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Abstract
Background Implementation of mandibular advancement splint (MAS) therapy as first-line treatment for obstructive sleep
apnoea (OSA) is hindered by inter-individual variability of treatment outcomes and lack of robust patient selection methods.
Optimal continuous positive airway pressure (CPAP) requirement provides an estimate of airway collapsibility severity, and high
CPAP requirements predict MAS therapy failure in retrospective studies. Thus, understanding the effects of mandibular ad-
vancement on optimal CPAP requirements may enhance optimisation of patient selection for MAS therapy.
Objective This study aims to determine dose-dependent effects of mandibular advancement on optimal CPAP requirements in
OSA.
Methods Prior to MAS therapy initiation, participants with OSA (apnoea-hypopnea index (AHI) > 10 events/h) underwent a
research polysomnogram in which a remotely controlled mandibular positioner (RCMP) was used to determine dose–response
effects of varying mandibular advancement positions (0% ‘habitual bite’ and 25, 50, 75 and 100% of maximum mandibular
advancement, in random order) on optimal CPAP requirements. A separate polysomnography determined treatment outcome.
Data are presented as mean ± SD or median (1st–3rd quartiles).
Results Seventeen participants (age = 47 ± 9 years, body mass index = 26 kg/m2 (23–27), apnoea-hypopnea index = 18 events/h
(14–44) and minimal oxygen saturation = 84 ± 7%) were studied. Optimal CPAP requirements were reduced with mandibular
advancement in a dose-dependent manner (8.9 ± 2.4 vs. 7.9 ± 2.8, 6.4 ± 1.8, 5.7 ± 1.9 and 4.9 ± 1.8 cmH2O; respectively,
p < 0.0001). Compared with non-responders, responders to MAS therapy had lower AHI, lower arousal index and greater
MinSaO2 at baseline. Optimal CPAP requirements at 0% mandibular advancement (or other positions) were not different
between groups.
Conclusions Increasing mandibular advancement lowers optimal CPAP requirements in a dose-dependent manner. This supports
prior work indicating a beneficial effect of MAS on upper airway collapsibility.
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Introduction

Obstructive sleep apnoea (OSA) is a debilitating health con-
dition which puts a significant burden on patients and health
systems worldwide [1–5]. First-line therapy, continuous pos-
itive airway pressure (CPAP), is highly efficacious in reducing
OSA. However, it is not well-tolerated by many patients
[6–8]. Mandibular advancement splints (MAS), the second-
line therapy for OSA [9], tend to be less efficacious than
CPAP but are associated with better adherence. This likely
explains similar health outcomes of MAS compared with
CPAP [10–12]. Nonetheless, there remain a significant pro-
portion of people with OSAwho experience suboptimal treat-
ment efficacy with MAS therapy despite regular usage
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[13–21]. Thus, accurate patient selection is essential to opti-
mise MAS therapy outcomes and avoid unnecessary costs.

A link between MAS therapy outcome and the pathophys-
iological causes of OSA (including poor airway anatomy and
muscle function, high arousability from sleep and high sensi-
tivity of respiratory control system [22, 23]) has been
established [24]. Indeed, we recently found that mandibular
advancement improves airway collapsibility during sleep in a
dose-dependent manner [25]. This aligns with previous work
suggesting that MAS therapy predominantly targets pharyn-
geal anatomy to improve OSA [26–28]. However, measure-
ment of the pathophysiological causes of OSA requires inva-
sive instrumentation and intensive staff training, which are not
accessible for most clinical sleep laboratories.

The optimal CPAP requirement (the level of nasal pressure
provided by CPAP at which all forms of obstructive respira-
tory events are rectified) has been found to reflect the severity
of passive airway collapsibility in OSA patients [29].
Addit ional ly, opt imal CPAP requirements above
10.5 cmH2O in Japanese and 12–13 cmH2O in Caucasians
have been reported to predict treatment failure with MAS
[27, 30, 31]. Although these studies were retrospective, they
highlight the potential to use CPAP requirement as a patient
selection tool for MAS therapy in OSA. This has clinical
appeal as the majority of people diagnosed with OSA receive
a trial of CPAP in the first instance.

