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Abstract
Purpose Avariety of statistical models based on overnight oximetry has been proposed to simplify the detection of children with
suspected obstructive sleep apnea syndrome (OSAS). Despite the usefulness reported, additional thorough comparative analyses
are required. This study was aimed at assessing common binary classification models from oximetry for the detection of
childhood OSAS.
Methods Overnight oximetry recordings from 176 children referred for clinical suspicion of OSAS were acquired during in-lab
polysomnography. Several training and test datasets were randomly composed bymeans of bootstrapping for model optimization
and independent validation. For every child, blood oxygen saturation (SpO2) was parameterized by means of 17 features. Fast
correlation-based filter (FCBF) was applied to search for the optimum features. The discriminatory power of three statistical
pattern recognition algorithms was assessed: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and
logistic regression (LR). The performance of each automated model was evaluated for the three common diagnostic polysom-
nographic cutoffs in pediatric OSAS: 1, 3, and 5 events/h.
Results Best screening performances emerged using the 1 event/h cutoff for mild-to-severe childhood OSAS. LR achieved
84.3% accuracy (95% CI 76.8–91.5%) and 0.89 AUC (95% CI 0.83–0.94), while QDA reached 96.5% PPV (95% CI 90.3–
100%) and 0.91 AUC (95% CI 0.85–0.96%). Moreover, LR and QDA reached diagnostic accuracies of 82.7% (95% CI 75.0–
89.6%) and 82.1% (95% CI 73.8–89.5%) for a cutoff of 5 events/h, respectively.
Conclusions Automated analysis of overnight oximetry may be used to develop reliable as well as accurate screening tools for
childhood OSAS.

Keywords Pediatric obstructive sleep apnea syndrome . Overnight oximetry . Unattended oximetry . Automated signal
processing . Pattern recognition

Introduction

Childhood obstructive sleep apnea syndrome (OSAS) is a preva-
lent yet relatively under-diagnosed condition [1]. According to the
American Academy of Pediatrics, OSAS affects 1 to 5% of chil-
dren in the general pediatric population [2]. Untreated OSAS has
been associated with adverse consequences affecting multiple
organ systems in infants and young children, reducing overall
health and quality of life while increasing health care use and
associated costs [1, 2]. Thus, it is important to screen for the
presence of the disease in children showing symptoms in order
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to perform early and timely diagnosis and treatment, an issue that
has been recently re-emphasized by the American Academy of
Pediatrics [2]. In-laboratory polysomnography (PSG) is the gold
standard test for OSAS [2, 3]. However, the availability and ac-
cessibility of specialized sleep laboratories is too limited to match
clinical needs [4, 5]. In addition, PSGs are onerous and also
intrusive and relatively inconvenient for children and caretakers,
which hampers their widespread implementation [6].

The aforementioned drawbacks have led to an extensive
search for screening tools over the last decade [1, 2, 7, 8].
Overnight oximetry has emerged as a potentially useful screening
approach due to their simplicity and suitability in children [3,
9–14]. In this context, the oxygen desaturation index (ODI) is
the most widely used oximetry marker [5, 10, 12]. Nevertheless,
besides the number of desaturations, there is a lot of additional
information present in the oximetric recordings. In this regard,
automated signal processing and pattern recognition techniques
are able to optimize the diagnostic capability of oximetry leading
to a more reliable and effective approach [9, 14]. A recent multi-
center study evaluating more than 4000 overnight oximetry re-
cordings indicated that machine-learning approaches enable accu-
rate identification of children with OSAS [15].

In the framework of automated pattern recognition, statis-
tical classifiers model the characteristics of the problem under
study, leading to automated tools able to assist physicians in
their daily practice. Particularly, linear discriminant analysis
(LDA) [9, 16–18] and logistic regression (LR) [10, 14, 19, 20]
have been previously used with relative success for binary
classification of children suspected of suffering from OSAS.
Similarly, quadratic discriminant analysis (QDA) also pro-
vides a suitable alternative, but has been marginally assessed
in this context [21]. Nevertheless, a thorough review reveals
that no previous studies have extensively assessed the perfor-
mance of these classification approaches when using different
cutoff criteria for the diagnosis of childhood OSAS. We hy-
pothesized that a comprehensive comparative analysis could
provide essential information that would enable widespread
use of automated processing of overnight oximetric record-
ings as a screening tool for pediatric OSAS. Therefore, the
aim of this study was to design and assess several statistical
binary classifiers based on overnight oximetry using different
clinically used cutoffs for pediatric OSAS.

Materials and methods

Participants

A total of 176 consecutive otherwise healthy children (97
boys and 79 girls) ranging from 1 to 13 years of age composed
our dataset. All children were referred by pediatricians to the
Pediatric Sleep Unit at the University of Chicago Medicine
Comer Children’s Hospital (Chicago, IL, USA) for evaluation

of habitual snoring and suspected OSAS. Enrolment criteria
included habitual snoring and/or witnessed breathing pauses
during sleep as reported by their parents or caretakers. The
Institution’s Ethical Review Committee approved the study
protocol (#IRB14-1241) and informed consent was obtained
from all caretakers prior to the enrolment.

Sleep studies

Chi ldren ’s s leep was moni tored us ing a digi ta l
polysomnography system (Polysmith; Nihon Kohden
America Inc., CA, USA) [22]. Blood oxygen saturation
(SpO2) recordings using pulse oximetry were acquired during
overnight PSG (sampling frequency 25 Hz) and subsequently
exported for offline processing.

All PSGs were manually scored by trained sleep technolo-
gists to derive the apnea-hypopnea index (AHI). The 2012
American Academy of Sleep Medicine scoring rules for chil-
dren were used to quantify sleep and cardiorespiratory events
[23]. In order to extensively assess the screening ability of the
proposed classification models, we used several AHI cutoff
values routinely used for establishing the diagnosis of OSAS
[2, 8, 14], namely, 1, 3, and 5 events/h. Table 1 summarizes
the main characteristics of the dataset.

Automated processing of oximetric recordings

Three signal processing stages were implemented: feature ex-
traction, feature selection, and pattern recognition.

