent of system characteristics,

the main issue here is the characterization and assessment of
the difficulty of modifying the components (i.e., DoM(C(m)))
of the system. The method to achieve this using AHP is
described in Sect. 3 above.

4.2.6 Feature-driven impact analysis

Feature-driven impact analysis (FDIA) refers to the process
of identifying the component(s) of the existing system that
would be impacted by the implementation of each feature.
The judgments would be made by developers and designers
who are familiar with the existing architecture of the system.
The whole idea is to be able to quantitatively or qualitatively
account for the impact of integrating each feature into exist-
ing components.

In most cases, implementation of a feature would require
modification of several components. The values of DoM(C(m))
for each component must be aggregated for all such identified
components that are impacted by the feature.

4.2.7 Impact quantification

It should be noted that the results for DoM derived using AHP
are normalized relative measures (i.e., 0 < DoM(C(m)) < 1),
but XoM is not necessarily normalized, as it is a percentage.
In the case of DoM we must look for a way to aggregate
the fractions in a consistent way such that multiplication of
several values less than one does not converge to zero too
quickly.

We introduce the total difficulty of modification and the
total extent of modification as the product of the respective
component properties as follows:

TXoM(f() =[] _ (1+XoMCm), f()) (8)

TDoM(f(i)) = 1 —]_[mzl'_M(l — DoM(C(m))) * 8im (9)
where,

5 — 1 ifCm) e ¥ (@)
™10 otherwise

Thus, for any such feature considered in (8) and (9), the
impact can be written as follows:

Impact(f(i)) = TDoM(f(i)) x TXoM(f(i)) (10)

4.2.8 Release plan generation

Information derived from the products of all the preceding
tasks and other constraints are used in generating sets of
release plan alternatives. After the assignment of features to
releases, a procedure is necessary to determine whether any
of the alternative solution plans generated meet the expecta-
tions of the decision-maker.

The S-EVOLVE* solution algorithms provide a set of
nearly optimal solutions. Its computation is based on inte-
ger linear programming (IP) combined with heuristics that

198

O. Saliu, G. Ruhe

Problem

Group of features to
be planned

Objectives &

specification

[Component modifiability assessment

Feature-driven impact analysis

Impact quantification

constraints defined

Measure of the ease of
modification for all
components

Identify components
impacted by each feature
& calculate degree of
modification

Stakeholder
voling

I
[}
|
=l
Ll
[
I
I

Resource estimation

System constraints
based on impact

Stakeholders assign
priorities to features

Resource

i
I
i
i
i
/ estimates
I
! i i
i i ‘
! I i y
! i i Ry
gl i | <
e : : ,' Release plan generation a
=1 H .
o|! I 1 -«
g i i
=i i i g
S|! i i 5
wli i] Release plan =
-1+ .
= !] alternatives &
=|! i tal
2l i £
w|! =
[=]
i =
i o
: E
[Most attractive/appropriate Scenarios for re-planning o
E release plans, explanation <
i and reporting
1
~
[Implementation |
J

Fig. 4 The S-EVOLVE* process model

speed up the process of generating sufficiently good solu-
tions. The solutions generated are guaranteed to be 95% of
the best achievable for the started objective function. Among
all these candidate solutions, the algorithm determines a sub-
set that is maximally diversified in terms of its structure.

4.2.9 Evaluation of release plan alternatives

Analysis of sets of generated release plan alternatives is done
during this task. If any of the plans meets the set objective

and satisfies a sizable number of stakeholders, according to
the decision-maker’s benchmark, implementation of the se-
lected plan follows. Otherwise, different replanning scenarios
are formulated; which could involve redefinition of different
parameters influencing release plan generation. Another set
of release plan alternatives resulting from the replanning sce-
narios are generated, and the analysis is repeated. The result
of this cycle of activities within the analysis task is a decision
on the release plan to implement.

