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Abstract
Purpose: Current approaches to quantification of magnetic particle imaging (MPI) for cell-based
therapy are thwarted by the lack of reliable, standardized methods of segmenting the signal from
background in images. This calls for the development of artificial intelligence (AI) systems for
MPI analysis.
Procedures: We utilize a canonical algorithm in the domain of unsupervised machine learning,
known as K-means++, to segment the regions of interest (ROI) of images and perform iron
quantification analysis using a standard curve model. We generated in vitro, in vivo, and ex vivo
data using islets and mouse models and applied the AI algorithm to gain insight into
segmentation and iron prediction on these MPI data. In vitro models included imaging the
VivoTrax-labeled islets in varying numbers. In vivo mouse models were generated through
transplantation of increasing numbers of the labeled islets under the kidney capsule of mice. Ex
vivo data were obtained from the MPI images of excised kidney grafts.
Results: The K-means++ algorithms segmented the ROI of in vitro phantoms with minimal noise.
A linear correlation between the islet numbers and the increasing prediction of total iron value
(TIV) in the islets was observed. Segmentation results of the ROI of the in vivo MPI scans
showed that with increasing number of transplanted islets, the signal intensity increased with
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linear trend. Upon segmenting the ROI of ex vivo data, a linear trend was observed in which
increasing intensity of the ROI yielded increasing TIV of the islets. Through statistical evaluation
of the algorithm performance via intraclass correlation coefficient validation, we observed
excellent performance of K-means++-based model on segmentation and quantification analysis
of MPI data.
Conclusions: We have demonstrated the ability of the K-means++-based model to provide a
standardized method of segmentation and quantification of MPI scans in an islet transplantation
mouse model.

Key words: Artificial intelligence, Unsupervised machine learning, Magnetic particle imaging,
Islet transplantation

Introduction
Magnetic particle imaging (MPI) is an emerging modality
that directly detects the magnetization of iron oxide
nanoparticles, with advantages including high specificity
and sensitivity, linear quantitative ability, and high potential
for clinic translation [1, 2]. Implemented in various realms of
biomedical research, this relatively novel imaging modality
has invoked scientific inquiry in a new and advanced area of
molecular imaging and analysis and showed significant
advancements for development of theranostics and precision
medicine [3]. Its reliance on superparamagnetic iron oxide
(SPIO) nanoparticle signals to generate positive contrast
images sets a new standard for quantitative imaging and
biology. However, due to the newfound presence of MPI in
the field, selection bias for segmentation of imaging data
exists, there is a gap between tedious meticulous imaging
analysis work and robust quantification of imaging signals
[4]. Henceforth, it is crucial to direct efforts towards
combining the realm of MPI with artificial intelligence
(AI), which enables rapid, high-throughput analysis of data
systems and structures. Through its use in analysis of
regions of interest (ROI) in preclinical and clinical scans,
with a focus on rapid quantification, monitoring, and
prognosis/predictive capability in multiple imaging modali-
ties, it has become clear that AI may allow one to bypass
hurdles faced in biomedical image quantification [5–8].
These problems include issues with accurate and reliable
signal quantification, mainly due to the high degree of intra-
and inter-rater variability and selection bias resulting from
the imaging specialist or radiologist under which the image
is scrutinized [9–11]. These problems are exaggerated in the
realm of MPI due to its novelty in the field, and intrinsic
problems including the inability to define a determinate
boundary for a ROI in an MPI scan [12]. Therefore, the
image and its ROI becomes subject to selective bias from the
rater at hand and a proper signal may become outweighed by
that which is false positive or false negative; henceforth,
quantification becomes highly unreliable and difficult for
subsequent analysis. In accordance with these issues exists
the time-consuming cost of freehand selection and manual
analysis of MPI image scans [12].

