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Abstract
Objective The objectives of this paper are to examine the
effect of chronic intermittent hypoxia (CIH) on the morpho-
logical changes in the kidney of growing rats and to explore
the mechanisms underlying the CIH-induced renal damage.
Methods Forty Sprague-Dawley rats were randomly divided in-
to two groups: 2 and 4 weeks CIH groups (2IH, 4IH), and in the
control group 2 and 4weeks air-stimulated groups (2C, 4C), with
10 rats in each group. Pathological changes of renal tissue were
observed by HE staining, PAS staining, and Masson staining.
Real-time PCRmethodwas used to detect themRNAexpression
of HIF-1α, CuZnSOD/ZnSOD, and MnSOD in renal tissue.
Results (1) Intermittent hypoxia (IH) caused morphological
damage in the kidney. Hypertrophy of epithelial cells in the
kidney tubules and dilation in the glomeruli were observed
under light microscope in HE and PAS stain, especially in
4IH group. Masson staining showed no significant fibrotic
response in the IH groups. (2) Compared with the correspond-
ing control groups, the levels of serum SODwere significantly
lower in CIH groups, and especially in 4IH group. ThemRNA
expression of Cu/ZnSOD and MnSOD in CIH groups de-
creased significantly as compared to control groups. The
mRNA levels of HIF-1α in the kidney were significantly

higher in CIH groups than those in the corresponding control
groups.
Conclusion Oxidative stress played a critical role in renal
damage by up-regulating HIF-1α transcription and down-
regulating Cu/ZnSOD andMnSOD transcription after chronic
intermittent hypoxia exposure in growing rats.

Keywords Intermittent hypoxia . Obstructive sleep apnea
hypopnea syndrome . Oxidative stress . Renal impairment

Introduction

Obstructive sleep apnea hypopnea syndrome (OSAHS) is the
most common type of sleep-disordered breathing associated
with excessive daytime sleepiness, snoring, recurrent oxyhemo-
globin desaturations, and arousals from sleep [1]. It is charac-
terized by recurrent episodes of airway collapse during sleep.
The prevalence of OSAHS in children in the clinic is not un-
usual; an epidemiological survey in 2007 showed that the prev-
alence of OSAHS in children was 2% [2]. Another epidemio-
logical survey in Hong Kong in 2010 showed that the OSAHS
prevalence rate among school-age childrenwas at 3.8% for girls
and 5.8% for boys [3]. Children are a susceptible group, as they
are in growth and development period; their tissues and organs
demand more oxygen than adults, therefore they are more sen-
sitive to hypoxia. So, the impact of OSAHS on children is of
more importance; it can occur in newborns till adolescents at
any stage, but more commonly in preschool children.

OSAHS involves multiple system dysfunctions such as the
cardiovascular, respiratory, digestive, genitourinary, endo-
crine, vascular, neurodevelopmental, and muscular system
and also participates in retinopathy of prematurity and im-
paired growth [4–11]. In our previous studies, we found that
nervous system injury and cognitive dysfunction were more
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common in children with OSAHS [12, 13]. There are ample
evidence that inflammatory responses to the perturbations as-
sociated with OSAHS trigger a variety of genes and signaling
cascades that ultimately lead to end-organ injury and changes
in the kidney function and protein expression. It can also cause
renal damage which has been clinically confirmed [14, 15].
The kidney is a high blood flow, high-perfused organ; its
oxygen supply and oxygen tension changes are more sensi-
tive, thus vulnerable to hypoxic injury [16]. Renal function,
proteinuria, and renal tubular dysfunction are mainly noctur-
nal, but its molecular mechanism remains unclear. Repeated
hypoxia and re-oxygenation, similarly to ischemia and reper-
fusion, causes cell mitochondria to produce more reactive ox-
ygen species (ROS), therefore resulting in oxidative stress
which is an important pathophysiological mechanism of renal
damage caused by OSAHS. The aim of this study was to test
the hypothesis that oxidative stress played an important role in
the pathogenesis of CIH-associated renal damage in growing
rats.