Feature extraction

The aim of this stage was to exhaustively characterize oxim-
etry dynamics in every child. To conduct this critical initial
step, several oximetric indices were computed:

i. Desaturations due to apneic events modify the shape and
thus the characteristics of the oximetric data distribution.
Conventional first- to fourth-order statistical moments,
i.e., mean (M1t), variance (M2t), skewness (M3t), and kur-
tosis (M4t), are suitable as well as simple measures able to
parameterize these changes in the histogram of SpO2 am-
plitudes [14, 24].

ii. The power spectral density (PSD) function is able to re-
flect the occurrence of (pseudo)periodic desaturations at
each frequency [9, 14]. The PSD of each SpO2 signal was
parameterized by means of first- to fourth-order statistical
moments (M1f–M4f). In addition, the median frequency
(MF) and spectral entropy (SE) were computed to quan-
tify the degree of flatness of the power distribution [14].
Similarly, the total signal power (PT) as well as the peak
amplitude (PA) and relative power (PR) in a common ap-
nea frequency band for children (0.021–0.040 Hz) were
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computed to measure changes in the PSD function due to
desaturations [14, 24, 25].

iii. In the framework of long-term overnight oximetric re-
cordings, non-linear measures have widely demonstrated
to provide complementary information to conventional
spectral techniques. Particularly, sample entropy
(SampEn), central tendency measure (CTM), and
Lempel-Ziv complexity (LZC) were computed due to
their ability to quantify slight changes in irregularity, var-
iability, and complexity of nocturnal SpO2 [14, 26].

iv. Finally, the conventional 3% oxygen desaturation index
(ODI3) was automatically scored and included in the ini-
tial feature space in order to quantify the number of drops
per hour of recording greater than or equal to 3% from
baseline [12].

Feature selection

For each child, all 17 features derived from the oximetry signal
were jointly used to characterize the presence of pediatric
OSAS. This initial feature set gathers valuable information able
to detect the disease. Nevertheless, an improved as well as
reduced feature subset can be derived by applying a feature
selection algorithm. Previous works have shown that feature
selection and dimensionality reduction algorithms enhance the
prediction ability of oximetric features in the context of OSAS
diagnosis [24, 26, 27]. In this study, the fast correlation-based
filter (FCBF) was applied. FCBF is a filter methodology for
feature selection independent of the classifier used in the sub-
sequent classification stage [28]. FCBF automatically inspects
the original feature space to search for the most relevant as well
as non-redundant variables. In order to guide this search, the
symmetrical uncertainty (SU) is used [28]. SU is a measure of
predictability between two variables based on the information
shared between them; i.e., it quantifies the amount of knowl-
edge we can infer about the first variable using the information
present in the second one. The higher the SU is, the higher the
predictability is, i.e., the information shared between variables.
In the context of pediatric OSAS, we considered that a variable
is more relevant for characterizing the disease if it shares as

much information as possible with the AHI, which is the clin-
ical index used by physicians to establish the presence of the
disease and characterize its severity.

FCBF implements two consecutive filtering stages [28]:
firstly, a relevance analysis and secondly, a redundancy-based
variable selection. In order to measure the degree of relevancy
of every variable from the original feature space, the association
between each oximetric feature and the severity of the disease
was estimated: the SUi between each oximetric feature (Xi) and
the actual AHI from standard PSG (Y) was computed.
Subsequently, all the variables from the original feature space
are ranked in decreasing order of SUi, i.e., in decreasing order
of relevancy for the problem under study. In this research, all
the oximetric features were considered potentially relevant.
Finally, the redundancy filtering stage is implemented as fol-
lows: (i) SUi,j is computed between each pair of features ac-
cording to the previous relevancy-based ranking so that feature
i is ranked higher (more relevant) than feature j, and (ii) if
SUi,j ≥ SUi, then feature j is removed because it is highly corre-
lated with feature i and its valuable information linked with
OSAS is smaller and can be derived from feature i.
Therefore, the feature subset built by means of FCBFwas com-
posed of the most relevant and non-redundant variables from
the proposed oximetric feature space.

In order to increase the generalizability of our results, a
bootstrap procedure was embedded within the feature selection
stage [29]. Accordingly, several datasets were composed by
means of resampling with replacement, so that the FCBFmeth-
od was repeated 1000 times. At each iteration of the proposed
bootstrap approach, the variables automatically selected by
FCBF were saved. Finally, only those features selected a num-
ber of times significantly higher (> 90%) than the remaining
ones composed our optimum feature subset from oximetry.

Feature classification

In this comparative study, the performance of LDA, LR, and
QDA binary classifiers is extensively assessed in the context
of pediatric OSAS diagnosis. In order to decrease the model
complexity and improve the performance, these widely
known statistical classifiers assume that the probability

Table 1 Demographic and clinical characteristics of the cohort using three different AHI cutoff values

AHI ≥ 1 event/h AHI ≥ 3 events/h AHI ≥ 5 events/h

OSAS negative OSAS positive OSAS negative OSAS positive OSAS negative OSAS positive

No. (%) 30 (17.1) 146 (82.9) 79 (44.9%) 97 (55.1%) 105 (59.7%) 71 (40.3%)
No. males (%) 17 (56.7%) 79 (54.1%) 45 (57.0%) 51 (52.6%) 57 (54.3%) 39 (54.9%)
Age (years) 8.0 [5.0] 7.0 [5.0] 7.0 [5.5] 6.0 [6.0] 7.0 [5.3] 6.0 [6.0]
BMI (kg/m2) 17.7 [6.6] 18.3 [7.5] 18.1 [6.9] 18.4 [7.8] 18.3 [6.4] 18.1 [8.1]
AHI (events/h) 0.6 [0.4] 4.7 [8.9] 1.3 [1.2] 9.3 [12.5] 1.7 [2.1] 11.2 [12.1]

Data are provided as median and interquartile range and n (%)

AHI apnea-hypopnea index, OSAS obstructive sleep apnea syndrome, BMI body mass index
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density function of the classes under study (OSAS-negative
vs. OSAS-positive) is known a priori [30]:

i. LDA assumes both data normality (Gaussian or normal
distribution) and homoscedasticity (equal variances) to
model each class-conditional density function for an input
feature pattern and each class. Under these assumptions, a
linear decision threshold minimizes the classification error.

ii. QDA does not presume homoscedasticity. Then, the
Bayes classification rule that minimizes the classification
error function establishes a quadratic decision boundary
between classes in the feature space.

iii. In a more general context, LR does not assume a priori
neither normality nor homoscedasticity of the probability
distribution of variables involved in the model. A binary
LR classifier models the probability density function as a
Bernoulli distribution.

