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Abstract
Purpose NO and NO synthase (NOS) are known to play key
roles in the development of myocardial apoptosis induced by
ischemia/hypoxia. Current evidence suggests that angiotensin
II type 1 receptor blockers, such as telmisartan, lower blood
pressure and produce beneficial regulatory effects on NO and
NOS. Here, we examined the protective role of telmisartan in
myocardial apoptosis induced by chronic intermittent hypoxia
(CIH).
Methods Adult male Sprague–Dawley rats were subjected to
8 h of intermittent hypoxia/day, with/without telmisartan for
8 weeks. Myocardial apoptosis, NO and NOS activity, and
levels of inflammatory mediators and radical oxygen species
were determined.
Results Treatment with telmisartan preserved endothelial
NOS expression and inhibited inducible NOS and excessive
NO generation, while reducing oxidation/nitration stress and
inflammatory responses. Administration of telmisartan before
CIH significantly ameliorated the CIH-induced myocardial
apoptosis.
Conclusions This study show that pre-CIH telmisartan ad-
ministration ameliorated myocardial injury following CIH
by attenuating CIH-induced myocardial apoptosis via regula-
tion of NOS activity and inhibition of excessive NO genera-
tion, oxidation/nitration stress, and inflammatory responses.
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Introduction

Obstructive sleep apnea syndrome (OSAS), which is charac-
terized by chronic, repetitive short cycles of oxygen
desaturation followed by rapid reoxygenation (chronic inter-
mittent hypoxia, CIH), has become a public health concern
because it leads to poor sleep quality and clinical complica-
tions. Among the complications associated with OSAS, car-
diovascular issues are the most severe [1]. Patients with OSAS
who do not accept effective treatment have a higher rate of
cardiovascular mortality [2]. Myocardial apoptosis, which can
lead to cardiovascular dysfunction, can also be induced by
chronic intermittent hypoxia [3, 4]. Therefore, inhibition of
myocardial apoptosis could improve cardiovascular compli-
cations caused by OSAS.

NO is an important signaling molecule in the human body
that participates in several physiological functions including
sleep regulation [5]. NO and NO synthases (the neuronal,
endothelial, and inducible isoforms of nitric oxide synthase,
known as nNOS, eNOS, and iNOS, respectively) are known to
be important regulators of the cardiovascular system [6]. After
ischemia or hypoxia, normal metabolism of NO and NOS
activity is disrupted, leading to a loss of redox equilibrium,
which is associated with pathological damage in the cardiovas-
cular system [7]. These results, together with the fact that
chronic hypoxia is the most characteristic pathophysiological

X. Yuan :D. Zhu :X.<l. Guo :Y. Deng : J. Shang :K. Liu :
H.<g. Liu (*)
Department of Respiratory and Critical Care Medicine, Tongji
Hospital, HuazhongUniversity of Science and Technology, No. 1095
Jiefang Road, Wuhan 430030, China
e-mail: hgliu@tjh.tjmu.edu.cn

Sleep Breath (2015) 19:703–709
DOI 10.1007/s11325-014-1081-y



change associated with OSAS, suggest that the NO metabolic
pathways might be involved in CIH-induced cardiovascular
damage, and that restoration of normal NO metabolism may
be a potential treatment for cardiovascular complications in-
duced by CIH.

Telmisartan, an angiotensin II type 1 receptor blocker
(ARB), is used to treat high blood pressure. Recently, pleio-
tropic effects of telmisartan were reported in several preclin-
ical and clinical studies, which showed beneficial effects of
telmisartan for conditions other than hypertension [8, 9].
Compared to other ARB antihypertensive drugs, telmisartan
has some unique biological activities, including regulation of
NO metabolites [10] and attenuation of ischemic myocardial
injury [11]. However, the therapeutic potential of telmisartan
in OSAS remains unknown. Here, we report the results of our
investigation into the protective effect of telmisartan in a
rodent model of intermittent hypoxia-induced myocardial
apoptosis.

