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Abstract
Purpose The upper airway (UA) anatomical collapsibility, UA muscle responsiveness, breathing control, and/or arousability are
important contributing factors for obstructive sleep apnea (OSA). Differences in clinical manifestations of OSA are believed to
reflect interactions among these factors. We aimed to classify OSA patients into subgroups based on polysomnographic (PSG)
variables using cluster analysis and assess each subgroup’s characteristics.
Methods Men with moderate or severe OSA and without any concomitant heart or psychosomatic disease were recruited. A
hierarchical cluster analysis was performed using variables including fraction of apnea, respiratory event duration, minimum
oxygen saturation, arousal rate before termination, and frequency of respiratory events in the supine position. The impact of sleep
stages or body position on PSG variables was also evaluated in each cluster.
Results A total of 210 men (mean age, 50.0 years, mean body mass index, 27.4 kg/m2) were studied. The three subgroups that
emerged from the analysis were defined as follows: cluster 1 (high fraction of apnea and severe desaturation (20%)), cluster 2
(high fraction of apnea and long event duration (31%)), and cluster 3 (low fraction of apnea (49%)). There were differences in the
body mass index and apnea type between the three clusters. Sleep stages and/or body position affected PSG variables in each
cluster.
Conclusions Patients with OSA could be divided into three distinct subgroups based on PSG variables. This clustering may be
used for assessing the pathophysiology of OSA to tailor individual treatment other than continuous positive airway pressure
therapy.
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Abbreviations
AHI Apnea-hypopnea index
BMI Body mass index
CA Central apnea
EMG Electromyogram

Fapnea Fraction of apnea
OSA Obstructive sleep apnea
PSG Polysomnography
Rar Ratio of arousal
SDB Sleep-disordered breathing
SE Standard error
SN Distance from sella to nasion
SpO2 Saturation of oxygen
UA Upper airway

Introduction

Obstructive sleep apnea (OSA) is a highly prevalent sleep
disorder characterized by recurrent episodes of upper airway
(UA) obstruction during sleep, leading to partial or complete
cessation of breathing. OSA is widely recognized to contrib-
ute to cardiovascular comorbidities, type 2 diabetes, and hy-
persomnolence [1]. It is a multifactorial disorder that
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originates from UA anatomical characteristics and muscle re-
sponsiveness, arousability, and breathing instability. The in-
teraction among these factors contributes to the occurrence/
aggravation of OSA [2].

The apnea-hypopnea index (AHI), i.e., the number of ap-
neas or hypopneas per hour of sleep, is measured by
polysomnography (PSG) and is used to evaluate the severity
of sleep apnea. However, other PSG parameters have not been
successfully synthesized [3, 4]. Indeed, the characteristics of
respiratory events assessed using PSG may reflect the under-
lying pathophysiology of OSA. If true, it would be necessary
to identify useful parameters other than AHI to classify OSA
subgroups.

Cluster analysis is a multivariate method of classifying a
sample of subjects into different groups with common charac-
teristics, based on a set of measured variables. Several recent
studies have used cluster analysis to distinguish OSA pheno-
types [5–10]. Some studies have reported OSA phenotypes
with a combination of variables, including symptoms and co-
morbidities, whereas only a few studies have used cluster
analysis with PSG variables [5, 9, 10].

In the present study, we used the characteristics of respira-
tory events from PSG and performed a cluster analysis. We
hypothesized that the characteristics of respiratory events re-
flect the underlying OSA pathophysiology.

Methods

Subjects

Men with moderate or severe OSA, who underwent diagnostic
PSG between August 2013 and November 2015 at the Yoyogi
Sleep Disorder Center (Tokyo, Japan), were eligible to partic-
ipate in this retrospective study. Patients with cardiovascular,
cerebrovascular, and/or psychiatric diseases, periodic limb
movements > 15/h, and those on medications affecting sleep,
breathing, or muscle control at diagnostic PSG were excluded
from the analysis. Study participant flow (N = 210; age, 47.0 ±
0.8 years; body mass index (BMI), 27.4 ± 0.4 kg/m2) is shown
in Fig. 1. The study was approved by the institutional review
board of Tokyo Medical University (Tokyo, Japan). All partic-
ipants provided informed written consent for study participa-
tion and to have their anonymized clinical data analyzed.

