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Abstract 
Purpose  Positron emission tomography (PET) image quality can be improved by higher injected activity and/or longer acqui-
sition time, but both may often not be practical in preclinical imaging. Common preclinical radioactive doses (10 MBq) have 
been shown to cause deterministic changes in biological pathways. Reducing the injected tracer activity and/or shortening 
the scan time inevitably results in low-count acquisitions which poses a challenge because of the inherent noise introduction. 
We present an image-based deep learning (DL) framework for denoising lower count micro-PET images.
Procedures  For 36 mice, a 15-min [18F]FDG (8.15 ± 1.34 MBq) PET scan was acquired at 40 min post-injection on the 
Molecubes β-CUBE (in list mode). The 15-min acquisition (high-count) was parsed into smaller time fractions of 7.50, 3.75, 
1.50, and 0.75 min to emulate images reconstructed at 50, 25, 10, and 5% of the full counts, respectively. A 2D U-Net was 
trained with mean-squared-error loss on 28 high-low count image pairs.
Results  The DL algorithms were visually and quantitatively compared to spatial and edge-preserving denoising filters; the 
DL-based methods effectively removed image noise and recovered image details much better while keeping quantitative 
(SUV) accuracy. The largest improvement in image quality was seen in the images reconstructed with 10 and 5% of the 
counts (equivalent to sub-1 MBq or sub-1 min mouse imaging). The DL-based denoising framework was also successfully 
applied on the NEMA-NU4 phantom and different tracer studies ([18F]PSMA, [18F]FAPI, and [68 Ga]FAPI).
Conclusion  Visual and quantitative results support the superior performance and robustness in image denoising of the imple-
mented DL models for low statistics micro-PET. This offers much more flexibility in optimizing preclinical, longitudinal 
imaging protocols with reduced tracer doses or shorter durations.
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Introduction

Positron emission tomography (PET) is a functional imaging 
modality that enables changes in physiological and meta-
bolic processes to be visualized and quantified. In preclinical 
practice, micro-PET refers to imaging mice and rats using 
dedicated small-animal, high-resolution PET scanners [1, 
2]. A radiotracer is injected into a living rodent and the 3D 
distribution of that labeled compound can be measured non-
invasively. Imaging of specific molecular targets with micro-
PET allows to study in vivo (patho)physiologic processes 
and molecular abnormalities with the added value of ena-
bling longitudinal scans. The most widely used PET tracer 
is [18F]FDG to image glucose metabolism [2]. Other emerg-
ing radiopharmaceuticals are F-18 or Ga-68 radiolabeled 
prostate-specific membrane antigen (PSMA) [3] or fibroblast 

Florence M. Muller and Boris Vervenne are co-first authors.

 *	 Florence M. Muller 
	 FlorenceMarie.Muller@UGent.be

1	 Medical Image and Signal Processing (MEDISIP), 
Department of Electronics and Information Systems, 
Faculty of Engineering and Architecture, Ghent University, 
9000 Ghent, Belgium

2	 Department of Radiology, Perelman School of Medicine, 
University of Pennsylvania, Philadelphia PA19104, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11307-023-01866-x&domain=pdf
http://orcid.org/0000-0001-5287-7355


102	 Molecular Imaging and Biology (2024) 26:101–113

1 3

activation protein inhibitor (FAPI) [4] ligands. Preclinical 
PET imaging serves as a translational tool in tracer develop-
ment. New compounds are first scanned in rodents to assess 
pharmacokinetics and monitor toxicity to specific organs 
before doing human studies [2, 5, 6].

PET imaging involves ionizing radiation, and there are 
higher dose requirements in preclinical set-ups compared 
to clinical imaging because the subject size and the spatial 
resolution needed to detect anatomical or functional changes 
are profoundly different [7]. Common preclinical radioac-
tive doses (10 MBq) that are used to obtain good image 
quality have been shown to cause deterministic changes in 
biological pathways [8], especially in longitudinal studies. 
The maximum dose that can be administered to a rodent is 
influenced by several factors, including animal welfare con-
siderations and the specific activity of injected radiotracer. 
However, the relatively higher blood volume-to-body weight 
ratio for small animals as well as equipment saturation can 
also be determining factors in establishing the upper limit 
for the injected radioactivity. Apart from radiation concerns, 
there are other advantages to lowering the injected dose in 
rodents. For example, in hormone and neuroreceptor imag-
ing with micro-PET, limiting the radiotracer activity aids 
in alleviating concerns about toxicity and pharmacological 
effects which could violate the tracer principle and lead to 
inaccurate quantification [6]. Radio- and chemo-toxicity is 
generally not an issue when high affinity/high molar activity 
radiopharmaceuticals are employed. However, imaging with 
lower molar activity radiopharmaceuticals can pose chal-
lenges for ligands that target specific receptors with limited 
binding capacity. Micro-PET is often combined with micro-
computed tomography (CT) and such dual-modality proto-
cols deliver additional radiation dose to the rodents [9, 10].