Thus, we aimed to prospectively determine the acute ef-
fects of varyingmandibular advancement positions on optimal
CPAP requirements during sleep in OSA patients before com-
mencing MAS therapy. We also aimed to determine whether
optimal CPAP requirement without mandibular advancement
is a predictor of MAS therapy outcome in a prospective co-
hort. The findings of this study may provide a basis to assist in
clinical selection of OSA patients who are likely responders to
MAS therapy and, thereafter, facilitate first-line prescription
of this treatment modality according to a personalised treat-
ment approach [23, 24].

Methods

Participants

People with OSA (apnoea-hypopnea index (AHI) > 10 events/
h), in whom MAS therapy was recommended (either due to
patient preference or insufficient CPAP usage causing ineffec-
tive OSA treatment) by a sleep physician, were screened to
ensure absence of contraindications toMAS therapy (e.g. gum
diseases, insufficient number of teeth, severe daytime sleepi-
ness and central sleep apnoea predominance). Twenty (76%
males; 47% having previously trialled/used CPAP) eligible
patients provided informed written consent to participate in
the study. The Human Research Ethics Committee at North

Sydney Local Health District provided ethical approval for the
study (16/324).

Protocol

Prior to commencement of MAS therapy (SomnoDent Flex,
SomnoMed Ltd., Australia), individual participants
underwent a dental assessment to measure the maximal range
of mandibular advancement (procedures outlined below) as
previously described [32]. Participants also underwent a 1-
week CPAP washout period before investigation if they were
current CPAP users. A research polysomnography (instru-
mentation outlined below) was then performed to determine
optimal CPAP requirements at five predetermined mandibular
advancement positions (0% ‘habitual bite’ and 25, 50, 75 and
100% of the maximal voluntary mandibular advancement in
randomised order). Optimal CPAP requirements were obtain-
ed in real time by a single researcher who was blinded to the
randomisation order of the mandibular advancement posi-
tions. A second standard polysomnography [33] was per-
formed approximately 6 weeks after initiation ofMAS therapy
to determine treatment outcome.

Measurement of mandibular motion range

During the dental assessment visit, two dental trays of a com-
mercially available remotely controlled mandibular positioner
(MATRx, Zephyr Sleep Technologies Inc., Calgary, AB,
Canada) were filled with dental impression material and an-
chored onto the upper and lower dental arches of individual
participants. The dental trays are coupled via a sliding bar in a
manner that enables antero-posterior mandibular movement,
provides a fixed vertical opening (~ 3 mm) and restricts lateral
movement. A millimetre scale is printed on the sliding bar to
enable quantification of the maximal voluntarily mandibular
advancement (100% protrusion), which was measured relative
to habitual bite (0 mm reference point; 0% protrusion). The
remaining predetermined mandibular advancement positions
were then calculated from these measurements to be entered in
the software of the RCMP device during the research
polysomnography with assistance from another overnight
staff.

Instrumentation

In addition to standard polysomnography instrumentation
(Grass Amplifier System, Natus Medical Inc., Pleasanton,
CA, USA), participants were fitted with an RCMP device to
enable precise mandibular positioning during sleep [32,
34–37]. Participants were also fitted with a non-vented nasal
mask (GelMask; Philips Respironics, Murrysville, PA, USA)
connected to a modified CPAP machine (PCRIT 3000, Philips
Respironics, Murrysville, PA, USA) that can deliver up to +
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20 cmH2O of CPAP and − 20 cmH2O of continuous negative
airway pressure, a differential pressure sensor (DP15-16,
Validyne Engineering, Northridge, CA, USA) to measure
mask pressure, a pneumotachograph (3700A; Hans Rudolph
Inc., Shawnee Mission, KS, USA) to measure airflow and a
two-way valve (Series 1410; Hans Rudolph Inc., Shawnee
Mission, KS, USA) to prevent CO2 rebreathing. We used an
analogue-to-digital converter (Power1401, CED, Cambridge
UK) to acquire data via Spike-2 software (version 7, CED,
Cambridge, UK).