Methods

Animal model and experimental design

Forty male Sprague–Dawley (SD) rats (220–250 g) were
purchased from the experimental animal center of Wuhan
University (Wuhan, China). Animals were kept in a depart-
mental animal facility on a 12:12-h light–dark cycle under
standard laboratory conditions (temperature 25±2 °C, humid-
ity 60±5 %). Rats were provided with standard rodent chow
and allowed free access to water. The experimental procedures
were approved by the Institutional Animal Care and Use
Committee (IACUC) of Tongji Medical College at Huazhong
University of Science and Technology. Rats were randomly
divided into four groups (n=10 each): normoxia+vehicle,
normoxia+telmisartan, CIH+vehicle, and CIH+telmisartan.
Rats were administered either telmisartan (10 mg/kg dissolved
in double-distilled water) or vehicle by oral gavage prior to
exposure to intermittent hypoxia on every day of the 8-week
experimental period.

Intermittent hypoxia exposure

CIH was performed using custom-built chambers (OxyCycler
A84, BioSpherix, Redfield, NY, USA) connected to a supply of
O2 and N2 gas. The CIH protocol was as follows: O2 level was
reduced from 21 to 8 % over a period of 120 s, held at 8 % for
120 s, returned to 21 % over a period of 50 s, and held at 21 %
for 300 s. The rats were exposed to intermittent hypoxia for 8 h/
day (during the day) on 7 days/week over 8 weeks. For the
normoxic group, rats were placed in similar chambers under
normoxic conditions. Within 24 h after the last exposure, rats
were killed with pentobarbital sodium (40 mg/kg administered

by intraperitoneal injection). The left ventricular free wall was
excised from each rat, perfusedwith cold PBS, and preserved in
liquid nitrogen or 10 % formalin for in vitro analyses.

Western blotting

Protein abundance of nNOS, eNOS, iNOS, and 3-
nitrotyrosine (3-NT) were determined by Western blotting,
which was performed according to routine procedures. Brief-
ly, after tissue homogenization, proteins were extracted from
the left ventricular free wall sample using RIPA lysis buffer
(Beyotime, Jiangsu, China) containing a protease inhibitor
cocktail to prevent protein degradation. Protein concentration
was determined using a Bradford protein assay kit (Bio-Rad,
Hercules, CA). Proteins (30 μg/band) were separated via 10%
SDS-PAGE and transferred to 0.45-μm nitrocellulose mem-
branes (Bio-Rad). Membranes were blocked in 5 % non-fat
dry milk in TBST (10 mM Tris–HCl, pH 7.5, 150 mM NaCl,
0.05 % Tween-20) for 1 h at room temperature. Membranes
were incubated with rat monoclonal antibodies (Abgent, San
Diego, CA, USA) against nNOS(1:500), eNOS(1:500),
iNOS(1:500), and anti-3-NT(1:500) overnight at 4 °C, after
which the membranes were incubated with a secondary anti-
body conjugated to horseradish peroxidase at room tempera-
ture for 2 h. Reactive proteins were analyzed with an ECL
Western blotting detection system. All experiments were per-
formed three or more times.

Measurement of NO production

NO content in myocardial tissue was detected using a commer-
cially available NO assay kit (Keming Bioengineer Company,
Suzhou, China) according to the manufacturer’s instructions.
Because NO is very active andNOmonomers have a very short
existence within tissues, indirect methods were adopted to
determine NO content in cardiac muscle tissue. Within tissue,
NO is easily oxidized to NO2−, which reacts under acidic
conditions with diazonium salts to form diazo compounds,
which further couple with naphthyl-based ethylene diamine to
form specific products with characteristic absorption peaks at
550 nm, through which NO content can be determined. Briefly,
fresh tissue of the rat left ventricular wall (0.05 g) was homog-
enized with the extraction solution (0.5 mL) by centrifugation
(12,000 rpm for 15 min at 4 °C), and 100 μL of the supernatant
was collected and mixed with the specific reaction reagent. The
resulting mixture was allowed to rest for 15 min at room
temperature, after which its absorbance at 550 nm was mea-
sured using a microplate reader.

Lipid peroxidation assay

Intermittent hypoxia often leads to increased lipid peroxida-
tion that causes tissue damage. Malondialdehyde (MDA) is
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commonly used to measure the effect of lipid peroxidation. In
this study, oxidative stress was measured using a commercial-
ly available kit to detect the level of MDA production in
myocardial tissue according to the manufacturer’s instructions
(Keming Bioengineer Company, Suzhou, China).

