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Abstract

Background Obstructive sleep apnea syndrome (OSAS) has a
negative impact on health and behavior of millions of individ-
uals worldwide. The pathogenesis of this disorder is a multifac-
torial process related to a variety of mechanisms, including
selective activation of inflammatory response pathways. A
number of inflammatory factors, such as IL-6, IL-8, and
TNF-«, can be found in high concentrations in subjects with
OSAS and may serve as biological markers of this disease. The
concentration of these cytokines contributes to weight gain in
patients with OSAS and can also modify the risk of obesity-
related metabolic disorders, especially insulin resistance. Nev-
ertheless, the mechanisms by which specific genes are associ-
ated with these processes are still poorly known. In addition to
gene expression studies, investigations aiming at the identifica-
tion of epigenetic factors associated with OSAS are still scarce
in the literature. The documented data support the hypothesis
that the molecular changes that mediate inflammatory response
are important mechanisms in the pathogenesis of OSAS, sleep-
iness, insulin resistance, visceral obesity, and cardiovascular
disease, perhaps by leading to a more severe OSAS. Often,
systemic changes may not be detected in mild OSA; however,
molecular changes, which are much more sensitive to the
mechanisms of intermittent hypoxia and oxidative stress, may
be present.

Purpose This review aimed to show an updated view on the
studies evaluating the genetic basis of inflammatory response
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in many aspects of OSAS and to highlight potential research
areas not fully explored to date in this field.
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Introduction
Obstructive sleep apnea syndrome

The obstructive sleep apnea syndrome (OSAS) is characterized
by episodes of partial or total upper airway obstruction during
sleep with airflow interruption (apnea) or reduction (hypopnea)
leading to transient reduction in oxyhemoglobin saturation, hy-
percapnia, followed by a transient awakening, which leads to
the reestablishment of the upper airway permeability. Conse-
quently, the patient generally presents fatigue and excessive
daytime drowsiness, attention or memory impairment, and ha-
bitual snoring history, being the latter an indicative of increase
of the airway flow resistance in the pharynx [1, 2].

The number of apnea/hypopnea events during sleep can be
characterized by the apnea-hypopnea index (AHI), which
measures how many events occur per hour of sleep. The re-
petitive occurrence of these events contributes to fragmented
sleep and, as a consequence, excessive daytime sleepiness [3].

The American Academy of Sleep Medicine considers OSAS
severity by the AHI classification (mild—5 to 15; moderate—
15 to 30, and severe—>30) and by the degree of daytime drows-
iness (mild: unwanted drowsiness or involuntary episodes oc-
curring during activities which require little attention; moderate:
during activities which require some attention, such as meet-
ings; and severe: during activities which require more active
attention, such as those during conversation or driving) [4].
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It has been estimated that OSAS affects >4 % of men and
>2 % of women in the world, where one in every five adults
suffers from mild OSAS and one in every 15 presents mild to
severe OSA [1, 5-7]. Besides the global estimate mentioned
above, a cohort study by Young et al. already described a prev-
alence of sleep-disordered breathing by 9 % in women and 24 %
men [7]. Also, a recent study by Peppard et al. found increased
prevalence of moderate to severe OSA [8]. Our group conducted
a large OSA study in a South American metropolitan area (Sao
Paulo, Brazil) and found a higher prevalence of OSA (32.8 %)
than what was found earlier [9]. Thereby, the importance of the
syndrome, which had been underestimated for a long time, is
significant since it occurs in a large portion of the population
[1]. The large frequency of non-diagnosed OSAS cases leads
to awareness in the scientific community; once even the mild
cases of OSAS, with or without daytime symptoms, could be
associated with a considerable increase in cardiovascular mor-
bidity [10].

Pathogenesis of OSAS varies, and predisposing factors in-
clude small upper airway lumen, unstable respiratory control,
low arousal threshold, small lung volume, and dysfunctional
upper airway dilator muscles [11]. The major OSAS risk factors
are age, male gender, and obesity (higher body mass index
[BMI)]), leading to a larger neck circumference (NC). It has al-
ready been defined that obesity is an important risk factor to
OSAS, and the moderate reduction of body weight has been
shown to decrease its severity [12]. The fat deposit around the
pharyngeal area might be responsible for the upper airway (UA)
collapse, and the abdominal fat deposit leads to the reduction of
respiratory functional residual capacity and reduction of the pro-
tective mechanism of the upper airway caudal traction [10, 13].
The increase in body weight is associated with worsening of
OSAS severity, being more evident in men when compared to
women. Therefore, it is understood that central obesity consti-
tutes an important factor to the OSAS presence and progression
[12].

