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Abstract
Purpose  Bioenergetic models are used in cycling to estimate the acute physiological response in terms of oxygen con-
sumption ( V̇O2) and lactate concentration ([La]). First, our aim is to review the bioenergetic modelling literature, present-
ing historical evolution of concepts, techniques and related limitations. Second, our aim is to discuss how and where new 
approaches can stem and evolve.
Methods  This is a narrative review, where different modelling solutions are compared and qualitatively discussed. First, the 
principal features of the V̇O2 and [La] kinetics are presented, and then the models available in the literature are compared 
in light of what aspects of the physiological responses they can describe.
Results  Currently, models can detect most features of V̇O2 and [La] kinetics, but no single existing model appears appro-
priate for every exercising conditions. Limitations hindering the creation of an ultimate model are: the large variability of 
an exercise, the required mathematical complexity, and lack of reliable physiological data. To overcome these issues, new 
modelling solutions are being explored in the emerging AI technologies. However, in AI-models, parameters do not have 
direct physiological meaning and require massive amounts of experimental data for parameter calibration.
Conclusions  Despite the great efforts made by model developers and exercise physiologists, universal modelling solutions 
for the variety of potential exercising conditions remain unavailable. At present, further research is needed to assess the 
accuracy and predictive power of AI models to move the method forward in our field, as it is being done so in many others.
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Background

Cycling exercise typically involves frequent changes in 
external power output and an associated metabolic power 
demand (MPD) that stresses various energy pathways for 
energy production [1]. The relative contribution of each key 
energy system primarily is dictated by the exercise intensity, 

by the responses of the systems involved in metabolic con-
trol [2], exercise duration and endogenous carbohydrate 
stores availability [3, 4].

Following a step change in power output in the moderate 
intensity domain, at steady state [5] a fully and evenly aero-
bic condition can be reached [6] after a brief transitory phase 
that relies on anaerobic pathways. Energy requirements are 
met through carbohydrate and lipid oxidation, without net 
accumulation of blood lactate [7] (e.g., easy riding in the 
peloton [8]). As the exercise intensity increases, the utili-
zation of lipids is thought to be progressively reduced and 
the contribution of glycogen breakdown, that ends in lactate 
production [9], becomes more and more relevant. Above 
certain individualized intensities [10], the exercise becomes 
unevenly aerobic [6] and more carbohydrate-dependent [9] 
and the exercise cannot be maintained indefinitely (e.g., 
40 km time trials and high mountain ascents [11]). This 
threshold is well-explained by studies [12] that used the 

 *	 Andrea Zignoli 
	 andrea.zignoli@univr.it

1	 Department of Industrial Engineering, University of Trento, 
Trento, Italy

2	 CeRiSM Research Centre, University of Verona, Via Matteo 
del Ben 5b, 38068 Rovereto, TN, Italy

3	 Department of Neuroscience, Biomedicine and Movement, 
University of Verona, Verona, Italy

4	 Sports Performance Research Institute NZ, Auckland 
University of Technology, Auckland, New Zealand

http://orcid.org/0000-0003-1315-5573
http://crossmark.crossref.org/dialog/?doi=10.1007/s11332-019-00557-x&domain=pdf


296	 Sport Sciences for Health (2019) 15:295–310

1 3

maximal lactate steady state (MLSS) methodology (consid-
ered the gold standard for evaluating this threshold), but 
also other methods have been used to demarcate the bound-
ary between sustainable-unsustainable exercises (e.g., the 
critical power CP [13]). At extreme intensities, which are 
characterised by a limited sustainability (e.g., sprints [14]), 
intramuscular high-energy phosphates (ATP and PCr) and 
the anaerobic glycogen breakdown provide the predominant 
energy required [15] while the contribution of the aerobic 
metabolism slowly rises over time and becomes essential 
in reconstituting the depleted energy stores, allowing the 
repetition of intermittent extreme exercise bouts [16].

A single exercise session triggers a specific acute physi-
ological response that, if repeated, promotes a specific 
chronic adaptation [17]. Understanding how internal human 
energy is provisioned to create external power can assist us 
to understand topics as broad as performance analysis, exer-
cise prescription and exercise physiology. Exercise intensity 
(i.e., the internal metabolic power demand), can be linked to 
an associated external power output (P) during cycling that 
is derived across a cadence (ω) distribution by means of the 
cycling efficiency [18]. The processes enabling this power 
output evokes an acute physiological response, typically 
measured by the oxygen consumption ( V̇O2) and the lactate 
concentration [La], proxies of the oxidative and glycolytic 
components of the metabolic response, respectively. V̇O2 
mirrors oxygen consumption at the level of the working mus-
cles, considered as the aerobic contribution to the exercise 
[19], while [La] can be used to express the balance between 
the rate of lactate production and removal [6], and indirectly, 
the involvement of anaerobic metabolism [20]. The variation 
of muscular PCr concentrations, can only be assessed with 
expensive and invasive techniques like the standard biopsy 
or by 31P magnetic resonance spectroscopy [21].

At steady-state [5], the energy turn-over can be expressed 
by means of the formula [22]:

where d/dt is the time derivative operator and the three con-
stants (a, b and c) corresponds to the moles of ATP resyn-
thesized by a mole PCr, lactate or oxygen respectively [5]. 
To use this equation in dynamic conditions (i.e., with a time-
varying MPD) we need to include and solve the differential 
equations for the V̇O2, [La] and PCr responses in a single 
system of equations, i.e.; a dynamic model. This is made 
particularly challenging by the different time constants char-
acterising these responses [23], especially in the recovery 
phase [24].

The goal of a dynamic model is, therefore, to mathemati-
cally describe the dynamic behaviour of V̇O2, [La] and 
PCr. Accurate and reliable models can be highly useful in a 
number of applications, especially when physiological data 

MPD = a ⋅
d

dt
PCr + b ⋅

d

dt
[La] + c ⋅ V̇O2

collection is problematic. Particularly, V̇O2 and [La] values 
are used in training prescription [25], to assess the aerobic 
performance [26] and the training status of endurance ath-
letes [27]. The PCr response to exercise is often neglected 
mainly because: (1) direct information on PCr is expensive 
and invasive and (2) PCr contribution during prolonged 
activities is limited.