Software release planning for evolving systems

199

4.2.10 Implementation

This step refers to the actual realization of the generated
plans. It is external to the planning process, but it takes the
plans as input. Release plans usually do not remain stable
over a project’s lifetime—new features may surface while
other features could evolve during implementation. There-
fore, regeneration of the plan may be required to modify the
release plan according to the changing environment.

5 Case study: planning of releases for the
ReleasePlanner system

5.1 The evolving system under investigation

To illustrate the proposed method, we present a case study
based on a real-world system. ReleasePlanner is a cutting-
edge decision support system able to perform web-based
release planning and prioritization based on comprehensive
stakeholder involvement. It combines innovative ideas from
computational intelligence, mathematical optimization, multi-
criteria decision aid, and intelligent decision support systems.
The system comprises eight main components and is more
than 80k source lines of code in size. The system runs on
two different Linux-based multi-threaded servers. The first
server runs the database and the interface to it written in Java
along with other business logic written in Java as well. The
first server also runs the Apache web server which hosts the
hypertext preprocessor (PHP) files for the web-based inter-
face. The second server runs the optimization component and
algorithms written in C and C++ which connect to the Java
layer on the other server using the Java Native Interface (JNI)
API. The overall effort in research and development incorpo-
rated into the system is about 22 person-years.

Among the companies who have performed trial or
professional projects using the tool include: Corel iGrafx,
Siemens Corporate Technology, Trema Laboratories, Nortel
Networks, Solid Technology, City of Calgary, Autotech, and
Ericsson Canada.

The presented case study involves performing release
planning for the ReleasePlanner tool. To keep the size rea-
sonable, we have reduced the number of features to 33. Four
stakeholders have been involved in prioritization of the fea-
tures. Because of space limitations, we do not provide the
details of their voting.

There were five types of resources to be considered: ana-
lysts, developers, tester, user interface, and research types of
resource. The detailed resource consumptions of the features
are omitted. The capacities were defined according to the
existing capacities for the next two releases.

5.2 Case study design

In planning the study, a small workshop was held to pres-
ent the challenges of release planning for evolving systems.

Our proposed method was also presented to the experts since
they will be involved in the assessment of DoM and XoM
for components of the system. After the presentation, the
expert participants were asked to identify the components
making up the system. The following eight components were
identified: Reporting component, validator component, IP
component, java broker component, import/export compo-
nent, stakeholder voting analysis component, database (DB)
connectivity component, and the alternative analysis wizard
component.

To enable us accommodate different perspectives about
the difficulty of modifying each of the components, the par-
ticipants were given instructions to carry out their assessment
of DoM independently and with no interactions, but follow-
ing the AHP-based scheme we have discussed. The relative
importance of the technical development team members par-
ticipating in the experiment were provided by the project
manager according to the developers’ expertise in the project
athand: Expert-A (importance weight = 0.5), Expert-B (0.3),
and Expert-C (0.2).

5.3 Assessment of difficulty of modification

The three experts first performed the pairwise comparison
of the five modifiability factors in level 2 according to how
important they are in determining DoM. Table 3 gives the
results of this computation from the perspective of each of
the experts. From the table, Expert-A has ranked the health of
component to be more important in determining DoM than
any other factor, and he has also ranked size as the least
important in determining modifiability. In the case of Expert-
B, understandability is considered the most important of all
factors determining DoM. However, there is a general con-
sensus among the three experts on the fact that size is the
least important of all the modifiability factors.