In this context, low-dose micro-PET acquisitions have 
attracted much attention and any preclinical imaging setup 
should aim for dose reduction. Besides ensuring animal care 
and maintaining integrity in longitudinal experiments, the 
radiation exposure to the technicians using the micro-PET 
imaging devices can be close to clinical radiation doses [8]. 
However, reducing the injected dose and/or scan time inevi-
tably results in lower count statistics which inherently intro-
duces noise. This trade-off between image quality (noise), 
radiation dose and scan time remains of particular concern 
in small animal studies because of the cumulative impact of 
dose and anesthesia on animal physiology.

To address the challenges associated with count defi-
ciency in low statistics PET, image denoising techniques 
can be applied. State-of-the-art methods explore the poten-
tial of deep learning (DL) to predict high-count like images 
from low-count PET data. Such DL-based denoising frame-
works have shown superior performance with important 
benefits for dose reduction capabilities [11–15]. However, 
while there are clear driving factors for low-dose imaging 

in preclinical setups, the incentive for DL-based denoising 
of low-count micro-PET has been lacking compared to the 
extensive research efforts spent on clinical low-dose PET. 
To our knowledge, only two previous studies have inves-
tigated the use of DL for denoising low-dose micro-PET 
data [16, 17], and both studies showed that the DL approach 
achieved lower bias in [18F]FDG quantification than non-DL 
denoising techniques, but they did not consider cross-tracer 
applicability.

A critical concern with DL-based methods is their repro-
ducibility and robustness to new studies. The growing range 
of radiopharmaceuticals used in practice consistently chal-
lenges the adaptability and dependability of any trained DL 
algorithm when applied to cross-tracer and cross-scanner 
datasets [12, 13]. This presents a particular hurdle in pre-
clinical research environments because a larger diversity of 
(new) radiotracers is investigated with micro-PET given its 
crucial role in the early stages of tracer development [2, 5, 
6]. This work presents an image-based DL framework for 
denoising low-count micro-PET images while aiming for 
improved quantitative accuracy. This work puts the empha-
sis for preclinical imaging on achieving low bias and better 
precision with lower count datasets. We consider four count 
level reductions which go as low as to emulate sub-1 MBq 
and/or sub-1 min acquisitions. We further investigate the 
applicability of the DL denoising algorithm (trained only 
with [18F]FDG data) on non-FDG and non-F-18 labeled 
radiotracer studies.

Materials and Methods

Image Data Acquisitions

All image datasets used for training were collected from 
the Molecubes β-CUBE [18]. The dataset consisted of 36 
[18F]FDG PET scans from retrospective studies conducted 
in our lab (UGent’s Animal Experiments Ethics Committee: 
ECD 20/01) that investigated murine inflammation models. 
For each study, a 15-min whole-body micro-PET scan was 
acquired at 40 min post-injection after an intravenous injec-
tion of 8.15 ± 1.34 MBq [18F]FDG. The data were acquired 
in list mode and reconstructed using an ordered subsets 
expectation maximization (OSEM) algorithm at 400 µm 
voxel size (with 30 iterations and a number of subsets vary-
ing depending on the number of coincidences present in the 
time frame to be reconstructed—which is defined by the 
Molecubes system). For reconstruction, attenuation cor-
rection was not considered since most of the retrospective 
studies did not have a co-registered CT scan. Micro-PET 
voxel values were expressed in kilo-Becquerel per milliliter 
(kBq/mL) which represent the activity concentration. The 
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standardized uptake value (SUV) normalizes the activity 
in the images by the injected dose and body weight of the 
mouse.

To train the DL image denoising model, low and high 
(standard) count image pairs were required, and the advan-
tage of list-mode was that the low- and high-count datasets 
were perfectly aligned. The 15-min scan (standard-count) 
served as target image during training. This full time frame 
was then parsed into 2 sequential time frames of 7.5 min, 
4 sequential time frames of 3.75 min, 10 sequential time 
frames of 1.5 min, and 20 sequential time frames of 0.75 min 
to emulate four low-count datasets with 50, 25, 10, and 5% 
of the standard-count events, respectively. Resultant sub-
sampled list mode data were also reconstructed using OSEM 
at a voxel size of 400 µm.