Statistical analysis

MATLAB R2015a (The MathWorks Inc., Natick, MA, USA)
was used to implement the proposed signal processing
methods, as well as to perform both statistical and perfor-
mance analyses. Descriptive analysis of variables was present-
ed in terms of their median and interquartile range. The non-
parametric Mann-Whitney U test was applied to search for
statistical differences between groups, and p < 0.05 was con-
sidered statistically significant. A separate analysis was car-
ried out to assess statistical differences between the three clas-
sification approaches under study. The Bonferroni correction
was applied to manage multiple comparisons, and a p value <
0.05 was regarded as significant.

The common bootstrap 0.632 was applied for performance
assessment [14, 19, 31]. Given an original dataset of size N,
resampling with replacement is applied to build mi (1 ≤ i ≤M)
bootstrap replicates of size N. For each replicate, every
oximetric pattern from the original dataset may be selected
several times with equal probability (uniform distribution).
Therefore, all bootstrap replicates mi will likely contain re-
peated instances, whereas a number of cases from the original
dataset are not selected. According to bootstrap 0.632, the
replicates mi are used for training, whereas instances not in-
cluded inmi are used for validation. At each iteration i (1 ≤ i ≤
M), a performance metric is obtained as the contribution of
both the training replicate mi (0.632 times the metric in the
training dataset) and its corresponding validation set (0.368
times the metric in the test dataset) [31]. Finally, each metric is
estimated as the average of the M bootstrap values. The fol-
lowing diagnostic performance metrics were computed: sen-
sitivity (Se), specificity (Sp), positive predictive value (PPV),
negative predictive value (NPV), positive likelihood ratio
(LR+), negative likelihood ratio (LR−), accuracy (Acc), and

area under the receiver operating characteristics (ROC) curve
(AUC). The AHI from in-lab PSG was the gold standard for
evaluation. The 95% confidence interval (95% CI) was pro-
vided per each performance metric. In order to obtain a proper
estimation of the 95% CI, the number of bootstrap replicates
was set to M = 1000 [31].

Results

Table 2 summarizes the main polysomnographic and
oximetric characteristics of the cohort based on the proposed
PSG-derived AHI cutoff values used for establishing the pres-
ence of OSAS. Table 3 shows the optimum features automat-
ically selected from FCBF using the proposed bootstrap pro-
cedure. For each cutoff, LDA, QDA, and LR models were
optimized in each training bootstrap replicate and subsequent-
ly assessed in the remaining validation instances according to
bootstrap 0.632. Figure 1 shows the influence of each variable
in every model for each diagnostic AHI cutoff. Axes represent
the dimensions of the optimum feature space for each cutoff,
whereas vertices of each polygon are proportional to the ab-
solute value of each coefficient in the optimized models, i.e.,
the overall influence of each oximetric variable.

Table 4 summarizes the performance metrics of the models
involved in this comparative study for all the AHI cutoffs.
Using an AHI ≥ 1 event/h for OSAS, LR achieved the highest
diagnostic accuracy of the three models, with 84.3% Acc and
a highly unbalanced sensitivity-specificity pair (93.9% Se,
37.8% Sp). Similarly, for an AHI cutoff of 3 events/h, the
LR model achieved 77.7% Acc (74.6% Se, 81.7% Sp).
Finally, using the AHI cutoff of 5 events/h, both LR and
QDA reached similar high accuracy, with 82.7% Acc
(70.0% Se, 91.4% Sp) and 82.1% Acc (62.3% Se, 95.5%
Sp), respectively. It is noteworthy that QDA achieved signif-
icantly high PPVand LR+ values regardless of the cutoff point
for OSAS. Regarding the performance of the conventional
ODI3, our analyses showed a significant imbalance between
sensitivity and specificity using fixed cutoffs for the ODI3 (≥
1, 3, and 5 desaturations per hour of recording) for all the
clinical thresholds under study. In this regard, the higher spec-
ificity commonly reported in the literature was also confirmed.

Figure 2 depicts the average ROC curves for all the models
under study from the bootstrap approach. We can observe that
differences between the different approaches in this compara-
tive study decrease as the cutoff for positive pediatric OSAS
increases. It is important to note that the QDA model reached
the highest AUC using the most restrictive clinical threshold
for mild OSAS (AHI ≥ 1 event/h), achieving an area of 0.91.
For a cutoff of 3 events/h, both LR and ODI3 achieved an
AUC equal to 0.88. Considering a cutoff of 5 events/h for
moderate-to-severe childhood OSAS, LR reached the highest
AUC (0.89), similar to QDA (0.88) and ODI3 (0.87). A
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statistical analysis was carried out to assess differences be-
tween the ROC curves of the four classification approaches.
Using a clinical threshold of 1 event/h for positive OSAS,
significant statistical differences (p < 0.05) were found

between LDA and all the remaining classifiers (QDA, LR,
and ODI3), suggesting a real dependence on the classification
model. In addition, visual differences observed between ROC
curves of QDA and ODI3 led to slight differences (p < 0.05

Table 2 Summary of the main polysomnographic and oximetric variables for the whole cohort using three defined AHI cutoffs for positive OSAS
designation