Having established the priority vectors of the modifiability
factors, each expert performed a pairwise comparison of the
eight components with respect to each modifiability factor
according to the guideline given in Sect. 3. For example, the
relative comparison of the eight components with respect to
complexity as a modifiability factor from the perspective of
Expert-A is given in Table 4. The entries in the table are the
AHP pairwise comparison between any two components in
the row and column. The last column in Table 4 gives the
priority vector indicating the relative difficulty of modifying

Table 3 Matrix of relative importance of modifiability factors accord-
ing to three experts

Modifiability criteria Expert
Expert-A Expert-B Expert-C

Size 0.053 0.049 0.022
Complexity 0.114 0.083 0.473
Understandability ~ 0.251 0.517 0.271
Health 0.394 0.091 0.173
Criticality 0.188 0.259 0.061

200

O. Saliu, G. Ruhe

Table 4 Pairwise comparison of modifiability of components with respect to complexity from the perspective of Expert-A

Complexity Reporting Validator IP Java Import/export Stakeholder DB Alternative Component
component brokers voting connectivity analysis priority vector

Reporting 1 8 8 5 1 1 5 2 0.236

Validator 1/8 1 3 5 1/7 1/5 1 1/3 0.060

IP component 1/8 173 1 1/3 177 177 173 1/3 0.025

Java brokers 1/5 1/5 3 1 1/5 1/5 1 1/5 0.038

Import/export 1 7 7 5 1 1/3 4 1/3 0.169

component

Stakeholder 1 5 7 5 3 1 5 2 0.251

voting analysis

DB connectivity 1/5 1 3 1 1/4 1/5 1 1/5 0.044

class

Alternative) 3 3 5 3 12 5 1 0.179

analysis wizard

Table 5 Priority matrix of the eight components from the perspective of the three experts

Global priority vector XoM(C(m)) DoM(c(m))

Expert (weight)
Component C(m) Expert-A (0.5) Expert-B (0.3) Expert-C (0.2)
Reporting 0.126 0.111 0.075
Validator 0.112 0.058 0.169
IP component 0.087 0.209 0.435
Java brokers 0.173 0.088 0.051
Import/export component 0.158 0.230 0.063
Stakeholder voting analysis 0.145 0.112 0.055
DB connectivity class 0.086 0.086 0.091
Alternative analysis wizard 0.113 0.106 0.061

0.111
0.107
0.193
0.123
0.160
0.117
0.087
0.100

the components with respect to complexity. This last column
was derived from the eigenvector of the 8 x 8 comparison
matrix. This same procedure is repeated by Expert-A with
respect to the four other criteria. Each of the priority vectors
derived from each criteria form the column of Table 4 that
shows the results for the five criteria from Expert-A’s per-
spective. The priority vector in the last column of Table 4
shows the DoM from the perspective of Expert-A when all
the criteria are taken into consideration. Each of the other
participating experts performs the same exercise and finally
generates similar tables as discussed for Expert-A.

After each of the experts has created similar priority vec-
tors as given in Table 4, the weighted aggregation of those
three priority vectors taking the relative importance of the
three experts into consideration is given in Table 5. The pri-
ority vector in the last column of the table now establishes
the final DoM of each component in the corresponding row.

5.4 Computation of the total impact

The DoMs have been established for each of the components
independent of whatever feature that would impact them. Im-
pact computation must be done for each feature to be imple-
mented, which requires the evaluation of DoM and XoM in
the context of the components that will be modified to imple-
ment the features.

To enable a more informed decision on which features
will modify which components, the features were assigned to
the three experts that would be responsible for the implemen-
tation of each feature, if the feature were to be implemented.

We have carried out this activity differently than the way the
assessment of DoM was performed, since it would be a less
robust and objective method to elicit divergent views on the
extent of modification from a expert that is not implementing
a feature. But the argument holds for DoM because any of
the experts would be familiar with the components and would
have to work with them at one point or another.

Table 6 shows the set of features in the rows and the corre-
sponding extent of modification required on the components
appearing in the columns, which is measured as a percentage
of the size of the component. An empty entry in a column of a
component means that the component is not impacted by the
feature appearing in the corresponding row. The DoM, XoM
and Impact values of each feature appear in the last three
columns of the table and were calculated using Eqs. 8-10.