Measurement of optimal CPAP requirements

Before the lights were turned off, participants were asked to
sleep supine throughout the night while the RCMP device was
set to the first randomised mandibular position (with assis-
tance from another overnight staff member) and CPAP was
set to + 4 cmH2O. Air pressure was then incrementally titrated
every 3–5 min until all forms of obstructive respiratory events
were rectified (indicated by visual inspection of stable breath-
ing in peak inspiratory flow signal without episodes of
respiratory-related EEG-scored cortical arousals). To ensure
optimisation of breathing, air pressure was increased by 2–
3 cmH2O above the identified optimal CPAP level to detect
any increase in peak inspiratory flow [38]. Next, mandibular
advancement position was changed, CPAP level was reset to
+ 4 cmH2O and the titration procedure was repeated. If ob-
structive events were not detected while on + 4 cmH2O, the
pressure was reduced to a lower level in an attempt to induce
flow limitation before initiating incremental pressure titration
again. Identification of optimal pressure requirements was re-
peated twice for each mandibular advancement position dur-
ing the same overnight study to confirm reproducibility. Data
analyses were repeated after sleep staging, and scoring was
performed by an experienced technologist according to
AASM criteria 2012 [33] to ensure intra-rater reliability.

Definition of MAS therapy outcome

Participants who achieved a residual AHI ≤ 5 events/h of sleep
onMAS therapy were classified as responders compared with
those whose treatment AHI was > 5 events/h (non-re-
sponders). A more stringent cutoff (5 events/h of sleep) of
treatment success was used in this study to conform with
clinical criteria for OSA diagnosis and CPAP outcomes.

Statistical analyses

SPSS software pack (V20, IBM Corp., NY, USA) was used to
conduct statistical analyses. Shapiro-Wilk test was performed
to assess normality distribution. Repeated measures analyses
of variance (RM ANOVAs) or Kruskal-Wallis tests (as appro-
priate) were performed to examine differences in optimal

CPAP requirements across mandibular advancement posi-
tions. Tukey’s (or Dunn’s for non-parametric variables) post
hoc tests were used to assess multiple comparisons. Two-
tailed paired t tests were used to compare anthropometric
and polysomnographic parameters at baseline vs. MAS ther-
apy. Unpaired t tests (or Mann-Whitney U test for non-
parametric variables) were performed to examine potential
differences in optimal CPAP requirement at 0% mandibular
advancement between responders to MAS therapy vs. non-
responders. Data were expressed as mean ± SD or median
(25th–75th quartiles) according to normality distribution. A
linear regression model was also built to assess the utility of
optimal CPAP requirement at 0% mandibular advancement to
predict the percent reduction in AHI with MAS compared
with baseline.

Results

Participant characteristics at baseline diagnostic
polysomnography

We obtained sufficient data for analyses during all mandibular
advancement positions from 17 out of 20 participants. One
patient had severe bruxism during the polysomnography study
that prevented the RCMP device from working properly, and
two patients were unable to sleep with the RCMP device.
Table 1 summarises baseline patient characteristics and
MAS settings for the 17 participants who completed the study
protocol. Although dropouts were older compared with par-
ticipants (65 ± 11 vs. 47 ± 9 years, p = 0.04), there was no
significant difference between participants and dropouts in
body mass index (BMI, p = 0.06) or OSA severity (AHI p =
0.62; minimal oxygen saturation (MinSaO2) p = 0.14; 4% ox-
ygen desaturation index (ODI4%) p = 0.18; arousal index p =
0.12). There was also no difference in age, BMI or OSA se-
verity between previous CPAP users and those who were
CPAP naive.