Polysomnography

Nocturnal in-laboratory PSG was performed using a PSG sys-
tem (Alice 5, Respironics, Murrysville, PA), including moni-
toring of electroencephalogram (C3-A2, C4-A1), bilateral
electrooculogram, submental electromyogram (EMG), electro-
cardiogram, and bilateral anterior tibialis EMG. Airflow was
recorded using nasal pressure cannula and an oronasal

thermistor. Thoracic and abdominal movements were recorded
using inductive bands, and oxyhemoglobin saturation was
monitored with a finger probe using a pulse oximeter. Body
position was monitored using an automatic position sensor.
Sleep stages, respiratory events, and associated arousals were
scored according to the American Academy of Sleep Medicine
Scoring Manual published in 2007 [11]. Hypopnea was de-
fined as ≥ 50% decrease in nasal pressure, in association with
an arousal or ≥ 3% desaturation (according to the alternative
criteria).

Data collection and parameter computing

Event data sheets were used to assess respiratory events in the
supine and non-supine positions separately during each sleep
stage (N1–N3 and rapid eye movement), for the combined
total time for each position and sleep stage of at least 5 min
(10 epochs).

The variables measured included number and type of re-
spiratory events (apneas or hypopneas), event duration, degree
of oxygen desaturation, and occurrence and timing of arousals
during whole sleep and/or each sleep stage. Mean event dura-
tion and mean minimum SpO2 were recorded as the average
of all relevant events in each subject. Apneas were divided
into obstructive, mixed, and central apneas (CAs). The frac-
tion of apnea (Fapnea) was obtained from the ratio of apneas to
the total number of respiratory events. The arousal ratio (Rar)
was obtained from the ratio of arousals during respiratory
events to the total number of respiratory events. We selected
variables based on clinical PSG characteristics reported by
Edwards et al. [12], except from the arousal index, for which
we used Rar. The preponderance of respiratory events in the
sleeping position and sleep stages is well-known [1]. UA col-
lapsibility is strongly influenced by body position rather than
sleep stages [13]. Due to the limited number of subjects and in
order to represent significant and meaningful respiratory event
patterns in our patients, we performed an ascending hierarchi-
cal clustering analysis using Fapnea, mean even duration, mean
minimum SpO2 accompanied with the events, Rar, and AHI in
the supine position, according to Ward’s method.

Absolute correlations between selected variables were low-
er than 0.90 (− 0.63 to 0.50). Ward’s method is a linkage
method in which individual data points or clusters are com-
bined. In brief, the method merges (at each step) the two
closest clusters or points with minimal increases in the
summed squared Euclidean distances between them. The re-
sult of this hierarchical clustering is shown as a dendrogram.
On its vertical axis, the proximity between the merging clus-
ters is typically displayed. A Scree plot was drawn to plot the
curve of the total within-cluster sum of squares according to
the number of clusters. The elbow method was used to deter-
mine the appropriate number of clusters as objectively as pos-
sible. The location of a bend (a meaningful change in the
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slope) in the plot was considered to be an indicator of the
appropriate number of clusters.

Although there are no established guidelines regarding the
sample size necessary for cluster analysis, a prior report sug-
gested the use of no fewer than 2k cases (k = number of var-
iables), preferably 5 × 2k [14]. Thus, our minimum sample
size was calculated to be 160 (5 × 25).