Existing models of cycling V̇O2 and [La] are all abstracted 
using mathematical “hand-written” formulations. The great 
advantage of this approach is that every equation of the 
model has a physical/physiological meaning: model devel-
opers try to incorporate all the relevant data, and include 
relationships between relevant variables [e.g., height, age, 
weight, gender, heart rate (HR) or arterial blood saturation 
(SaO2)] as a function of the exertion. However, with this 
approach, we only use few variables in our models because 
the more variables we add, the more difficult it becomes to 
make sense of the relationships between them and to express 
these relationships mathematically. Despite the great work 
done by sport scientists, exercise physiologists and model 
developers in the last decades, today there are no modelling 
solutions that can work for every exercising condition.

The purpose of this narrative review is to provide to 
model users (typically exercise physiologists or sport sci-
entists) and model developers (typically engineers or math-
ematicians) a common ground to meet on. We everyday 
experience a lack of communication between these groups, 
which may be hindering the development of new and more 
sophisticated models. However, it would be impossible to 
extensively review both the entire exercise physiology lit-
erature and the different kind of mathematical tools that 
model developers have in their arsenal. We limit our review 
to linear dynamic models of V̇O2 and [La], i.e., models that 
account for time-dependent changes in the metabolic power 
requirements and that can be written with linear differential 
operators.

Having said this, first we briefly review the bioenergetic 
modelling literature; we highlight the limitations that exist, 
and ultimately the roadblock that has been reached in the 
area. Second, we introduce potential new solutions to exist-
ing limitations on a critical base. The review has been writ-
ten and organised so to be understandable by both model 
users and developers: this first introductory section sets the 
scene on the physiological response to cycling exercise; the 
second section describes the main features of the V̇O2 and 
the [La] kinetics; the third section presents the currently 
available mathematical formulations, the techniques adopted 
to describe the V̇O2 and the [La] kinetics and the related 
limitations; the fourth section presents where and how new 
possible modelling solutions can evolve and how we can 
bridge the historical results with the modern techniques; the 
fifth and conclusive section sums up the implications of our 
arguments.
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Bioenergetic modelling

Introduction

Bioenergetic models are used to estimate V̇O2 and [La] 
responses to cycling exercise. With such models, measur-
able mechanical variables (typically cadence and power 
output) represent the system’s input, allowing an estima-
tion of the required metabolic power demand provided by 
the athlete. Measurable physiological variables (typically 
V̇O2 and [La]) are considered the system’s outputs that 
describe the metabolic control of the workload.

Within the realm of cycling science, estimations of the 
bioenergetic models are used for mainly two distinct pur-
poses: performance analysis and data generation. Perfor-
mance analysis is usually conducted in a post-process phase 
and is used, for example, to assess the effect of a treatment 
on a model parameter or to uncover the most influential 
parameter [28, 29]. Models adopted in performance analysis 
should always reflect the system’s physiological features and 
be consistent with the purpose intended for the model. The 
goal of data generation initiatives is to create simulated data 
in a pure predictive fashion. For optimizing pacing strategy, 
for example, quantities like anaerobic source depletion [30] 
are commonly adopted, with the goal of finding the best 
power distribution that minimizes the total race time. Alter-
natively, training design with bioenergetic modelling aims to 
find the ideal training intensity distribution that can trigger 
the optimal training-induced adaptation [31]. Data genera-
tion initiatives also include innovative studies attempting to 
predict physiological variables on a real-time basis using 
easy-to-obtain information [32]. Two major limitations to 
the development of accurate and reliable bioenergetic mod-
els include data quality and mathematical complexity. Both 
limitations are direct consequences of the variability of the 
measured physiological variables alongside an individual 
physiological response. While external mechanical variables 
(e.g., speed, power, and cadence) are easily collected in both 
indoor and outdoor conditions [33], internal physiological 
variables (e.g., V̇O2, [La]) are more difficult to measure. 
Experimental data collection of V̇O2 and [La] require highly 
sophisticated and expensive hardware [34] or invasive tech-
niques [35]. Additionally, such data are always affected by 
biological noise that makes it harder to recognize distinct 
characteristics of the response, thereby impacting model 
parameter choice [36]. Acute physiological responses are 
highly complex and variable within and between individuals, 
due to a number of factors that include pedal frequency [37] 
and prior exercise intensity [38, 39].

Great contributions to our understanding of V̇O2 kinet-
ics have been made by Wasserman and Whipp [40], 

Barstow [41], Poole and Jones (with a book entirely 
devoted to V̇O2 kinetics [42]). In the field of exercis-
ing [La], Stegmann [43], Brooks [44], Gladden [45] and 
Beneke [35] progressively refined our understanding of 
the area. In the field of the energetics of the muscular 
exercise and regulatory mechanisms at whole body level, 
fundamental contribution has been given by scientists of: 
the “school of Milan” (e.g., di Prampero and Margaria 
[22, 46] with a first systematic discussion on the oxygen 
deficit, Cerretelli [47] with the introduction of the early 
lactate concept, Lador [48] with the application of the dou-
ble-exponential model to the study of the cardiac output 
kinetics and Ferretti [49] with a recent book summarizing 
the latest advances in the field); the “Canadian school” 
(e.g., Hughson [50] with the first studies investigating V̇O2 
kinetics under lower body negative pressure, Faisal et al. 
[51] for their analyses on the role of the primary exercise 
on V̇O2 kinetics and lately Beltrame [52] for applying new 
AI technologies to the problem of modelling exercising V̇
O2) and the “British School” (e.g., Rossiter et al. [53] for 
their research on PCr kinetics and Binzoni [54] for bridg-
ing with the “School of Milan”).

Exercising V̇O2 and [La] have been well characterized 
for on-set [55] and off-set [56] of step exercise, during 
recovery after exercise [57, 58], for impulsive/pseudo-ran-
dom/sinusoidal force functions [59–62], for intermittent 
exercises [63, 64], for decremental [65] and incremental 
[66, 67] ramp and graded exercises [68, 69]. A mathe-
matical abstraction of these complex behaviours requires 
a large number of “what if” scenarios, conditions and 
exceptions to be expressed in mathematical form. Typi-
cally, hand-written formulas are included and coded with 
the logic of Box 1.