Materials and methods

This study was authorized by the Ethics Committee of
WenzhouMedical University. SPF Sprague-Dawley (SD) rats
were purchased from Experimental Animal Center of
Wenzhou Medical University. The design, preparation of in-
termittent low oxygen stainless steel chamber, compressed
oxygen (concentration > 99.5%), high purity compressed ni-
trogen (concentration > 99.99%), and compressed air were
purchased from Wenzhou Medical oxygen plant filling.

Animal model of OSAHS and experimental groups

Animal grouping of SPF SD male rats, weighing between 90
and 110 g, and aged 3–4 weeks; 40 rats were randomly divid-
ed into 4 groups by the method of random number table so that
the number in each group was 10 and named as follows:
chronic intermittent hypoxia (IH) for 2 weeks and 4 weeks
group (2IH, 4IH) and control group 2 and 4 weeks (group 2C,
4C). Rats excluding the control groups were laid in intermit-
tent hypoxia cabin, an automated alternate nitrogen/oxygen
gas delivery system (Scientific research center of Wenzhou
Medical University, Zhejiang, China) to deliver hypoxia/re-
oxygenation. There were two durations of chronic intermittent
hypoxia (CIH)whichwere studied: 2weeks (2IH) and 4weeks
(4IH).

Intermittent hypoxia exposure

Establishment of CIH animal model was according toWang Y
[17] with modifications. To generate IH and air control, a steel
cabin was created with an automated nitrogen/oxygen gas

delivery system to deliver hypoxia/re-oxygenation using our
previously described protocol [18]. Briefly, the experimental
parameters were set as follows: O2 concentration could be
reduced to a nadir of 9% ± 1.5% in 30 s by infusion of
99.99% nitrogen with the pressure kept at 0.3 KPa, stabilized
at that level for 30 s, and then gradually increased to
21.0 ± 0.5% over the next 12 s by infusion of 99.50% oxygen
(25 L/min) into the cabin. The oxygen concentration in the
tank was maintained at 9% ± 1.5% in the hypoxia phase and in
the re-oxygenation was maintained at 21.0% ± 0.5%, and the
concentration of CO2 in the tank was less than 0.01%.This
process was computer controlled. This cycle was repeated
every 90 s over 7.5 h (from 8:00 to 15:30) during the animals’
diurnal sleep period for certain days according to the experi-
mental design. The control groups were placed in cabin filled
with compressed air for 2 weeks as 2C group or for 4 weeks as
the 4C group, respectively. The O2 concentration was kept at
21.0 ± 0.5% in the control cabin. Ambient temperature was
kept at 22–24 °C and humidity 40~50%. At the end of each
day, the rats were grouped in additional cages, which were
illuminated with fluorescent lamps to simulate daytime con-
ditions. The rat’s activity and diet were ad libitum.

Test of the chronic intermittent hypoxia cabin

Validation of the CIH cabin was carried out before this ex-
periment. Ten rats were anesthetized with 35 mg/kg pento-
barbital (Sigma, USA) through intraperitoneal injection.
The carotid artery was then catheterized using a catheter
with heparin anticoagulation, which was inserted in the left
carotid artery and sutured in place. When the rats recovered
from surgery, 5 rats were randomly chosen and put individ-
ually in the CIH cabin and the other 5 in the control cabin.
The experimental protocol was performed for 2 hours. The
blood samples were collected at 22.5-s intervals during a
single IH cycle continuous blood for 5 times, every <3 s,
with the initial nitrogen gas input as the first sample, respec-
tively. Arterial blood samples (0.5 ml) were collected in a 5-
gauge needle at the end of each consecutive condition and
immediately analyzed using a blood gas analyzer (GEM
Premier 3000; America).

Specimen collection

Four rats in each group were anesthetized; thoracotomy with
separation of the heart was performed to collect 5 mL of arte-
rial blood which was refrigerated in a temperature of 4 °C for
2 h. Subsequently, the arterial blood was centrifuge at 4 °C
4000rpm for l5 min and the serumwas preserved at − 80 °C in
refrigerator. The serum was then used to detect total superox-
ide dismutase (SOD) activity. The remaining 6 rats were af-
terwards anesthetized by intraperitoneal injection of 3% phe-
nobarbital sodium (40 mg/kg). Laparotomy was done to
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expose the left and right kidneys. The renal vein was injected
with pre-cooled saline. The right and left kidneys were col-
lected when it became pale. The left kidney was placed on an
ice plate. The right kidney was fixed in 4% paraformaldehyde
solution.