Commonly used deep learning algorithms within the field of
AI, such as the convolutional neural network (CNN), are able to
provide high-throughput and robust analysis within molecular
imaging domains of interest, although these often come with
limitations—such algorithms require a large volume of labeled
data for training the neural network and can only function
within a narrow range of new data [13, 14]. However, other
types of AI algorithms within the domain of unsupervised
machine learning (ML), namely clustering-based approaches,
can be optimized for functioning on a wide variety of data and
do not require a large volume of training data to perform with a
high degree of accuracy [5]. Here, we propose to develop and
use the K-means++ clustering–based, unsupervised machine
learning algorithm to provide a novel method/tool for image
segmentation and quantification in the MPI domain, using
SPIO-labeled human islets in a mouse model of islet transplan-
tation as an example. While islet transplantation has emerged as
a clinical modality to treat type 1 diabetes patients, it is
hampered by islet loss during early post-transplant period [15].
Previously, we demonstrated that islets labeled with magnetic
nanoparticles can be imaged after transplantation using mag-
netic resonance imaging (MRI) [16, 17], which is limited by
low sensitivity and reliance on a negative contrast [18, 19]. This
calls for a positive contrast, high sensitivity quantitative
imaging modality and sophisticated image analysis tools to
track the dynamic nature of transplanted islets in vivo [18, 19].
Therefore, monitoring changes in MPI signal through machine
learning–enhanced segmentation and quantification can provide
insight into such issues. The purpose of the algorithm used here
is to provide a mechanism for rapid and highly specific
segmentation of an ROI from an MPI scan, and subsequent
analysis of the ROI in order to predict the total accumulation of
SPIO nanoparticles within the islet cells. A similar algorithm
based on K-means has been applied previously in various
realms of biomedical imaging [20–22]. Because the initializa-
tion of K-means is random which causes it to overshoot
predictions and hinders precision. On the contrary,K-means ++
has sequential initialization which allows the algorithm to
function with improved accuracy of data clustering. Currently,
there is a lack of both minimal standardized methods for
segmentation and quantification of MPI and advanced analysis
tools to calculate the total iron content within a signal cluster. In
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this study, we develop and evaluate the performance of a novel
K-means++-based linear regression model to predict total iron
value (TIV) of an auto-segmented ROI from an MPI scan of an
in vivo mouse model of transplanted human islets labeled with
SPIO nanoparticles. While in previous studies we showed an
MPI signal originated from the labeled transplanted islets, a
novel, automated mechanism for TIV prediction for
transplanted cells imaged with MPI is needed [23]. Granting
the ability to do so will allow for rapid segmentation and
quantification analysis of an ROI and estimation of the total iron
content, unlocking the capability to monitor immediate and
longitudinal studies of transplanted human islets with greater
accuracy and throughput in the molecular imaging modality of
MPI. Importantly, the proposed approach can be applied to a
variety of transplanted labeled cells (i.e., stem cells) imaged
using MPI.

Methods and Materials

Development of K-Means++ Segmentation
Algorithm for MPI Analysis

In order to properly implement the K-means++ algo-
rithm, we accurately segmented the ROIs from an MPI
scan. First, we extracted the pixel array from the raw
DICOM file and found the threshold value using the
Otsu method [24]. The algorithm first calculated histo-
grams, probabilities, and mean for each level of pixel
values in order to find the best suitable threshold value.
It iterated through each intensity level. Through this
process, the pixel intensity value with maximum variance
was calculated which separates foreground from back-
ground. After this, the algorithm then located small,
insignificant bright spots called salt noise from the image
[25] (Fig. 1). This rendered an image with particular
regions which we assume to be the various ROI
locations, including the main ROI and any reference
fiducial markers in the scan. This was achieved by
erosion followed by a dilation of image values. After
thresholding and locating our pixels of interest, we
labeled isolated blocks of pixel values with a common
label. For example, the main ROI is a concentrated block
of information at the center of the image and was labeled
as 0. At the corner of the MPI or the edge of the image
scan, the pixels are designated a separate label such as 1
(Supplemental Fig. 1). Therefore, using the size of the
zone of this information, we considered the bigger zone
of information as the main ROI and smaller zone of
information was taken as the reference fiducial marker.
This preprocessing method is reliable in that each image
generated followed a pre-determined pattern, which
allowed the algorithm to function on a wide domain of
MPI-generated images since fiducial markers are often
included, in relatively standard positions, alongside the
main object/ ROI being scanned.