Statistical analyses

Data are reported as mean ± standard error (SE) or median
(interquartile range (IQR)). After identifying clusters, the dif-
ferences in patient demographics and PSG variables among
clusters were examined using non-parametric analysis
(Kruskal-Wallis test). If a difference was significant, a post
hoc analysis (Steel-Dwass test) was performed. To evaluate
the reliability of the classification derived by hierarchical clus-
ter analysis, K-means method was used for validation. After
that, Kappa statistic was calculated to measure the agreement
between the two classifications [15]. To evaluate the effect of
sleep stage or body position, PSG variables were compared
using the Wilcoxon signed rank test between NREM and
REM sleep or between supine and non-supine positions.
Statistical significance was accepted at p < 0.005. The preva-
lence of comorbidity was assessed using the chi-squared test.
In this case, p < 0.05 was considered significant. All analyses
were performed using JMP version 11.0.0 (SAS Institute Inc.,
Cary, NC, USA).

Results

Patients were divided into three groups using hierarchical
cluster analysis of the supine position data. The radar chart
and characteristics of the three clusters are shown in Fig. 2 and
Table 1.

Cluster 1 (CL1, 20% of the entire subject pool) exhibited
the highest Fapnea, largest AHI, lowest minimum SpO2, and
largest Rar and BMI than clusters 2 and 3. Cluster 2 (CL2,
31% the entire subject pool) had the longest duration of events
among all clusters, and higher Fapnea and larger Rar than cluster
3. The BMI in CL2 was smaller. Among the three groups,
cluster 3 (CL3, 49% the entire subject pool) constituted the

Fig. 2 Clusters (CL) from polysomnographic parameters in the supine
position. Medians of five variables are shown for the three clusters. AHI,
apnea-hypopnea index; Fapnea, fraction of apneas per total respiratory
events; Rar, ratio of arousals during respiratory events; min SpO2, mini-
mum oxygen saturation

Fig. 1 Study participant flow.
PSG, polysomnography; AHI,
apnea-hypopnea index; PLMI,
periodic limb movement index;
PSD, psychosomatic disease;
CVD, cardiovascular disease; SA,
sleep apnea
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largest proportion; this cluster had lower Fapnea and AHI,
shorter duration of events, and smaller Rar than CL1 and
CL2. CL3 exhibited a minimum SpO2 similar to that of CL2
without hypoxemia and had a significantly higher percentage
of CAs than CL1 and CL2.

K-means clustering (n = 3) for validation is presented in
Table S1 and showed similar groups to those identified by
hierarchical clustering. The distribution of numbers between
hierarchical and K-means clustering is shown in Table S2.
Kappa statistic was 0.7(95% CI, 0.61–0.78).

Comparing PSG parameters in the supine position between
NREM and REM sleep, Fapnea was significantly larger, the
durationwas longer, and the minimum SpO2was lower during
REM than NREM sleep in all clusters, as shown in Fig. 3 and
Table S3. AHI increased during REM sleep in CL2 and CL3
but decreased in CL1 due to the considerable prolongation of
event duration. To examine the effect of body position on PSG
variables, we evaluated 135 patients. However, 75 patients
were excluded from this analysis due to insufficient non-
supine sleep time (median (IQR) 7.5 (47.5) min). The

differences in PSG variables between the supine and non-
supine positions in each cluster are shown in Fig. 4 and
Table S4. In each cluster, the non-supine AHI was significant-
ly lower than the supine. In CL1 and CL2, Fapnea in the non-
supine position was smaller. However, in CL3, the non-supine
Fapnea was not significantly different from the supine Fapnea. In
each cluster, the non-supine Rar was significantly lower, and
SpO2 was significantly higher than the corresponding supine
values. Lastly, the duration of the events between the supine
and non-supine positions was not significantly different in
each cluster.