Mathematicians and model developers have the ability 
to use hand-written formula by choosing from a variety of 
functions (e.g., exponential functions [70], delayed func-
tions [71] and sigmoidal functions [72]) that can lead to 
concise and informative mathematical forms. While bioen-
ergetic models have grown in size and complexity over the 
last decades, solutions for the variety of potential exercis-
ing conditions encountered remains unavailable.

Important features of V̇O2 and [La] kinetics to be con-
sidered in the development of bioenergetic models are pre-
sented separately in the next sessions for an ideal fatigue-
free state. This is because a multitude of models available 
in the literature only focus on one of these variables at 
time. However, in a model combining both the V̇O2 and 
[La] responses, the interplay between the aerobic and the 
anaerobic metabolism and the role of the early blood lac-
tate or the lactate energy equivalent should be considered. 
The mechanical efficiency and the internal power contribu-
tions are also presented.
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V̇O2 kinetics

Schematic representations of V̇O2 kinetics have been 
reported for exercise intensity domains of relevance (Fig. 1) 
based on ventilatory thresholds VTI (or GET) and VTII (or 
RCP) [1] (i.e., the intensity thresholds that we can iden-
tify with breakpoints in the ventilatory variables during a 
cardiopulmonary exercising test). These include: moder-
ate (power output lies below the first ventilatory threshold 
or GET, i.e., P < PVTI), heavy (power output lies between 
the first and the second ventilatory thresholds or RCP, 
i.e., PVTI < P < PVTII), severe (power output lies between 
the second ventilatory threshold or RCP and the minimal 
power eliciting the maximal oxygen consumption during a 
cardiopulmonary exercising test, i.e., PVTII < P < PVO2max) 
[73] and extreme (power output is greater than the minimal 
power eliciting the maximal oxygen consumption during a 
cardiopulmonary exercising test). In the case of moderate 
exercise, a steady state of V̇O2 is attained and is equal to 
the nominal one (Fig. 1a) as predicted from the MPD/P 
relationship (see “[La] kinetics” section). Even in the mod-
erate domain, on- and off-kinetics depend on the power out-
put baseline [74], and they show good symmetry (Fig. 1b) 

[75]. For heavy exercise, still a steady-state is attained and 
this “excess” V̇O2 (Fig. 1c) can be seen as a change in the 
MPD/P relationship (see “[La] kinetics” section). In this 
intensity domain, the on-kinetics is slower than the off-
kinetics (Fig. 1d) [75]. For severe exercises, no steady state 
is shown (Fig. 1e), and the development of a slow compo-
nent can raise V̇O2 towards V̇O2max [76] without exceeding 
it [77]. However, exhaustion might occur before V̇O2 could 
reach the maximal values [78]. V̇O2 can rise, although less 
significantly, during prolonged heavy exercise, and some 
authors prefer to refer to this as drift (Fig. 1i) [79]. In the 
severe intensity domain, the augmented V̇O2 at constant 
power output can be viewed as a lowered efficiency due 
to progressive fatigue development and decreased muscle 
efficiency [80]. When severe exercise ends, V̇O2 drops 
to a new steady state value dictated by the new reduced 
intensity with slower kinetics, determining the excess post-
exercise oxygen consumption (EPOC) (Fig. 1f) [81]. If the 
on-kinetics of V̇O2 is dissected, two different phases that 
correspond to distinct physiological events are evident: the 
cardiopulmonary phase [or phase-I (Fig. 1g), evident from 
tON to TD1], and the dominant phase [or phase-II (Fig. 1h), 
evident after tON + TD1]. In the case of extreme exercise 
intensities, the V̇O2 response saturates at a maximal value 
defined by V̇O2max (Fig. 1k) in a time that decreases as 
the exercise intensity increases [82] (Fig. 1j). However, V̇
O2max might not be reached for extreme exercise intensities, 
especially when power exceeds the ~ 130% of PVO2max [83].

[La] kinetics

A schematic example of the behaviour of the [La] is reported 
in Fig. 2 for different exercise intensity domains of interest 
based on lactate thresholds LTI and LTII (or MLSS) [1] (i.e., 
the intensity thresholds that we can identify with variations 
in [La] during a cardiopulmonary exercising test). These 
include: moderate (below the first lactate threshold, i.e., 
P < PLTI), heavy (between the first and the second lactate 
thresholds or CP/MLSS, i.e., PLTI < P < PLTII) and severe 
(above the second lactate thresholds or CP/MLSS, i.e., 
P > PLTII). In the case of moderate exercise, lactate clear-
ance exceeds lactate accumulation rate, so any change in 
lactate concentration is restored and [La] is kept constant at 
the basal value (Fig. 2a). In the case of heavy exercise inten-
sities, lactate production equals lactate removal and [La] 
typically stabilises between the 2 and 4 mM [43]. Here, the 
upper boundary corresponds to the maximal lactate steady 
state (Fig. 2d). It should, however, be noted that maximal 
lactate steady state tests have great variability [43] in terms 
of [La] but they are very repeatable in terms of power output 
[84], meaning that any correspondence with fixed [La] val-
ues of 2 and 4 mM is a simplification of the likely response. 
In the case of severe exercise, the [La] continues increasing 

Box  1   Representative example of a pseudo-code written to imple-
ment a bioenergetic model

This example highlights that the mathematical description of �̇O2 
and [La] behaviour during exercise, involves a number of “what-if” 
conditions to be elucidated. The inner lines are executed as long as 
the cyclist is exercising (i.e., while exercising). The two conditions in 
the example are a check on the intensity domain (if–then). The code 
checks whether the power P exceeds some thresholds (i.e., generically 
expressed here as PTI and PTII) and then calculates the values of the 
metabolic power requirements (MPD), the oxygen consumption ( �̇
O2) and the blood lactate concentration ([La])
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(Fig. 2e) and whole body energy turnover is considerably 
larger than that indicated by the V̇O2 by an amount that is 
proportional to the net rate of lactate turnover [6]. Gener-
ally, [La] shows a delayed response to the power output and 
this is particularly evident after severe exercise (Fig. 2f) 
[85], where a prominent fraction of the total power is in fact 
provided by the anaerobic metabolism [6]. At the onset of 
the exercise (tON), regardless of the workload, an increase 
in the lactate concentration is observed [47]: the early lac-
tate response (Fig. 2a) that gives an overshoot at the start 
of heavy (Fig. 2c) or severe exercises. When the exercise 
ends (tOFF), the [La] slowly decreases to the basal value with 
exponential behaviour (Fig. 2b) [58] with a slow time con-
stant ([La] returns to basal values after ~ 20 min).