The OSAS is more common in men than that in women, once
they present a longer UA (pharyngeal portion) and larger fat
deposit around it. This gender difference is already seen in early
adolescence, and testosterone could be one of the main factors
[14]. In women, the hormonal state has an important role in the
OSAS genesis, since the prevalence of the syndrome in the post-
menopausal phase is higher than before the menopause [12, 15].
Another relevant factor in women at postmenopausal phase is the
pharyngeal length, which contributes to UA collapse [16]. Also,
androgens have an important role in the OSAS pathogenesis in
obese women with polycystic ovary syndrome, in relation to
obese women without this disorder [12, 17].

Hypoxia, oxidative stress, and inflammatory response

It is known that the OSAS pathogenesis is related to a multifac-
torial process with a diversity of mechanisms, including the
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sympathetic nervous system hyperactivity, oxidative stress, vas-
cular endothelial dysfunction, metabolic deregulation, and selec-
tive activation of the inflammatory airways [18, 19]. Exposure to
intermittent hypoxia (IH) has shown several effects on the car-
diovascular system in animals. According to Ryan et al., studies
assessing IH in rats and dogs have reported a significant in-
crease in arterial blood pressure, which is kept even after stim-
ulus cessation. Moreover, the increased sympathetic activity and
the decrease of baroreflex sensitivity have been proposed as
factors contributing to the increase of blood pressure in animals
[20]. In humans, Lam et al., described that the clinical manifes-
tations in OSAS patients are associated with physiopathological
consequences caused by chronic exposure to IH, leading to
cardiovascular morbidity, including systemic arterial hyperten-
sion and increased risk of cerebrovascular accident [21].

Specific extracellular stimuli, mediated by hypoxia, activate a
signaling cascade which leads to an unbalanced production of
reactive oxygen species (ROS—including free radicals, such as
superoxide, and non-free radicals such as hydrogen peroxide)
and endogenous antioxidants defense mechanisms [21, 22]. Mi-
tochondrial dysfunction is one of the most important character-
istics of hypoxia, which results in inducing ROS production via
complex I of the respiratory chain [23]. The ROS activate an
inflammatory cascade resulting in the increase of pro-
inflammatory cytokines and expression of adhesion molecules
[24]. According Lavie and Lavie, ROS also disrupt important
signaling pathways in the arterial wall, promoting change in the
inflammatory and immune functions through the activation of
factor kB (NF-kB) [25]. Oxidant radicals and proteolytic en-
zymes affect the endothelial function during the accumulation
of leukocytes and platelets in the endothelium, interacting with
the vascular wall and contributing to the endothelial dysfunction,
which is a subclinical condition of atherosclerosis, thus promot-
ing the development of cardiovascular diseases [24, 26]. Leuko-
cytes are also affected and this contributes to increased ROS
production in patients with OSAS through NADPH oxidase
[23].

Prolonged oxidative stress observed in non-treated OSAS re-
duces the activity of the endothelial nitric oxide synthase (NOS),
an enzyme responsible for assisting several cells to synthesize
NO, an important neurotransmitter acting in the regulation of
inflammation and autoimmune mechanisms [17, 27]. Therefore,
the reduction of its production can result in endothelial dysfunc-
tion and thereby predispose to vascular morbidities in OSAS
[27].

In a review regarding the molecular mechanisms of cardio-
vascular disease in OSAS, Lavie and Lavie reported that oxida-
tive stress ultimately affects multiple systems by the reaction of
NO with ROS, where oxidative stress is increased while NO is
decreased, promoting inflammation and endothelial dysfunction.
The authors suggest that oxidative stress may lead to arterial
hypertension induced by the sympathetic activation and in-
creased angiotensin II and endothelin-1 and can also induce
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upregulation of numerous redox status sensitive transcription
factors, such as HIF-1x, NF-kB, sterol regulatory element-
binding proteins (SREBPs) and GATA transcription factors
[23]. A recent review also addressed the relationship between
OSA, oxidative stress, and intermittent hypoxia, in which reading
is encouraged [28].