Detection of plasma levels of C-reactive protein
and interleukin 6

Changes in plasma levels of inflammatory cytokines were
detected. We used ELISA kits (Neobioscience Technology
Company, Beijing, China) to measure C-reactive protein
(CRP) and interleukin 6 (IL-6) in the plasma according to
the manufacturer’s instructions.

Terminal deoxynucleotidyl transferase dUTP nick end
labeling staining

Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining for apoptotic cells in the left ventricle was
used to evaluate myocardial injury. As described previously [12],
a commercially available TUNEL staining kit (Boster Biological
Technology, Ltd., China) was used to detect apoptosis according
to the manufacturer’s instructions. At least three apoptotic cells
were selected from each section of each group (three hearts per
group) for photographing in the visual field (×400 magnifica-
tion). The numbers of apoptotic cells and total cardiomyocytes
were determined. The results are expressed as the percentage of
apoptotic cells among the total cell population.

Statistical analysis

All data were expressed as mean±SD. Data were statistically
analyzed using one-way analysis of variance (ANOVA) for
group comparisons. Student–Newman–Keuls post hoc tests
were used when appropriate. A value of P<0.05 was consid-
ered statistically significant.

Results

Treatment with telmisartan regulated NOS expression
and limited excessive NO production

Immunoblot analysis confirmed that eNOS expression in the
left ventricle was significantly decreased after CIH (P<0.05;
Fig. 1a), while iNOS expression was significantly increased
(P<0.05; Fig. 1b). There was no significant difference in
nNOS abundance between the control and hypoxia groups
(P>0.05; Fig. 1c). Compared to the control group, NO syn-
thesis was significantly elevated in the left ventricle after
exposure to CIH (P<0.05; Fig. 1d). Treatment with
telmisartan abolished CIH-induced changes in eNOS and

iNOS expression and inhibited excessive NO synthesis in
the left ventricle after exposure to CIH, but had no effect on
the expression of nNOS.

Telmisartan inhibited CIH-induced oxidation/nitration stress
in the left ventricle

Oxidation/nitration stress is considered to play a key role in
the pathophysiological process of CIH-induced tissue injury.
We measured MDA production in the left ventricle after
exposure to CIH as an indicator of oxidation stress. MDA
levels were significantly elevated in the left ventricle of rats
exposed to CIH as compared to the control group (P<0.05;
Fig. 2a). Furthermore, we found a significant increase in 3-NT
protein expression in the left ventricle after CIH exposure
(P<0.05; Fig. 2b). The effects of CIH on MDA levels and
3-NT protein expression were suppressed by the treatment
with telmisartan.

Treatment with telmisartan suppressed CIH-induced
overexpression of inflammatory mediators

CIH can activate inflammation involved in the pathophysio-
logical processes of CIH-induced tissue injury. In this study,
we examined the plasma levels of two typical inflammatory
cytokines, CRP and IL-6, using the ELISA method. Plasma
levels of CRP (P<0.05; Fig. 3a) and IL-6 (P<0.05; Fig. 3b)
were increased in rats exposed to CIH as compared to the
control group. Treatment with telmisartan suppressed plasma
CIH-induced overexpression of CRP and IL-6.

Telmisartan significantly reduced CIH-induced myocardial
apoptosis in the left ventricle of rats

Little apoptosis were found in the left ventricle of control rats,
but apoptosis was significantly increased in the left ventricle
of rats exposed to CIH (P<0.05; Fig. 4). Treatment with
telmisartan effectively attenuated CIH-induced myocardial
apoptosis in the left ventricle of rats exposed to CIH.

Discussion

Cardiovascular damage is the most common complication of
OSAS. The precise pathophysiological mechanisms involved
in OSAS-induced cardiovascular damage are poorly under-
stood. There is no doubt that the pathogenesis of OSAS-
related cardiovascular damage is multifactorial. In the current
study, we used a rodent model of CIH to demonstrate that
inflammatory processes and oxidative/nitration stress were
involved in the pathophysiological myocardial apoptosis in-
duced by CIH. More importantly, we found that CIH altered
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the activity of NO synthase and disrupted NO metabolism.
Because treatment with telmisartan attenuated these patholog-
ical changes, these results support the potential of telmisartan
in the treatment of OSAS-induced cardiovascular complica-
tions as an alternative to continuous positive airway pressure
(CPAP). In addition, these results serve as a valuable reference
for OSAS patients who need to take antihypertensive drugs.