Including the ‘internal power’ and the mechanical 
efficiency

Internal power (IP) in cycling has three main contributors 
[86]—(1) the variation of the kinetic energy of the body, (2) 
the co-activation of agonist and antagonistic muscles and 
(3) the frictional/viscous resistance of joints. Observational 
[87] and theoretical [86] studies report that IP increases lin-
early with the mass (not the weight [88]) and the moment 
of inertia of the moving segments and as a power function 
of ω. However, if a higher ω requires an additional meta-
bolic power, it can be assumed that the faster cadence is 
detrimental to efficiency, which is not necessarily the case 
[89]. This of course is a simplification of the issue, but there 
are different alternatives [90] and model developers should 
also consider that cadence selection has a large number of 
biomechanical [91] and metabolic determinants [37]. With 
the inclusion of the contribution of the internal power, the 
linear formula for the metabolic power demand becomes:

MPD = G ⋅ (P + IP) +MPD0 = G ⋅ (P + k ⋅ �� ) +MPD0,
where k is a compound term for the inertial parameters and γ 
is a constant parameter (see, e.g., [87]) and MPD0 is the met-
abolic power demand at rest (i.e., generally assumed equal 

Fig. 1   Schematic representations of �̇O2 behaviour in response to a 
single bout of constant work rate in different intensity domains. For 
moderate exercises, a steady state is attained and it equals the nomi-
nal one (a). The on- and off-kinetics are similar (b). For heavy exer-
cises, a steady state is attained that is greater than the nominal one (c) 
and the off-kinetics appear to be faster than the on-kinetics, albeit V̇
O2 does not return to basal values immediately (d). For severe exer-
cise, no steady state is shown (e) and the off-kinetic is very slow (f) 
as determined by an additional oxygen consumption (i.e., EPOC). 
More detailed on-kinetics involves a first phase in which there is an 
abrupt rise in �̇O2, called phase-I or the cardiopulmonary phase (g) 
and a phase-II, i.e., the dominant kinetics (h). A drift in the oxygen 
consumption is reported for prolonged submaximal exercises as a 
result of rising body temperature (i). In extreme exercise, the time 
to reach �̇O2max decreases as the exercise intensity increases (j) and 
the value of �̇O2max is attained and maintained (k) until exhaustion 
occurs or exercise workload drops

▸
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to the resting V̇O2 value, ≈ 3.5 ml kg−1 min−1 [92]). Typical 
values of 1/G (Δ efficiency) range from between 18 and 25% 
[18] (values are close to the efficiency of concentric muscle 
contraction). G is also known as the “gain” and is usually 
assumed to be ≈ 10  ml O2 min−1 W−1 for moderate exer-
cise intensities and it gets progressively higher at heavy and 
severe intensities [75, 78] (≈ 13 ml O2 min−1 W−1). Here, 
the augmented gain can lead to a V̇O2 excess as high as 230 
ml O2 min−1 dependent on the methodology adopted [93] 
for the calculation. However, it has been suggested that the 
value of the oxygen gain depends on the exercise intensity 
domain and the baseline exercise intensity and that it pro-
gressively changes with the power output [94].

Existing modelling solutions

V̇O2 models

Models for V̇O2 kinetics have been developed throughout 
a wide range of different formulations [42]. The simplest 
and most common form is the first-order form:

where τ is the characteristic time of V̇O2 kinetics (is recog-
nized as one key parameter of aerobic fitness) and V̇O2p is 
the value of the target V̇O2 (typically inferred from MPD). 
The solution of the first-order equation in response to a step-
input is:

This is why this model is often referred to as a single-
phase or mono-exponential model. Where A is the steady 
state amplitude of the response, calculated as the dif-
ference between the target V̇O2p and the baseline V̇O20. 
First-order V̇O2 models can be used to assess the exercise-
induced improvements [95], intermittent training [96], 
performance [82] and the oxygen debt [97].

A double-exponential (double-phase) model puts together 
the phase-I and phase-II of the V̇O2 response (Fig. 1g, h). 
The sum of the time constant of phase-II and the time delay 
of phase-I has been termed the “effective” time-characteris-
tic or the “mean response time” [98]. However, the choice of 
a double-exponential model over a single-exponential model 
is not only mathematical, but it has to be underpinned by 
important conceptual assumptions made a priori [48]. Phase-
I is often assumed to be exponential [99] but there is still 
a lack of evidence that can support this assumption likely 
because the asymptote of phase-I is not approached before 
phase-I/II transition. However, single and double-phase 
models cannot precisely describe overall V̇O2 kinetics in 
heavy and severe intensity domains, because the additional 
V̇O2 requirements (see how in Fig. 1c, e the V̇O2 response 
deviates from the mono-exponential response). To improve 
the descriptions, Scheuermann et al. [70] included an addi-
tional exponential function in a three-phase model. The slow 
component of V̇O2 is included as an additional exponential 
term that switches on after an independent time delay with 
the onset of the exercise. During heavy exercises, an expo-
nential term with an asymptote of constant amplitude seems 
adequate [75], but it has to point towards V̇O2max (or above) 
to correctly represent the V̇O2 slow component mechanism 
(Fig. 2e). It must also be specified that multi-phase models 
must include a limit to the maximal values of V̇O2 (Fig. 1k) 
before they can be adopted to predict exercising V̇O2 values.