Cutoff AHI ≥ 1 event/h Cutoff AHI ≥ 3 event/h Cutoff AHI ≥ 5 event/h

OSAS
negative

OSAS
positive

p valuea OSAS
negative

OSAS
positive

p valuea OSAS
negative

OSAS
positive

p valuea

TRT (min) 464.8 [79.8] 481.8 [60.8] 0.194 472.5 [69.5] 485.0 [62.0] 0.118 479.0 [68.0] 485.0 [60.3] 0.219
TST (min) 414.8 [80.1] 423.0 [70.0] 0.218 413.5 [82.5] 429.5 [69.5] < 0.05 416.0 [74.5] 427.5 [76.3] 0.158
WASO (min) 18.3 [36.0] 18.8 [34.6] 0.430 17.5 [35.5] 22.0 [34.5] 0.323 17.5 [33.5] 20.5 [41.5] 0.358
Sleep eff. (%) 87.4 [11.6] 88.8 [8.7] 0.647 87.7 [9.7] 89.6 [8.9] 0.165 88.1 [9.8] 88.9 [9.1] 0.388
Sleep onset lat. (min) 17.5 [32.8] 18.8 [28.9] 0.381 21.0 [30.3] 13.5 [27.0] 0.122 21.0 [31.0] 12.5 [27.3] 0.166
REM onset lat. (min) 109.5 [69.8] 127.5 [79.0] 0.122 124.0 [84.5] 123.5 [79.0] 0.774 124.0 [88.0] 123.5 [75.0] 0.724
Awakenings (n) 2.5 [2.8] 3.0 [4.0] 0.780 3.0 [4.0] 3.0 [4.0] 0.432 3.0 [4.0] 3.0 [4.0] 0.257
Supine (min) 46.3 [56.6] 43.3 [45.0] 0.703 42.6 [45.6] 45.6 [49.3] 0.401 39.4 [50.5] 52.3 [46.4] 0.113
Prone (min) 3.3 [18.7] 3.9 [25.3] 0.425 3.5 [21.1] 4.2 [25.4] 0.491 5.5 [24.3] 3.0 [22.6] 0.729
N1 (%) 1.7 [2.4] 3.4 [4.1] < 0.05 2.5 [2.7] 3.8 [4.7] < 0.05 2.5 [2.7] 4.4 [5.8] < 0.05
N2 (%) 50.3 [18.3] 49.2 [11.4] 0.599 51.4 [13.4] 48.5 [11.4] 0.713 51.0 [12.1] 46.9 [11.7] 0.313
N3 (%) 29.4 [11.3] 27.4 [10.5] 0.650 27.9 [11.9] 27.4 [9.8] 0.413 27.7 [10.7] 27.2 [10.4] 0.636
REM (%) 19.2 [9.6] 18.3 [7.9] 0.412 18.5 [9.9] 18.3 [7.5] 0.988 18.5 [9.5] 18.6 [6.9] 0.868
AHI (event/h) 0.6 [0.4] 4.7 [8.9] < 0.05 1.3 [1.2] 9.3 [12.5] < 0.05 1.7 [2.1] 11.2 [12.1] < 0.05
REM AHI (event/h) 0.3 [1.4] 7.5 [18.7] < 0.05 1.8 [3.8] 13.3 [28.2] < 0.05 2.4 [4.5] 22.5 [30.9] < 0.05
NREM AHI (event/h) 0.3 [0.5] 3.6 [6.8] < 0.05 1.1 [1.2] 6.8 [9.4] < 0.05 1.4 [1.9] 8.8 [10.9] < 0.05
Supine AHI (event/h) 0.4 [0.9] 5.1 [9.0] < 0.05 1.1 [2.3] 7.6 [10.6] < 0.05 1.7 [3.2] 11.3 [13.1] < 0.05
Prone AHI (event/h) 0.0 [0.0] 0.0 [5.4] < 0.05 0.0 [0.7] 2.1 [10.2] < 0.05 0.0 [1.4] 1.1 [14.9] < 0.05
Side AHI (event/h) 0.2 [0.6] 3.6 [9.2] < 0.05 0.8 [1.6] 8.4 [13.7] < 0.05 1.1 [2.1] 10.4 [14.3] < 0.05
ODI3 (event/h) 0.5 [1.4] 4.2 [7.8] < 0.05 1.3 [2.1] 7.7 [10.2] < 0.05 1.8 [2.8] 9.2 [12.8] < 0.05
REM ODI (event/h) 0.8 [2.4] 7.5 [16.2] < 0.05 2.4 [4.4] 13.0 [23.6] < 0.05 3.0 [6.1] 18.9 [30.2] < 0.05
NREM ODI (event/h) 0.5 [1.5] 3.1 [6.2] < 0.05 1.1 [1.8] 5.0 [7.6] < 0.05 1.4 [2.3] 7.5 [11.2] < 0.05
Supine ODI (event/h) 0.9 [2.2] 5.1 [9.4] < 0.05 1.9 [2.6] 8.4 [12.6] < 0.05 2.3 [3.8] 10.2 [15.0] < 0.05
Prone ODI (event/h) 0.0 [1.1] 0.7 [5.5] < 0.05 0.0 [1.5] 0.9 [9.3] < 0.05 0.0 [2.2] 0.0 [14.6] 0.068
Side ODI (event/h) 0.8 [2.2] 4.2 [9.6] < 0.05 1.4 [3.0] 6.3 [13.3] < 0.05 1.7 [3.7] 10.0 [15.1] < 0.05
Mean SpO2 (%) 97.0 [1.0] 96.0 [2.0] < 0.05* 97.0 [1.0] 96.0 [2.0] < 0.05 97.0 [1.0] 96.0 [2.0] < 0.05
Lowest SpO2 (%) 92.0 [3.5] 87.0 [10.0] < 0.05 91.0 [4.0] 85.0 [12.0] < 0.05 91.0 [5.0] 83.0 [11.5] < 0.05
90–100 SpO2 (%) 99.0 [4.0] 98.0 [6.0] 0.112 99.0 [4.0] 98.0 [7.0] < 0.05* 99.0 [4.0] 97.0 [8.0] < 0.05

Data are provided as median and interquartile range

AHI apnea-hypopnea index,OSAS obstructive sleep apnea syndrome,OSAS negative OSAS negative group, OSAS positive OSAS positive group, PSG
polysomnography, TRT total recording time, TST total sleep time, WASO wakefulness after sleep onset, sleep eff sleep efficiency, sleep onset lat sleep
onset latency, REM rapid eye movement, REM onset lat REM onset latency, N1N1 sleep stage, N2N2 sleep stage, N3N3 sleep stage, NREM no REM
sleep, ODI3 3% oxygen desaturation index, SpO2 blood oxygen desaturation

*p value > 0.01
a Non-parametric Mann-Whitney U test

Table 3 Optimum features automatically selected using FCBF and bootstrap as well as median values for each AHI cutoff point under study

AHI ≥ 1 event/h AHI ≥ 3 events/h AHI ≥ 5 events/h

Optimum features No. of times selected OSAS negative OSAS positive OSAS negative OSAS positive OSAS negative OSAS positive

