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Abstract
Purpose To determine the possible associations between total sleep time spent with arterial oxygen saturation < 90% (T90) 
and comorbid cardiometabolic diseases (CMDs) in patients with severe obstructive sleep apnea (OSA).
Methods A retrospective review of the chart was conducted in patients with severe OSA diagnosed by in-lab polysomnogra-
phy (PSG) between January 2018 and December 2019 at Siriraj Hospital. The patients were divided into two groups: hypoxic 
(T90 ≥ 10%) and nonhypoxic (T90 < 10%). The association between common CMDs including hypertension (HT), type 
2 diabetes mellitus (T2DM), and impaired fasting glucose (IFG) was investigated and compared between the two groups.
Results Data were collected from 450 patients with severe OSA, 289 males/161 females with a mean age of 53.5 ± 14.2 
years and an apnea-hypopnea index (AHI) of 49.6 events/h. Among these, 114 patients (25.3%) were defined as the hypoxic 
group (T90 ≥ 10%). When compared between the hypoxic and nonhypoxic groups, the patients in the hypoxic group were 
significantly younger and more obese, and had a higher proportion of male patients. The majority of patients (80%) had at 
least one CMD; however, the most common comorbidities significantly associated with hypoxic OSA (T90 ≥ 10%) were 
HT and IFG.
Conclusion Hypoxic burden is significantly associated with an increased prevalence of HT and IFG in patients with severe 
OSA. T90 may be potentially useful for predicting CMDs in these patients. However, prospective studies are still required.

Keywords Hypoxic burden · Nocturnal hypoxemia · Oxygen desaturation during sleep · T90 · Severe OSA · 
Cardiometabolic diseases

Introduction

Obstructive sleep apnea (OSA) is a highly prevalent sleep 
disorder characterized by frequent or dynamic collapses of 
the upper airways while the patient sleeps. OSA can have a 
negative effect on a patient’s health and quality of life, such 

as persistent morning headache, dizziness, excessive day-
time sleepiness (EDS), mood instability, and an increased 
risk of traffic accidents. Without proper management, OSA 
can eventually become a significant contributor to metabolic 
diseases [1], particularly hypertension (HT) and type 2 dia-
betes mellitus (T2DM) [2], cardiac arrhythmia [3], coronary 
artery disease (CAD) [4], and neurocognitive impairment.

Although the apnea-hypopnea index (AHI), calculated 
from polysomnography (PSG) [5], continues to be the param-
eter most used in clinical practice as a diagnostic and severity 
grading tool for OSA, it is not an ideal marker to visualize 
the clinical status of patients [6]. Several studies have dem-
onstrated that AHI does not accurately reflect OSA severity, 
OSA phenotypes, or comorbid diseases [6]. One reason for 
this inaccuracy is that the AHI does not capture the extent and 
duration of oxygen desaturation [7]. To better characterize the 
clinical presentation of patients with OSA, various studies [8, 
9] have attempted to identify and use other new measures in 
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addition to AHI. These included arousal intensity, odds ratio 
product, cardiopulmonary coupling [10], hypoxic burden [9], 
and others. Recently, a consensus has emerged that hypoxia 
at night or hypoxic burden, especially when severe, has det-
rimental consequences on cardiometabolic function [9, 11].

Sleep time with arterial oxygen saturation below 90% 
(T90), which can be obtained regularly from an overnight 
sleep test, is one of the metrics that may be useful to repre-
sent the hypoxic burden. However, due to the lack of com-
pelling data and the T90 duration cut-off percentage, the 
most recent guidelines do not highlight the usefulness of 
this measure [12, 13].