5.5 Generation of plan alternatives

We have used ReleasePlanner to generate a set of alternative
release plans for the two cases of (1) considering or (2) not
considering system constraints. We will denote the solutions
gained out of these computations as RPA1 and RPA2, respec-
tively. As known from optimization theory [30], the objec-
tive function value of an optimal solution of RPA1 is less
than or equal to the value of optimal solutions of RPA2. For
the consideration of system constraints, we have used the
results of the DoM and XoM computations as described in
Subsects. 5.3 and 5.4, respectively. We introduced threshold
boundaries to describe the acceptable level of impact caused
by implementation of features. In Table 7, we present the

Software release planning for evolving systems

201

generated five alternative release plans for three levels of
thresholds

(1) B(1)=B(2)=2.0 (Impact =2.0)
(i) (1) = B(2)=3.9 (Impact =3.9)
(iii) No consideration of impact (No impact)

The numbers in the table can be interpreted according to
whether a feature is assigned to the next release (‘1°), next-
but-one release (‘2”) or postponed (‘3’).

We performed some further investigation of the sensitiv-
ity between the impact capacity threshold and the objective
function value for the resulting problem. Figure 5 shows the
results.

5.6 Interpretation of results

From the sequence of release plan alternatives generated for
the different levels of impact we can make the following
observations:

e There are substantial changes in the structure of the alter-
native solutions between all the three cases (i), (ii), and
(iii). This clearly indicates the strong impact of system
constraints at the release plan strategies.

e There are features assigned to the next release (‘1°) when
system constraints are not considered but are suggested
to be postponed (‘3’) for both variants of consideration
of system constraints (features with IDs 1, 2,7, and 11).
The reason for that is that all these features have a rel-
atively strong impact on the affected components (high
value of impact).

e There are features mostly assigned to postponed (‘3’)
without consideration of system constraints but are sug-
gested for releases 1 or 2 for both variants of consider-
ation of system constraints (features 10, 15, 19, and 22).
In these two cases, features have lower relative impact
on affected components than most of the other features.

e For some of the features the consideration of system con-
straints does not influence their proposed assignment to
releases (features withIDs 4, 9, 14, 18, 20, 21, 22,23, 24,
and 28). The interpretation here is that the other factors
influencing the assignment of features to a release (stake-
holder priorities, resource consumption) are dominating
the influence of the impact on the system.

e The more rigorously we take into account the system
constraints (e.g., the more the threshold value becomes),
the lower the value of the objective function and vice
versa. This trend is depicted in Fig. 5. We can argue that
the lower threshold level also relates to a lower level of
inherent risk as the affected components are judged to
be easier to modify.

e Within each set of five alternative solutions, there are
structural differences as well. This is the justification to
generate not just one, but a set of alternative solutions.
This increases flexibility in decision making.

e Variance in the structure between the cases (i), (ii), and
(iii) is bigger than among the five generated qualified
solutions within each of the cases.

The above interpretations are closely related to the data
and structure of the case study. However, we expect these to
be general tendencies occurring more or less in the same way
for systems having differences in the degree and difficulty of
modification of components affected by the implementation
of features.

6 Conclusions and future research

In this paper, we have presented a comprehensive release
planning approach called S-EVOLVE®*. It is characterized
by providing nearly optimal solutions based on integer linear
programming combined with heuristics as part of a branch-
and-bound algorithm. Besides its ability to consider resource
and technological constraints, the approach also considers
characteristics of the target components for the implementa-
tion of features which results in plans more likely to meet the
actual needs.

As part of this method, we have developed an approach
for determining the difficulty of modification of the system
components. For that purpose, we have developed an initial
qualitative framework of driving factors for the difficulty of
modification of components. Based on that, we used pairwise
comparison to quantitatively determine the relative value of
the difficulty of modification for the components of the sys-
tem.

Our future research will be directed to refine and empir-
ically evaluate the proposed framework. We will look at the
validity of the actual predictions in terms of the effort actually
needed to implement the features. This requires a mapping
between the relative extent of difficulty determined so far and
the additional effort needed for integrating features into more
difficult parts of the system. We are currently investigating
the possibilities of developing a generic and more sophisti-
cated taxonomy scheme for classifying the modifiability of
system components.

