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Abstract
Magnetic particle imaging (MPI) is a novel quantitative imaging technique using the nonlinear magnetization behavior of 
magnetic nanoparticles (MNPs) to determine their local concentration. Magnetic fluid hyperthermia (MFH) is a promising 
non-invasive therapy using the heating effects of MNPs. MPI-MFH is expected to enable real-time MPI guidance, localized 
MFH, and non-invasive temperature monitoring, which shows great potential for precise treatment of cancer. In this review, 
we introduce the fundamentals of MPI and MFH and their applications in the treatment of cancer. Also, we discuss the 
challenges and prospects of MPI-MFH.
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Introduction

Cancer diagnostics is a method that combines diagnosis and 
therapeutics of cancer diseases, which involves nanomate-
rial preparation, bioprobe targeting, molecular imaging, and 
minimally invasive treatment [1]. It is increasingly clear that 
ultrasensitive and quantitative measurement of theranostic 
biomarkers and efficient identification, visualization of can-
cer at its earliest stage with high resolution and in a quanti-
tative manner, molecular targeting, and localized treatment 
will all be critical for precision treatment of cancer [2].

The traditional treatment methods for cancer include 
surgery, radiation therapy, and chemotherapy. The primary 
treatment method for cancer is surgery, but it is generally 
suitable only in early stages of cancer [3]. Most patients are 
not suitable for surgical treatment in the late stages, such 
as breast cancer [4] and pancreatic cancer [5]. Radiation 
therapy mainly uses high-energy radiation, such as X-rays 
and gamma-rays, to create energy directly to kill cancer cells 
or inhibit their growth [6]. The main limitations of tradi-
tional radiation therapy lie in the radiation that also produces 
radioactive doses in normal tissues, leading to persistent 
patient harm, and may have long-term side effects [7]. Pro-
ton therapy, a more accurate and effective radiation therapy, 
uses high-energy proton beams to directly kill cancer cells 
[8]. This method reduces the side effects of radiation therapy 
significantly by killing only the cancer cells with little harm 
to healthy cells [9]. However, the price is high because it 
requires high-quality treatment facilities [10]. Chemotherapy 
works by using cytotoxic drugs to inhibit cell proliferation 
[11]. Most chemotherapy drugs must be close to their maxi-
mum tolerated dose to function, which means chemotherapy 
is toxic to the whole body [12]. This leads to various side 
effects and gradually decreases the patient’s immune func-
tion [13]. Magnetic fluid hyperthermia (MFH), as a new 
therapeutic technology, uses high-frequency excitation to 
generate electromagnetic waves produced by the magnetic 
field, based on relaxation loss or hysteresis loss to heat the 
tumors to about 43 °C, to kill cancer cells through high 
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temperature. This technology has the advantages of non-
invasive, radiation-free, no disease-forming, and low treat-
ment costs compared to the above treatment methods. It has 
little toxicity to the healthy tissues [14].

Hyperthermia has been widely studied in recent years. 
This process does not directly kill the cells but leads to the 
initiation of a series of pro-apoptotic and apoptotic signal-
ing cascades [15], which finally induces cell death. Heat can 
slow or stop tumor growth by damaging or killing cancer 
cells by damaging proteins, structures, and blood vessels 
within the tumor [14]. The heat can induce the increase in 
some proteins in the lesion site, such as γ-H2AX, which can 
cause DNA damage or apoptosis, making cancer cells more 
vulnerable to radiation therapy and chemotherapy in sub-
sequent treatments [16]. Meanwhile, the heat also modifies 
the blood circulation to deliver oxygen to the tumor tissue, 
making the tumor cells more sensitive to radiation therapy 
and chemotherapy [17]. Cellular responses to heat stress can 
also promote the expression of heat shock proteins, which 
can induce an organism’s immunity to tumor cells [18]. 
Therefore, hyperthermia is increasingly used in combina-
tion with radiotherapy [19] and chemotherapy [20] to treat 
solid tumors. In the conducted clinical studies by Deger [21] 
et al., the combination of heat therapy and radiotherapy was 
applied to prostate cancer. After treatment, prostate-specific 
antigen (PSA) was significantly lowered. Brero et al. [22] 
effectively demonstrated the radiosensitization of hyperther-
mia to pancreatic cancer cells by combining proton therapy 
and MFH, and the proton therapy they used was synergisti-
cally cooperative with MFH. Singh et al. [23] compared the 
individual effects of heat therapy and chemotherapy with the 
combination therapy in prostate cancer and found that the 
combination therapy had significant efficiency in suppress-
ing tumor growth.