Discussion

We analyzed the diagnostic PSG variables from OSA patients
in the supine position using hierarchical cluster analysis. Our
results showed (1) three distinct clusters: high fraction of ap-
nea and severe desaturation (CL1), high fraction and long
duration of apnea (CL2), and low fraction of apnea (CL3);

Table 1 Patient demographics
and characteristics in the supine
position

Characteristic Cluster 1 Cluster 2 Cluster 3

Number of patients (% of total) 42 (20.0) 65 (31.0) 103 (49.0)

Age (years) 45.0 ± 1.4 49.9 ± 1.4 46.0 ± 1.1

BMI (kg/m2) 32.5 ± 1.0 23.8 ± 0.3 a 27.5 ± 0.4 a,b

ESS score 9.9 ± 0.9 8.7 ± 0.7 9.4 ± 0.5

Polysomnography parameters

Fapnea (%) 88.5 (22.7) 68.1 (29.8) a 31.2 (31.4) a,b

Duration (s) 30.4 (6.6) 35.2 (8.0) a 25.9 (5.8) a,b

Rar (%) 72.7 (34.5) 62.3 (29.3) 39.6 (27.3) a,b

Min SpO2 (%) 84.0 (9.1) 92.1 (4.2) a 92.2 (2.7) a

AHI (/h) 73.8 (19.6) 33.9 (21.3) a 34.0 (20.8) a

Apnea type

CA (%) 0.6 (2.8) 0.8 (3.5) 5.4 (23.0) a,b

MA (%) 2.6 (15.9) 2.0 (10.7) 1.6 (9.1)

OA (%) 96.6 (23.9) 97.2 (13.4) 88.9 (39.8)

Sleep time (min) 282.5 (134.3) 310.0 (169.2) 300.9 (138.1)

%Total sleep time (%) 68.0 (32.8) 78.4 (40.9) 72.5 (30.8)

Sleep stages

N1 (%) 51.0 (29.7) 28.1 (20.4) a 27.7 (19.4) a

N2 (%) 32.9 (21.5) 48.9 (15.9) a 51.5 (19.4) a

N3 (%) 0.0 (0.3) 0.2 (2.0) 2.3 (6.5) a,b

R (%) 14.4 (10.0) 16.6 (10.9) 18.4 (11.3)

Comorbidity

HTN (%) 31.9 23.1 20.3

Diabetes (%) 4.8 6.2 6.8

Data presented as mean ± standard error or median (interquartile range). %Total sleep time = the percentage of
supine sleep time over total sleep time. a indicates P < 0.005 compared to cluster 1; b indicates P < 0.005
compared to cluster 2. AHI, apnea/hypopnea index; BMI, body mass index; ESS, Epworth sleepiness scale;
Fapnea, fraction of apnea; Rar, ratio of arousal; Min SpO2, minimum oxygen saturation; CA, central apnea; MA,
mixed apnea; OA, obstructive apnea; HTN, hypertension
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(2) significant differences in the BMI and apnea type among
the three clusters; (3) worsening of the apnea fraction, dura-
tion, and desaturation during REM sleep in all clusters; (4) a
body position effect on the severity of OSA and arousal ratios
in all clusters, and on the fraction of apnea in CL1 and CL2.

In the theoretical pathophysiological model, predisposition
to OSA reportedly depends on the combination of UA anato-
my, UAmuscle response, ventilatory stability, and arousability

[2]. UA collapsibility is likely influenced by anatomical and
neuromuscular factors [16, 17] and has been evaluated previ-
ously by measuring pharyngeal critical pressure [17, 18]. Even
though AHIs are similar among patients, some patients have
predominantly obstructive apneas, whereas others have pre-
dominantly obstructive hypopneas. Moreover, apnea requires
higher pressure than hypopnea to maintain UA patency.
Therefore, a different apnea/hypopnea ratio might require

Fig. 3 Changes in variables
during NREM and REM sleep in
the supine position in each cluster.
Medians of five variables are
shown for the three clusters.
#P < 0.01; *P < 0.001; and
P < 0.0001. CL, cluster; AHI,
apnea-hypopnea index; Fapnea,
fraction of apneas per total respi-
ratory events; Rar, ratio of
arousals during respiratory
events; min SpO2, minimum ox-
ygen saturation

Fig. 4 Changes in variables in the
supine and non-supine positions
in each cluster. Medians of five
variables are shown for the three
clusters. #P < 0.01; *P < 0.001;
and P < 0.0001. CL, cluster; AHI,
apnea-hypopnea index; Fapnea,
fraction of apneas per total respi-
ratory events; Rar, ratio of
arousals during respiratory
events; min SpO2, minimum ox-
ygen saturation
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different pressures to overcome these obstructive events.
Joosten et al. reported that moving from the supine to the
lateral position significantly improves passive UA collapsibil-
ity and its ability to dilate and stiffen [19]. We found that Fapnea
was smaller in the non-supine than in the supine position in
many patients, similar to AHI [20], suggesting that Fapnea may
indicate UA collapsibility.