Optimal CPAP requirements across five mandibular
advancement positions

Measurements of optimal CPAP requirements were obtain-
ed at least twice at each mandibular advancement position
with high reliability (overall intra-class correlation coeffi-
cient = 0.91). We observed a significant dose-dependent
reduction in optimal CPAP requirements during NREM
sleep across the five mandibular advancement positions
(one-way RM ANOVA p < 0.0001, Fig. 1a), although to a
different extent between individuals (Fig. 1b). Tukey’s
multiple comparison testing showed stepwise reductions
in the significance level (p value) with mandibular ad-
vancement compared with 0% position. The average
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reduction in optimal CPAP requirements was similar be-
tween each two consecutive mandibular advancement po-
sitions (1.0 ± 1.5 for 0 to 25% vs. 1.5 ± 2.6 for 25 to 50%
vs. 0.7 ± 1.1 for 50 to 75% vs. 0.8 ± 1.3 for 75 to 100%,
one-way RM ANOVA p = 0.62). The average reduction in
optimal CPAP requirements from 0 to 100% advancement
was 4.0 ± 2.7 cmH2O. We observed a significant correla-
tion between the stepwise reduction in optimal CPAP re-
quirements and the corresponding level of mandibular ad-
vancement in millimetres (r = − 0.588, p < 0.001; Fig. 2).
However, no correlation was found between the total re-
duction in optimal CPAP requirements (i.e. the change
from 0 to 100% advancement) and the maximum range of
mandibular advancement in millimetres (r = 0.014, p =
0.888).

Optimal CPAP requirements and response to MAS
therapy

Table 1 summarises the changes in key clinical variables and
polysomnographic indices with MAS therapy compared with
baseline. In our sample, MAS therapy reduced total AHI by
72%, ODI4% by 82%, arousal index by 43%, maximal ap-
noea duration by 17%, maximal hypopnea duration by 42%
and improved MinSaO2 by 5%. No difference in sleep latency
or efficiency with MAS therapy was noted compared with
baseline (unpaired t tests, p = 0.7 and 0.9, respectively).

Eight (47%) out of seventeen participants were responders
toMAS therapy (cutoff of residual AHI withMAS therapy ≤ 5
events/h of sleep). There was no difference between re-
sponders and non-responders in the maximum range of

Table 1 Anthropometric
measurements and
polysomnographic indices with
and without MAS therapy for
participants who completed the
study protocol (n = 17)