In 2006, Hernandez et al. reported that the plasmatic con-
centration of the oxidative stress marker malondialdehyde
(MDA) was higher in OSAS patients than that in controls. With
the intervention of nasal continuous positive airway pressure
(CPAP) for 3 months, they found a significant decrease of
MDA and consequently of the degree of endothelial dysfunc-
tion that predispose to vascular morbidity [29].

In this sense, it is clear that the consequences of important
aspects of OSAS, especially chronic intermittent hypoxia,
might activate specific pathways related to oxidative stress
and inflammatory response. The understanding of such mech-
anisms contributed to the link between OSAS and cardiovascu-
lar disease and provides potential therapeutic approaches, with
the use of positive airflow pressure devices, aiming to reduce
the cardiovascular consequence of this disease.

Inflammatory markers

A common example of a biological marker of the inflammatory
system is the cytokines, low molecular weight proteins pro-
duced by different kinds of cells acting as autocrine, paracrine,
and endocrine modulators. Those molecules are frequently as-
sociated to the propagation of immunological response, and
they are linked to specific receptors in the target cells, triggering
signal transduction pathways that stimulate gene expression
[30]. Also known for interacting with the sleep mechanisms
in the brain, cytokines signal the central nervous system
(CNS) regulating the normal sleep pattern during the alterations
caused by infectious and pathological diseases [31].

In OSAS patients, several inflammatory factors can be found
in high concentrations, which can be used as biological markers
[32], such as interleukin-6 (IL-6) [33], interleukin-8 (IL-8) [34,
35], tumor necrosis factor-oc (TNF-) [35], vascular endothelial
growth factor (VEGF) [36], leptine [37, 38], and C-reactive
protein (CRP) [39, 40].

According to Quercioli et al., the levels of the pro-
inflammatory cytokine TNF-x are correlated to the severity of
OSAS and with increase of NREM sleep, leading to somno-
lence and fatigue. Before these evidences, the authors suggest
that the OSAS can be considered as a systemic inflammatory
disease [41]. According to Kang et al., there is also a relation-
ship between sleep deprivation and cytokines. The pro-
inflammatory cytokines, such as interleukin-1 beta (IL-1f3),
IL-6, and TNF-«, have been comprehensively evaluated as
contributors in the regulation of sleep in the brain areas such
as the hypothalamus and hippocampus [31]. The production of
IL-1 is higher in the sleep onset, suggesting a variation of this

cytokine in sleep-wake cycle. In addition, variation of daytime
concentrations of pro-inflammatory cytokines is associated
with sleep regulation, and the increase of IL-13 and IL-1 re-
ceptor antagonist plasmatic levels has been directly associated
with sleep deprivation [42].

The literature describes that the interleukins IL-1, IL-2, IL-
6, IL-8, IL-18, and TNF « are known for increasing NREM
sleep, and the interleukins IL-4, IL-10, IL-13, and TGF-{ for
suppressing this stage of sleep [31]. In addition, circulating
levels of IL-6 and TNF-«, as well as soluble adhesion mole-
cules, such as the intracellular adhesion molecule (ICAM-1),
and monocyte chemoattractant proteins (MCP-1), may be el-
evated in OSAS [18].

A previous study reported that VEGF blood concentration
is elevated in patients with OSAS, potentially as consequence
of nighttime hypoxia. This is due to the fact that sustained
hypoxia (SH) can activate transcription-mediated hypoxia in-
ducible factor (HIF-1), resulting in an increase of the expres-
sion of a number of genes that encode some proteins, including
VEGEF and others such as erythropoietin (EPO), and inducible
NOS. These factors ultimately mediate a directed adaptive re-
sponse to hypoxia to increase tissue perfusion and oxygenation
and, therefore, overcome the initial damage [43]. It is known
that reoxygenation after a brief period of hypoxia experienced
repeatedly and systemically in patients with OSAS may pre-
dispose to cellular stress, possibly due to mitochondrial dys-
function. Thus, it is assumed that such events promote the
activation of a pro-inflammatory response mediated by NF«B,
amajor regulator of inflammatory gene expression. The effects
of activation of this factor include increased expression of pro-
atherogenic factors such as TNF-«, which may contribute to
endothelial dysfunction and cardiovascular complications lat-
er, as previously mentioned [44].