Inflammatory processes and oxidative stress are considered
to play key roles in the development of CIH-induced cardio-
vascular complications [13]. Similarly, in our current study,
we found that CIH induced inflammation and expression of
oxidative stress products in circulating blood and myocardial
tissue. In addition, NO is believed to play a key role in the
pathological mechanisms underlying myocardial damage in-
duced by hypoxia/ischemia [7]. NO is an important signaling
molecule that is involved in the regulation of almost all

aspects of cellular function, including gene transcription [14]
and apoptosis [15]. In humans and other mammals, NO is
produced from L-arginine by the three enzymes of the NOS
family: eNOS, nNOS, and iNOS. NO signaling also acts to
maintain normal functioning of the cardiovascular system.
Under normal physiological conditions, the level of NO in
the cardiovascular system is stable, and it is mainly produced
by eNOS and nNOS, which are constitutively expressed in
cardiac myocytes [16] and vascular endothelial cells [17], and
are known as constitutive NOSs. However, in pathological
conditions such as ischemia and hypoxia, constitutive NOS
activity is disrupted, NO homeostasis is disturbed, and, more
importantly, iNOS is activated, which plays a significant role
in the manifestation of harmful effects.

NO/NOS have been studied extensively in the context of
cardiovascular diseases, but the precise role of NO/NOS in
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Fig. 1 Chronic intermittent
hypoxia (CIH) disrupted NOS/
NO. After male SD rats were
exposed to CIH for 8 weeks, the
expression of eNOS was inhibited
(a), while iNOS was activated (b)
and NO was overproduced (d),
but there was no significant
difference in nNOS expression
between the control group and the
hypoxia group (c). Pre-treatment
with telmisartan effectively
inhibited CIH-induced iNOS
activation and excessive
production of NO, and preserved
eNOS levels, but had no effect on
nNOS. GAPDH, glyceraldehyde-
3-phosphate dehydrogenase; (I)
normoxic, (II) normoxic+
telmisartan, (III) hypoxia, and
(IV) hypoxia+telmisartan.
Results represent mean±SD with
means compared using one-way
ANOVA. A value of P<0.05 is
considered statistically
significant. ★P<0.05 vs
normoxia; ★★P<0.05 vs
hypoxia; &P>0.05 vs normoxia;
&&P>0.05 vs hypoxia
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cardiovascular diseases is still unclear. The source of NO and
the NO content in local tissue are of decisive significance for
the ultimate effect of NO. eNOS, which is considered to be the
most important NO synthase in myocardial tissue, maintains
vascular tone and produces anti-thrombotic and anti-
inflammatory effects [18]. When myocardial tissue is exposed
to ischemia/hypoxia, eNOS activity is inhibited and tissue
damage occurs [19]. Correspondingly, preservation of eNOS
activity has become a focus of studies aimed at protecting
myocardial tissue against hypoxic/ischemic damage [20–22].
In our study, we found that CIH significantly inhibited eNOS
expression in myocardial tissue, and that telmisartan preserved
the activity of eNOS and attenuated CIH-induced myocardial
apoptosis. Therefore, we speculate that preservation of eNOS

activity is a crucial mechanism by which telmisartan amelio-
rates myocardial injury induced by CIH.

nNOS is considered to mediate hypoxic/ischemic myocar-
dial injury [7]. However, in our study, we found that there was
no significant change in nNOS. In our test model, various
reasons may explain why intermittent hypoxia did not cause
any change in nNOS expression in myocardial tissue. How-
ever, in our study, intermittent hypoxia lasted for 8 weeks,
which was longer than in most similar studies concerned with
tissue injuries caused by intermittent hypoxia. Therefore, we
hypothesize that in our study, nNOS in the myocardial tissue
of the rat might have adapted to the intermittent hypoxic
environment; therefore, there was no change in nNOS
expression.