Furthermore, MPI-generated DICOM images may use
different objects and not just “blobs” of pixel clusters; hence,
it is important to segment such complex shapes and objects
within the identified regions. In addition, it is also important
to separate the pixel values of dispersion generated by the
object, termed “noise,” from the actual pixel values that
represent the object—in this case being the SPIO nanopar-
ticle clusters within any given construct being scanned.
Therefore, after the aforementioned preprocessing steps, we
used K-means++-based segmentation for each image region
separately. The K-means++ algorithm iteratively partitioned
the data into k distinct groups, termed “clusters.” These
groups were distinct and non-overlapping, where each data
point (pixel value in our case) belonged to only one distinct
cluster. In this, the algorithm tried to maximize the inter-
cluster distance and minimize the intra cluster distance. The
algorithm used the proposed clustering equation shown
below:

J ¼ ∑
m

i¼1
∑
K

k¼1
wik xi−μk

�
�

�
�
2

where wik = 1 for data point xi if it belongs to cluster k;
otherwise, wik = 0. μk represents the centroid of the cluster
of xi. To calculate the distance between pixel values, the
canonical distance metric employed in our algorithm was
the Euclidian distance. A centroid in the conventional K-
means algorithm was defined the center point of all the data
points that belong to that cluster. In this study, we used K-
means++, a variant of original K-means with smarter
initialization only at the onset of clustering [26] [27]. Initial
centroids were selected from the available data points, and a
new point was chosen as a centroid based on its distance
from the nearest, previously chosen centroid, which
represents an initialization mechanism termed sequential
initialization. This type of sequential initialization is what
differentiates K-means++ clustering from normal K-means,
which uses completely randomized initialization at the
onset of clustering. However, it is important to note that
this was only done for the initial assignment of centroids at
the initialization phase of the algorithm; for the next few
rounds, centroids are recalculated from the aggregate of all
pixels in the current class and this process iterates until there
are no further assignments or readjustments to be made of
pixels to the newly calculated centroids (Fig. 1). We choose
k values for centroids that cover the entire range of data
points; This value for k can be considered the number of
different pixel clusters represented in our dataset. This was
done by parameter optimization in which we compared the
results for k = 2, 3, 5, 7 and 9 clusters, and applied the elbow
method to determine variance such that the minimum sum
squared of errors (MSSE) was the lowest and stable for the
chosen k cluster [28]. Following K-means++ segmentation,
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the pixel values of all members of our cluster of interest
were summed to give us the total pixel sum of our
segmented ROI(s).

3D-Printed Phantom Preparation and MPI
Protocol

For phantom imaging and optimization of the algorithm, two
3D-printed constructs were generated—an “S” and a
“Circle” phantom shape using the J750 3D printer (Stratasys,
Ltd., Eden Prairie, MN). SPIO nanoparticle solutions
(VivoTrax, Magnetic Insight, Inc., Alameda, CA) of various
concentrations were prepared in PBS (Supplemental Fig. 3,
4). A known amount (μl) of the resulting diluted VivoTrax
solution (5.5 mg/ml of iron) was injected into the

prospective 3D-printed phantoms, and the TIV (concentra-
tion × μl injected) was recorded for use in validating and
comparing the prediction of the proposed K-means++-based
algorithms to the actual TIV injected into the constructs. For
the ratio model, one fiducial marker of 10 % VivoTrax
solution was placed in the standard marker holder at the top
of the MPI bed. Four fiducial markers (10 %, 20 %, 30 %,
and 40 % of diluted VivoTrax solutions, 1 μl each) were
taped to four corners of the MPI bed for the standard curve
(SC) model. Finally, the phantoms were then placed on the
MPI bed and 2D scans were initiated and executed using the
MOMENTUM MPI imager (Magnetic Insight, Inc., Ala-
meda, CA). 2D MPI images were acquired with the
following parameters: 4 cm × 6 cm field-of-view (FOV), a
6 T/m selection field gradient, a drive field strength of
20 mT peak amplitude, and a 45.0 kHz drive frequency. The

Fig. 1. Overview of the K-means++ algorithm and standard curve for total iron value (TIV) prediction. Raw image of MPI is
loaded into the algorithm, and a k value is chosen in order to cluster the data points for segmentation. The cluster of interest is
then selected from the predicted clusters. A standard curve is then generated based on the total pixel sum value and
corresponding total iron value of the 4 reference markers. This standard curve is used to estimate the unknown TIV of the
segmented ROI of interest.
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MPI images were reconstructed using x-space
reconstruction.