CRP is an important serum marker of inflammation and is
considered a strong indicator of cardiovascular risk and can
also play a direct role in the initiation and progression of
atherosclerosis. Unlike cytokines, CRP levels are stable in
the same individual over 24 h and may reflect the degree of
inflammatory response [45]. Their pro-inflammatory and pro-
atherogenic properties were found in endothelial cells, vascu-
lar smooth muscle cells, and monocytes-macrophages, where
CRP levels are also associated with oxidative stress [46].

The scientific literature describes that OSA patients have
increased CRP levels [39, 47-49] where such changes, ac-
cording to the study by Mills et.al.[50], occur mainly during
the day due to the residual result of nocturnal arousal mediated
by OSA. However, intervention studied using CPAP as a treat-
ment for OSA showed that serum CRP levels decrease signif-
icantly, reducing therefore the risk of cardiovascular morbidity
and mortality [33, 51, 52].

According to a meta-analysis carried out by Guo et.al,,
CPAP treatment is necessary for at least 3 months to signifi-
cantly reduce CRP levels [53]. However, the results described
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by Mermigkis et al. in 2012 showed that due to genetic and
hormonal factors, there might be a delay in the normalization
of the levels of this biomarker in women with OSA, requiring
the use of CPAP for at least 6 months [54].

In addition to pro-inflammatory markers, studies describe
the presence of prothrombotic markers in patients with OSA.
Patients show higher circulating levels of plasminogen activa-
tor inhibitor (PAI)-1, an important endogenous inhibitor of
fibrinolysis, resulting in increased atherothrombosis event
risk, such as myocardial infarction (MI) and stroke. Soluble
tissue factor (FTS) and von Willebrand factor (vVWF) are also
described in higher levels in patients with OSA, where FTS
plays an important role in atherothrombosis due to exert
procoagulant activity and propagation of thrombus after rup-
ture atherosclerotic plaque. VWF plays procoagulant function
by stabilizing the coagulation factor VIII and promoting plate-
let attachment at the site of atherosclerotic lesions, wherein the
exposure of subendothelial structures occurs during MI [55,
56].

Association studies of inflammatory response genes
and OSAS

Although much has been learned about the physiopathology
and consequences of OSAS in recent years, the mechanisms
and specific genes associated with these processes are still
poorly known [57].

Petruco and Bagnato described in their study that a herita-
ble component of OSAS has been recognized, but the eluci-
dation of its genetic basis is difficult due to the heterogeneity
of OSA phenotypes. The current paradigm was built as a
product of intermediate phenotypes such as the craniofacial
morphology, obesity, susceptibility to daytime sleepiness,
ventilatory control, and upper airway control, which mutually
interact and defines OSAS. However, it is not known which
component of this product has a central role, and which ap-
pears as epiphenomena [57].

The IL-6, produced by different cells in the organism, is
one of the most important mediators of inflammatory response
and its role in the lipid metabolism and energy expenditure has
already been described. According to Zhang et al., a polymor-
phism found in the promoter region of /L6 gene (—G174C)
affects its gene expression. A similar role in the metabolism of
the adipose tissue was also attributed to TNF-o« where its
levels also depend on the presence of a polymorphism
(-G308A) in the promoter region of TNFA [58]. The presence
of the A allele can double the expression of this gene, leading
to a higher production of TNF-c. Thus, it is possible to infer
that the influence of the lipid metabolism and the energetic
expenditure is linked to the concentration of these cytokines,
which might contribute to weight gain in OSAS [42], being
also a common risk factor for obesity and metabolic distur-
bances, especially insulin resistance [58].
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According to Jones et.al., polymorphisms in the CRP gene
are associated with CRP serum concentrations. The authors
evaluated the mean serum concentrations of CRP in healthy
subjects and found that a specific genotype (CRP 1444C/T) is
independently associated with increased high-sensitive CRP
levels [59]. A study in North-American and Greek-European
children pointed out that the change in IL-6 and CRP gene
may affect susceptibility to OSA during childhood [60]. Also,
other studies have identified associations between single nu-
cleotide polymorphisms within CRP gene (rs2808630) and
OSA in European Americans [56]. Kaditis et.al. also demon-
strated that CRP (1444C/T and 1919A/T) and IL6 polymor-
phisms (174G/C) were associated with an increased risk for
the presence of OSA in the same population; however, such
associations were identified in the Greek-European popula-
tion. These findings suggest that variants of IL6 and CRP
genes might also confer risk to the disease [60].