Characteristic Without MASb With MASb p valuec

Sex (M:F) 13:4 13:4 –

Age (years) 47 ± 9 – –

BMI (kg/m2) 26 (23–27) 26 (24–27) NS

ESS 7 ± 4 7 ± 4 NS

Max advancement range (mm)a 8.2 ± 2.3 – –

Theraputic anadvancement (mm)a – 7.2 ± 2.1 –

Theraputic advancement (%max)a – 93.5 ± 6.4 –

TST (min) 376 ± 56 383 ± 46 NS

AHI, TST (events/h) 18 (14–44) 6 (4–9) < 0.001

AHI, NREM (events/h) 20 (14–42) 4 (2–10) < 0.001

AHI, REM (events/h) 25 (11–39) 10 (4–21) 0.009

MinSaO2, TST (%) 84 ± 7 87 ± 6 0.016

ODI 3%, TST 13 (5–25) 3 (1–8) 0.002

ODI 3%, NREM (events/h) 13 (5–31) 3 (1–6) 0.002

ODI 3%, REM (events/h) 19 (11–29) 10 (2–18) NS

ODI 4%, TST (events/h) 9 (4–21) 1 (0–4) 0.002

ODI 4%, NREM (events/h) 7 (2–20) 1 (0–1) < 0.001

ODI 4%, REM (events/h) 10 (6–22) 2 (0–12) NS

Arousal index, TST (events/h) 39 ± 16 21 ± 8 < 0.001

Arousal index, NREM (events/h) 40 ± 16 22 ± 10 < 0.001

Arousal index, REM (events/h) 34 ± 20 25 ± 13 0.024

Mean obstructive duration (s) 27 ± 9 27 ± 13 NS

Longest apnoea aduration (s) 36 ± 16 30 ± 22 0.044

Longest hypopnea duration (s) 72 ± 32 42 ± 34 0.040

MAS, mandibular advancement splints; BMI, body mass index; ESS, Epworth Sleepiness Scale; TST, total sleep
time; AHI, apnoea-hypopnea index; NREM, non-rapid eye movement sleep; REM, rapid eye movement sleep;
MinSaO2, minimal oxygen saturation;ODI3%, 3% oxygen desaturation index;ODI4%, 4% oxygen desaturation
index
aMaximal advancement range is the maximal level of mandibular advancement (compared with habitual bite
(0 mm point)) determined for individual patients by an experienced dentist before commencement of MAS
therapy. Theraputic advancement is the level of mandibular advancement (out of maximal advancement range)
on MAS therapy that patients have comfortably reached at the time of follow-up polysomnography
bData presented as mean ± SD or median (1st–3rd quartiles) according to normality distribution
c Paired t test or Wilcoxon signed rank test were used as appropriate
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mandibular advancement (8.0 ± 2.4 vs. 8.3 ± 2.2 mm, respec-
tively, unpaired t test p = 0.387) or therapeutic mandibular
advancement (6.8 ± 2.1 vs. 7.6 ± 2.1 mm, respectively, un-
paired t test p = 0.220). At baseline, responders, compared
with non-responders, had significantly lower total AHI (15.0
(12.9–19.8) vs. 35.5 (16.8–46.4) events/h of sleep, Mann-
Whitney U test p < 0.001), lower arousal index (30.4 ± 9.5
vs. 46.6 ± 16.3 events/h of sleep, unpaired t test p = 0.010),
shorter longest apnoea duration (28.5 ± 13.4 vs. 42.2 ±
15.0 s, respectively, unpaired t test p = 0.030) and less over-
night hypoxia (86 ± 4 vs. 81 ± 7%, unpaired t test p = 0.040).
However, we found no difference between the two response

groups in BMI (26.4 kg/m2 (22.8–26.7) vs. 26.3 kg/m2 (23.1–
27.3), respectively, Mann-Whitney U test p = 0.281), age
(49.4 ± 7.8 vs. 45.5 ± 10.3 years, respectively, unpaired t test
p = 0.159), ODI4% (4.9 events/h (4.1–8.1) vs. 9.7 events/h
(4.1–35.5), respectively, Mann-Whitney U test p = 0.129),
longest hypopnea duration (45.0 s (35.5–85.1) vs. 68.5 s
(57.0–100.0), respectively, Mann-Whitney U test p = 0.193)
or Epworth Sleepiness Scale (7.5 ± 5.0 vs. 6.6 ± 3.4 s, respec-
tively, unpaired t test p = 0.348).

The optimal CPAP requirement at 0%mandibular advance-
ment was not significantly different between responders to
MAS therapy vs. non-responders (8.7 ± 2.4 vs. 9.1 ±
2.6 cmH2O, unpaired t test p = 0.10; Fig. 3a). Optimal CPAP
requirements for other mandibular advancement positions
were also not different between the two response groups.
The reduction in optimal CPAP requirements across the five
mandibular advancement positions was similar between the
two response groups (Fig. 3b). Univariable linear regression
analyses showed two independent predictors of the percent
reduction in AHI with MAS therapy: optimal CPAP require-
ment at 0% (95% CI = (3.6 to 1.5), Beta = 0.553, F = 5.7, p =
0.03) and maximum apnoea duration at diagnostic
polysomnography (95% CI = (− 0.65 to 0.245), Beta = −
0.591, F = 7.0, p = 0.02).