M1t 950 97.7 [1.1] 97.3 [1.9] 97.7 [1.1] 96.9 [1.9] 97.7 [1.2] 96.7 [1.8]
M4t 921 2.83 [2.76] 2.18 [1.70] 2.23 [1.93] 2.21 [1.72] 2.24 [1.76] 2.17 [2.06]
PA 966 4.03 [2.45] 8.55 [15.09] 4.90 [3.38] 11.38 [19.27] 5.49 [4.06] 18.02 [29.78]
PR 981 0.17 [0.05] 0.18 [0.07] 0.17 [0.06] 0.19 [0.08] 0.17 [0.06] 0.20 [0.07]
SampEn (×10−3) 994 2.44 [0.99] 4.06 [2.99] 2.74 [1.29] 4.84 [2.88] 2.86 [1.55] 5.19 [4.24]
ODI3 1000 0.49 [1.36] 4.24 [7.99] 1.34 [2.14] 7.68 [10.33] 1.82 [2.76] 9.22 [12.86]

Data are provided as median and interquartile range

AHI apnea-hypopnea index, OSAS obstructive sleep apnea syndrome, OSAS negative OSAS negative group, OSAS positive OSAS positive group,M1t
mean of SpO2 overnight profile in the time domain,M4t kurtosis of SpO2 overnight profile in the time domain, PA peak amplitude in the frequency band
of interest, PR relative power in the frequency band of interest, SampEn sample entropy, ODI3 oxygen desaturation index of 3%
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and p = 0.21 before and after the Bonferroni correction, re-
spectively). Regarding the cutoffs of 3 and 5 events/h, no
significant differences were found neither between the models
nor with the conventional ODI3.

Discussion

This prospective study provides a comparative assessment of the
most frequently employed analytical techniques, namely, LDA
and LR, for determination of suitability of overnight oximetry in
the context of OSAS screening in children. In addition, an alter-
native approach in the framework of statistical classifiers, the
QDA binary classifier, was also evaluated due to its potential
advantages when compared to LDA or LR. Our results provide
additional and important support to the conceptual framework that
automated overnight oximetry is a consistent, unbiased, and

effective method as an abbreviated screening tool for pediatric
OSAS [32], and further confirm the validity of a recent multicen-
ter study that examined 4191 overnight oximetry recordings [15].

Conventional statistical classifiers are commonly proposed as
automated tools to assist in the detection of both adult and pedi-
atric OSAS. They allow clinicians to combine different sources
of medical information, and they have demonstrated their use-
fulness to maximize the diagnostic ability of oximetry by merg-
ing several oximetric features. In the present study, a thorough
assessment of the diagnostic performance of LDA, QDA, and
LR has been performed. We found that differences among these
classifiers decreased when the clinical threshold for positive
childhood OSAS increased. LR showed a more stable behavior
than LDA and QDA. Moreover, LR reached the highest diag-
nostic accuracy for all the thresholds under study. Nevertheless,
QDA stands out for reaching PPV values greater than 90% re-
gardless the cutoff, which increases its usefulness as screening

Fig. 1 Optimum models for each AHI-derived diagnostic cutoff for
OSAS: a AHI ≥ 1 event/h, b AHI ≥ 3 events/h, and c AHI ≥ 5 events/h.
For each statistical multivariate model, polygon vertices are proportional
to the influence (weight) of each oximetric variable. For the sake of better

representation within the same figure, the magnitudes of the coefficients
are proportional to their influence within the same model but not between
models

Table 4 Performance metrics of each optimum statistical model and the ODI3 from oximetry for each AHI cutoff value for positive OSAS

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR− Acc (%)

Cutoff AHI ≥ 1 event/h
LDA 70.2 (54.0, 84.6) 63.0 (31.7, 96.7) 90.5 (81.8, 99.1) 30.3 (16.1, 46.2) 2.31 (1.15, 6.23) 0.51 (0.28, 0.97) 69.0 (57.5, 9.1)
QDA 61.3 (47.6, 76.0) 88.6 (69.6, 100) 96.5 (90.3, 100) 32.0 (19.4, 45.7) 8.77 (4.53, 14.80) 0.45 (0.29, 0.61) 65.8 (55.1, 76.8)
LR 93.9 (84.8, 99.8) 37.8 (10.3, 67.1) 88.1 (81.3, 94.5) 59.0 (28.9, 96.2) 1.62 (1.06, 2.78) 0.18 (0.01, 0.55) 84.3 (76.8, 91.5)
ODI ≥ 1 9.7 (3.4, 17.4) 100 (100, 100) 100 (100, 100) 18.5 (11.6, 25.6) N.D. (−) 0.90 (0.83, 0.97) 25.1 (17.0, 33.8)

Cutoff AHI ≥ 3 events/h
LDA 59.4 (45.4, 73.7) 88.2 (70.1, 99.5) 86.6 (71.2, 99.3) 63.9 (52.3, 75.6) 7.53 (2.20, 28.15) 0.46 (0.30, 0.64) 72.3 (62.6, 81.4)
QDA 57.5 (41.8, 73.3) 93.8 (83.9, 100) 92.3 (81.6, 100) 64.3 (52.8, 75.9) 15.00 (4.65, 33.07) 0.45 (0.30, 0.62) 73.8 (64.3, 82.7)
LR 74.6 (59.8, 89.4) 81.7 (57.4, 95.5) 83.9 (68.0, 95.2) 72.5 (59.4, 85.2) 5.18 (1.97, 14.24) 0.31 (0.16, 0.48) 77.7 (68.5, 85.5)
ODI ≥ 3 4.9 (0.8, 12.2) 100 (100, 100) 100 (100, 100) 46.1 (36.7, 55.1) N.D. (−) 0.95 (0.88, 0.99) 47.6 (38.0, 56.5)