As previously described, TNF-« has also an important role
in sleep regulation, since excessive daytime drowsiness, one of
the main characteristics of OSAS consequences, is accompa-
nied by increase in TNF-« levels. This relationship indicates
that polymorphisms within this gene might also contribute to
OSAS severity risk directly. Some studies have evaluated the
association between the -G308A polymorphism within 7NFA
gene with TNF-« levels in OSAS patients. Riha et al. evaluated
206 individuals in the UK with AHI > 15. As a result, it was
observed that the presence of polymorphism resulted in the
increase of the production of circulating TNF-« suggesting
relationship with OSAS [61]. These results were corroborated
by Bhushan et al. in 2009, who observed that Asian-Indian
obese patients with OSAS showed higher frequency of the A
allele of TNF- (-308A) and that the levels of TNF-c directly
correlated with the severity of OSAS, having as trigger mech-
anisms repetitive hypoxemic stress and sleep deprivation [62].

Due to the several association studies involving the TNFA—
308G/A polymorphism, Wu et al. have conducted a system-
atic review from 10 case-control studies evaluating the asso-
ciation between this polymorphism and OSAS [63]. The re-
sults of this review indicated that there is a significant associ-
ation between this variation and OSAS, being A allele confer-
ring higher risk in comparison to G allele (OR = 1.67; 95 %
CI=1.43-1.95).

Other components related to the inflammatory response
such as IL-6 have also been the target of genetic association
studies. Larkin et al. genotyped six polymorphisms within the
IL6 gene in Afro-American individuals and identified that a
synonym variant in the coding region of the gene was signif-
icantly associated with decreased risk to OSAS, even after
adjustment by body mass index. In that study, the authors
suggest that the polymorphism in the IL-6 gene can modulate
the OSAS risk regardless of obesity [64].

Polymorphisms in genes that indirectly participate in pro-
cesses related to inflammation, such as oxidative stress, were
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also studied in regard to their association with OSAS. An in-
teresting study performed by Gozal et al. has shown that vari-
ations in the gene of the subunit pp22phox of the NADPH
oxidase were associated with cognitive deficits in children with
pediatric OSAS [65]. Moreover, other polymorphisms in this
gene were also associated with OSAS in a case-control study,
supporting its participation as an OSAS genetic risk factor [66].

Gene expression studies of inflammatory response genes

As the inflammatory process is activated in the pathogenesis
of the respiratory disturbance present in OSAS, some studies
have described the existence of gene expression changes of
some cytokines [58]. Thus, a number of studies investigating
how the physiological responses of OSAS can be conse-
quences of transcriptional activation of inflammatory re-
sponse genes have been performed to date.

As a consequence of apnea and hypopnea events in
OSAS patients (sleep fragmentation, significant reduction
of REM sleep and slow wave sleep, repetitive cycles of
hypoxia/reoxygenation, and changes in the intrathoracic
pressure), series of mechanisms related to inflammatory re-
sponse can be activated [67]. For example, the activation of
pro-inflammatory factors such as NF-«kB, and consequently,
its related pathways were observed in chronic intermittent
hypoxia conditions [68], possibly as a consequence of the
increase in the production of ROS [69, 70]. Moreover, re-
garding the damage related to sleep in patients with OSAS,
it has been observed that the sympathetic activation associ-
ated to these events can also trigger an increase in the level
of inflammatory markers as C-reactive protein (CRP), IL-6,
and TNF-« [71, 72], a phenomenon also accompanied by an
increase of IL-6 and TNF-ox mRNA in leukocytes [73]. An
important factor that must be considered in the investigation
of inflammatory response related to OSAS is the need to
take into account confounder factor. For example, the coex-
istence of OSAS and obesity, besides the well-known rela-
tion between obesity and inflammation [74], and the inter-
action among hypoxia, inflammation, and adipose tissue
[75] make the evaluation of this phenotype more complex.
In this sense, the evaluation of OSAS patients with and
without obesity becomes necessary in order to characterize
the molecular components specific of each comorbidity.

More recent studies have investigated the expression of
inflammatory response genes in target tissues such as the
superior airway itself. Kimoff et al. have identified in-
creased IL-6 and TGF-3 mRNA expression in the superior
airway mucosa followed by the increase of RANTES ex-
pression in the adjacent muscular tissue [76]. In animal
samples, it was also observed that chronic intermittent hyp-
oxia was capable of inducing a more pro-inflammatory
response against allergens which might contribute to a
more evident airflow limitation [77].