Network Architecture

The DL model comprises a 2D convolutional network based 
on a four-layer U-Net [19] topology (Suppl. Figure 1). The 
feature maps in the encoding path are increased from 64 to 
512 with three max pooling layers. The decoding path uses 
transposed convolutions. Skip connections copy and concat-
enate the encoder layer output in the channel dimension with 
the decoder layer input. A ReLU activation function [20] is 
added in the final layer to enforce non-negativity at the out-
put (essential for PET voxel values). The network reads three 
adjacent image slices at the input layer to leverage spatial 
context from the neighboring slices.

Training Strategy

From the 36 [18F]FDG mice datasets, training, validation, 
and testing were split with a ratio 28:4:4, respectively. For 
training, image slices in transverse, coronal and sagittal ori-
entations were used as inputs. During pre-processing, the 
slices that lacked enough relevant image content were not 
included in the training set (see Suppl. Information 1.2. for 
more details) which resulted in a total selection of 10,897 
slices (transverse: 6026, coronal: 2413, sagittal: 2458). Dur-
ing inference, the transverse slices were denoised and then 
stacked to generate the CNN-denoised micro-PET image in 
DICOM format. Three orientations were considered during 
training to increase the training dataset and to provide a form 
of regularization, preventing overfit to a specific orientation 
and promoting generalization to unseen data.

Separately accounting for each low-count level, we 
trained a 2D CNN with input data originating from that 
count level only. This resulted in the development of four DL 
models which are denoted as X2Std CNN (where X refers to 
the respective low count level: half, quarter, tenth, or twenti-
eth). Another 2D CNN model was trained with mixed input 
data from all four low-count levels which implied that a total 

of 43,588 slices (4 × 10,897) were used to train the M2Std 
CNN (“Mixed to Standard”). All five CNN models were 
implemented to randomly select one of the replicate time 
frames.

The voxel values in the input slices were normalized by 
the mean intensity of each individual image slice. This nor-
malization factor was also applied to normalize the target 
(standard-count) image. The mean squared error (loss func-
tion) and the Adam optimizer [21] were used for compilation 
during back-propagation with a learning rate of 1E-4 and a 
batch size of 16. For data augmentation, random vertical 
and horizontal flipping were included. Suppl. Information 
1.3. details software packages and versions used for training 
the CNNs.

Image Analyses and Performance Evaluations

Comparator Denoising Techniques

To compare the CNN-denoised images against other more 
conventional denoising methods, the low statistics micro-
PET images reconstructed at different lower count levels 
were also denoised by the following spatial filters: a Gauss-
ian filter (with the standard deviation set to 1.0 voxel which 
matches the spatial resolution of the β-CUBE scanner), a 
median filter (with a kernel size of 3), and a bilateral filter 
(i.e., edge-preserving filtering method).

Quantitative Analysis for Image Denoising of [18F]FDG 
Micro‑PET

Accuracy and Reproducibility of SUV Measurements  By 
placing cuboidal volumes-of-interest (VOI) in the mouse 
liver and high tracer uptake regions (such as muscle inflam-
mation sites), the performance of the denoising methods 
in improving the accuracy of SUV measurements in a 
noisy image was assessed. SUVmean and SUVmax measures 
obtained from the low-count and denoised images were 
compared to the standard-count image. These measurements 
were done over the number of replicate images available at 
the particular count level to conduct statistical analyses (see 
the “Statistical Analysis” section).

Quantitative Image Quality Analysis  Image enhancement 
performance was compared among different denoising meth-
ods in terms of peak signal-to-noise ratio (PSNR), struc-
tural similarity index metric (SSIM), and mean absolute 
error (MAE) computed with respect to the standard-count 
(15 min) image slice. In some cases, the signal-to-noise ratio 
(SNR) was calculated as the ratio of the mean to the standard 
deviation in SUV measured in the VOI.
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Physical Image Quality Metrics Evaluated with Respect to an 
Estimated Ground‑Truth Image Obtained from a 5‑h (Ex Vivo) 
[18F]FDG Mouse Scan  Root-mean-squared error (RMSE), 
PSNR, and SSIM were computed between the low-count and 
denoised images with respect to an estimated ground-truth 
image obtained from a 5-h scan. A mouse (18.7 g) was injected 
with 11.19 MBq [18F]FDG and sacrificed 68 min after injection 
to perform a 5-h scan on the β-CUBE. The rationale for such 
a long acquisition was to reduce the statistical noise as much 
as possible and obtain a very high-count image. To match the 
reconstructed frames used in training, the 5-h data (in list mode) 
was sub-sampled into one time fraction of 7.5, 3.75, 1.5, and 
0.75 min selected around the mid time point.