Renal histopathological staining

HE staining, PAS staining, and Masson staining

The tissue sections were paraffin-embedded and 4-μm sec-
tions were used. The sections were routinely dewaxed with
xylene, washed with ethanol at all levels, and stained with HE,
PAS, and Masson, respectively. Tissue samples from the kid-
neys were scored histopathologically. Pathological scoring
(0–4) was used to assess the degree which was defined as
glomerular swelling, renal tubular epithelial cell swelling,
mesangial proliferation, and glomerular and interstitial fibro-
sis. Counts were performed in at least 10 different fields of
square micrometers, using scores on a scale of 0 (< 5%), 1 (5–
25%), 2 (25–50%), 3 (50–75%), and 4 (> 75%). The severity
of each injury was assessed by 0~4 scores: 0 = minor damage,
1 + = mild damage, 2 + = moderate damage, 3 + = severe
damage, and 4 + =serious damage. All the above four patho-
logical scores were added into 0~16 points.

Real-time PCR

The expression of HIF-1α, Cu/Zn-SOD, and MnSODmRNA
in the left kidney was detected by real-time PCR. Total RNA
was extracted from the renal tissue using the Trizol reagent
according to manufacturer’s instructions. The RNAwas puri-
fied and quantified by RNAi, reverse transcribed into cDNA,
and amplified using a PCR amplification apparatus. PCR re-
action conditions were 95 °C 5 min; 95 °C 10 s, 60 °C 10 s,
72 °C 10 s, and 45 cycles of amplification.β-actin was used as
an internal control by previous work [12]. β-actin, HIF-1α,
Cu/Zn SOD, and MnSOD primer sequences were designed
and synthesized by Shanghai Shengong Bioengineering Co.
Ltd., and the sequences were as follows: HIF-1 α: upstream
5′-TGAACATCAAGTCAGCAACG-3′, downstream: 5′-
CACAAATCAGCACCAAGCAC-3′, Cu/ZnSOD: upstream
5′-GTGGTGGAGAACCCAAAGGA-3′, downstream 5′-
GCGTGCTCCCACACATCAAT-3′, MnSOD: upstream 5′-
ATGGGGACAATACACAAGGC-3′, downstream 5′-TCAT
CTTGTTTCTCGTGGAC-3′, β-actin: upstream 5′-TCAC
CAACTGGGACGATATG-3′, and downstream 5′-GTTG
GCCTTAGGGTTCAGAG-3′. The relative expression of the
target gene was calculated according to the formula 2−ΔCt
(ΔCT = Ct value of the target gene−Ct value of the internal
reference gene) using β-actin as the internal reference gene
using Lightcycler48015.0 software.

Determination of SOD

The hydroxylamine oxidation method was used to detect the
activity of SOD. All experimental procedures were performed
according to the manufacturer’s instructions (kit assay,
Jiancheng Limited Company, Jiangsu China). UV spectropho-
tometric colorimetry was used to detect the absorbance of the
sample at 550 nm. Enzyme values are presented as U/ml.

Statistical analysis

In addition to the renal pathological score, all groups were
normal measurement data; with the mean + standard deviation

(X ±SD), the renal pathological scores were expressed as a
median, with SPSS 21 statistical software processing. Renal
pathological scores were examined by Kruskal-Wallis test.
Other data were compared using multiple factor analysis of
variance (two-way ANOVA), if the variance was homoge-
neous the LSD test was used, and if not, Dunnett’s T3 test
was used to test the variance. The differences were considered
significant if P values were < 0.05.

Results

Blood gas analysis

Blood gas analysis in rats was made in order to validate the
CIH cabin. The result showed that over the course of the IH
event for 2 h, the PaO2 fluctuated from 44 ± 3 to 80 ± 9mmHg
and SaO2 from 75 ± 3 to 95 ± 1mmHg, respectively, in a cycle
of 90 s. The PaO2 and SaO2 in control group exhibited no
significant difference among the five time points. The magni-
tude of oxygen saturation that was induced in our model was
consistent with the degree of hypoxia that occurs in moderate
to severe OSAHS [19, 20].