Researchers have proposed many different hyperthermia 
methods. A comparison of their classifications and applica-
tions is summarized in Table 1.

A treatment method needs to be guided by the appropriate 
imaging mode to achieve the purpose of accurate treatment. 
Magnetic particle imaging (MPI) is a novel quantitative 
imaging technique with its advantages of high sensitivity 
and resolution, which uses the nonlinear magnetization 
behavior of magnetic nanoparticles (MNPs) [41]. In this 
review, we discuss MPI-guided MFH (MPI-MFH) and its 
application in cancer.

In the following, we briefly introduced MPI and MFH 
in this section, including their basic principles, features, 
and devices. Then, we showed some typical applications of 
image-guided MFH in cancer therapy, illustrating the poten-
tial of MPI-guided MFH in cancer precision therapy. The 
MNPs, targeted modified MNPs, and their application in 
MPI and MFH are then presented. Lastly, we discuss the 
current challenges of MPI-MFH. In addition, we look ahead Ta
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to the future of MPI-MFH and other applications in precise 
treatment of cancer.

Introduction of MPI and MFH

MPI

MPI has been extensively used in studies including hemo-
dynamic evaluation [42], cardiac imaging [43], cell tracing 
[44, 45], cancer imaging [46], perfusion imaging [47], and 
prediction of the MFH effect [40]. The MPI device simply 
consists of the selection coils or permanent magnets that 
generate a field-free region (FFR), the drive coils that excite 
the nonlinear magnetization behavior of MNPs, and the 
receiver coils that induce changes of the magnetization of 
MNPs (Fig. 1) [48]. The magnetization dynamics of MNPs 
are very complex and can be simplified to the Langevin 
theory description under the assumption that MNPs are in a 
constant thermal equilibrium [49].

MPI signals also hold promise for temperature imaging. 
Relaxation processes are temperature dependent, so it is 
expected to estimate the sample temperature from the mag-
netization response signals of MNP samples [50].

Since the first MPI scanner for small animals was pro-
posed in 2005 [41], the development of MPI devices has made 
great progress, as reported in [51]. We reviewed the devel-
opment of MPI devices, as shown in Fig. 2. Currently, two 
commercial devices have been developed, one from Bruker 
and the other from Magnetic Insight. In 2014, traveling wave 

magnetic particle imaging (TWMPI) was proposed to generate 
a dynamic gradient field system that can cover a larger field of 
view, providing a new direction for large bore device develop-
ment [52]. For the development of a large bore size of MPI, 
Graeser et al. proposed a human-sized MPI system suitable 
for the detection of human heads [53]. Over the past 2 years, 
MPI devices have made progress in increasing the bore size 
and individual functions [54].

As a new imaging method, MPI has many advantages:

• MPI has good penetration and signal-to-noise ratio;
• The MPI signal has no radiation and does not harm the 

human body [51];
• The MPI signal will not undergo radioactive decay over 

time [55];
• MPI has real-time imaging capabilities to provide immedi-

ate feedback [56, 57];
• MPI is expected to realize the detection of multiple param-

eters, such as temperature and viscosity [58, 59].

MFH

Under the induction of an AMF, MNPs generate heat through 
relaxation loss or hysteresis loss [60]. According to Rosens-
weig’s theory [61], the average volume energy dissipation rate 
of magnetic particles per period under the action of alternating 
magnetic fields is defined as follows:

P = fΔU = −fμ
0 ∮ MdH

Fig. 1  Illustration of the princi-
ple of MPI. a M-H curve under 
Langevin’s model. b Exciting 
magnetic field. c Time-depend-
ent magnetization. d Fourier-
transformed signal
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where f and H are the frequency and amplitude of the applied 
magnetic field, respectively, M is the particle magnetic 
moment, and �

0
 is the vacuum permeability.