Although there have been studies [14–16] examining the 
relationship between T90 and CMD, most of the studies have 
investigated patients with moderate to severe OSA. The cur-
rent study was designed to focus on hypoxic burden in patients 
with severe OSA (AHI ≥ 30 events/h) since they were the 
majority (>60%) in our sleep center and previous evidence did 
not support a strong association between the mild-to-moderate 
OSA and common CMDs [17, 18]. Furthermore, the presence 
of significant hypoxic burden (T90 > 10%) in patients with 
mild-to-moderate OSA is uncommon. However, employing 
AHI as the only criterion for OSA severity is knowingly con-
troversial due to heterogeneous characteristics of the disor-
ders; utilizing hypoxic load, particularly T90 as an addition, 
is of interest [14, 19]. In addition, the T90 cut-off value used 
in prior studies has varied and has been inconsistent. There-
fore, the objective of this study was to investigate relation-
ships between OSA-related hypoxic burden as reflected by 
T90 ≥ 10% and the risk of common CMD in adult patients 
with newly diagnosed severe OSA.

Materials and methods

Study design

This retrospective study was conducted after the protocol 
was approved by the Siriraj Institutional Review Board 
(SIRB). Data from relevant electronic medical records 
including demographic data (age and sex), body mass 
index (BMI), underlying diseases [impaired fasting glu-
cose (IFG), T2DM, HT, CAD, dyslipidemia (DLP), stroke, 
congestive heart failure (CHF), atrial fibrillation (AF), car-
diomegaly], and important PSG parameters were obtained 
between January 2018 and December 2019.

Selection criteria

The inclusion criteria were patients aged ≥ 18 years old 
who were diagnosed with severe OSA (AHI ≥ 30 events/h) 
by PSG in the lab. The exclusion criteria were patients with 
sleep efficiency (SE) < 50%, total sleep time (TST) < 2 

h, severe technical error during the sleep test, significantly 
incomplete data, and patients with history of active or 
uncontrolled lower respiratory tract diseases such as chronic 
obstructive pulmonary disease (COPD), asthma, pulmonary 
emphysema, pneumonia, pulmonary edema, severe bronchi-
ectasis, and pulmonary embolism.

Polysomnography

PSG standard protocol recording channels consisted of elec-
troencephalogram (EEG), electrooculogram (EOG), elec-
tromyogram (EMG), electrocardiogram (ECG), abdominal 
and chest wall movements, pulse oxygen saturation, nasal 
flow, and nasal thermistor. The scoring was performed by 
certified sleep technicians and sleep specialists with criteria 
following the guidelines of the American Academy of Sleep 
Medicine (AASM) scoring manual update in 2017 (version 
2.4) criteria; an apnea was defined as a reduction in airflow 
of ≥ 90% lasting for 10 s of pre-event baseline using oro-
nasal thermistor and a hypopnea was defined as a reduction 
in airflow of ≥ 30% lasting for 10 s of pre-event baseline 
using nasal pressure with an associated oxygen desatura-
tion of ≥ 3% or EEG arousals. Relevant PSG data collected 
included TST, SE, AHI, apnea index (AI), hypopnea index 
(HI),  percentage of T90, oxygen desaturation index (ODI), 
mean peripheral oxygen saturation  (meanSpO2), and mini-
mum  SpO2  (minSpO2).

Cardiometabolic diseases

The CMDs in this study included HT, T2DM, IFG, DLP, AF, 
CAD, CHF, cardiomegaly, and stroke. These diagnoses were 
determined by participant interviews and medical records. 
Both involved test findings, information from the Interna-
tional Statistical Classification of Diseases (ICD)-10 (with or 
without a record of a specific condition in the disease), and 
information on medications used to treat underlying diseases. 
The definitions of CMDs used in this study were as follows: 
HT: systolic blood pressure ≥ 140 mmHg or diastolic blood 
pressure ≥ 90 mmHg for two or more days; T2DM: fasting 
plasma glucose (FPG) ≥ 126 mg/dL, or glycated hemoglobin 
 (HbA1c) ≥ 6.5%; IFG: FPG 100 mg/dL (5.6 mmol/L) to 125 
mg/dL (6.9 mmol/L); AF: irregular supraventricular tachyar-
rhythmia diagnosed from ECG; DLP: following the 2016 
Clinical Practice Guideline on Pharmacologic Therapy of 
Dyslipidemia for the Prevention of Atherosclerotic Cardiovas-
cular Disease Prevention; cardiomegaly: chest radiographs that 
demonstrate a cardiothoracic ratio > 0.5 or from ECG; CAD: 
angiography showing > 50% stenosis in the coronary arteries; 
stroke: ischemic or hemorrhagic stroke diagnosed by clinical, 
neurological examination and computed tomography (CT) or 
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magnetic resonance imaging (MRI) of the brain; and CHF: 
chest radiographs revealing pulmonary venous congestion or 
interstitial edema.