Arousals are stimuli that terminate the respiratory events in
OSA, which accompany hypoxemia and/or hypercapnia, thus
increasing the ventilatory drive [21]. When the drive reaches
the arousal threshold, a respiratory effort-dependent arousal
occurs. Hence, Rar may indicate the likelihood of termination
of an event by an arousal. In contrast, events without arousal
open the UA in a neuromuscular compensatory fashion before
arousal [22].

Clustering is a useful technique to examine data by group-
ing, but clusters are dependent on the selected variables. Only
three studies have performed cluster analysis on PSGmeasures
other than AHI [5, 9, 10]. Joosten et al. identified six clusters in
patients with mild or moderate OSA [5], categorized into clin-
ical OSA groups, such as REM-predominant, supine-isolated,
supine-predominant, and REM/supine overlap. Furthermore,
Lacedonia et al. identified three clusters in patients with OSA
using AHI, time with SpO2 less than 90%, and oxygen
desaturation index [9]. These two studies did not include
arousals and degree of desaturation. Recently, Zinchuk et al.
selected 17 features from four domains (breathing disturbance,
sleep architecture disturbance, autonomic dysregulation, and
hypoxia) by variable reduction analysis and identified seven
clusters from routine PSG data [10]. However, their method
was overly complex for clinical use. The authors also sug-
gested that measuring arousal timing, apnea and hypopnea
duration, pre-event oxygen saturation, ventilatory loop gain,
and pharyngeal muscle responsiveness may help refine clus-
tering. Herein, we used variables, including arousal timing and
respiratory event duration and obtained three clusters with in-
terpretable clinical and PSG features. Validation is an impor-
tant consideration; however, as our analytical sample was
small, we elected not to use Bhold-out^ validation but use the
K-means method, non-hierarchical clustering, used to evaluate
relevance in market research [23]. Kappa statistic shows the
agreement between classifications; this was 0.7 between hier-
archical and K-means clustering, indicating substantial agree-
ment between the two classifications. In the future, a different
dataset is needed to validate our clustering.

Patients in CL1 were obese and exhibited characteristics con-
sistent with Btypical OSA.^ As chemical response to both hyp-
oxemia and hypercapnia could promote increase in ventilatory
drive sooner and to a higher degree, the high Rar in CL1 suggests
that ventilatory drive at the end of the events may reach the
arousal threshold level. Peppard et al. showed that BMI is an
important predictor of oxygen desaturation severity during re-
spiratory events in OSA independent of age, sex, sleeping

position, smoking history, baseline SpO2, and event duration
[24]. Therefore, high BMIwas an important factor to distinguish
this cluster, in terms of high Fapnea and severe hypoxemia.

CL2 was characterized by long duration of events and high
Fapnea. Although there was no difference in the minimum
SpO2 between CL2 and CL3, CL2 had approximately 10-s
longer duration and higher Rar. This indicates that UA-
muscle responses were not enough to compensate for the air-
way opening, even for longer duration, and that the respiratory
events were supposed to end with the occurrence of arousals.
Taken together, longer duration and higher Rar might indicate
a high arousal threshold in CL2. In contrast, relatively large
Fapnea and non-obesity indicated that the UA was more col-
lapsible in the supine position. Lastly, Fapnea in the non-supine
position in CL2 was similar to that in CL3 and much lower
than that in the supine position, suggesting dominant
anteroposterior UA collapsibility in CL2.