The heating capacity of MNPs is defined as the specific 
absorption rate (SAR), expressed as the heating power (P) 
produced per unit mass of MNPs(mMNP):

where C is the sample-specific heat capacity, ΔT/Δt is the 
increase in temperature with time, and m is the mass con-
centration of MNPs [62].

From this formula, it can be seen that the heating effi-
ciency of magnetic particles is related to the frequency of 
external AMF and the area enclosed by M and H curves. 
Theoretically, SAR will increase with the increase of mag-
netic field strength and frequency, as does the experimental 
result [63]. In addition, the properties of MNPs, including 

SAR =
P

mMNP

= C

(

ΔT

Δt

)(

1

m

)

viscosity, radius, anisotropy, and collective behavior caused 
by surface modification, will also affect the thermal conver-
sion efficiency [64, 65]. Table 2 lists several commercial 
MNP-related parameters for reference.

In MFH, coils are generally used as converters between 
electrical power and magnetic field energy (Fig. 3). Coils 
can be divided into solenoid shape [66], flat shape [67], 
Helmholtz’s coil [68], and birdcage coil according to the 
shape. The first clinical MFH system, MFH® 300F, was 
reported in 2004 [69].

Although MFH has many advantages and application pros-
pects, there are still many challenges in its clinical application:

(1) Real-time image guidance

A good imaging guidance can identify the location of 
lesions and the thermal dose of MFH, allowing doctors to 
predict the effect of hyperthermia [70]. It is expected to 

Fig. 2  The main devices of MPI. a The device from Bruker. b The 
device from Magnetic Insight. c TWMPI scanner. d Human-sized 
interventional MPI scanner and human-sized wearable brain scan-

ner. e Human-sized MPI for brain applications. a From http:// www. 
bruker. com; b from http:// www. magne ticin sight. com; c from [52], d 
from [54]; e from [53]

Table 2  Basic parameters of 
several commercial MNPs

Particle Manufacturer Radius Iron concentration Saturation magnetization

Perimag Micromod 130 nm 8.5 mg/mL H > 800 kA/m
Synomag-50 Micromod 50 nm 10 mg/mL H > 800 kA/m
Synomag-70 Micromod 70 nm 10 mg/mL H > 800 kA/m
Vivotrax Magnetic Insight 62 nm 5.5 mg/mL /
Mag3300 Nanoeast 5–50 nm 1 mg/mL 65 emu/g Fe

http://www.bruker.com
http://www.bruker.com
http://www.magneticinsight.com
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eliminate the unnecessary risk of damaging healthy tissue 
and provide feedback and a basis for doctors to adjust the 
treatment process [71]. The aforementioned CT and MRI-
guided hyperthermia cannot achieve real-time guidance, and 
they usually rely on pre-treatment images [72].

(2) Off-target accumulation of MNPs

After systemic administration, liver and kidneys compete 
with tumors for MNPs, resulting in accumulation of particles 
in non-targeted organs [73]. At 300 kHz, all regions of the 
body with MNPs are heated indiscriminately [74]. Avoiding 
heating off-target areas can reduce collateral thermal damage 
to these organs, which is important in achieving precision 
hyperthermia [75].

(3) Non-invasive temperature monitoring

Temperature monitoring and adjustment are important 
during hyperthermia [76]. It has been reported that tumor 
areas with hyperthermia temperatures between 41 and 45 °C 
are more susceptible to further damage [77]. So real-time 
thermal feedback can avoid temperatures that are too low or 
too high [78]. The existing temperature measurement tech-
nology is limited to placing a temperature sensor inside the 
heated tumor, which requires the sensor to be non-metallic 
to prevent interference with the AMF or heating during the 
heating process [79].

In summary, both MPI and MFH utilize the correspond-
ing properties of MNPs for imaging and therapeutic. Now, 
we will compare the two methods briefly (Table 3).