𝜏
d

dt
V̇O2 + V̇O2 = G ⋅ (P + k ⋅ 𝜔𝛾 ) +MPD0 = V̇O2p,

V̇O2 = A ⋅

(

1 − e−t∕𝜏
)

+ V̇O20

Fig. 2   Schematic representations of blood lactate concentration 
([La]) behaviours in response to different exercise intensities, begin-
ning in tON and ending in tOFF. At every exercise intensity, [La] shows 
a delayed response to the exercise. For moderate exercises, after a 
small peak due to early production (a), lactate returns to the basal 
value LB exponentially (b). For heavy exercise, after a brief overshoot 
due to early production (c), a steady state is attained above the basal 
value (d). For severe exercise, the lactate continues increasing (e) and 
a delayed peak is evident when exercise ends (f). Irrespective of the 
exercise intensity, lactate returns to its basal value in an exponential 
fashion (b)
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Variations in the oxygen gain, kinetics (τ) or time-delays 
relationships with the power output have been reported by 
researchers implementing linear V̇O2 models [74, 94]. How-
ever, it is important to realise that including these non-linear 
relationships can lead to non-linear dynamic models of V̇O2 
that usually require more complex protocols for their cali-
bration (see “Limitations of hand-written models” section) 
and additional computational efforts. There are a number 
of modelling solutions equally justifiable for these function 
[i.e., G(P) and τ(P)], e.g., a linear profile or an asymptote of 
increasing amplitude [100] (that could be also used to model 
the V̇O2 drift mechanism depicted in Fig. 1i), an intensity-
dependent [74] or a time-varying τ [101] (that can also be 
used to describe the fast V̇O2 response to extreme exercises 
depicted in Fig. 1j), the inclusion of τ as a function of lactate 
concentration [6] (e.g., τ = λ[La] + τ0 where λ is a constant 
parameter and τ0 is the characteristic time of V̇O2 kinetics at 
rest [47]). As comprehensively reviewed in [6], this increase 
in V̇O2 kinetics (τ) is associated with a greater reliance on 
anaerobic sources for energy provision. In this last case both 
V̇O2 and [La] equations must be solved together.

However, model developers must be warned: even if we 
choose simple linear functions for G(P) and τ(P) (e.g., τ = m 
· P + q, with m the slope of the linear relationship and q the 
intercept), we introduce additional parameters (i.e., m and q) 
that need to be computed. Of course a model that includes 
these non-linear behaviours is likely to bee more generaliz-
able (it can adapt to a wider range of exercising conditions), 
but it is usually more difficult to understand and analyse and 
poses computational issues, like numerical instability. This 
trade-off between simplicity and accuracy of the model is 
well-known in the field of mathematical modelling, where 
between two models with equal predictive power, the sim-
plest one is the most desirable. These concepts are discussed 
in more depth in “Limitations of hand-written models” 
section.

Stirling et al. [102] mathematically formulated the multi-
phase models of V̇O2 kinetics in the differential form suit-
able for numerical integrators. They used the model to assess 
the effects of exercise training on V̇O2 kinetics [103]. How-
ever, the original version of the model has been designed 
for running, and requires amendments to meet cycling activ-
ity requirements [104]. Gonzalez and collaborators [71] 
included a curvilinear characteristics of the P/MPD rela-
tionship and the slow component is included as a secondary 
state variable triggered after an independent time delay and 
constantly superimposed to the primary component.

While modelling has made physiological inferences 
drawn from studies that have measured V̇O2 during exercise, 
it is still not completely clear whether each of the param-
eters in the models are system descriptors. Further work is 
required to allow more parameters to offer a testable and 
justifiable physiological meaning [105].

[La] models

The classic oxygen-debt and anaerobic threshold theories 
have been formed on the basis that lactate produced during 
exercise is a dead-end metabolite that relates to the absence 
of oxygen or to the development of fatigue [106]. Histori-
cally, this has resulted in the development of the so-called 
threshold models, where [La] is linked to V̇O2 by means of 
static relationships [107]. The more recent lactate shuttle 
theories [44] suggest that increasing lactate production with 
increasing power output does not appear to be strictly the 
result of inadequate oxygen supply [45] and should not be 
considered a threshold phenomenon [108]. Skeletal muscles 
and organs like kidney, liver and brain, can be considered 
as compartments, with the circulating blood providing the 
route to link the compartments together. Lactate exchange 
rate correlates with circulating lactate and follows normal 
concentration gradients. With this in mind, Zouloumian 
and Freund [58, 109, 110] proposed a model consisting of 
two communicating compartments—the working muscle 
and a lactate space. The Freund’s model can be expressed 
by means of a second order ordinary differential equation 
that can resemble the delayed behaviour and the overshoot 
typical of the [La] response to P (Fig. 2) [68]. It is com-
monly represented in the bi-exponential solution for constant 
inputs:

Here, A1, A2, A3, λ1, and λ2 are constants that depend on 
the system characteristics and on their initial conditions, 
where [La]bp is the lactate production term. Freund’s model 
has been applied to assess the exercise-induced improve-
ments elicited by intermittent and continuous exercise train-
ing [111], to assess [La] kinetics after maximal short term 
exercise in different populations [112], after high intensity 
exercises [39] with active/passive recovery [113], to assess 
training-induced improvements in blood lactate removal 
ability [114]. For a short-term working period, Freund’s 
model can accurately describe the time-evolution of [La], 
suggesting that the model is qualitatively and quantitatively 
accurate [115]. It may be worth noting, however, that the 
original model was designed for recovery phases. In fact, 
in the original formulation, the lactate production term is 
neglected and a physiological meaning is given to the con-
stant parameters: λ1 represents the lactate production abil-
ity and λ2 the lactate clearance ability [116] that depend on 
intensity and exercise duration. As suggested in the “V̇O2 
models” section, it would be appropriate to include power 
output dependencies in the parameters of the model. This 
for example would mean to specify equations for λ1(P) and 
λ2(P), but this would require additional parameters and then 
more complex protocols for parameter calibration, with all 

[La]b = A
−�1t

1
+ A

−�2t

2
+ A3[La]bp
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the complications that follow (see “Limitations of hand-writ-
ten models” section). As previously mentioned, non-linear 
and explicit time-dependent functions should be included 
cautiously.

Neglecting the lactate production term has important 
mathematical and conceptual consequences. First of all, the 
model becomes a static non-linear function and it loses its 
mechanical meaning. Second, we cannot apply this equa-
tion to the prediction of [La] in response to varying power 
output. Possible modelling solutions for the lactate produc-
tion term can be proposed by means of the lactate energy 
equivalent [117]. Provided that any increase 1 mM in [La] is 
equivalent to the energy released by the consumption of ~ 3 
ml O2 per kg of body mass [6], and neglecting the PCr con-
tribution, we could relate the lactate production term with 
the difference between the metabolic power demand and V̇
O2. However, this would not be sufficient to explain constant 
[La] values during heavy exercises (Fig. 2d) and it would 
require an additional power output dependent term.