Nanoparticle Labeling of Human Islets and
In Vitro MPI of Human Islet Phantoms

Human pancreatic islets were received from Integrated Islet
Distribution Program (IIDP, City of Hope, Duarte, CA) and
incubated in CMRL media with 5 % FBS. Human islets
were labeled with 280 μg/mL VivoTrax in the same media
and incubated for 48 h at 37 °C with 5 % CO2 [23], and
were washed three times using PBS. Human islet phantoms
were comprised of different numbers of VivoTrax-labeled
islets (25, 50, 100, 200, 400, and 800 islet equivalents, IEQ)
in 50 μl of PBS. 2D MPI (MOMENTUMTM imager)
images of human islet phantoms (6 groups, n = 2) were
acquired with the same aforementioned parameters for
phantom imaging.

In Vivo and Ex Vivo MPI of Transplanted Human
Islets in a Mouse Model

All animal experiments were performed in compliance with
the National Institutes of Health guide for the care and use of
laboratory animals (NIH publications No. 8023, revised
1978) and approved by the Institutional Animal Care and
Use Committee at Michigan State University. Different
numbers of VivoTrax-labeled human islets (25, 50, 100,
200, 400, and 800 IEQ) in PBS were transplanted under the
left kidney capsule of NOD.scid mice (6 groups. n = 2, The
Jackson Laboratory, Bar Harbor, ME) [23]. Mice were
imaged using an MPI scanner (MOMETUM MPI imager,
Magnetic Insight Inc., Alameda, CA) 1 day and 3 days post
islet transplantation. One 3D MPI and subsequent 2D MPI
images were acquired. 2D MPI images were acquired with
the following parameters: 6 cm × 12 cm FOV, a 3 T/m
selection field gradient, a drive field strength of 20 mT peak
amplitude, and a 45.0 kHz drive frequency. 3D images were
acquired with a FOV of 6 cm × 6 cm × 12 cm, 55 projections
with a total imaging time including reconstruction of ~
35 min. Anatomic CT reference images were also acquired
using the whole-body microCT scanner (QuantumGX,
Perkin Elmer, Hopkinton MA). MPI images were co-
registered to CT for 3D scans using VivoQuant Imaging
Software (Invicro, Boston, MA,). At the completion of the
imaging session, mice were sacrificed, the left kidney was
excised, and imaged ex vivo with the MPI scanner using 2D
scan parameters as described above.

Immunofluorescence Staining of Labeled Human
Islets and Grafts Under the Kidney Capsule

Paraffin-embedded sections of labeled human islets and
sections of the grafts under the kidney capsule were

incubated with anti-dextran primary antibody (StemCells,
Inc., Newark, CA) or anti-insulin primary antibody (Santa
Cruz Biotechnology, Dallas, TX), followed by a Texas red-
labeled secondary antibody (Abcam, Cambridge, MA) and a
FITC-labeled secondary antibody (Abcam, Cambridge,
MA), respectively. All sections were mounted with a
mounting medium containing DAPI (Vector Laboratories,
Burlingame, CA) and analyzed using an Eclipse 50i
fluorescence microscope (Nikon, Tokyo, Japan).