Cutoff AHI ≥ 5 events/h
LDA 63.7 (48.1, 79.1) 90.1 (77.6, 99.3) 82.0 (64.3, 98.3) 78.6 (68.5, 87.6) 8.61 (3.02, 26.99) 0.40 (0.23, 0.58) 79.4 (70.9, 87.4)
QDA 62.3 (46.5, 77.9) 95.5 (87.3, 100) 90.8 (76.3, 100) 78.9 (69.0, 87.8) 19.83 (6.44, 46.42) 0.40 (0.24, 0.57) 82.1 (73.8, 89.5)
LR 70.0 (55.1, 84.1) 91.4 (80.3, 99.3) 85.1 (70.1, 98.4) 81.9 (72.3, 90.5) 10.60 (3.89, 30.85) 0.33 (0.18, 0.49) 82.7 (75.0, 89.6)
ODI ≥ 5 2.9 (0.0, 10.8) 100 (100, 100) 100 (100, 100) 60.3 (51.2, 69.1) N.D. (−) 0.97 (0.89, 1.00) 60.8 (51.6, 69.6)

Data are presented as mean and 95% confidence interval from a bootstrap procedure of 1000 iterations

AHI apnea-hypopnea index, LDA linear discriminant analysis,QDA quadratic discriminant analysis, LR logistic regression, Se sensitivity, Sp specificity,
PPV positive predictive value, NPV negative predictive value, LR+ positive likelihood ratio, LR− negative likelihood ratio, Acc accuracy, N.D. not
defined due to division by zero
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test for pediatric OSAS in the clinical practice. In fact, oximetry
is commonly proposed as a simplified screening test for OSAS
due to its simplicity and availability as portable recording tech-
nique at home. Therefore, despite the higher overall performance
of LR, QDA showed the best screening capability, particularly
for a cutoff of AHI ≥ 1 event/h, where a PPV of 96.5% was
reached while maintaining AUC of 0.91 and fair sensitivity
and specificity pair. Regarding common indexes from oximetry,
statistical binary classifiers outperformed the conventional ODI3
in terms of diagnostic accuracy.When using common cutoffs for
classification (ODI3 ≥ 1, 3, and 5 events/h), the ODI3 reached a
highly unbalanced sensitivity-specificity pair leading to poor ac-
curacy. Furthermore, regarding the ROC curves, the ODI3
showed higher instability when varying the cutoff, which mini-
mizes its usefulness in the clinical practice.

Some methodological issues deserve comment. First, all
the variables composing the various models were automatical-
ly selected using unbiased data processing and all of the mea-
sures were identified regardless of the classification technique,
a feature that expands their generalizability. In the present
comparative study, M1t, M4t, PA, PR, SampEn, and ODI3
demonstrated unique robustness in characterizing OSAS be-
cause they were selected as optimum features a number of
times significantly higher (> 90% of bootstrap replicates) than
the remaining variables (< 50% of bootstrap replicates). As
shown in Fig. 1, the influence of each oximetric variable in
every optimum model illustrates this important attribute of
machine classification of the retained measures. When using
them jointly, automated multivariate classifiers are able to
maximize the diagnostic capability of oximetry. On the other
hand, we can observe that M1t and M4t did not show a
completely stable behavior; i.e., the sign of their weights
(the model coefficients) changed as the clinical cutoff for the
disease varied. The remaining optimum features (PA, PR,
SampEn, and ODI3) showed different weight and sign for
the different statistical approaches but a stable behavior as
the cutoff changed. It is also important to note that PA and
ODI3 showed the largest weights regardless the model and the

cutoff, which highlights their significance in the characteriza-
tion of oximetry in the context of pediatric OSAS.

In regard to the physiological and clinical interpretation of
the optimum features, it is noticeable that all signal processing
approaches were included in the optimum feature subset, i.e.,
time and frequency domains as well as linear and non-linear
methods. Similarly, advanced signal processingmethods dem-
onstrated their complementarity with ODI3. Conventional
ODIs just account for the number of the desaturations along
the overnight recording. Nevertheless, M1t, M4t, PA, PR, and
SampEn provide additional information linked with the depth,
duration, and repetition of the desaturations.M1t accounts for
the overall influence of the desaturations in the average satu-
ration level whileM4t quantifies how SpO2 values are distrib-
uted in a narrow (higher M4t) or in a broader (lower M4t)
range according to a higher severity and number of
desaturations. Similarly, both PA and PR account for the
pseudo-periodicity and depth of the desaturations along the
overnight recording so that greater and repetitive desaturations
(higher PA and PR) are linked with a higher severity of the
disease. Finally, SampEn quantifies the entropy, i.e., the dis-
order, in the overnight saturation profile due to changes
caused by the desaturations so that the higher the severity of
the disease is, the higher the irregularity is (higher SampEn).

Changes in the dynamics of oximetric profiles due to apneic
events are smaller in children than in adults, thereby making
oximetry-based screening tools for pediatric OSAS particularly
challenging. The best screening ability emerged when using the
cutoff of 1 events/h for detection of mild-to-severe OSAS. QDA
and LR models showed higher generalization capability than
LDA. Common assumptions such as normal distribution, ho-
moscedasticity, linearity, or stationarity are not always consistent
in real-world pattern classification problems. Therefore, our re-
sults suggest that more general modeling approaches such as LR
and QDA, which both assume less restrictive conditions in the
data distribution and implement a non-linear combination of
input-dependent features, perform better than conventional
LDA in the context of detection of childhood OSAS from

Fig. 2 ROC curves of each optimum statistical model from oximetry and the ODI3 from the bootstrap procedure for each cutoff for positive OSAS: a
AHI ≥ 1 event/h, b AHI ≥ 3 events/h, and c AHI ≥ 5 events/h
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oximetry. Notice that QDA reached excellent AUC (> 0.90) for
the lowest cutoff. Furthermore, a real dependence on the classi-
fication model was found.

Both dependence and intercorrelation of the input variables
affects the way coefficients are fitted in statistical models.
Intercorrelation may lead to significant coefficients with high
values, although these models could not fit properly the prob-
lem under study. FCBF is a feature selection methodology
able to minimize this issue since it removes redundant features
before the classification stage, i.e., the variables with likely
high intercorrelation. However, the selected non-redundant
features could still show high intercorrelation. Regarding our
optimum feature subset from oximetry, we observed thatM1t,
PA, SampEn, and ODI3 were significantly correlated
(p < 0.05), whereas M4t and PR showed no significant corre-
lations. This issue could affect the consistence and generali-
zation of the models. Similarly, dependence of oximetric fea-
tures should also be considered because they are all derived
from the same signal and common statistical classifiers as-
sume independent input variables.