Introducing a parameter for the lactate energy equivalent, 
Moxnes and Sandbakk proposed a mathematical model [72] 
for the lactate production and removal during whole-body 
exercise that can be adapted for cycling [118] and that can 
be used to estimate both V̇O2 and [La] kinetics with the same 
system of equations. The peculiarity of this model resides 
within the use of a sigmoidal function (tanh) that can be 
used to model smooth transitions between exercise intensi-
ties [119] and to describe the lactic acid buffering capacity. 
This model can be adopted to predict [La] in response to 
varying power output, but the large number of parameters 
with questionable physiological meaning impairs its predic-
tive ability.

Limitations of hand‑written models

The development of new and accurate hand-written models 
is mainly limited by the mathematical complexity required 
to describe the physiological phenomena of interest. It is 
difficult even to fathom how one would “hand-write” models 
for V̇O2 or [La] that can include the complicated internal 
power contribution, along with time-varying and intensity-
dependent gains, τs and λs. The complexity of a model then 
depends upon the extension of the underlying physiological 
mechanism of interest: complex models are made to cover a 
large number of different kinetics (therefore, require a large 
number of parameters), whereas simpler models can only 
cover limited aspects of the physiological response (there-
fore, require a limited number of parameters).

The main problem is that every parameter of the model 
must be estimated within an acceptable level of confidence 
and that the number of parameters widens the confidence 
interval (CI) of the estimates (usually computed with 

statistical techniques like the bootstrap method [120]) and 
reduces the number of degrees of freedom (i.e., the differ-
ence between the number of data points and the number of 
parameters). Usually parameters are estimated by a model 
fitting procedure, i.e., an  optimization problem consist-
ing of minimizing an objective function by selecting the 
parameters from within an allowed set and computing the 
value of the objective function. The objective function typi-
cally consists in a sum of the squared differences between 
the simulated (the data generated with the model) and the 
experimental data points. The optimization problem is then 
solved by means of a nonlinear programming solver (e.g., 
implemented in the fminsearch [121] or particleswarm [122] 
functions in Matlab software). The higher the number of the 
parameters of the model, the less their effect on the fitting is 
discernible because the presence of local minima. In addi-
tion, if parameters are interdependent, the performances of 
the model (in terms of objective function) is poorly sensi-
tive to variations in the parameters. In this case we say that 
the optimization problem is poorly conditioned and that the 
choice of the parameters is not making relevant difference on 
the value of the objective function [123]. As a consequence, 
the number of the parameters and the presence of interde-
pendent parameters have a detrimental effect on the CI of 
the parameters. It can be assumed that, if the change in the 
error with experimental data is sufficient to offset the loss 
in degrees of freedom associated with the number of param-
eters, then the inclusion of a greater number of parameters 
is statistically justified [124]. However, if the CI of the esti-
mates is larger than the smallest worthwhile changes [125] 
considered for those parameters, then the number of data 
points should be increased [126, 127]. Given that the test-
ing protocols should elicit all the different behaviours that 
the model wants to describe, this requires long and articu-
lated protocols for parameter estimation, so the number of 
individuals that can be tested is reduced if a more complex 
model is involved. Conversely, for simple models, a larger 
pool of individuals can be tested for different trials.

Besides mathematical complexity, data quality is also 
a limiting factor in the development of new bioenergetic 
models. High-quality data is characterized by a high signal 
to noise S/N ratio and by an adequate number of data points. 
Increasing the workload is the most straightforward method 
to increase the magnitude of the V̇O2 and [La] responses, 
but, as a consequence, the exercise becomes less sustain-
able. Noise reduction can be obtained by averaging over a 
different number of trials or by applying different smoothing 
techniques [128]. Most of the difficulties in modelling the 
different phases of V̇O2 kinetics lie behind the noise. In fact, 
the different phases of exercising V̇O2 only become discern-
ible when they emerge from the noise of the background 
component of the fundamental profile. Noise affecting V̇
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O2 data can be approximated with a stochastic uncorrelated 
Gaussian noise of ≈ 120 ml O2 min−1 [13] (the assumption of 
normality has been questioned [129]) independent from the 
metabolic rate [36] while with respect to [La], uncertainty in 
measurements can range from ≈ 10 to ≈ 25% of the absolute 
value [130]. The number of data points is highly determined 
by the sampling rate (e.g., breath-to-breath for V̇O2 or blood 
sample time for [La]). The number of data points increases 
the number of degrees of freedom and narrows the CI of 
the parameter estimates. A possible strategy to increase V̇
O2 data points and improve parameter estimation [131] is 
by interpolating at 1-s. This is reasonable for V̇O2 breath-
to-breath signals, as the average respiratory frequency 
is ≈ 3.5 s for moderate exercises and the main dynamic of 
V̇O2 is ≈ 25–50 s [36]. In the case of [La], data points are 
typically spares (e.g., every minute [112], every 30 s [39], 
10 s [58], up to real-time during bed rest [132]). During a 
classic Wingate test, [La] can rise as fast as ≈ 5 mM min−1 
[133] indicating that exercising [La] could have surprisingly 
fast kinetics compatible to that of the V̇O2. This suggests 
that interpolation error may become relevant if sampling or 
interpolation time is not compatible with variations in the 
power output. Another method to improve the quality of the 
dataset is to exclude outliers or data points that are not likely 
to be part of the physiological response of interest and to 
avoid estimates influenced by unassociated portions of the 
response (e.g., see comparisons between [134, 38]).

To summarize: (1) simple models are best suited for per-
formance analysis, as they have sufficient validity and sen-
sitivity to identify worthwhile changes in the parameters 
characterizing the response, (2) complex models are best 
suited for data generation and simulations, as they cover a 
wide range of different scenarios, but the low confidence in 
parameter estimation impairs their predictive ability. The 
stages outlined in the conceptual scheme of Fig. 4 (left half) 
offer a structured format for the design of “hand-written” 
bioenergetic models.