Fig. 3  MFH coils. a Traditional MFH coils. b Special thermotherapy coil in MPI. c Traditional MFH coil physical picture. a From [62]; b from 
[80]; c from [67]

Table 3  Comparison of MPI and MFH

Purpose Theory Frequency of magnetic field Amplitude of magnetic field MNPs

MPI Imaging Langevin 
model, Debye 
model, etc

10–100 kHz [80] Tens of μT to hundreds of mT [81] Vivotrax, Perimag, etc

MFH Therapy Relaxation loss 
or hysteresis 
loss

100–300 kHz [50] 5–10 kA/m Homemade EGFR-
targeted MNPs [82]
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Image‑guided MFH

CT or MRI‑Guided MFH

MFH alone cannot implement precision therapy without 
the help of medical image guidance. The current clinical 
guidance methods of MFH are mainly CT and MRI [83]. 
In the MFH, the density of MNP-enriched tissue regions 
is significantly higher than those of other normal tissue 
regions, which can be detected by CT [84, 85]. In clinical 
research, Johnnsen et al. [86] used CT imaging to develop 
therapeutic plans to achieve the treatment of prostate can-
cer. This guiding method allows for higher injection pre-
cision and thus better treatment results. MRI measures 
relaxation time and proton density. Clinically, contrast 
agents enhance the relaxation rates of water molecules 
around the body to obtain highly contrasting MRI images 
[87]. The MRI-guided MFH technology has its intrinsic 
advantages in providing accurate guidance and expected 
non-invasive temperature detection [88]. Wang et al. [89] 
developed a multifunctional MNP to achieve MRI-guided 
MFH in a breast cancer mouse model, which significantly 
reduced the tumor volume and the number of M2-TAMs 
promoted in the tumor. Corresponding materials  (Fe3O4@
polyvinyl pyrrolidone nanotubes) for MRI-guided MFH 
have also been developed [90].

Compared with CT, MRI and MPI have no radiation. 
MRI currently uses MNPs as negative contrast agents for 
lymph node and liver imaging. In these areas, tissues con-
tain a large number of phagocytes, which absorb MNPs 
to make the image darker [91]. This process may obscure 
parts of the anatomy. Other sources of endogenous con-
trast, such as the existence of iron deposits, may interfere 
with the MNP signal [92]. In addition, compared to MRI, 
MPI directly measures the concentration of MNPs, which 
are quantifiable and highly sensitive [93].

In conclusion, MPI can locate tumors more accurately, 
which is a significant advantage for image-guided MFH. 
The amount of heat deposited in the organism is directly 
related to the amount of MNPs, and the quantifiable nature 
of MPI also allows MPI to indirectly quantify the thermal 
dose [75].

MPI‑Guided MFH

Researchers have paid attention to the combination poten-
tial of MPI and MFH. MPI and MFH work separately by 
utilizing the responses of MNPs to an applied AMF. Both 
MPI and precisely localized MFH use gradient magnetic 
fields. In Langevin’s theory, the selection field is divided 
into a magnetic FFR and saturation region. Particles in 

the saturation region will constrain the deflection of the 
dipole, thus completing the confinement of the heating 
region, which is expected to achieve precise positioning of 
hyperthermia. Based on this, MFH is expected to eliminate 
interference from non-targeted organs during the heating 
process.

In 2016, Dhavalikar et al. theoretically demonstrated the 
possibility of combining MPI with a high-frequency-driven 
AMF [94]. Bauer et al. first demonstrated that a sample in 
a region of interest can be selectively heated with the help 
of a gradient field of MPI [95]. In 2017, the first combined 
MPI-MFH system was reported by Hensley et al. [57], which 
can realize selectively heat magnetic nanoparticle samples at 
a distance of 3 mm in vitro (Fig. 4). An MPI-MFH treatment 
platform was first demonstrated by Tay et al. in 2018 [75]. 
The experimenters performed selective heating and histo-
logical evaluations on a double-tumor mouse model to verify 
the localization of the lesion and tumor treatment capabili-
ties of the platform (Fig. 5). According to Fig. 5, it can be 
clearly found that any region can be positioned and heated 
during the heat shock process; if there is no gradient during 
the heat shock process, then regions with particles in the 
body will be heated uniformly. In 2020, Wells et al. [96] first 
proposed an MPI-MFH platform based on a 3D Lissajous 
scanning trajectory with frequencies of around 25 kHz. In 
recent years, great progress has been made in research focus-
ing on MPI-MFH. In order to have a better combination of 
MPI and MFH, researchers still face many problems which 
we will discuss in the following parts.