Discussion

This is the first study to identify a dose-dependent reduction in
optimal CPAP requirements with increasing levels of mandib-
ular advancement. This is in accordance with our previous
findings of a dose-dependent reduction in airway collapsibil-
ity (measured by the critical closing pressure method) with
mandibular advancement [25]. This also provides further ev-
idence that the optimal CPAP requirement reflects airway
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Fig. 1 Optimal continuous positive airway pressure (CPAP) requirements
(a) decreased across five mandibular advancement positions in a dose-
dependent manner (8.9 ± 2.4 vs. 7.9 ± 2.8 vs. 6.4 ± 1.8 vs. 5.7 ± 1.9 vs.
4.9 ± 1.8 cmH2O; respectively, p < 0.0001), although to a different extent
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collapsibility in OSA patients [29]. Indeed, the average reduc-
tion in optimal CPAP requirements with MAS therapy of ~
4 cmH2O found in this study was similar to critical airway
pressure changes with MAS in previous trials [25, 39–41].
This provides further support that optimal CPAP requirement
may be a clinically useful method to estimate airway collaps-
ibility in people with OSA.

Although responders toMAS therapy had less-severe OSA
compared with non-responders, we observed no difference
between the two groups in the optimal CPAP requirement at
0% mandibular advancement or in the reduction of optimal
CPAP requirements from 0 to 100% mandibular advance-
ment. This may be attributed, at least in part, to the fact that
the majority of participants in this study had lower than aver-
age age, BMI and baseline AHI compared with a typical OSA
population. Although participants were recruited by three dif-
ferent sleep physicians, selection-bias possibly contributed to
the lower BMI and mild AHI of our participants. Mild OSA

has been shown to reflect a distinct phenotype that is more
likely caused by non-anatomical mechanisms (e.g. poor pha-
ryngeal muscle function, high loop gain and low arousal
threshold [22, 42, 43]). These mechanisms are less likely to
be corrected by MAS therapy. Our study design was intended
to be clinically applicable, and hence we did not directly mea-
sure anatomical collapsibility or non-anatomical mechanisms
due to the invasive nature of measurement techniques [22].
Therefore, we cannot elucidate how differences in the pres-
ence and extent of these mechanisms between individual pa-
tients contributed to optimal CPAP requirements. MAS ther-
apy could have provided suboptimal efficacy in a proportion
of our participants (with higher levels of non-anatomical dis-
turbances) which in turn resulted in a homogenous levels of
optimal CPAP requirement at 0% position as well as reduction
in optimal CPAP requirements with mandibular advancement
between the two response groups [23]. Additionally, our study
design did not account for variations in craniofacial dimen-
sions (e.g. via X-ray imaging) between responders and non-
responders to MAS therapy. These variations may result in
differences in the extent and characterisation of structural dis-
placement of the upper airways, and thus, optimal CPAP re-
quirements, in response to mandibular advancement. Nasal
resistance also contributes to the development of OSA and
has a role in determining response to MAS therapy [44, 45].
Concurrent analysis of anatomical, physiological and clinical
factors may further enhance our knowledge of MAS therapy
outcome in OSA. Noteworthy, optimal CPAP requirement at
0% mandibular advancement in the current study was in a
lower range (~ 9 cmH2O) compared with previously reported
cutoffs (12–13 cmH2O in predominantly Caucasian popula-
tion) predicting MAS failure. This may have affected the
study results by skewing MAS response rate (according to a
response definition: AHI ≤ 5 events/h) which would influence
the differences in baseline characteristics between MAS re-
sponse groups. Nonetheless, the findings of this study do not
strongly support a role for optimal CPAP in prediction of
MAS therapy outcome in mild to moderate OSA. However,
the optimal CPAP requirement at 0% was an independent
predictor in the univariate analysis. Future replication of this
study in patients with diverse OSA severities is required to
provide a clearer understanding.