Alternative approaches to bioenergetic 
modelling to predict cycling V̇O2 and [La]

If the understanding of the underlying physiological mecha-
nism is not a priority, then we can rely on a different class of 
models, where a number of free-adjustable parameters with-
out physiological meaning is included. With this approach, 
parameters are tuned until the model behaves with satisfac-
tory accuracy like a specific instance of the real system. This 
is the approach of the Artificial Intelligence (AI) technolo-
gies, where the general goal is to recreate with computers 
the cognitive functions of the human mind, e.g., learning 
and problem solving [135]. AI algorithms, and in particular, 
machine learning and deep learning [136] have been adopted 

in vast and complicated conditions like health care [137], 
motor vehicle operations [138] and physical activity type 
classification [139]. In sports, machine learning have been 
used to treat cycle training data [140] or swimming perfor-
mance data [141]. However, while AI is rapidly advancing 
forward in other fields, it is still in its infancy in cycling 
science [142].

In the realm of the AI-related technologies, neural net-
works are a biologically inspired programming paradigm 
which allows a computer to learn from experimental data 
through machine learning techniques [143]. At first, as with 
hand-written models, examples that specify the correct out-
put (y) for a given set of inputs (x) are used to train the 
model, i.e., to adjust the parameters of the neural network. 
Second, the model is applied to process a data set where 
only the x variables are available to estimate the y. Training 
a neural network also involves an optimization problem that 
typically requires a high amount of numerical computation 
due to the great number of parameters. However, while in 
“hand-written” models it is often possible to retrieve an ana-
lytical formulation for the exact solution and speed up the 
optimization process with faster and robust solvers [123], 
machine learning algorithms usually refine the estimates of 
the solution via iterative processes. In fact, most learning 
algorithms are based on a class of optimization algorithms 
called stochastic gradient descent [144] that require massive 
amount of data and computational efforts [143].

Two common machine learning task are classification and 
regression. In a classifier, y variables take class labels, and 
the algorithm returns a membership identification probabil-
ity. In a regressor, the y variables take continuous values 
and the program can learn to find the best relationship to 
represent the data. A classifier can be trained to provide the 
probability of V̇O2 and [La] across different training zones 
(Fig. 3a), whereas a regressor can be used to estimate exact 
values of V̇O2 and [La] (Fig. 3b) for a given power output.

With a neural network approach, adding more measur-
able variables means supplying useful information to learn 
input/output relationships. Particularly, additional inputs 
can be useful if they: (1) bear strong relationships with the 
output variables, (2) are independent of each other, and (3) 
are always available. A number of easy-to-obtain inputs can 
be used to predict exercising V̇O2 and [La] data on a real 
time basis. For example, x datasets can be formed by the 
concomitant collection of power output, cadence, heart rate 
(HR), respiratory frequency (RF) and blood arterial satu-
ration (SaO2). Additional information is provided by the 
simultaneous collection of different physiological markers, 
and used to predict a more accurate response of the target 
outputs, i.e., the V̇O2 and [La], so that:

� =
[

P,𝜔, HR, RF, SaO2

] ?

⇒ � =
[

V̇O2, [La]
]
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Neural networks are made to create relationships between 
x and y, without a priori defined structures that automati-
cally discern relevant and un-relevant correlations. The 
absence of these conditions makes neural networks more 
flexible than “hand-written” models and their application 
requires less knowledge about the system being modelled 
(i.e., in our case, V̇O2 and [La] kinetics). Furthermore, when 
a sufficient number of parameters are included, neural net-
works can approximate any function to the desired level 
of accuracy [145]. This allows the representation of very 
complex systems across a large variety of exercising condi-
tions. If individual characteristics change, knowledge from 
historical data can be transferred and adapted to different 
individual characteristics (transfer learning) [146].

Particularly, among the many different classes of neu-
ral networks, great contribution can be provided by the so-
called deep, convolutional and recurrent neural networks. 
Deep neural networks (as opposed to shallow neural net-
works) have multiple hidden layers of neurons between the 
input and output layers and have been used in the prediction 
of V̇O2 kinetics during treadmill walking [147], activities 
of daily living [139, 148] and cycling [149]. Convolutional 
neural networks are a special class of deep neural networks 
specifically designed for image recognition and classification 
[150]. They have been used to detect arrhythmias from ECG 
signals [151], but unfortunately they have not been already 
embedded in portable HR monitors that could be used in 
outdoor cycling [152]. Recurrent neural networks have 
the ability to include past values of the inputs and to keep 
memory of recent exercise history, thereby being particu-
larly suited for time-series analysis [153]. Recurrent neural 

networks are currently applied in health care and diagnos-
tics [154], in lactate threshold detection in running [155], 
in ventilatory thresholds estimation from cardiopulmonary 
exercising test data [156] and hold potential to be exploited 
for estimating cycling V̇O2.

AI techniques suffer from two major limitations, however. 
First, such models involve a “black box” approach [157] 
and the knowledge of the complex internal mathematical 
formulation is limited (the model is not self-explanatory, 
and hence the term “black box”). Second, the approach 
requires substantial training data to cover the variety of 
learnt processes, with sufficient data density needed for all 
exercising conditions (otherwise over-fitting may occur). To 
this extent, large datasets may be provided by the advent of 
the current and future wearable sensor industry, capable of 
non-invasively acquiring a large array of metabolic markers 
[158]. These large datasets, the high number of parameters, 
alongside the aforementioned condition-specific training 
process, will together require massive collaborative and 
computational efforts.