Further empirical investigations are needed to demon-
strate the applicability of S-EVOLVE* and to determine its
limitations. A current weakness in the methodology is that the
impact quantification and the related constraints are relative
measures between components. However, absolute quantifi-
ers coming from careful analysis of historical data would help
to characterize the difficulty of modification of a component
in absolute terms.

In the proposed release planning methodology, the release
dates are assumed to be known or predetermined externally.
Another direction of research is devoted to addressing open-
scope release planning. In that case, determining the release
date will be part of the decision-making and optimization
process.

Acknowledgements The Authors wish to acknowledge financial sup-
port of Alberta Informatics Circle of Research Excellence (iCORE). We
appreciate the support of Pankaj Bhawnani in setting up the case study
and the whole ReleasePlanner team for their involvement in running
the case study. We would like to thank David Goodladd for performing
computations for the case study and also Jim McElroy for his feedback.

O. Saliu, G. Ruhe

202

UOISUIX? SISATeUR

8VL'0 €8C0 0¥9°C o1 001 0C 3unoa 1epoyaeIS €¢
9LE'0 €870 8T S SI 01 Sunoa 1opjoyaers oynedwo) g€
yoeqpa9j Surjoa
yre0 €8C0 €ITT S (0] S I9p[OyaYe)s [enpIAIpU] [€
QOUBWLIOJUOD
0180 €8%'0 LLOT 0t S 01 01 01 1oproyayels paaordwy O
6LS0 86£0 SSY'I 01 0c S S s)ySrom 1opoyayels o[dnmN - 67
80C0 8810 ¢€0I'l 9 S SOJEWITISO 90IN0SY 8T
80C°0 8810 ¢€0I'L S S sresodoad ainjesy oyeprpue) /g
98¢0 C6C0 0CCl 0l 0¢ swistueyosw Suryoe) 9
8SI'T €61°'0 0009 00§ Suuojoejey Sg
swyjode
89¢'0 ¢6C0 09T’ S 0¢ uoneziundo jo Surun our ¢
djoy puewap uo 9A13 0}
LEL'O €TVO0 TPL'T 1] 0cC 01 0C JIojepIfeA ay) jo yjuowdofoaap Joyung €7
9600 L80'0 00I'L 01 SwLId) Jo uoneur[dxa 9ANISUS-IXAIUOD) 7T
ev8'0 SSE0 9LET 0C 01 0¢ 0S ndino jo uoneziensip [
9600 L80'0 00I'L 01 0 juouodwoos uoneuedxyg (g
69C0 8810 0l 01 0¢ juouodwoos Sunodor papualxyg g1
16€0 ¥6C0 Ic€l o1 o1 01 juswdopaasparn - 81
SI¥'0 6610 0807C 0¢ 09 preoquseq LI
7080 €€C0 O0Sv'e Sl 00T [99XT SN ur elep 109fory 9j
9600 800 00I'I 01 Aniqissaooe smopuim o[dnnjy G|
vLED 0LTO 98€'1 01 S 0T SIsATeue Jjo-open Ysu—onfepA [
¢S90 6S€0 SIBI S¢ 0l 01 0C somepunoq Azzng ¢
$90INOSaI UBWINY JOJ
808°C 8590 0LCTY 0¢ 0c o1 0c 0C 0c 0c 0c [[1¥[S JUSISJIP JO UONEPOWOIY]
8CS'T 8ESO 8E8'C 0s 0¢ S S 0¢ o1 soxjeoj jo Sumnds 11
09¢'0 00T0 0081 0s 0T soniiqedeo Sutuuerdey (f
I¥8'T C6S0 80I'C or 94 0c Sl S 0¢ 0T syooloid ssoroe Suruue]y 6
BLIOJLIO PIJOI[AS U0
189°0 92v'0 0091 01 ST ST 01 Paseq suorn[os Jo UOBIdUID) 8
S[00} JATY SunsIx? yIm
sjuowaIinbar
YVl LTE0 0CEY 0¢ 00¢ (014 Anqnedwos jo sisAeuy L
YIVT LTEO 0TEY 0¢ 00¢ 0¢ Anqnedwos 10901y SN 9
YI¥VT LTE0 0TEY 0¢ 00¢ 0T Aipiqedwiod paoueApe (90X SIN S
€80C 6S€0 96L°C 00T or SI 0T uonnjos udsamiaq uostedwony §
SuoOnN[OS dANEBUId)E
ssoIoe sjuawaanbar Jo
7890 6S€0 868l 4 0l Sl 0C QINSBAW DUBULIOJUOD ¢
SUONN[OS AIIRUId[E JO
YEL'T TOV'0 VEL'E SL 0¢ o1 94 0T $10S JO AI0)STY 0} SOy ¢
uonn[os g3 Snsioa
S8Y'C 9960 Tettv 0s1 o1 o1 01 01 0T [enuew sisA[eue aageredwo) I
pedw] NOX INod (mo1) a1nyed) oY) Junuowa[duwr Aq pasmbar (uwnjod) Jusuodwod 9y} JO UOHBIYIPOW JO 9ZIS UI 9FBIUIII] (nyemmesd (I
001°0 L80°0 LITO 091°0 €cro €61°0 LOT°0 1110 (Ho)moa
prezim sse[d sisAreue juouodwod
sisA[eue AJIAI}OQUUOD Junoa yodxe s1oyoiq
QATIRUIN Y ddq IopjoyayeIs odwg eAef Juouodwiod J] Jojeprep Sunzodoy