Statistical analysis and outcome measurement

Continuous data are presented as mean ± standard devia-
tion (SD) for parametric data, and median with 25th–75th 
percentile for nonparametric data. Categorical data are pre-
sented as number and percentage. The association between 
hypoxic burden (T90) in severe OSA and common CMDs 
in each group together with comparing between two groups 
were evaluated by Chi-square test, T-test, or Fisher’s exact 
test. Logistic regression analysis or multiple regression 
analysis was used depending on the types of results. A sig-
nificant difference was established at the P-value < 0.05. 
Statistical analysis was performed with the Statistical Pack-
age for the Social Sciences (SPSS) version 18.

Results

Data from 450 patients with severe OSA were collected. These 
included 289 males and 161 females, with a mean age of 53.5 
± 14.2 years and a mean BMI of 30.6 ± 7.3 kg/m2. The major-
ity of patients in this study (80%) had at least one CMD, the 
most prevalent of which was HT. There were 114 patients 
(25.3%) who had T90 ≥ 10% and 293 patients (65.1%) with 
3%ODI ≥ 30 events/h. Additional information on PSG data of 
these patients are shown in Table 1. When compared between 
the hypoxic and nonhypoxic groups (Table 2), the patients 
in the hypoxic group were significantly younger and more 
obese, and had a higher proportion of males. Several PSG 
parameters were also significantly different between these two 
groups. When comparing prevalence of CMDs between the 
two groups, those of the overall CMDs, HT, and IFG were 
significantly lower in the nonhypoxic group (Table 2).

Discussion

In addition to AHI, sleep parameters related to hypoxic 
burden [9, 20] or hypoxia at night may be useful to char-
acterize OSA that could be associated with a worsening of 
cardiometabolic function. The findings of this study showed 
that patients with severe OSA and T90 levels above 10% 
(hypoxic group) tended to be younger, more obese, male-
dominated, and more abnormal in PSG parameters that may 
be related to concurrent CMD. These findings were consist-
ent with previous studies showing that obesity is associated 
with an increased prevalence of prolonged duration of T90 
[15] and more severe OSA [21], and that men were found 
more frequently in the group with severe desaturation [22]. 
Our findings were also consistent with a study by Labarca 

and colleagues [14, 15] which suggested that patients with 
OSA and T90 ≥ 10% had a sensitivity of 48.7% and a speci-
ficity of 72.7% to predict the potential risk of HT.

Although it appears that the T90 threshold cut-off points 
for clinical application were somewhat arbitrary and het-
erogeneous, the majority of the research findings [19, 20] 
showed that T90 with certain specified cut-off points was 
still potentially useful for anticipating common CMDs. In 
this study, we chose T90 of ≥ 10% as the cut-off criterion 
due to the following reasons. First, there were supporting 
evidences, such as that of Martinez et al. [19] and Quan et al. 
[23], which demonstrated that the levels of T90 close to this 
cut-off point have clinical significance. Second, the results 
of subsequent analysis in our study were consistent when 
we used higher cut-off levels of T90 (10%, 15%, and 20%); 
however, utilizing the lower T90 cut-off level (5%) failed to 
detect a significant association between OSA and common 
CMDs. The prevalence of T90 greater than 15% or 20% in 
our population is quite low, less than 15% compared to over 
25% in T90 ≥ 10%; as a result, if we utilized these levels, we 
may have risked omitting some people who would benefit 
from appropriate therapies. 