Intraclass Correlation Coefficient and Inter-rater
Reliability Validation

To measure the accuracy and determine reliability of the K-
means++ algorithm, the model’s output and analysis of the
ROIs were compared with the manual segmentation and TIV
prediction results from board-certified radiologists. They
segmented the ROI manually using the VivoQuant Imaging
Software (Invicro, Boston, MA), and total pixel sum values
were extracted for TIV analysis from the ROIs using the
ratio method. For statistical analysis, SPSS statistical
software (IBM, Armonk, NY) was used to calculate
Intraclass Correlation Coefficient (ICC), which provides a
measure of the inter-rater reliability amongst various raters
(models and radiologists) and indicates the accuracy of the
model in segmenting proper ROI from pixel field. A two-
way mixed model with a confidence interval of 95 % was
selected, and a measure of absolute agreement was calcu-
lated with the ICC. The greater the ICC value, the more
reliable the model is due to the greater degree of correlation
amongst the rater’s values. In order to account for reliability
of the ratio model and SC model, and precedence of one of
these models over the other, ICC was calculated in
accordance with both of these models. ICC was also
calculated to measure agreement of TIV prediction between
board-certified radiologist (rater), who uses the ratio method
by convention, and the algorithm which estimates TIV from
the proposed SC model. In cases where TIV is truly known
and calculated at time of scanning, such as that when the
phantoms are imaged, the calculated (actual) TIV is used to
calculate ICC. An F test with a true value of 0 was used to
calculate statistical significance (p G 0.05) of the ICC results.

Statistical Analysis

All experiments performed in duplicate were repeated
using independent samples. Differences between the time
points and between experimental and control groups were
assessed by a Student t test and corrected by the
ANOVA using SPSS statistics (IBM, Armonk, NY); the
repeated two-way ANOVA was used for the time course
analysis; a p value ≤ 0.05 was considered statistically
significant.
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Results
Parameter Optimization and k Value Selection

In an effort to apply the proposed unsupervised machine
learning algorithm effectively, the proper number of centroid
(clusters), k, has to be determined to ensure accurate
segmentation of the ROI from the MPI in a diverse dataset.
For parameter optimization, different values for k (2, 3, 5, 7,
and 9) were chosen and input into the algorithm and the
output segmentation was observed (Fig. 2). Here, the
algorithm was applied to an “S”-shaped phantom of 1.2 μg
of iron. When k = 2, the algorithm was unable to decipher
the boundaries of true nanoparticle signal and produced a
significant amount of noise in its final segmentation output
(Fig. 2a). As the value of k was increased to 3 and 5, the
algorithm predicted with a greater degree of specificity and
accuracy, where minimal noise was included in the
segmented result (Fig. 2a). However, as the number of
clusters increases from 5 to 7 k, the algorithm tends to
overshoot in its prediction and segment regions of the image
to exclude true nanoparticle signals thus compromising the
integrity of segmentation by including false negative
predictions (Fig. 2a). Furthermore, as the number of clusters
decreases from 5 to 3, the algorithm includes a slight degree
of noise in the final output and therefore undershoots in the
prediction, ineffectively rendering a false positive in its
segmentation output. Through application of the elbow
method and validation by board-certified radiologists, the
optimum value for k was chosen to be 5 clusters, under
which the MSSE tends to stabilize without further decrease
(Fig. 2b). Therefore, due to the minimal amount of error
associated with the value of 5 potential pixel clusters
(centroids) within an image, this value for k was used
throughout the rest of the study to accurately segment the
MPI Image scans under investigation and perform subse-
quent analysis on the segmented ROI for prediction of TIV.

In Vitro K-Means++ Segmentation and TIV
Prediction of VivoTrax-Labeled Human Islets

After validating the algorithm’s performance in segmenting
ROI for phantom constructs and predicting the correspond-
ing TIV, the K-means++-based SC algorithm was applied to
islet phantoms containing increasing numbers of VivoTrax-
labeled human islets (Fig. 3a). Here the K-means++
algorithms segmented only the ROI with minimal noise,
indicating that the algorithm regarded only the true signals
from the nanoparticle clusters and reduced the background
significantly. After segmentation of the ROI from the MPI
scan, the algorithm predicted TIV of the cellular ROI using
the Standard Curve (SC) model. Through its predictions, we
observed a linear correlation between the increasing number
of IEQ, which was concomitant with increasing signal
intensity, and the increasing prediction of TIV in the islets
(Fig. 3b). As the number of IEQ increased from 100 to 800,