Patients in CL3 had lower Fapnea and Rar, suggesting that
the UA likely opens before arousals resuming respiration.
Why did the patients in this cluster have OSA? It was sug-
gested that patients with a mildly collapsible UA exhibit high
chemosensitivity [25]. In CL3, breathing instability might
have contributed to OSA development. As we did not include
variables to assess breathing instability, we speculate that high
chemosensitivity in CL3 was due to the higher percentage of
CAs. The repeated CA occurrence during sleep might reflect
breathing instability, which is dependent on the gain of the
respiratory control system [25]. Indeed, it would have been
useful to obtain data for breathing control from PSG. Terrill
et al. provided a method to quantify breathing instability from
PSG [26]. However, we were unable to incorporate this meth-
od in our clinical PSG protocol. Another factor potentially
causing breathing instability is a sensitive arousal threshold.
In CL3, non-supine Rar decreased, although there were almost
no changes in the Fapnea or duration. This may explain the
reduction in the non-supine AHI observed in this cluster.

As we estimated the pathophysiological interaction on
sleep-disordered breathing (SDB) using this cluster analysis
of respiratory events in PSG, a choice of treatment other than
continuous positive airway pressure (CPAP) might be applied.
Thus, body weight reduction and/or CPAP (standard treat-
ment) would be useful for patients in CL1, oropharyngeal
muscle training or hypoglossal nerve stimulation may improve
UA muscle function in CL2 patients, and oxygen inhalation or
acetazolamide might reduce high loop gain in CL3 patients.

This study has several limitations. First, clustering was done
only in the supine position. Although, we could estimate the
effects of sleep stages and body positions within each cluster,
these might not reflect the pathophysiology of all sleep stages
or that of the non-supine position. It would be ideal to catego-
rize patients according to combinations of four REM/NREM
and supine/non-supine conditions. However, every clinical
PSG does not provide sufficient parameters for all four
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combinations. Further studies will be needed to consider the
exact effect of sleep stages or body positions on clustering.
Second, we did not include women due to sex differences in
the UA, fat distribution, and breathing stability [16]; moreover,
only few samples of retrospective data were available forwom-
en. Therefore, we cannot draw conclusions regarding the im-
pact of sex on clustering. However, our study showed that the
apnea fraction was larger, duration was longer, and hypoxemia
was worse in all clusters during REM sleep, suggesting greater
UA collapsibility during this stage. Female patients generally
have REM-predominant sleep apnea and exhibit more
hypopneas [27]. Therefore, most female patients might belong
to CL3. Female SDB patients should also be clustered in this
way. Third, the effect of body position was evaluated only in
subjects who slept in both the supine and non-supine position.
Nevertheless, since approximately two-thirds of patients in
each cluster were included, we could only speculate the body
position effect on our PSG variables. Forth, we did not consid-
er ethnic differences among patients. Japanese patients with
sleep apnea are less obese than Caucasian patients [28, 29].
Future studies should evaluate whether similar results are true
for non-Japanese subjects. Fifth, our study was conducted at a
single institution, and thus, patients may not represent the gen-
eral OSA population. Thus, multiple-center studies are re-
quired to confirm our findings. Lastly, as we used alternative
criteria included in the 2007 AASM scoring manual for
hypopnea, we might have underestimated hypopneas. In the
2012 revision of scoring criteria, AHI increased about 20%,
mainly due to hypopneas [30]. If the 2012 criteria had been
used, we might have found worse AHI and decreased Fapnea in
our subjects. However, we do not consider that this affects the
essential quality of clustering in our study.

In conclusion, hierarchical cluster analysis using PSG var-
iables in the supine position revealed three distinct subgroups
of OSA patients based on respiratory events characteristics.
Combined with demographic data, the three subgroups in-
cluded obese patients with high fraction of apnea and severe
desaturation, non-obese patients with high fraction of apnea
and long event duration, and patients with low fraction of
apnea and high proportion of central apneas. These results
suggest that PSG variables other than AHI may be useful for
personalizing treatment in patients with moderate to severe
OSA. Future studies are needed to verify the accuracy and
efficacy of this clustering analysis.
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