Overfitting is also an important problem in the framework
of automated pattern recognition, particularly when the size of
the training dataset is small. In addition, some classifiers are
more affected by overfitting than others. Particularly, QDA is
more flexible in fitting the classes on the training data due to
its quadratic characteristic, which increases the risk of
overfitting. In this study, we compared the average accuracy
computed in the training and in the test bootstrap replicates in
order to assess whether the performance of the proposed sta-
tistical models was affected by overfitting. We observed that
differences between training and test values were lower than
5% regardless the model and the cutoff. This slight difference
fits with the common expected decrease between training and
test stages, suggesting that there is no overfitting affecting our
results. In addition, bootstrap 0.632 accounts for both the
training and the test contributions when computing every per-
formance metric, which minimizes these differences.

It is important to assess whether statistical models provided
additional value compared to the simple ODI3. According to
our results, differences in performance between the statistical
automatedmodels and with the conventional ODI3 were max-
imal for AHI ≥ 1 event/h. In addition, ROC curves of LDA,
QDA, and LR were smooth while the curves for the ODI3
showed marked changes in the slope regardless the clinical
diagnostic threshold for the disease. This characteristic reveals
higher irregularity of ODI3 when the cutoff for classification
changes. Using standard classification cutoffs for the ODI,
i.e., ODI3 ≥ 1, 3, and 5 desaturations per hour of recording,
this conventional index reached a diagnostic accuracy signif-
icantly lower than the statistical models, as well as sensitivity
vs. specificity pairs highly unbalanced (Se < 10%). On the
other hand, QDA reached PPV > 90% and LR+ > 5 with fair
sensitivity and specificity balance (Se around 60%). Both

characteristics are essential for screening purposes, which is
probably the main advantage of statistical models over ODI3.
Therefore, our results suggest that automated modeling of
overnight oximetry by means of QDA provides further and
relevant information on the dynamics of oximetry compared
to the conventional ODI3, particularly when AHI ≥ 1 event/h
is used as the clinical cutoff for the disease.

As previously mentioned, the QDA model reached notably
high PPV and LR+ values regardless of the cutoff for positive
OSAS. Particularly, 96.5% PPV and 8.77 LR+ were reached
using a threshold of 1 event/h. This agrees with previous studies
reporting that oximetry is able to achieve high PPV values for
the detection of an AHI ≥ 1 event/h [14, 32]. Most sleep labo-
ratories use a clinical threshold of 1 event per hour during inter-
pretation of PSG [2], which increases the usefulness of these
automated techniques for screening purposes. Inspecting false
positive cases using QDA, we observed that two no-OSAS
(actual AHI < 1 event/h) children were misclassified as
OSAS-positive, a number of times notably higher than the re-
maining patients throughout the 1000 iterations of the bootstrap
algorithm. One of these children (actual AHI and ODI from
PSG equal to 0 events/h) showedmean SpO2 significantly lower
(92%) than the average for the OSAS-negative group (97%), a
feature characteristic of severe OSAS. The other one (actual
AHI and ODI from PSG equal to 0.4 and 0 events/h, respective-
ly) showed no sleep time with a saturation in the range of 90–
100%, which could suggest that other factors may be specifical-
ly detracting from the validity of the classifiers in these children,
e.g., underlying parenchymal lung disease or skin color artifacts
in oximetry readouts. Considering a cutoff of three events per
hour, three no-OSAS (actual AHI < 3 events/h) were significant-
ly more frequently misclassified as OSAS-positive by the
oximetry-based QDA model throughout the bootstrap samples.
Two of them (actual AHI from PSG equal to 1.3 and 1.8 events/
h) showed an ODI greater than 13 events/h and lowest SpO2

significantly lower (74 and 56%, respectively) than the average
for the OSAS-negative group (91%), while the other one was
borderline (actual AHI equal to 2.98 events/h) and also showed
significantly higher ODI (7.1 events/h) and lower minimum
SpO2 (81%) than the average for the no-OSAS population.
Similarly, three children were wrongly classified as suffering
from the disease by the QDA model using the cutoff of 5
events/h for positive OSAS. Two of them were also
misclassified using a clinical threshold of 3 events/h (subjects
with actual AHI equal to 1.3 and 1.8 events/h, respectively),
whereas the other one (actual AHI equal to 4.0 events/h) showed
an ODI of 7.6 events/h and minimum SpO2 equal to 78%,
which both are values characteristic of OSAS-positive children.

Table 5 shows previous studies using these statistical classi-
fiers in the context of childhood OSAS diagnosis using pulse
oximetry. LDA [9, 16–18] and LR [10, 14, 19, 20] were pre-
dominantly used. Nevertheless, to the best of our knowledge,
there are no proper and extensive comparisons among these a
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priori effective techniques in the framework of automated pedi-
atric OSAS detection. In the study by Gil et al. [16],
photoplethysmographic and pulse transit time recordings were
parameterized and LDAwas applied. An accuracy of 80% was
reached using leave-one-out cross-validation. In a later similar
study by the same group [17], the performance increased up to
86.7% using the pulse rate signal from oximetry to compute the
pulse transit time. Garde et al. [9] analyzed SpO2 and pulse rate
portable recordings. LDA achieved 84.9% accuracy using 4-
fold cross-validation. In an epoch-based classification scheme,
Cohen andDeChazal [18] built two LDAmodels using features
from SpO2 and ECG. A maximum accuracy of 74.7% was
reached using a leave-one-out cross-validation approach.

Regarding LR, Chang et al. [10] reported 71.6% accuracy
combining questionnaire-based variables and conventional
oximetric indices. Themodel was optimized and validated using
the same population. Similarly, Wu et al. [20] built a LR model
with clinical history, demographic, and other relevant variables,
reaching 78.2% accuracy in an independent test set. In a recent
study by our group [14], the accuracy of different LR models
from unattended oximetry ranged from 82.8 to 85.5% in a
bootstrapping validation scheme. Similarly, a LR model com-
posed of spectral features from airflow portable recordings and
the ODI3 achieved 86.3% accuracy [19]. In the present study,
our analyses further validate the efficacy of oximetry-based clas-
sification models aimed at screening for OSAS in children and
attest to their robustness and high predictive ability.