the predicted TIV also increased from about 0.05 to .40μg.
ICC validation of TIV prediction by the SC algorithm
indicated good inter-rater reliability since the correlation
coefficient (0.812 for single measures) was below the
threshold of 0.9 for excellent ICC. Any variations in TIV
prediction amongst raters were likely due to differences in
ROI size and threshold. This includes potential false
positives by the rater, due to the presence of salt noise, or
false negative segmentation by the highly specific K-
means++ segmentation algorithm (Supplemental Table 4).
Nonetheless, a relatively high degree of inter-rater reliability
permits the application of the SC algorithm to the in vitro
model. Islet labeling with VivoTrax was also confirmed by
fluorescence microscopy where the signal from insulin (red)
co-localized with the signal from dextran staining (green)
(Fig. 4).

In Vivo MPI and K-Means++ ROI Segmentation/
TIV Prediction of Transplanted Human Islets

After successful transplantation of human islets under the
left kidney capsule, which was monitored using a 3D MPI
co-registered with CT, the proposed machine learning
algorithm was applied to the in vivo model (Fig. 5).
Subsequent 2D scans of all mice that received labeled islet
transplant were fed into the K-means++ segmentation
algorithm and the extracted ROI was analyzed using the
SC model for TIV prediction (Fig. 6). Here, segmentation
results of the ROI of the MPI scans showed that with
increasing number of transplanted islets per graft, the signal
intensity increased with linear trend and the ROI appeared
larger (Fig. 6a). Noticeably, in certain MPI scans, islands of
pixels, which likely result from dispersed clusters of
nanoparticles, were segmented by the algorithm. This is
crucial for accurate quantification of an ROI from an MPI
scan as it does not include bleeding of nanoparticle signal or
relative noise in the final segmented ROI, a feat that has
been difficult to achieve manually by image specialists as
they often incorporate the entire region in one freehand
selection, without accounting for individual islands or
clusters. This introduces noise and error into the final
calculation when analyzing the ROI or attempting to
quantify TIV within the region. However, due to the highly
specific segmentation of our clustering-based algorithm, the
SC model was able to predict TIV from the extracted ROIs,
indicating a linear trend as the number of islets in vivo was
increased from 100 to 800 (Fig. 6b). ICC validation of these
results indicated a high degree of inter-rater reliability and a
near-excellent ICC score (p G 0.005, Supplemental Table 4).
Furthermore, the in vivo prediction of total iron amount,
although difficult to validate due to the constantly shifting,
dynamic biology of the nanoparticle cluster environment of
the islet graft under the kidney capsule, can provide insight
into future longitudinal studies using TIV for obtaining
information regarding cellular nanoparticle content over
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time. In this case, a slight decrease in ROI, therefore a
decrease in TIV prediction was observed at 1 to 3 days after
transplantation. This is likely due to islet cell death followed
by iron release and subsequent uptake by macrophages
normally observed during early post-transplant period [29].

Ex Vivo Kidney MPI, K-Means++ Segmentation,
and TIV Prediction

We next performed 2D MPI ex vivo scans of the excised
kidneys in order to apply the K-means++ SC model
algorithm for segmentation and TIV prediction of the
ROI (Supplemental Fig. 5). As evident in application of
the algorithm to the phantoms, upon segmenting the ROI
of the MPI scans of the kidney with transplanted islet
grafts ex vivo, a linear trend was observed in which
increasing pixel intensity of the ROI yielded increasing
TIV of the islets under the kidney capsule (Supplemental
Fig. 5). ICC validation of the algorithm ex vivo indicates
a great degree of inter-rater reliability in TIV prediction
of the ex vivo image scans, underscoring the algorithm’s
ability to perform with qualified accuracy in ROI
segmentation and analysis (Supplemental Table 5). The
presence of iron in transplanted islets was also confirmed
histologically by staining for insulin and dextran. As
shown in Supplemental Fig. 6, there was an excellent co-
localization of the signals in the excised tissue samples
from the kidney grafts.