Additional intermediate frame reconstructions were per-
formed to reconstruct images over a range of count levels: 20 
separate images with frame durations from 90 s to 30 min (in 
incremental steps of 90 s) were selected from the mid time 

point. The RMSE was then calculated as a function of differ-
ent low-count levels. This analysis aims to estimate the scan 
time (frame duration) needed to obtain the same image qual-
ity (in RMSE) as measured on differently denoised images 
reconstructed from a 45 s scan.

NEMA‑NU4 Image Quality Phantom for Small‑Animal PET

The NEMA-NU4 phantom [22] was filled with 3.7 MBq [18F]
FDG and scanned for 20 min on the β-CUBE. The 20-min 
data was sub-sampled into time fractions of 10, 5, 2, and 1 min 
to emulate low statistics images at 50, 25, 10, and 5% of the 
counts. The NEMA-NU4 phantom was re-scanned in the 
same position for 20 min at four later time points, when the 
tracer activity decayed to a half, quarter, tenth and twentieth 
of the original injected dose. The rationale was to test the DL 

Fig. 1   Visual comparison 
between the standard-count 
(15-min), low-count, and 
denoised images showing a 
coronal image of a mouse (18 g) 
which was administered a tracer 
activity of 9.9 MBq [.18F]
FDG. There is FDG uptake in 
the fore- and hindlimb which 
indicates a muscular inflamma-
tion. Each row illustrates one of 
the low-count levels. Note that 
these images are not attenua-
tion corrected. For this mouse 
study, SUV measurements 
(accuracy and reproducibility) 
were performed in the liver and 
inflammation site, see Fig. 2
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denoising model on “real” low-count datasets. The data was 
reconstructed with all available corrections including CT-based 
attenuation using OSEM into 400 µm voxels. Image uniformity 

and contrast recovery coefficients (CRCs) were compared 
between Gaussian-filtering and M2Std CNN denoising (see 
Suppl. Information 2.1.).

Fig. 2   Micro-PET [18F]FDG SUV quantification results (for the 
mouse shown in Fig. 1) are compared across the low-count levels (on 
the X-axis) and for different denoising methods. a Mean SUV in a 
liver VOI is reported with standard deviation as a measure of noise 
and measured in one image replicate to assess quantitative accuracy. 
Maximum SUV in the liver (b) and inflammation hot spot (c) are 

reported as the average (± standard deviation) measured across the 
number of replicate images available at the particular count level. Sta-
tistical significance levels are provided for the pair-wise comparison 
between both CNN-denoising models and each of the three conven-
tional filtering methods
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Fig. 3   Visual comparison between the standard-count (15-min), low-
count, and denoised images showing a sagittal image of a mouse 
(21  g) which was administered a tracer activity of 11.5  MBq [18F]
FDG. The FDG uptake in the heart, as well as some muscle inflam-
mation spots can be seen. Each row illustrates one of the low-count 
levels. The bottom panel of this figure presents the summary statis-

tics for the SNR quantified in a brain VOI (delineated in the top left 
image). SNR results are reported as the average (± standard devia-
tions) measured across the number of replicate images available at the 
particular count level. Statistical significance levels (p value ranges) 
are given for the pair-wise comparisons between both CNN-denoising 
models and the three conventional filters
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Applicability to Other Tracer Studies

Assessing neural network performance requires to con-
sider the characteristics of the training data, specifically in 
this case, the DL method was trained only with [18F]FDG 
images that show a distinct distribution. It is necessary to 
test the network’s ability to denoise images derived from 
other tracers that have different distributions and uptake pat-
terns. So, in this regard, low-count studies with [18F]PSMA, 
[18F]FAPI, and [68 Ga]FAPI were qualitatively and quanti-
tatively evaluated. The rationale for using these particular 
tracers is to consider (i) two F-18 labeled tracers with differ-
ent uptake profiles than FDG and (ii) one non-F-18 labeled 
radiotracer with different physical properties. Ga-68 has a 
higher positron energy and so a larger positron range com-
pared to F-18 which consequently degrades image quality 
as a result of blurring and reduced resolution [23], espe-
cially in small animal imaging systems with a resolution of 
about 1 mm. The cross-tracer applicability is studied with 
the M2Std CNN denoising model and compared to Gaussian 
filtering. Further details on the acquired datasets and quan-
titative analyses used for each tracer study are specified in 
Suppl. Information. 2.