After using logistic regression analysis adjusted for 
confounders related to CMD, T90 ≥ 10% was the only 

Table 1  Patients’ characteristics, polysomnographic data, and cardio-
metabolic diseases (n = 450)

Data are presented as the number (%) or median (interquartile range)
Abbreviations: TST, total sleep time; AHI, apnea-hypopnea index; 
3%ODI, 3% oxygen desaturation index; MeanSpO2, mean peripheral 
oxygen saturation; MinSpO2, minimum peripheral oxygen saturation; 
T90, total sleep time spent with arterial oxygen saturation < 90%

Characteristics Number

Polysomnographic data
 TST (h) 4.4 (2.3–6.2)
 Sleep latency (minute) 8.4 (3.6–18.2)
 AHI (events/h) 49.6 (37.2–73.6)
 3%ODI (events/h) 37.2 (25.7–58.6)
  MeanSpO2 (%) 94 (93–95)
  MinSpO2 (%) 81 (75–85)
 T90 (%) 3.0 (0.7–10.2)
Cardiometabolic diseases
 At least 1 of any CMDs 360 (80.0)
 Hypertension 284 (63.1)
 Type 2 diabetes mellitus 105 (23.3)
 Impaired fasting glucose 69 (15.3)
 Dyslipidemia 238 (52.9)
 Atrial fibrillation 21 (4.7)
 Coronary artery disease 32 (7.1)
 Congestive heart failure 10 (2.2)
 Cardiomegaly 19 (4.2)
 Stroke 23 (5.1)
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independent parameter associated with IFG, while BMI 
and older age were considered risk factors for HT in this 
study. Most previous studies focused only on T2DM that 
was already known as a risk factor for CVD and mortality, 
but often ignored IFG, a phase between the individual with 
normal blood glucose and T2DM even though it may also 
increase the risk of CVD development [24]. The results of 
this study showed that T90 ≥ 10% may be one of the sensi-
tive metrics to predict the risk of IFG in patients with severe 
OSA, supporting that OSA may be one of the important 
independent risk factors for the development of T2DM [25, 
26]. 

The potential mechanisms by which OSA contributes to 
blood pressure elevation are multi-factorial. One of the most 
commonly described pathophysiology is that hypoxia induced 
by OSA causes systemic inflammation and the production 
of reactive oxygen species [27], which increased endothe-
lin-1 production while decreasing nitric oxide production in 
endothelial cells, increasing arterial peripheral resistance, and 
ultimately raising blood pressure. Chronic hypoxia, in particu-
lar hypoxia with prolonged duration (greater degree of T90 

severity), may play an essential role to provoke structural and 
biochemical abnormalities in pulmonary arteries and vascular 
cells [28] leading to pulmonary vasoconstriction, pulmonary 
arterial pressure elevation, and increased thickness of arte-
rial walls. These alterations of arterial vessels are commonly 
found in patients with hypoxic OSA phenotype, whereas 
chronic intermittent hypoxia especially in severe OSA with 
prolonged T90 can considerably stimulate the carotid body 
(CB) or induce pancreas and adipose tissue to promote hyper-
insulinemia, hyperleptinemia, and inflammation process. 
Signaling from CB to the sympathetic nervous system also 
generates an activation that leads to metabolic abnormality in 
insulin sensitive organs or tissue such as the pancreas, liver, 
skeletal muscle, and adipose tissue. This creates a vicious 
cycle that leads to metabolic diseases such as obesity, IFG, 
T2DM, and metabolic syndrome [11].

Two large cohort studies from Azarbarzin et al. [8], the Sleep 
Heart Health Study (SHHS) and the Osteoporotic Fractures in 
Men Study (MrOS), found that sleep apnea-specific hypoxic 
burden (SASHB) predicted incident HF in approximately 10 
years of follow-up a fully adjusted model of untreated patients 

Table 2  Demographic 
data, polysomnographic 
characteristics, and 
cardiometabolic diseases 
between 2 groups

Data are presented as the number (%), mean ± standard deviation, or median (interquartile range). Abbrevia-
tions: SE, sleep efficiency; TST, total sleep time; AHI, apnea-hypopnea index; 3%ODI, 3% oxygen desatura-
tion index; AI, apnea index; HI, hypopnea index; MeanSpO2, mean peripheral oxygen saturation; MinSpO2, 
minimum peripheral oxygen saturation; T90, total sleep time spent with arterial oxygen saturation < 90%
*P < 0.05 was used to indicate statistical significance