(1)f omyeay yoes 10§ joedwi] pue NOX ‘NO(‘sSurdnois o) Surmoys samjesy Jo 19§ 9 IqeY,

Software release planning for evolving systems 203

840

845

858

866

870

No impact
Alternative

609 607 607

615

Impact=3.9
Alternative

419 417 415 626

2.0
420

Alternative

Impact
1
3
3
3
3
3
3
3
3
3
1
3
3
3
1
1
3
3
1
2
3
3
1
2
1
3
2
2
1
3
3
2
3
3
435

31

Table 7 Structure of the five diversified alternative solutions for three levels of impact thresholds

1D
10
11
12
13
14
15
16
17
18
19
20
26
27
28
29
30
32
33
Value

21
22
23
24
25

204

O. Saliu, G. Ruhe

1000

900

800

700

&00

500

400 4

300

200

—=Mn Cbj Value

100

== fug Obj Value

Max Cbj Wslue

2 |ar 22|23 |24 |25 |26 |27 (2.8

9

unl:
15 |mi-
Led

I 1132 14|15 17 |18

~—4—Min Onj Value |415 | 425 | 445|462 (468 [47] |45 |SO5 (509

517

531 | 542 | 555 567 | 57% 5BY |6D2 |6D7 (84D

=8 g Obj Value |421 [435 451 | 476 (475 [4B1 |SD2 515 (522

534

545 | 548 | 562 58D | 581 596 |610 |61 [B56

Max OpjValue |435 | 451 | 465 |4B7 |4EF |45E (519 |5ID |516

557

558 | 564 | 579 567 |57 | 607|616 |621 (626 |S7D

Fig. 5 Sensitivity between the impact capacity threshold and the objective function value

References

10.

11.

12.

13.

14.