Discussion
Application of AI in the form of an unsupervised machine
learning algorithm, namely K-means++ for segmentation in
conjunction with linear regression (SC model) for TIV
prediction, enabled automated, rapid, and high-throughput
quantification of MPI Images. K-means is a clustering-
based, unsupervised machine learning technique entirely
based on pixel values [30]. Since this study aimed to
develop an advanced MPI data analysis method associated
with an unsupervised machine learning problem where we
do not have a high volume of labeled dataset, K-means++
clustering seemed like a reasonable choice. The algorithm
groups similar pixel values into clusters. The number of
groups is pre-defined and is a limitation of K-means++
algorithm in that it has to undergo initial parameter
optimization in order to function within a domain, in this
case being MPI signals. However, since we are using a pre-
determined scale range of total iron values from 0.5 to
7.5 μg (low to high signal intensity generated), we can
circumvent this limitation to a high degree. Therefore, using
K-means++, we generated clusters and isolated the maxi-
mum value cluster as our cluster of interest. Then, using the
segmentation map from K-means++ which acts as a mask
from the original image, pixel values were identified by
using pixel indices to segment the original MPI image and
only showed the segmented clusters of interest. Using the
original pixel intensity values from the MPI file, we
calculated the sum of pixel intensities in our segmented

Fig. 2. K-means++ segmentation and parameter optimization for selected k value.a Segmentation ROI of k value = 2 clusters,
k value = 3 clusters, k value = 5 clusters, k value = 7 clusters, and k value = 9 clusters. b Elbow method graph indicating
minimum sum squares of error (MSSE) per selected k value. The size of the “S” phantom was 15 mm.
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ROI(s). Initial parameter optimization through application of
the elbow method allowed for use of the algorithm in a
diverse domain of studies ranging from in vitro phantom to
in vivo and ex vivo animal models. Through validating the
performance of the SC model in comparison with the ratio
model for TIV prediction, it is evident that quantification of
the iron content of an ROI within an MPI scan can be
propagated through the use of AI. From segmentation results
of phantoms of different structures, both “S” and “Circle”

shapes, it is evident that the algorithm can function with a
high degree of specificity for true SPIO nanoparticle signals
with little regard for bleeding of signal or noise, even in the
presence of spatial complexity of signal patterns. This ability
of the algorithm to segment portions of an ROI that does not
include noise and segment islands of pixels is unprecedented
in the field of MPI and molecular imaging in that
conventional methods in ROI analysis by freehand selection
of imaging specialists often include a great deal of noise in

Fig. 3. K-means++ segmentation and TIV prediction of human islet in vitro. a Segmentation of increasing number of IEQ: 100
IEQ, 200 IEQ, 400 IEQ, and 800 IEQ. b TIV prediction of islet numbers. Note a linear increase in signal intensity of the
segmented ROI with the higher number of islets in phantoms. Phantoms with larger islet numbers accumulated significantly
higher number of nanoparticles resulting in higher iron content. The size of the “Circle” phantom was 30 mm.
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ROI extraction and analysis. Furthermore, the ability of the
algorithm to generate a standard curve from which TIV is
predicted permits a highly robust computational mechanism
for iron quantification in an ROI. This has previously been
difficult to achieve manually without application of certain
software and calculation of a linear correlational equation or
a linear regression model for prediction, or reliance on a

ratio method which incorporates only the total pixel sum and
TIV of one single fiducial marker. Use of the proposed
algorithm in vitro, in vivo, and ex vivo demonstrated the
ability to segment, quantify, and perform analysis of labeled
human pancreatic islet signals from an MPI scan in a rapid
and high-throughput manner. The accuracy of the algorithm
in comparison with an imaging specialist as fortified by the

Fig. 4. Fluorescence immunostaining of human islets labeled with VivoTrax. a Staining for dextran using anti-dextran antibody
(green). b Staining for insulin using anti-insulin antibody (red). c DAPI staining of cell nucleus (blue). d Merged images. Bar =
10 μm.

Fig. 5. 3D MPI scan and CT overlay of 800 islet equivalents (IEQ) transplanted under the left kidney capsule. a 3D MPI/CT
merged image. b Sagittal view of MPI/ CT image. c Coronal view of MPI/CT image. d Axial view of MPI/CT image.
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high degree of inter-rater reliability via ICC validation
across all in vitro, in vivo, and ex vivo of our mouse model
qualifies the ability of this algorithm to segment and
calculate total iron content of an MPI ROI with trustable
validity. In some cases, the algorithm included less salt noise
and false positives in its ROI prediction, and this might

allow for greater TIV prediction than that of an imaging
specialist.