Characteristics T90 ≥ 10% (n = 114) T90 < 10% (n = 336) P-value

Age (years) 51.1 ± 14.0 54.3 ± 14.1 0.04*
BMI (kg/m2) 33.9 ± 7.7 29.4 ± 6.8 <0.001*
Male 89 (78.1) 200 (59.5) <0.001*
Polysomnographic parameters
 SE % 81.8 (71.6–89.8) 79.5 (65.5–87.2) 0.054
 TST (h) 2.3 (2.1–3.1) 5.2 (3.2–6.4) <0.001*
 AHI (events/h) 80.4 (55–98.2) 44.4 (35.1–59) <0.001*
 3%ODI (events/h) 69.4 (44.4–88.2) 32.2 (22.8–45.2) <0.001*
 AI (events/h) 39.2 (11.5–77.8) 8.9 (3.5–58.9) <0.001*
 HI (events/h) 32.2 (13.5–47.6) 34.4 (26.1–46.4) 0.02*
  MinSpO2 % 72.5 (64.8–79) 83.0 (78–86) <0.001*
  MeanSpO2 % 90.2 ± 4.1 94.9 ± 1.5 <0.001*
Cardiometabolic diseases
 At least 1 of any CMDs 100 (87.7) 260 (77.4) 0.017*
 Hypertension 84 (73.7) 200 (59.5) 0.007*
 Type 2 diabetes mellitus 29 (25.4) 76 (22.6) 0.5
 Impaired fasting glucose 27 (23.7) 42 (12.5) 0.004*
 Dyslipidemia 64 (56.1) 174 (51.8) 0.5
 Atrial fibrillation 4 (3.5) 17 (5.1) 0.6
 Coronary artery disease 7 (6.1) 25 (7.4) 0.3
 Congestive heart failure 4 (3.5) 6 (1.8) 0.5
 Cardiomegaly 6 (5.3) 13 (3.9) 0.7
 Stroke 5 (4.4) 18 (5.4) 0.8
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with moderate to severe OSA (HR 1.14, 95% CI 1.03–1.25). 
In contrast, AHI was not significantly predictive of cardiovas-
cular mortality. According to our study, the prevalence of first 
diagnosed HF in the hypoxic group was also higher than in the 
nonhypoxic group but without statistical significance.

Recent post hoc analyses of the SAVE study (Sleep Apnea 
Cardiovascular Endpoints) [29] demonstrated that the pattern 
of oxygen desaturation during sleep was associated with heart 
failure and myocardial infarction but not AHI. Some other 
studies determining T90 also showed that it is associated with 
overall mortality [30]. Therefore, our findings support that the 
important parameters of OSA are not only the frequency of 
obstruction of the upper airways during sleep (as represented 
by AHI) but also the duration of sleep time associated with 
oxygen desaturation (as represented by T90), a simple indica-
tor of hypoxic burden that needs attention.

There are limitations of this study. First, some risk fac-
tors for CMDs, such as a history of alcohol consumption or 
smoking, were not included due to incomplete data from the 
medical record. Second, other confounding factors such as 
concurrent subclinical upper and lower respiratory disorders 
in patients with CMDs that can increase hypoxemia during 
PSG cannot be completely excluded from this study. Third, 
well-known conditions, including night-to-night variation 
and first-night effect, may affect the accuracy of PSG imple-
mentation. Fourth, the diagnosis of each CMD was derived 
from electronic medical records described by physicians, but 
some were not confirmed by their original diagnostic crite-
ria. Fifth, nearly half of the patients in our study underwent 
split-night sleep studies, so their TST was inherently less 
than 4 h, which could have an effect on the percentage of 
T90. Sixth, this research is a retrospective study with inher-
ent biases. For future studies, prospective cohort investiga-
tion about the hypoxic burden in patients with moderate and 
mild forms of OSA should also be considered.

Conclusion

The results of this study demonstrated that there was a signifi-
cant association between T90 ≥ 10% and comorbid IFG, HT 
in patients with severe OSA. This suggests that T90 may be 
another useful parameter in predicting high-risk patients who 
may have CMDs and planning patient monitoring. However, 
more well-designed prospective studies are needed.
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