Statistical Analysis

Image quality metrics and SUV measures were quantified 
over the number of independent replicate images available 
at the particular count level (namely: 4 at 25% of the counts, 
10 at 10% and 20 at 5%). We omitted the analysis for recon-
structions at 50% of the counts, as no meaningful statistics 

can be deduced from two replicates. The X2Std CNN and 
M2Std CNN algorithms were compared to other denoising 
methods using two-tailed paired-sample t-tests with Bonfer-
roni corrected p values lower than 0.05 considered as statis-
tically significant.

Results

Qualitative and Quantitative Analysis for Denoising 
of [18F]FDG Micro‑PET

Figure 1 shows an example of a [18F]FDG mouse with a 
visual comparison of the standard-count (here: 15 min, 
9.9 MBq), low-count and denoised images at 50, 25, 10, 
and 5% of the counts, where two CNN-based denoising 
approaches are compared to other techniques for noise fil-
tering. All denoising methods removed the image noise to 
different extents, with no clear visual differences between 
the denoised images at 50 and 25%, except for a slight ten-
dency of the non-CNN denoised images to present more 
spatial blurriness and reduced contrast resolution recovery. 
This effect was also quantified with the NEMA-NU4 phan-
tom (Fig. 5). For the image shown in Fig. 1, PSNR, SSIM, 
and MAE values were calculated between the low-count and 
denoised images with respect to the standard-count image 
(see Suppl. Information 3 for detailed summary statistics: 
Suppl. Tables 1–3). The quantitative differences in these 
physical image quality metrics observed between the CNN-
based methods and conventional denoising filters (Gaussian, 
median, bilateral) were consistently found to be statistically 

Fig. 4   RMSE is determined with respect to the 5-h ex  vivo mouse 
scan that was acquired to generate an estimated ground-truth image. 
a The 3D bar graph compares the RMSE at all four low-count levels 
for the different denoising methods. The red bars show the increase in 
RMSE for images of reduced counts but the application of denoising 

methods (in blue and green) decreases the RMSE. b Further quan-
titative analyses looked at the change in RMSE as a function of the 
frame time length selected to reconstruct lower count datasets, with 
the aim to estimate the level of scan time reduction that could be 
achieved
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significant (p < 0.05) for the reconstructions at 10% and 5% 
of the counts, with significantly higher PSNR, higher SSIM, 
and lower MAE for the CNN-based methods.

Figure 2 summarizes the [18F]FDG SUV quantification 
measurements conducted for the mouse shown in Fig. 1. 
In Fig. 2a, the variability within the liver was measured, 
assuming that the liver SUVs are uniform. SUVmean in the 
liver showed a bias below 10% between the standard-count 
and all denoised low-count images. Compared to the filter-
ing methods, the CNN-denoised images presented slightly 
smaller error bars on SUVmean (especially for the tenth and 
twentieth), suggesting that the CNN-based denoising mod-
els resulted in a larger noise reduction. Statistical analysis 
applied on a number of independent replicate images indi-
cated that both CNN-denoising algorithms were able to 
significantly recover the SUVmax from the low-count image 
to an acceptable margin within the standard-count SUVmax 
(Fig. 2b and c). The improvement in SUVmax measurements 
(reduced bias) for the CNN-denoising methods relative to 
conventional techniques showed to be more significant with 
increased count reductions.

Figure 3 presents another mouse study for which qualita-
tive and quantitative analyses were conducted to compare 
the CNN-based denoising methods to conventional filtering 
techniques with an emphasis on SNR. For the lower count 
levels (10% and 5% of the counts) SNR could be signifi-
cantly improved using the CNN-based methods compared 
to the conventional filtering methods. Additional results 
presented in Suppl. Information 4 (Suppl. Tables  4–6) 
further confirm that CNN-based methods also improved 
PSNR, SSIM, and MAE measures compared to conventional 
denoising filters.