Histopathological changes in each group

HE The structure of glomerular and tubular epithelial cells
was normal in 2C and 4C groups. There was mild hyperplasia
of glomerular mesangial cells in IH groups. Compared to the
2IH group, the 4IH group had significant changes such as
glomerular and renal cysts and renal tubular epithelial cell
swelling (Fig. 1).

PAS staining There was no significant thickening of the glo-
merular basement membrane, mesangial and no loss of the
tubular epithelial cell brush border in the 2C and 4C groups.
In the IH groups, glomerular basement membrane was slightly
thickened, the brush border structure of renal tubular epithelial
cells were incomplete, and the damage in the 4IH group was
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significantly higher than that of the 2IH group, as shown in
Fig. 2.

Masson staining No blue collagen fibers were identified in
the glomerular and tubulointerstitial tissues neither in the IH
groups nor the C groups as shown in Fig. 3.

Pathological score In the four groups (n = 6), it showed that
the IH group (4IH group was 5, 2IH 3) had more severe
pathological damage compared to air control group (2C and
4C group were 0.5) and the difference was statistically signif-
icant (P < 0.05).The pathological damage of the 4IH group
was more obvious than that of the 2IH group (P < 0.05), and
the pathological damage was serious; the difference was sta-
tistically significant (P < 0.05) (refer to Table 1).

The mRNA expression of HIF-1α, MnSOD,
and Cu/ZnSOD in the kidney tissues of each group was
observed

Effect of IH on expression of HIF-1α (Fig. 4 and Table 2)

IH had significant effect on the expression of HIF-1αmRNA
(F = 151.683. P < 0.001) and the time effect (F = 42.693,
P < 0.001). The interaction between the treatment and the time
effect was also significant (F = 52.212, P < 0.001). The

expression of HIF-1αmRNA in the renal tissue of 2IH group
was increased (P < 0.05) compared to the 2C group, similarly
for the 4IH group compared to the 4C group (P < 0.05). The
expression of the 4IH group was significantly higher than the
2IH group (P < 0.05).

Effect of IH on expression of MnSOD (Fig. 4 and Table 2)

IH had significant effect on the expression of MnSODmRNA
(F = 108.613 P < 0.001). The time effect (F = 1.390, P > 0.05)
and the interaction between treatment and the time effect was
not significant (F = 2.551, P > 0.05). The expression of
MnSOD mRNA of the 2IH was lower than that of 2C
(P < 0.05); likewise, the 4IH group compared to 4C was sig-
nificantly decreased (P < 0.05), but the 4IH compared to 2IH
had no significant difference (P > 0.05).

Effect of IH on expression of Cu/ZnSOD (Fig. 4 and Table 2)

IH had significant effect on the expression of Cu/ZnSOD
mRNA (F = 107.511 P < 0.001). The time effect
(F = 3.912, P > 0.05) and the interaction between treatment
and the time effect was not significant (F = 0.676, P > 0.05).
The expression of Cu/ZnSOD mRNA in 2IH and 4IH groups
were lower than those in 2C and 4C groups (P < 0.05), but

Fig. 1 HE staining of renal tissue
in each group (× 400 times). a and
c Represent the 2C and 4C
groups. b and dRepresent the 2IH
and 4IH groups. b and d The
white arrows show mild
glomerular mesangial hyperplasia
and black arrows show swelling
and structural disorders of renal
tubules
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there was no significant difference between 4IH group and
2IH group (P > 0.05) and 2C and 4C (P > 0.05).

Determination of serum SOD activity (Fig. 4 and Table 2)

2IH and 4IH groups’ serum SOD activity were lower than the
control groups 2C and 4C (P < 0.05); 4IH group was signif-
icantly lower than 2IH group (P < 0.05); 2C and 4C groups
were not statistically significant (P > 0.05).