In vivo studies showed that the complex biology of an
animal model yields potential dispersal and scattering of
iron signals, and this introduces a great deal of variability
and error in manual analysis of the ROI. Previously, the

Fig. 6. K-means++ segmentation and SC model TIV prediction of in vivo MPI of transplanted islets. aK-means++
segmentation of transplanted islets: 50 IEQ, 100 IEQ, 200 IEQ, 400 IEQ, and 800 IEQ. b TIV prediction from extracted ROIs
using SC model.
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task of quantification of cellular iron uptake was rendered
obsolete and the metric of TIV of cells in vitro or in vivo
was rarely considered in the field without use of additional
devices and modalities [31]. Through the described
algorithm, however, the total iron content could be rapidly
monitored and analyzed. Due to the ability of AI to
segment an ROI and quantify total pixel sum and predict
TIV with high throughput and reliability, this process
becomes more approachable and applicable in a variety of
settings where MPI cell imaging is applied in vivo [2, 32,
33]. The histology and imaging correlation allow for the
anatomical verification of the co-localization of the
dextran-coated nanoparticles accumulated in the
transplanted cells. This is done through monitoring graft
cells’ location within the subject through the use of MPI
co-registered with CT for anatomical reference as to where
the cells are distributed. The histology portion confirms
that the cells that endocytosed the dextran-coated nano-
particles and are generating the signals in the MPI are
indeed transplanted insulin-releasing cells. This is signified
by the co-staining for insulin and dextran under the kidney
capsule.

There are several limitations of our study. Although
the algorithm was built to segment and analyze 2D MPI
data for this study, it can be expanded and applied to 3D
datasets by working on multiple slices instead of one.
This is important for in vivo imaging of mice with MPI
as often these are 3D scans. This current algorithm only
accounting for a single 2D slice of MPI data instead of
the typical 3D data that is retrieved for mice scanning,
the lack of a proper ground truth and reliance on
reference markers to estimate total iron amount calls for
further exploration in this area. Employing deep learning
or other forms of machine learning where the algorithm
can be better trained on total iron value predictions but
can still use K-means++ for segmentation would serve
as ideal algorithm for accurate segmentation and TIV
prediction of an MPI 3D ROI in our future studies.
Another limitation of our study is that the current K-
mean++ algorithm was only tested for one MPI tracer.
Beside VivoTrax (Resovist), there are several commer-
cially available SPIOs including another clinically ap-
proved tracer Feraheme (Ferumoxytol), which has a
different magnetic field distortion property from
VivoTrax.

Nonetheless, a clear relationship between the increasing
total pixel sum and TIV prediction of an ROI is indicative
of the fact that the K-means++ segmentation algorithm and
SC model are capable of segmenting the ROI and
predicting TIV with similar trends across in vitro, in vivo,
and ex vivo studies. This underscores the opportunity to
exploit the proposed unsupervised machine learning tech-
nique for segmentation and ROI analysis of iron accumu-
lation in various applications related to cell-based therapies
including endogenous cell labeling for cancer [34] and
diabetes treatment [35].

Conclusion
Here, we demonstrated the application of the K-means++-
based approach to pancreatic islet transplantation model for
a novel, standardized method of segmentation and quantifi-
cation analysis of MPI scans. However, this method has the
potential to be extended to other cell types such as induced
pluripotent stem cells or Chimeric antigen receptor (CAR) T
cells where MPI signal quantification and analysis of TIV,
indicative of nanoparticle uptake, can be quickly and
accurately quantified. This tool may be useful in monitoring
signal fluctuation in transplanted cells, such as graft loss
from signal decay post-transplant in longitudinal studies.
Furthermore, this machine learning approach extends the
analytical potential of AI to the novel realm of MPI and its
use in clinically translatable therapies such as islet trans-
plantation for type 1 diabetes.
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