Despite the favorable screening capability of the proposed
oximetry-based models, some limitations should be taken into
account. The population cohort under study should be expanded
to increase the generalization of our results such as to include
different types of oximeters, and enable comparisons across
diverse populations such as those with craniofacial or genetic
syndromes, as well as in infants. However, when compared with
similar previous studies in the context of pediatric OSAS, the
cohort included herein was quite extensive, and included imple-
mentation of an appropriate bootstrap approach for independent
optimization and further validation of the models using several
datasets. Similarly, a larger dataset would lead to a more bal-
anced OSAS-negative and OSAS-positive groups and thus to a
more accurate parameter estimation.

Our results suggest that oximetry is able to provide relevant
and useful information in the context of pediatric OSAS. On the
other hand, using the proposed oximetric features, differences
among the statistical classifiers under study decreased as the cutoff
for the disease increased. Therefore, additional features from sig-
nal processing methods as well as advanced pattern recognition
techniques, such as ensemble learning, or more complex ap-
proaches for classification, such as deep neural networks, would
be needed to maximize the screening ability of oximetry in
moderate-to-severe cases. In addition, it is understood that the
ultimate goal of simplified tools such as overnight oximetry is
to carry out abbreviated screening tests at home. Therefore, the
validity of the proposed models needs to be reproduced in an

Table 5 Summary of the studies using statistical binary classifiers from overnight oximetry to assist in the detection of childhood OSAS

Author
(year)

Dataset (n) Gold standard
(cutoff)

Proposed
technique

Variables Classification Se
(%)

Sp
(%)

Acc
(%)

Gil et al.
(2010) [16]

21 children with
suspected OSAS

In-lab PSG
(AHI ≥ 5
events/h)

PPG and PTT from
pulse oximetry and
ECG

Time-frequency
analysis

Linear
discriminant

75.0 85.7 80.0

Chang et al.
(2013) [10]

141 children with
suspected
OSAS

In-lab PSG
(AHI ≥ 5
events/h)

Questionnaire and
oximetry

Presence of mouth
breathing, restless
sleep, ODI4

Logistic
regression

60.0 86.0 71.6

Garde et al.
(2014) [9]

146 children
with suspected
OSAS

In-lab PSG
(AHI ≥ 5
events/h)

Portable oximetry
(attended)

Time and spectral:
- SpO2

- SpO2 + PR

Linear
discriminant

80.0
88.4

83.9
83.6

78.
84.9

Lázaro et al.
(2014) [17]

21 children with
suspected OSAS

In-lab PSG
(AHI ≥ 5
events/h)

PPG and PTT from
pulse oximetry

T-F maps Linear
discriminant

100 71.4 86.7

Gutiérrez-
Tobal et al.
(2015) [19]

50 children with
suspected OSAS

In-lab PSG
(AHI ≥ 3
events/h)

Airflow + oximetry
from HRP

Spectral features
from airflow +
ODI3

Logistic
regression

85.9 87.4 86.3

Cohen & De
Chazal
(2015)
[18]

288 infants (< 27
weeks) with
suspected OSAS

At-home PSG
(epoch-based
classification)

Portable pulse
oximetry + ECG
(unattended)

T-F maps ECG
Time SpO2 + T-F
maps ECG

Linear
discriminant

39.6
58.1

76.4
67.0

74.7
66.7

Álvarez
et al.
(2017) [14]

50 children with
suspected OSAS

In-lab PSG
AHI ≥ 1 events/h
AHI ≥ 3 events/h
AHI ≥ 5 events/h

Port. oximetry from
HRP
(unattended)

Time (statistics and
non-linear) and
spectral features

Logistic
regression

89.6
82.9
82.2

71.5
84.4
83.6

85.5
83.4
82.8

Wu et al.
(2017) [20]

311 children
with suspected
OSAS

In-lab PSG
AHI ≥ 5 events/h

Diagnostic scale History,
demographic,
and anthropometric

Logistic
regression

94.8 25.0 78.2

AHI apnea-hypopnea index,OSAS obstructive sleep apnea syndrome,PSG polysomnography, PPG photoplethysmography, PTT pulse transit time,ECG
electrocardiogram, HRP home respiratory polygraphy, ODI3 oxygen desaturation index ≥ 3%, T-F time-frequency maps, Se sensitivity, Sp specificity,
Acc accuracy
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unattended setting. Finally, despite its usefulness for the screening
ofmild (96.5%PPV for AHI ≥ 1 event/h) andmoderate-to-severe
(90.8% PPV for AHI ≥ 5 events/h) childhood OSAS, there is still
room for improvement regarding the effectiveness of oximetry to
classify no-OSAS children (AHI < 1 event/h). Such limitations
will likely require more than a single-stepmodeling approach and
incorporate additional screening stages, whereby a fail/pass no-
OSAS decision by the proposed oximetry-based model will then
undergo a second scrutiny using an alternative classifier. If we
want to screen for no-OSAS children to minimize the number of
complete in-lab PSGs, an alternative classifier aimed at maximiz-
ing the negative predictive value should be implemented. In this
regard, as oximetry is characterized by a high specificity, other
sources of information would be needed, such as history and
clinical data or additional biomedical recordings, e.g., airflow or
pulse rate. On the other hand, additional useful information could
be derived from the same sensor so that the simplicity of our
proposal as abbreviated screening test for pediatric OSAS is not
compromised. Pulse oximetry devices are able to provide infor-
mation from both oxygen saturation and heart rate. In the present
study, we used just the SpO2 signal. Nevertheless, previous re-
searchers demonstrated the usefulness of the pulse rate derived
from the photoplethismographic signal to derive relevant infor-
mation about the presence of pediatric OSAS [9, 16, 17].
Therefore, features derived from different signals but acquired
using a single device could be used to improve the performance
of automated classifierswithout increasing the intrusiveness of the
proposal for children.

In summary, automated analysis of SpO2 recordings from
nocturnal oximetry emerges as a simple as well as reliable
alternative to complete PSG in the screening of children with
high pre-test probability of OSAS. Our results provide addi-
tional insights on the effectiveness and limitations of statistical
modeling of overnight SpO2 recordings as an abbreviated
screening tool for childhood OSAS.
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