Discussion

OSAHS is a multi-system functional disorder with intermittent
hypoxia and sleep fragmentation as its main pathophysiological

mechanism resulting in nocturnal apnea. The process of
hypoxia-re-oxygenation is similar to the pathological process
of ischemia-reperfusion injury (IRI), which can result in oxida-
tive stress and free radical production. Long-term accumulation
leads to multi-system organ damage. In the study of the molec-
ular mechanism of cardiovascular disease and cognitive impair-
ment in OSAHS, oxidative stress is considered to be one of the
major mechanisms of injury [21–23]. In IRI, oxidative stress is
the most commonmolecular mechanism of cell destruction and
relatively low concentration of antioxidant enzymes makes it
more susceptible to oxidative stress injury [16].

OSAHS-associated renal damage has been clinically con-
firmed [24, 25] mainly for chronic kidney disease, nocturnal
polyuria, renal functional changes, proteinuria, renal tubular
dysfunction, etc. In animal model of CIH [26, 27], it has been

Fig. 2 PAS staining of renal
tissue in each group (× 400
times). a and c Represent the 2C
and 4C groups. b and d Represent
the 2IH and 4IH groups. b and d
The black arrows show
glomerular mesangial
proliferation

Fig. 3 Masson staining of renal
tissue in each group (× 200
times). a and c Represent the 2C
and 4C groups. b and d Represent
the 2IH and 4IH groups. a, b, c, d
Glomerular and renal tubules
were not stained blue for collagen
fibers

Sleep Breath (2018) 22:453–461 457



found that OSAHS can cause kidney tissue structure, ultra-
structure, and proteomics changes, but the studies were per-
formed on adult animals. It is still unclear whether OSAHS
can cause similar changes in the children; therefore, we design
a self-developed computer-controlled intermittent hypoxic ox-
ygen chamber to study the effects of OSAHS on renal tissue in
3- to 4-week-old SD rats. The test for the hypoxia cabin con-
firmed that the magnitude of oxygen saturation that was in-
duced in our model of IH was equivalent to the pathophysio-
logical changes of moderate to severe intermittent hypoxia
exposure.

In our study, we did not investigate mild OSAS but
Butchner et al. [28] and Wissing et al. [29] investigated mild
to moderate OSAS and its treatment on renal hemodynamics
assessed by the renal resistance index. They found in

multivariate analyses that the renal resistance index was inde-
pendent of hypertension, diabetes mellitus, age, and baseline
renal function. Their study demonstrated an impairment of
renal hemodynamics in OSAS. These changes in renal blood
flow may identify OSAS patients who are at risk of declining
renal function. Further studies are warranted to determine
OSAS’s direct influence on renal impairment in children.

Previous studies demonstrated that proximal tubule epithe-
lial cells were one of the most vulnerable cells in IRI in the
kidney [30, 31]. In this study, there were pathological changes
of renal tissue; mainly in the IH group, mild hyperplasia of
glomerular mesangial cells, edema of the renal tubular epithe-
lial cells, and loss of complete brush border structure were
identified. At the same time, glomerular changes were con-
firmed by PAS staining. Chronic hypoxia is a key factor in
renal interstitial fibrosis. In this study, renal tissue fibrosis was
not identified in neither 2 weeks nor 4 weeks IH group in
Masson staining, but Sun et al. [32] and other studies in adult
mice showed that after 8 weeks of IH exposure, there were
significant decrease of antioxidant levels and significant in-
creases of renal inflammation, oxidative damage, cell death,
and renal fibrosis, suggesting the severity of renal fibrosis by
IH depending on the length of time and the degree of hypoxia.

The mechanism of hypoxia in OSAHS is similar to that of
IRI, which is characterized by CIH and different durations of
hypoxia, which is a more serious type of hypoxia. Gozal et al.

Fig. 4 The level of HIF-1α, Cu/ZnSOD, and MnSOD mRNA
expression. a, b, c, d Real-time quantitative PCR was used to detect the
expression of HIF-1α, Cu/ZnSOD, MnSOD, and SOD in kidney mean

±SD. Statistically significant differences are indicated by ▲P < 0.05 vs
2C group; ■P < 0.05vs 4C group; ★P < 0.05 vs 2IH group

Table 1 Analysis of the
histological assessment
among 4 groups (n = 6)

Groups Kidney injury scores

2C 0.5(0–1)

2IH 3(2–3)▲
4C 0.5(0–2)