With AI, instead of writing a program by hand (Box 1) for 
each specific exercising condition (Figs. 1, 2), a computer 
program can be written so that the computer can determine 
by itself the relationships between parameters and inputs for 
different exercising conditions. When we compare against 
the complexity and work involved in writing out by hand all 
the possible combinations involved, AI solutions become 
extremely appealing and exciting. It should be clear, how-
ever, that with AI, we are replacing known knowledge and 
procedures with one single big one. Thus, it can become dif-
ficult if not impossible to elucidate underlying physiological 

Fig. 3   Example of two different kinds of artificial neural networks 
that can be adopted in oxygen consumption V̇O2 and blood lactate 
concentration [La] prediction by means of easy-to-obtain inputs, such 
as: power (P), cadence (ω), heart rate (HR), respiratory frequency 
(RF), and oxygen saturation (SaO2). a A classifier is used to assign a 

label to the different data inputs. In the case of a classifier, the output 
variable takes a class label, such as the intensity domains (e.g., basal, 
moderate, hard, severe). b A regressor is used to estimate the exact 
value of V̇O2 and [La] from input data. Here, the output variables 
take continuous values
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mechanisms from a neural network, as relationships between 
variables may be hidden. We believe that a trade-off solu-
tion can be found in a hybrid approach (see, e.g., [159]), 
where physiology equations are combined together with neu-
ral networks. In these models it is possible to incorporate 
prior knowledge about the bioenergetics (e.g., the first-order 
model of V̇O2 kinetics) into a neural network that is used to 
estimate non-linear/time-dependent parameters [e.g., G(P), 
τ(P), λ1(P) or λ2(P) introduced in “V̇O2 models” and “[La] 
models” sections]. As a consequence, a hybrid model typi-
cally requires a significantly smaller number of experimental 
data and parameters than a pure neural network [160]. To 
the best of our knowledge, this promising approach has yet 
to be tested against V̇O2 and [La] data.

As it has been done for “hand-written” models, we offer 
the different critical stages in the creation of an AI-bioen-
ergetic model in Fig. 4 (right side). It must, therefore, clear 
that there is not a superior approach, and that the best model-
ling solution depends on the purpose intended for the model. 

In an age where new communication devices are offering 
new ways to collect big amount of data [161], the collabo-
rative work between sport scientists and mathematicians 
will be instrumental for enabling future solutions towards 
a more effective utilization of this data. Neural networks 
and machine learning [136], by their very nature of how 
they function, may in effect thrive on using a large volume 
of information in a productive and informative way: model 
developers have new and complementary tools in their tool-
boxes. Currently, however, extra work is needed to embed 
these innovative technologies and their hybrid combinations 
in portable devices and reach the athletes on the field.

Conclusions

In the field of modelling V̇O2 and [La] responses to cycling 
exercise, despite the great amount of synergistic work done 
by model developers and exercise physiologists together, a 

You will likely use this model in data 
generation and simulation. A possible 
approach is to use AI models like NN. 

These techniques require large datasets and 
massive computational efforts and they 

provide poor information on the underlying 
physiological mechanism.

MODELLING - DECISION PROCESS

Parameters of the model should 
have physiological meaning

NO!
YES!

5b) Change the model (e.g. think to some 
hybrid solutions or different NNs) or get more 
data (e.g. new data acquisition sessions, data 
augmentation techniques or shared datasets).

1) Find the simplest model form and try to avoid: non-linear terms, 
sharp functions and time-dependent functions. The best solution 

might come from the combination of equations already available in 
the literature. 

5a) This means that the current model 
can be calibrated with a feasible 

experimental design. You can include 
more parameters (e.g. non-linear 

behaviours) and repeat the process or 
you can start with data acquisition or 

elaboration.  Increase sample 
size or decrease 
the complexity 
of the protocol

5c) High inter 
individual 
variability

Satisfactory Unsatisfactory

Increase trial 
size or decrease 
the complexity 
of the protocol

5b) High intra 
individual 
variability

1) Formulate your problem and select a possible modelling 
solution (e.g. regressor, classifier) and the appropriate algorithm 

The solution might have been already implemented in a different 
context or might be completely new. New algorithms are created 
every day, so keep checking electronic pre-print repositories (e.g. 

ArXiv) or open AI-competitions and datasets. 2) Retrieve some sample data 
(pilot studies, open datasets, 

3) Compute the uncertainty in 
the estimations of the 
parameters (e.g. bootstrap.

4) Determine whether the parameters can be estimated with satisfactory accuracy 
(e.g. uncertainty in parameter estimation is compatible with experimental data 

variability) and then design your experimental session accordingly.

6b) Consider reducing model complexity or 
consider hybrid solutions.

6a) Model validation 
and endorsement. 5a) Model validation 

and endorsement.

2) Data are usually collected in advance. Database preparation might 
require considerable effort: a) appropriate variables and labels have to be 
selected; b) data are typically collected in matrices of appropriate 
dimension; c) the database is usually divided in a training set (to calibrate 
the model and for internal validation) and in a test set (for the final test of 
the model against new data).  

3) There are no currently precise guidelines on how to design a NN. A 
method could be to check the behaviour of the accuracy and loss metrics 
during the training phase to set parameters like epochs and learning rates. 
If validation accuracy during the training phase is largely greater than 
testing accuracy, then this might indicate overfitting.  

Satisfactory Unsatisfactory
4b) After tuning the model, the accuracy is 

still not satisfying. Possible reasons are: 
overfitting (try drop-out techniques) or data-
imbalance or bad normalisation techniques.  

4a) A good practice is to compare 
the accuracy of different modelling 

solutions. NN training can 
continue if new data is provided. 

Based on the complexity of the model and 
on data availability, you will likely use this 

model for performance analysis or to 
identify worthwhile changes in physiological 

parameters. Data quality and the required 
mathematical complexity are the main limits 

to the development of these models. 

Fig. 4   Decision process and stages of the creation of a bioenergetic 
model following the “hand-written” model (left side) and the AI-
model (e.g., neural network NN) (right-side) approaches. The best 
modelling solution depends on the purpose intended for the model 

and on data availability. In both cases, a trade-off exists between the 
mathematical complexity of the model and generalizability to a vari-
ety of exercising conditions
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single model or approach that can fit all the possible exer-
cising conditions is currently unavailable. Limits to current 
model development lie behind the mathematical complexity 
required to describe the physiological responses to the exer-
cise and to the high variability of the data characterizing this 
response. Due to a reduced number of parameters, “hand-
written” models typically show low flexibility to adapt to 
changes in exercise conditions. Among the AI-related tech-
nologies, neural networks fit well in a framework where 
many physiological variables that are easy-to-obtain can be 
used to generate predictions of cycling V̇O2 and [La] in a 
great variety of exercise conditions. However, in neural net-
works, models parameters do not have direct physiological 
meaning and require big datasets for calibration. We hope 
that this review might be the start of a conversation that 
brings together these exciting technologies into exercise 
physiology and sport science understanding and application.
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