Studies investigating the gene expression of specific path-
ways related to OSAS have also been performed. Perry et al.
investigated the expression profile of 84 genes related to hyp-
oxia in controls and individuals with OSAS with different
severity. Although genes directly related to inflammation were
not studied, due to their well-known influence and activation
of pro-inflammatory mechanisms as a consequence of hypox-
ia, a clear connection can be established. In this study, the
authors found upregulation in specific genes related to hypox-
ia which had their expression regulated after treatment with
CPAP in OSAS patients [78]. This approach has been little
explored in OSAS, and it can offer a cost-effective alternative
for further investigation of pathways in which a relationship
with OSAS is already known, yet not fully characterized.

On the other hand, large-scale gene expression studies
using microarrays have been frequently performed. Although
without a priori hypothesis, these studies can identify potential
new activated or repressed pathways which can be translated
in novel physiopathological mechanisms. Using a systems
biology approach, a field that integrates gene expression and
computational algorithms in several levels to predict cell func-
tion as a whole, Liu et al. have identified networks of gene and
protein interactions which suggest new molecular mecha-
nisms associated to this pathology in adipose tissue. In some
identified networks, molecules such as P38, MAPK, and
STAT4, whose participation in inflammatory processes was
a consequence of oxidative stress, were identified as important
components in OSAS [79]. Another more recent study which
also investigated the global gene expression in adipose tissue
in patients with OSAS and controls identified sets of genes
with increased expression in patients, including NF-«B pro-
inflammatory pathways and pathways related to proteolysis
[80]. These data suggest clear participation of inflammatory
response in OSAS, with a hypothesis-free approach to OSAS
gene expression investigation.

Besides gene expression studies, comprehensive investiga-
tions focused on the identification of epigenetic factors asso-
ciated to OSAS are still lacking. Kim et al. aimed to find
differences in the DNA methylation pattern, an important
gene expression regulatory mechanism, of 24 inflammatory
response genes in children with OSAS with and without high
levels of ultra-sensitive CRP. In this study, DNA methylation
in the promoter region of FOXP3, an important regulator of
the expression of lymphocytes T, was increased in individuals
with higher levels of CRP, i.e., in those more likely to have
increased systemic inflammatory response [81]. Studies inves-
tigating the microRNA expression profile, small RNAs which
participate in the control of gene expression, are also lacking.
In a study with rats, Zhang et al. identified that intermittent
hypoxia followed by hypercapnia could decrease the expres-
sion of miR-34a [82], a miRNA associated to protection
against tumorigenesis [83] and increase of the inflammatory
cytokines expression (IL-6 and TNF-«) [84].
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The evidence shown here indicates that the inflammatory
response is an important component in OSAS. However, the
participation of this mechanism in patients who only presents
mild OSAS has not yet been clarified. Often, the systemic and
clinical alterations found in severe OSAS may not be detected
in mild OSAS, although muscular alterations, that are much
more sensitive to intermittent hypoxia mechanisms and oxi-
dative stress can be present [67]. However, studies have not
identified this hypothesis yet, suggesting an investigation op-
portunity not explored so far.

Discussion

Although much has been learned about the physiopathology
and the consequences of OSAS in recent years, the mecha-
nisms and the specific genes associated to these processes are
still not completely known. Nevertheless, the documented da-
ta corroborated the hypothesis that mechanisms which involve
inflammatory responses such as muscular alterations, drows-
iness, insulin resistance, visceral obesity, and cardiovascular
diseases are important to OSAS development and severity.
Further studies aiming at the identification of mechanisms that
regulate the gene expression changes in response to OSA are
also warranted. Studies investigating how epigenetic regula-
tion of inflammatory response by microRNAs, DNA methyl-
ation or histone modification is related to OSA still lack in the
literature and are under development. Such dynamic mecha-
nisms, when measured in accessible target tissues such as the
blood, might help to identify specific groups of patients under
higher risk of OSA or individuals with differential response to
CPP treatment. Therefore, there is an urgent need for further
and comprehensive studies aiming to investigate the gene ex-
pression of active inflammatory markers in mild OSAS, since
this research field is underexplored and may provide a better
and earlier treatment alternative for OSAS patients.
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