4IH 5(4–6)■★

▲P < 0.05 vs 2C group
■P < 0.05vs 4C group
★P < 0.05 vs 2IH group
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exposed (pheochromocytoma-12, PC12) pheochromocytoma
cells to continuous hypoxia (5%O2) and intermittent hypoxia
(hypoxia 5%O2 35 min, 21% O2 21 min) 2 to 4 days; they
found that 2 days exposure to IH can lead to cell apoptosis
[33]. HIF-lα is a transcription factor that regulates oxygen
balance. It is a heterogeneous two polymer structure com-
posed of oxygen-sensitive alpha subunit and stably expressed
beta subunit. The content of HIF-1α in the local tissue can
indirectly reflect the hypoxia of tissue cells. Continuous hyp-
oxia increased the expression of HIF-1α through mediating
hypoxic adaptive response. IH also upregulated HIF-1α ex-
pression, but the signal transduction pathway was different
from that of continuous hypoxia [34]. Da Rosa et al. [35]
found that HIF-1 alpha protein was upregulated in lung tissue
and liver in CIH. Therefore, the expression of HIF-1 alpha
mRNA in renal tissue can reflect the renal anoxia in CIH
condition. In this study, real-time quantitative PCR was used
to detect hypoxia-related HIF-1αmRNA expression in renal
tissue, which showed that the expression of HIF-1αmRNA
was upregulated in a time-dependent manner, therefore indi-
cating that hypoxia occurred in the kidney tissue.

A number of clinical studies show a decrease in oxidative
stress [21, 36, 37] and anti-oxidative capacity in patients with
OSAHS [38]. SOD is the first in vivo antioxidant enzyme
reaction. Cu/Zn superoxide dismutase (copper-zinc superox-
ide, dismutase, Cu/ZnSOD) and manganese superoxide dis-
mutase (manganese superoxide, dismutase, MnSOD) are the
main two types. Cu/ZnSOD was mainly expressed in the cy-
toplasm and MnSODwas mainly located in the mitochondria.
In our previous study, we found out that the level of 8-ISO-
PGF2α, an in vivo oxidative stress marker, was significantly
high in the CIH groups compared to the corresponding control
groups, therefore suggesting that CIH induced oxidative stress
injury [18]. In this study, the total SOD activity in serum of
CIH rats was determined by chemical colorimetry; we found
that SOD activity was decreased, which was negatively cor-
related with time, and the results showed the antioxidant ca-
pacity decreased in CIH SD rats. Real-time fluorescence quan-
titative detection showed that the expression of Cu/ZnSOD
andMnSODmRNA in renal tissue was downregulated, which
indirectly indicated that IH induced oxidative stress in renal
tissue. Nanduri et al. [39] also showed that PC12 cells were
mainly downregulated by IH after MnSOD expression,
whereas other antioxidant enzymes were unchanged. These
results suggest that IH exposure mainly results in downregu-
lation of MnSOD expression. In this study, the expression of
Cu/ZnSOD in the cytoplasm of IH group was lower than the
control group. The hypoxia time was prolonged and the ex-
pression of MnSOD in the mitochondria was downregulated
in CIH rats, which indicated oxidative stress played a critical
role in renal damage CIH rats.

Our study had limitations. Firstly, our model of intermittent
hypoxia does not entirely represent all of the events that occurT
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during obstructive sleep apnea. Intermittent hypoxia does not
cause negative intrathoracic pressure swings or obstruction of
the airway. Second, we used 2 weeks and 4 weeks exposure to
intermittent hypoxia which cannot predict if the changes in
mRNA expression we found would be maintained or aug-
mented with a longer exposure. Third, we only analyzed gene
but it would have been better to analyze protein also in the
kidney tissue. By immunohistochemistry, we could confirm
that Cu/ZnSOD is mainly expressed in the cytoplasm, while
MnSOD is mainly expressed in the mitochondria. Lastly, to
better evaluate the kidney morphological changes, more
stained sections should have been done.

Conclusion

In summary, oxidative stress played a critical role in renal
damage by up regulating HIF-1α transcription and downreg-
ulating Cu/ZnSOD and MnSOD transcription after chronic
intermittent hypoxia exposure in growing rats. Future research
is needed to determine the clinical significance of these pre-
liminary findings.
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