Methodological considerations

Randomisation of mandibular advancement conditions during
measurement and blinded data acquisition and analysis of op-
timal CPAP requirements are major design strengths of the
current study. However, several methodological aspects
should be considered before drawing final inferences from
the current findings. Although a larger sample size would
improve the reliability and generatability of the study, our
findings are consistent with those from previous trials
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examining the effects of mandibular advancement on the path-
ophysiological mechanisms causing OSA. Although we used
specialised equipment to ensure accurate measurements, the
technique implemented for titration of optimal CPAP require-
ments was based on visual inspection of airflow pressure and
EEG signals to resemble measurements made in clinical sleep
laboratories, and in accordance with clinical guidelines
(AASM [33]). For the same reason, we chose not to instru-
ment participants with an oesophageal pressure catheter (gold-
standard indicator of airway collapsibility) as this may affect
breathing and introduce bias in measurements of optimal
CPAP requirements compared with clinical practice.
Nonetheless, other trials from our laboratory (unpublished
work) found that measurement of the optimal CPAP require-
ment based on stabilisation of epiglottic pressure swings is not
different from those measured via visual inspection of airflow
signals. We also focused our analysis on NREM sleep to fa-
cilitate comparison with previous work related to MAS thera-
py outcome and to enhance the study feasibility to obtain
measurements from multiple conditions of mandibular ad-
vancement during a single polysomnography night.
Nonetheless, responses to MAS therapy did not change when
the definition of treatment success (i.e. ≤ 5 events/h) was
based on NREM AHI. Thus, we speculate that the effects of
mandibular advancement on optimal CPAP requirements
would extend to REM sleep, although with higher absolute
CPAP requirements compared with NREM sleep.
Furthermore, it is possible that 0% mandibular advancement
with RCMP device in situ, compared with no device, may
stabilise the mandible and the airway in patients with less-
severe OSA [46], yet, we did not include a no-device condi-
tion to the already challenging protocol to enhance the feasi-
bility of the current study.

The maximal mandibular advancement range (and other
predetermined positions) implemented in our study was cal-
culated relative to habitual bite rather than maximal retrusion,
and thus, was shorter (8.2 ± 2.3 mm) compared with previous
trials (~ 11–13 mm [47]). Nonetheless, the average maximal
advancement relative to maximal retrusion was also measured
in the current study (12.2 ± 2.4 mm) and was comparable with
previously reported ranges. We note that this method of man-
dibular advancement measurement was adopted here as we
could not find clinical guidelines to recommend a certain
method of measurement with inconsistent methodology re-
ported across previous studies pertaining to MAS therapy
outcome.

Although mandibular advancement range was variable be-
tween participants in this study (4–12 mm), there was no dif-
ference inmandibular advancement range between responders
and non-responders to MAS therapy. Thus, this variability is
not expected to influence optimal CPAP requirements at base-
line or assist in predicting MAS therapy outcome. We also
elected to standardise our methodology via implementing

mandibular advancement conditions using a percentage for-
mat (e.g. 0%, 25%, 50% etc.), rather than absolute millimetres
(e.g. 0, 2, 4, etc.) to account for structural (e.g. bone size) and
functional (e.g. temporomandibular joint motion) differences
between individual participants. Vertical opening of RCMP
andMAS devices is another important element in determining
optimal CPAP requirement and treatment outcome, respec-
tively. Vertical opening causes posterior re-positioning of the
mandible which restricts the maximal mandibular advance-
ment and aggravates airway narrowing/collapsibility [14, 47,
48]. Thus, we attempted to keep the vertical opening of
RCMP and MAS devices consistent across our participants
to avoid effects on optimal CPAP requirements and MAS
therapy outcome. Nonetheless, examining the effects of verti-
cal opening on the dose–response relationship between man-
dibular advancement and optimal CPAP requirements would
be an interesting aim for future studies.

Conclusions

Optimal CPAP requirements decrease with mandibular ad-
vancement in a dose-dependent manner. The reduction in
optimal CPAP requirements correlates with the level of
mandibular advancement measured in millimetres (where
habitual bite is the ‘0-mm reference point’). The reduction
in optimal CPAP requirements was not different between
MAS therapy responders vs. non-responders. These find-
ings support previous work showing beneficial effects of
MAS on upper airway collapsibility and the potential for
optimal CPAP requirement to be utilised as a marker for
upper airway collapsibility. Further prospective validation
of our results in a larger sample size with more diverse
OSA severities is warranted.
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