Suppl. Figure 2 compares the estimated “ground-truth” 
image (5-h ex vivo mouse scan), standard-count (15-min), 
low-count, and denoised images. Suppl. Table 7 reports the 
RMSE, PSNR and SSIM computed between the low-count 
and denoised images with respect to the estimated ground-
truth. The CNN approaches resulted in the lowest RMSE, 
highest PSNR and highest SSIM at all count levels. Figure 4 
a compares the conventional denoising techniques (blue) to 
the CNN methods (green); it can clearly be appreciated that 
the CNN-denoised images decreased the RMSE with the 
most significant improvement for the images reconstructed 
at 10 and 5% of the counts. The red curve in Fig. 4b shows 
the decrease in RMSE with longer frame durations. The 

outcome of the analysis in Fig. 4b implies that the X2Std 
and M2Std CNN methods (in green) can enhance the qual-
ity of an image (in terms of RMSE) obtained from a 45 s 
scan to a level as if acquired during a 7.6 and 6.4 min scan, 
respectively.

NEMA‑NU4 Image Quality Phantom 
for Small‑Animal PET

Image noise was increased when the scan time (i.e., count 
level) was reduced. Through application of the M2Std 
CNN-denoising algorithm, this noise could be restored 
to a level comparable of the standard scan (20 min with 
3.7 MBq) based on visual inspection from Fig. 5b. The 
uniformity measurements reported in Fig. 5a confirm 
these observations; both Gaussian filtering and M2Std 
CNN denoising reduced the variability measured in 
the uniform phantom section (decreased COV%). Fig-
ure 5b compares the low-count reconstructions of the hot 
rod section to the Gaussian-filtered and M2Std CNN-
denoised images. For CNN denoising, the intensity of the 
two smallest contrast rods visually matched closer to the 
20-min standard scan compared to the Gaussian filtering 
which induced some spatial blurriness. This visual inter-
pretation was also confirmed by the CRC values of the 
Gaussian-filter which were lower for each rod size than 
those of CNN-denoising (Fig. 5c and Suppl. Information 
6). The difference in CRCs between the low-count and 
CNN-denoised images with respect to the standard-count 
image fall within 10% except for 1-mm rod.

Applicability to Other Tracer Studies

For our cross-tracer applicability investigation, Fig. 6 pre-
sents visual comparisons and quantitative analyses for the 
[18F]FAPI and [68 Ga]FAPI mouse study. Suppl. Informa-
tion 7 provides more examples (see Suppl. Tables 9–11 and 
Suppl. Figures 3–5).

Discussion

This paper presents an image-based DL framework for 
denoising low statistics micro-PET images which could 
be leveraged for reducing the injected radiotracer dose 
and/or performing faster scans. Qualitative and quanti-
tative results validated that the presented DL denoising 
frameworks enable to perform total-body mouse PET 
studies with doses below 1 MBq (or equivalently with 
sub-1 min acquisitions). The motivation behind this study 
was to explore the potential and feasibility of DL denois-
ing solutions for preclinical (small animal) imaging, given 

Fig. 5   a Uniformity measurements: coefficients of variation and max-
imum-to-mean ratios compared between 20-min, low-count, Gauss-
ian-filtered and M2Std CNN denoised images of the uniform NEMA-
NU4 phantom section. b Visual comparison of a transverse slice 
from the hot rod region in the phantom. c Contrast recovery curves 
compared between the 20-min (red dashed line), low-count (dashed), 
Gaussian-filtered (dot-dashed), and M2Std CNN denoised (dotted). 
See Suppl. Table 8 for the CRC values.

◂
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that almost all research efforts for DL-enabled low-dose 
imaging have been spent on clinical PET, while there is a 
strong advocacy for low-dose micro-PET imaging.

Low-dose capabilities have already been offered through 
system design adaptations. The β-CUBE (Molecubes) [18] 
and the Si78 (Bruker Biospin) [8] scanner with an axial 

Fig. 6   Visual and quantitative results assess the cross-tracer appli-
cability of the M2Std CNN denoising algorithm. Left (a, d): visual 
comparison between standard-count, low-count, Gaussian-filtered and 
M2Std CNN- denoised images. Top part [18F]FAPI: tumor-to-mus-
cle ratios determined from mean (b) and maximum (c) uptake val-
ues measured across the number of replicate images available at the 
particular count level. Bottom part [68  Ga]FAPI: (e) mean kBq/mL 

value (± standard deviation) in a liver VOI measured for one image 
replicate. f SNR in the liver reported as average (± standard devia-
tion) measured across the number of replicate images available at the 
particular count level. For b, c, and f: statistical significance levels (p 
value ranges) are given for the pair-wise comparison between Gauss-
ian filtering and M2Std CNN denoising.
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length of 13 cm and 15 cm, respectively, provide full animal 
coverage and the increase in solid angle leads to a higher 
sensitivity. This allows to reduce dose by at least a factor of 
4 [8] while offering comparable image quality as previous 
generations of micro-PET/CTs. In the clinic, DL denoising 
techniques have increasingly gained in popularity thanks to 
their promising potential to improve image quality with clear 
benefits for dose reduction. However, there has been very 
little effort to translate such frameworks to the preclinical 
imaging field [16, 17].