Targeting MPI and MFH Fusion 
in the Treatment of Tumors

MNPs are the only signal source for MPI visualization. 
The performance of MNPs is also one of the key factors 
to determine the quality of MPI images. In order to obtain 
good quality images, MNPs should have the properties of 
a strong response signal and slow attenuation of the sig-
nal harmonic spectrum. When MNPs are applied for MFH, 
they need to have a good thermal effect and temperature 
sensitivity. MNPs usually have magnetic core coated with a 
biocompatible polymer coating such as carboxyl dextran or 
polyethylene glycol (PEG). These outer coats have a number 
of functional groups that can bind to functional molecules, 
such as drugs or ligands. This can improve the targeting of 
MNPs and increase their accumulation or penetration depth 
in the lesion area [97, 98].

Targeted Modified MNPs

Although studies on MNPs for imaging and hyperthermia 
have been demonstrated, a major obstacle limiting their  
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clinical application is the insufficient concentration of par-
ticles reaching the target area after intravenous injection, 
resulting in an inability to accurately image and hyper-
thermia [99]. It has been confirmed by a large number of 
researches that the radius, anisotropy, structure, doping, and 
surface modification of particles will have a significant influ-
ence on the imaging [100] and high-temperature results [64]. 
There are two main ways to obtain functionalized MNPs. 
One way is taking advantage of the special physiological and 
anatomical characteristics of tumor tissues to allow for natu-
ral differences in drug distribution in the body [101]. The 
other is to increase uptake of magnetic particles by cells by 
changing the shape or aggregation state of magnetic particles 
or to enhance passive targeting through EPR effects, thus 
accumulating in tumor tissues [102]. Surface modification of 
targeted molecules can confer targeting properties to MNPs 
to significantly affect their diagnostic and therapeutic prop-
erties [103]. Current targeting molecules include antibodies 
[104], peptides [105], small organic molecules [106], and 
other biological targeting molecules [107]. Current studies 
have confirmed that many tumors have specific targets, such 

as human epidermal growth factor receptor 2 (HER-2) and 
luteinizing hormone-releasing hormone (LHRH) for breast 
cancer [108, 109], folate receptor for ovarian and cervical 
cancer [110], and vascular endothelial growth factor (VEGF) 
for glioma [111].

In MPI, the concentration of particles can be increased 
by targeted modification of particles, resulting in higher 
MPI signal intensity and better image resolution at the 
lesion. Tomitaka et al. combined lactoferrin with MNPs, 
and the resulting particles were targeted to gliomas [112]. 
Zhang et al. took advantage of the properties of the plec-
tin-1 peptide targeted to pancreatic ductal adenocarcinoma 
and combined plectin-1 peptide and IRDye800CW with 
MNPs to generate pancreatic ductal adenocarcinoma-tar-
geted probes. Uniform distribution and in vivo residence 
time were all improved [113]. Wang et al. selected the 
breast cancer-targeted peptide CREKA to couple with 
MNPs, and a stronger MPI signal than the untargeted tis-
sue could be obtained by using this particle [114].

In MFH, the targeted modification of MNPs has a simi-
lar function with MPI, which can improve the efficiency of 

Fig. 4  In vitro selective heating achieved by MPI-MFH. Figure 4 is from [57]
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hyperthermia. We did a table (Table 4) summarizing the 
use of active tumor targeting in hyperthermia.