A B I II III IV

Fig. 2 MDA levels and 3-NT protein expression are increased in the left
ventricular (LV) myocardium by chronic intermittent hypoxia (CIH).
Intermittent hypoxia significantly increased expression of MDA (a) and
3-NT protein (b) in the LV myocardium. Pre-treatment with telmisartan
significantly inhibited CIH-inducedMDA and 3-NTexpression in the LV

myocardium. (I) Normoxic, (II) normoxic+telmisartan, (III) hypoxia, and
(IV) hypoxia+telmisartan. Results represent mean±SD with means
compared using one-way ANOVA. A value of P<0.05 is considered
statistically significant. ★P<0.05 vs normoxia; ★★P<0.05 vs hypoxia

Fig. 3 Inflammatory cytokines in the circulating blood. Chronic
intermittent hypoxia (CIH) significantly increased expression of C-
reactive protein (CRP) (a) and interleukin 6 (IL-6) (b) in the circulating
blood. Pre-treatment with telmisartan significantly inhibited CIH-induced

expression of these cytokines in the circulating blood. Results represent
mean±SD with means compared using one-way ANOVA. A value of
P<0.05 is considered statistically significant. ★P<0.05 vs normoxia;
★★P<0.05 vs hypoxia
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Low levels of NO are necessary to maintain normal cardio-
vascular function, and excess NO is harmful to cardiovascular
tissue. When myocardial tissue was exposed to ischemia/hyp-
oxia, NO levels significantly increased, and this excess NOwas
mainly produced by the activated iNOS [23, 24]. Excess NO
can damage cardiac tissue through a variety of mechanisms
such as the induction of apoptosis by changing the balance
between the apoptosis mediators Bak and BCL-2 [25]. Most
importantly, excess NO reacts with superoxide anion (O−·

2) to
form the potent oxidant peroxynitrite (ONOO2

−), which causes
oxidative damage, nitration, and S-nitrosylation of biomole-
cules such as proteins, lipids, and DNA [26]. Similarly, in our
studies, high levels of NO were found in myocardial tissue
exposed to CIH, which were accompanied by increased ex-
pression of iNOS, while eNOS expression decreased and
nNOS expression remained constant. These results showed that
elevated NOwas a consequence of activated iNOS. In addition,
the level of 3-NT was increased in the left ventricle after
exposure to CIH. We speculate that 3-NT was produced be-
cause of reactions between the excessive NO and products of
CIH-induced oxidative stress. Our results suggest that together,
all these factors, namely inflammatory processes, high levels of
NO, and oxidative/nitration stress, lead to the CIH-induced
myocardial injury.

Telmisartan, an angiotensin II type 1 receptor blocker, is
mainly used to reduce blood pressure. Many studies have
demonstrated the therapeutic potential of ARB in the treat-
ment of hypoxic/ischemic organ damage [27, 28]. In compar-
ison with other ARBs, telmisartan has unique advantages,
including better fat solubility that allows it to more easily
penetrate cell membranes [29]. The protective effect of
telmisartan against ischemic myocardial injury has been con-
firmed [11]. In our study, the protective effect of telmisartan

on CIH-induced myocardial injury was demonstrated, and this
effect was found to bemediated by regulation of NOS activity,
inhibition of excessive NO synthesis, and suppression of
oxidation/nitration stress and the inflammatory response.

In summary, this study provides the first evidence that
telmisartan attenuates CIH-induced myocardial apoptosis, in
part by preserving eNOS levels, inhibiting iNOS expression
and excessive NO generation, and suppressing oxidation/
nitration stress and the inflammatory response. The present
findings provide novel insight into the mechanisms through
which OSAS induces cardiovascular complications. Mean-
while, considering the extensive use of telmisartan in the
clinic and the high incidence of OSAS, there will likely be
more meticulous and in-depth studies performed in the future.
Further research into the relationship between the dosage of
telmisartan and its cardiovascular protective effect, and the
relationship between the protective effect of telmisartan and
the severity of OSAS, is required. However, it should be noted
that our study had some limitations. The use of NOS or
specific NOS inhibitors would help to clarify the role of NO/
NOS in protective effects in this setting, and the relationship
between NO/NOS, oxidative stress, and the inflammatory
response should be demonstrated in future studies.
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