In this study, we successfully implemented a DL model 
for denoising low-count micro-PET images in seconds (see 
Suppl. Table 12 for training and testing computation times). 
The presented DL frameworks did not only improve image 
quality by reducing noise but also maintained quantita-
tive accuracy and reproducibility for SUV measurements. 
Quantification results also demonstrated statistically signifi-
cant enhancements in SUVmax recovery when CNN-based 
denoising was applied (compared to Gaussian, Median or 
Bilateral filtering), indicating the effectiveness of these algo-
rithms in mitigating noise-induced variability, especially for 
reconstructions at 10% and 5% of the counts. Both X2Std 
and M2Std CNN algorithms showed similar performance 
in terms of image quality metrics, resulting in the lowest 
RMSE, highest PSNR, highest SSIM, and lowest MAE at 
most low-count levels compared to non-CNN denoising. The 
largest improvement relative to the filtering methods was 
found for the images reconstructed with 10% and 5% of the 
counts. The results from the NEMA-NU4 phantom showed 
that the M2Std CNN denoising model was able to maintain 
image uniformity and reliably reduce the noise present in the 
low-count image to a level equivalent to the standard-count 
image. The CRC measures indicated that the M2Std CNN 
model could hamper detectability for smaller structures 
(< 3 mm) but compared to Gaussian-filtering the M2Std 
CNN-denoised images achieved a higher contrast recovery 
at all rod diameter sizes. So, it is worth to highlight that 
while Gaussian filtering and CNN denoising showed simi-
lar noise reduction performance at modest count reductions 
(i.e., 50% and 25%), CNN-based approaches demonstrated 
better contrast recovery performance.

Visually compared to the standard-count image, the CNN 
denoising introduced a “smoother” noise (image) texture 
but quantitative analyses showed no significant impact on 
accuracy. Previous studies using U-Net models for low-
dose clinical PET [14, 15] reported similar effects on their 
denoised images. The explanation might be that the standard 
(high) count images used as training targets are still plagued 
by some noise (not ground-truth), and when minimizing the 
voxel-wise error between CNN-predicted and target values, 
the CNN solution converges towards smoother images than 
the standard-count (target) image.

To train our DL networks, high-low matching image 
pairs were required and the methodology used in this work 
to obtain low-count datasets was through sequential sub-
sampling of the list-mode data without considering the dif-
ferences in random and scatter fraction estimates at low and 
standard doses. The approach is valid for emulating low-
count true coincidence data which linearly scales with the 
in-field activity. However, the “real” contribution of ran-
doms (which follow a quadratic relationship) and scatter 
(which becomes challenging for ultra-low-dose cases when 
noisy scatter tails can lead to overestimations of scatter) is 
neglected. To address this point, image quality evaluated 
with the NEMA-NU4 phantom was compared between 
low-count images obtained by reconstructions of shorter 
time frames and low-count images from “real” lower dose 
scans. In terms of the CNN-denoising performance, no dif-
ferences were noted between low-count acquisitions from 
scan time and dose reduction (see Suppl. Information 9: 
Suppl. Table 13 and Suppl. Figures 6–9). Another point of 
discussion is that training image pairs, and all test mice data 
presented in the result section of this paper, were not attenu-
ation corrected. In order to demonstrate that the inclusion 
of attenuation correction did not affect the denoising per-
formance of the M2Std model, the NEMA-NU4 phantom 
was attenuation-corrected. Suppl. Figures 9 and 10 provides 
further results to show that the CNN denoising approach 
performed equally well on images with or without attenua-
tion correction.