Applications of MPI‑MFH Hyperthermia 
in the Treatment of Tumors

The application of MPI-MFH in tumors is relatively few 
because MPI itself is a new technology, and the combina-
tion of the two devices needs further research. Among 

them, the study of Du et al. [126] has opened a new hori-
zon for us. Du et al. developed CREKA-modified MNPs 
using the theoretical basis that the pentapeptide CREKA 
can selectively bind to proteins overexpressed in certain 
breast cancer cells and stromal cells (Fig. 6). Such par-
ticles can target tumors and improve the uniformity of 
particle delivery within the tumor to obtain good MRI 
and MPI signals. The targeted modified particles can be 
uniformly distributed in the tumor and reach to ~ 43 °C 

Fig. 5  In vivo selective heating of mice achieved by MPI-MFH. Figure 5 is from [75]

Table 4  Application of active targeting modified particles in hyperthermia

Tumor Targeting agents Receptors Conditions Refs

Hepatocellular D-galactosamine Asialoglycoprotein 780 kHz; 19 kA/m; 20 min Liao et al. [115]
Cervical PEG-FA Folate 750 kHz; 10 Oe; 10 min Sadhasivam et al. [116]
Adenocarcinoma Anti-HER2 aptamer with 5′ 

thiol group
HER2 280 kHz; 300 A; 30 min Pala et al. [117]

Lung CREKA Fibrinogen complexes 292 kHz; 58 kA/m; 30 min Kruse et al. [118]
Prostate Single-chain Fv antibody γ-Seminoprotein 63 kHz; 7 kA/m; 4 min Cui et al. [119]
Breast 111In-chimeric L6 monoclonal 

antibody
Membrane glycoprotein 153 kHz; 1300 Oe, 1000 Oe, 

and 700 Oe
DeNardo et al. [120]

Breast Anti-HER2 HER2 400 kHz; 0.8 kA/m; 5 min, 
10 min

Zuvin et al. [121]

Renal cell The Fab’ fragment of the 
G250 antibody

MN antigen 118 kHz; 384 Oe; 30 min Shinkai et al. [122]

Ovarian LHRH peptide LHRH receptors 393 kHz; 33.5 kA/m Taratula et al. [123]
Melanoma N-propionyl-cysteaminyl-

phenol
Tyrosine analogs 118 kHz; 30.6 kA/m Sato et al. [124]

Oral epidermoid and cervical Folic acid Folate receptor Not applicable Fan et al. [125]
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quickly. In a mouse breast tumor model, the mice injected 
with the particles nearly disappeared after hyperthermia 
and did not return. This particle has great potential for 
precise imaging and efficient MFH.

Song et al. [127] started from MNPs and selected carbon-
coated FeCo (FeCo@C-PEG) nanoparticles as the MPI tracer. 
When applied in a mouse model of breast cancer, it was found 
that FeCo@C-PEG was enriched in tumors by 4.76 times that 
of VivoTrax, and tumor cells also ingested significantly more 
FeCo@C-PEG than VivoTrax. In in vivo experiments, the 
temperature of tumors directly injected with FeCo@C-PEG 
can rise to 47 °C within 10 min, and the volume of tumors 
after 14 days was significantly smaller than that of the control 
group. This particle can improve image quality and conversion 
efficiency which can make MPI-guided MFH more effective.

Tay et al. [75] demonstrated a theranostic platform com-
bining MPI and MFH. Using the self-developed MNPs, they 
first realized directional heating in the phantom. Then, MPI 
was used to guide MFH in glioma mouse models, and the 
gradient of MPI was used to achieve precise hyperthermia.

Challenges

Development of Hardware Equipment

After more than 20 years of development, MPI has come 
a long way in both theory and equipment. But at present, 
MPI hardware equipment still faces some problems, such 
as the need to develop a human-sized device [80], the bal-
ance between imaging performance and power consump-
tion [128], and the need to combine with other imaging 
modalities to provide sufficient information [129].