. Bagnall AJ, Rayward-Smith VI, Whittley IM (2001) The next

release problem. Inform Software Tech 43(14):883-890

Ruhe, G (2005) Software Release Planning. In: Handbook of soft-
ware engineering and knowledge engineering, vol. 3. World Sci-
entific Publishing

Saliu O, Ruhe G (2005) Supporting software release plan-
ning decisions for evolving systems. In: Proceedings of 29th
IEEE/NASA software engineering workshop, Greenbelt, MD,
USA, 6-7 April

Saaty, TL (1980) The analytic hierarchy process. McGraw-Hill,
New York

Penny DA (2002) An estimation-based management framework
for enhancive maintenance in commercial software products. In:
Proceedings of international conference on software maintenance
(ICSM’02), Montreal, Canada, 3—-6 October, pp. 122-130

Denne M, Cleland-Huang J (2004) The incremental funding
method: data driven software development. IEEE Softw 21(3):39-
47

Karlsson J, Ryan K (1997) A cost-value approach for prioritizing
requirements. IEEE Softw 14(5):67-74

Jung H-W (1998) Optimizing value and cost in requirements anal-
ysis. IEEE Software, pp. 74-78

Greer D (2004) Decision support for planning software evolu-
tion with risk management. In: Proceedings of 16th international
conference on software engineering and knowledge engineering
(SEKE’04), Banft, Canada, pp. 503-508

Ruhe G, Ngo-The A (2004) Hybrid intelligence in software release
planning. Int J Hybrid Int Syst 1(2):99-110

Jilles van-Gurp Bosch J, Svahnberg M (2000) Managing variability
in software product lines. In: Proceedings of LAC 2000, Amster-
dam

Carlshamre P (2002) Release planning in market-driven software
product development: provoking an understanding. Requirements
Eng 7:139-151

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault
incidence using software change history. IEEE Trans Softw Eng
26(7):653-661

Eick SG, Graves TL, Karr AF, Marron JS, Mockus A (2001) Does
code decay? Assessing the evidence from change management
data. IEEE Trans Softw Eng 27(1):1-12

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

Gall H, Hajek K, Jazayeri M (1998) Detection of logical coupling
based on product release history. In: IEEE international conference
on software maintenance. Washington DC, pp. 190-198

Porter AA, Selby RW (1990) Empirically guided software
development using metric-based classification trees. IEEE Softw
7(2):46-54

Mockus A, Weiss DM (2000) Predicting risk of software changes.
Bell Labs Tech J 5(2):169-180

Gall H, Jazayeri M, Klosch RR, Trausmuth G (1997) Software
evolution observations based on product release history. In: Pro-
ceedings of international conference on software maintenance
(ICSM’97), Bari, Italy, Oct. 1-3, pp. 160-166

Yu TJ, Shen VY, Dunsmore HE (1988) An analysis of several soft-
ware defect models. IEEE Trans Softw Eng 14(9):1261-1270
Lehman MM (1980) On understanding laws, evolution and conser-
vation in the large program life cycle. J Syst Softw 1(3):213-221
Van Scoy RL (1992) Software development risk: opportunity, not
problem. Software Engineering Institute, Pittsburgh, (CMU/SEI-
92-TR-30, ESC-TR-92-030)

Ohlsson MC, Andrews AA, Wohlin C (2001) Modelling fault-
proneness statistically over a sequence of releases: a case study.
J Softw Maintenance Evol Res Pract 13:167-199

Mens T, Demeyer S (2001) Future trends in software evolution met-
rics. In: Proceedings of 4th international workshop on principles
of software evolution (IWPSE’01), Vienna, Austria, pp. 83-86
Lehman MM (1996) Laws of software evolution revisited. In: Pro-
ceedings of 5th European workshop on software process technol-
ogy (EWSPT’96), Nancy, pp. 108-124

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng
2(4):308-320

Halstead MH (1979) Elements of software science. Elsevier, Hol-
land

Schneidewind NF, Hoffman HM (1979) An experiment in soft-
ware error data collection and analysis. IEEE Trans Softw Eng
5(3):276-286

Dayani-Fard H (2003) Quality-based software release manage-
ment. Queen’s University, Canada, Kingston, Ontario, PhD Thesis
Christel MG, Kang KC (1992) Issues in requirements elicitation.
SEI, Carnegie Melon University, Pittsburgh, CA, CMU/SEI-92-
TR-12

Wolsey LA, Nemhauser GL (1998) Integer and combinatorial
optimization. Wiley, New York