In some cases, the micro-PET study is combined with a 
micro-CT scan to provide an anatomical reference image or 
for attenuation correction. Typical micro-CT doses range 
from 50 to 1000 mGy [9] while [18F]FDG doses in mice are 
within 100 mGy [10]. Dose reduction strategies with DL 
denoising are also applicable in micro-CT imaging. In our 
previous work [24] a neural network was trained and evalu-
ated for denoising low-dose micro-CT acquisitions to real-
ize higher quality micro-CT imaging at reduced doses (by a 
factor of 3). In preclinical research, low-dose multi-modality 
studies offer promising future prospects for managing the 
cumulative effects of radiation in longitudinal imaging stud-
ies. Moreover, low-dose imaging provides an opportunity to 
image more rodents given a certain amount of radioactivity 
which is particularly advantageous for situations when only 
limited amounts of tracer are available for daily preclinical 
practice.

A critical concern with DL-based methods is its reproduc-
ibility and robustness to new (unknown) studies. The diversity 
of tracers, scanners, imaging protocols, and reconstruction set-
tings used in practice continues to question the reliability of 
any trained DL model when applied to external datasets [12, 
13]. In preclinical settings, we are faced with the extra chal-
lenge of increased diversity in radiotracers investigated among 
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the variety of rodent models. To our knowledge, this paper is 
the first to study the extensible applicability of an [18F]FDG-
only trained DL model to other radiopharmaceuticals including 
[18F]PSMA, [18F]FAPI and [68 Ga]FAPI studies. While image 
noise does not depend on the tracer distribution for different 
F-18 based tracers, the performance of the neural network to 
denoise images with different uptake patterns than those seen 
in the [18F]FDG training images was tested with [18F]PSMA 
and [18F]FAPI. Besides the notable improvement in image qual-
ity, quantitative assessments showed very good agreement in 
mean and maximum uptake values between the standard-count 
and M2Std CNN-denoised images with smaller bias and higher 
reproducibility compared to the low-count images. The results 
with [68 Ga]FAPI were also encouraging to further investigate 
how a DL-based denoising algorithm handles images produced 
using tracers of different resolutions. Ga-68 exhibits different 
physical properties (positron range, decay fractions, etc.) to 
F-18, so this will lead to differences in noise pattern and image 
resolution. Our findings suggest that the methodology is able 
to handle different types of studies, focusing on the broader 
impact, while not yet fully capturing or considering subtle dif-
ferences that exist across different study scenarios.

This work only focused on static low-count micro-PET 
imaging. A future consideration is to investigate cases of 
ultra-low statistics. For early, very short (2–10 s) frames 
during fast dynamic studies, or for imaging studies with 
short-lived isotopes (e.g., O-15, C-11, Rb-82) which decay 
very fast during scanning, or with long-lived isotopes (e.g., 
Zr-89) which exhibit low positron fraction, even higher 
noise levels of varying textures will corrupt the data. There 
is another biologic argument to be made about delayed-
time-point imaging studies where denoising can improve 
the visualization and quantification for low density targets 
(e.g., bacterial and antibody imaging applications). In this 
regard, an extensive phantom study evaluating the effect of 
DL-denoising with positron emitters other than F-18 [25] 
should be performed in the future to study the noise contri-
bution from differences in positron ranges.

In summary, this paper demonstrates the feasibility of 
applying DL-based denoising techniques for low-count 
preclinical acquisitions of mice. While the image quality 
obtained with DL methods is notably improved especially at 
very low count levels, this work also focuses on the impor-
tance of quantitative results; low bias and high precision in 
SUV was measured with the CNN-denoised images. The 
adoption of DL-based denoising frameworks allows for low-
dose and/or faster imaging which might be the goal for some 
preclinical set-ups. However, with other scenarios such as 
imaging with very short-lived radionuclides or imaging long 
after injection (with Zr-89 for antibody imaging), DL denois-
ing can also prove valuable to extract more (quantitative) 
information under extreme conditions of ultra-low statistics.

Conclusions

Results support the merits of CNN-based image enhance-
ment in low statistics micro-PET, especially for ultra-
low-count images (reconstructed at 5% and 10% of the 
counts). The presented 2D CNN denoising approach is able 
to enhance micro-PET images of improved quality while 
keeping quantitative accuracy from noisy input images. 
Sub-1 MBq and sub-1 min [18F]FDG PET mouse imaging 
becomes possible with DL-based denoising. The adoption of 
these denoising frameworks holds potential for various sce-
narios where it is necessary to limit the amount of injected 
dose (in addition to the concerns related to toxicity and 
safety). This offers much more flexibility to the investiga-
tors in optimizing preclinical, longitudinal imaging setups.
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