Real-time simultaneous imaging and hyperthermia is 
possible, because MNPs can generate MPI signals dur-
ing heating. Usually, the operating frequencies of the 
two are significantly different. The operating frequency 
of MPI is roughly 10 kHz ~ 100 kHz [130], and the oper-
ating frequency of MFH is roughly 100 kHz ~ 300 kHz 
[50]. There are two options for combining the two. First, 
the fixed operating frequency is between 20 and 40 kHz, 
which theoretically can achieve simultaneous imaging and 

Fig. 6  CREKA-modified MNPs for bi-modal MRI/MPI-guided magnetothermal therapy. Figure 6 is from [126]



1029Molecular Imaging and Biology (2023) 25:1020–1033 

1 3

hyperthermia. However, we need to give MNPs multi-
dimensional excitation to achieve the same thermal effect 
as in high frequency [96]. We believe a better way is to 
work at a low frequency and high frequency in time-
sharing, but the complexity of the equipment could be 
significantly increased.

MNP Optimization

The response of MNPs to AMF can achieve both imaging 
and MFH. Translating this potential into clinical applica-
tions requires the development of MNPs. Therefore, it is 
urgent to prepare MNPs that have excellent imaging capa-
bilities, thermal efficiency, temperature monitoring capabili-
ties, and biocompatibility.

SAR and PNS Limits

The AMF can affect the human body through peripheral 
nerve stimulation (PNS) or induction eddy current heating 
in vivo, and these magnetic field changes have potential risks 
for the human body [53]. For frequencies below 100 kHz, 
it should be particularly concerned by electrical stimulation 
risks; while for higher frequencies, the primary considera-
tions should be thermal heating [131]. During the MPI-
guided MFH process, we must consider the two limits of 
PNS and SAR. For the application of the thoracic body, the 
limit of PNS is about 3 mT μ0

−1 [132], and the limit of PNS 
is linearly related to the magnetic directional cross-section 
of the body, so it is safe to apply 6 mT μ0

−1 [53] to the head 
and 10 mTμ0

−1 to the whole body. For the SAR, the spatial 
average SAR exposed to tissues in public and controlled 
environments is 2 W/kg and 10 W/kg [133]. Currently, no 
more specific data on MPI-guided MFH PNS and SAR 
advice values is available. The limiting of PNS is necessary 
to prevent excessive muscle and nerve stimulation, and the 
limiting of SAR is crucial to prevent system temperature 
rise [130]. However, the importance of these two limits for 
MPI-guided MFH is undeniable.

Prospect of Application

A significant advantage of MPI is that the signal can be 
quantified. On the combined MPI and MFH platform, this 
advantage can be translated into the evaluation of therapeu-
tic effects. In Ohki et al.’s study, regions of interest were 
mapped using MPI, which was used to quantitatively com-
pare the effects of tumor hyperthermia alone and hyper-
thermia combined with radiotherapy [134]. Numerous 
studies have shown that the combination of radiotherapy or 

chemotherapy with hyperthermia is more helpful in the treat-
ment of cancer [83]. Other studies have shown that hyper-
thermia can be combined with gene therapy or immuno-
therapy [135]. Pan et al. demonstrated that combined MFH 
and immunotherapy have great potential in primary and 
metastatic tumors [136]. MPI-MFH is expected to enable 
quantitative assessment of the efficacy of hyperthermia alone 
and in combination therapy. In addition, MPI-MFH also has 
great potential for controlled release and targeted delivery of 
drugs and can be used in other non-cancer diseases.

Conclusion

MPI-MFH is expected to realize the combination of diag-
nosis and treatment, allowing MPI images to accurately 
locate the lesion and predict the magnetic thermal effect at 
the same time, which helps doctors to plan and adjust the 
magnetic thermal plan. Currently, MPI-MFH has achieved 
millimeter-precise guided heating which has been demon-
strated in mice. However, MPI-MFH still has a long way to 
go. The development of MPI-MFH devices, the design of 
MNPs that consider both MPI and MFH performance, and 
the successful clinical applications in humans are all urgent 
problems that need to be solved. It is encouraging that more 
and more scholars are noticing the potential of MPI-MFH 
and are proposing creative solutions to these problems. We 
believe that in the future, MPI-MFH, combined with other 
therapies and technologies, will provide better options to 
treat cancer and even non-cancer diseases.
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