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Abstract
Purpose: Apoptosis, in the context of cancer, is a form of programmed cell death induced by
chemotherapy, radiotherapy, and immunotherapy. As this is a central pathway in treatment
response, considerable effort has been expended on the development of molecular imaging
agents to non-invasively measure tumor apoptosis prior to quantitative changes in tumor
dimensions. Despite these efforts, clinical trials directed at imaging apoptosis by PET, SPECT,
and MRI have failed to robustly predict response to treatment with high sensitivity and specificity.
Although these shortcomings may be linked to probe design, we propose that the combination of
variability in the timing of maximal in vivo tumor apoptosis and sub-optimal sampling times
fundamentally limits the predictive power of PET/SPECT apoptosis imaging.
Procedures: Herein, we surveyed the literature describing the time course of therapy-induced
tumor apoptosis in vivo and used these data to construct a mathematical model describing the
onset, duration, amplitude, and variability of the apoptotic response. Uncertainty in the
underlying time of initiation of tumor apoptosis was simulated by Gaussian, uniform, and
Landau distributions centered at the median time-to-maximum apoptotic rate derived from the
literature. We then computationally sampled these models for various durations to simulate PET/
SPECT imaging agents with variable effective half-lives.
Results: Models with a narrow Gaussian distribution of initiation times for tumor apoptosis
predicted high contrast ratios and strong predictive values for all effective tracer half-lives.
However, when uncertainty in apoptosis initiation times were simulated with uniform and Landau
distributions, high contrast ratios and predictive values were only obtained with extremely long
imaging windows (days). The imaging contrast ratios predicted in these models were consistent
with those seen in pre-clinical apoptosis PET/SPECT imaging studies and suggest that
uncertainty in the timing of tumor cell death plays a significant role in the maximal contrast
obtainable. Moreover, when uncertainty in both apoptosis initiation and imaging start times were
simulated, the predicted contrast ratios were dramatically reduced for all tracer half-lives.
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Conclusions: These studies illustrate the effect of uncertainty of apoptosis initiation on the
predictive power of PET/SPECT apoptosis imaging agents and suggest that long integration
times are required to surmount uncertainty in the time domain of this biological process.
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Introduction
Programmed cell death (PCD) plays a key role in organ
development, normal functioning of the immune system,
neonatal survival, and tissue homeostasis [1]. Apoptosis
(type 1 PCD) is triggered by both external (e.g., TRAIL
ligand) or internal (e.g., DNA damage) signaling events.
Apoptosis is characterized by pyknosis, chromosomal
fragmentation, and membrane blebbing [2]. In most cases,
apoptosis is the default PCD pathway, although inactivation
of this pathway in cancer (e.g., through p53 inactivation) can
lead to subsequent engagement of alternate pathways, such
as autophagic and necrotic death programs [3].

In cancer, normal apoptotic programming is often
inactivated or subverted to permit tumor cells to proliferate
in the presence of significant genomic derangement, meta-
bolic crisis, and cellular stress [4]. Most clinical cancer
treatments exert their therapeutic effect by tipping the
balance between pro- and anti-apoptotic signaling toward
induction of the apoptotic death program. While our
understanding of the molecular mechanisms of apoptotic
cell death has grown significantly since the inception of
chemotherapy and radiotherapy, our ability to measure cell
death clinically has remained limited to monitoring tumor
size after a full course of treatment by non-targeted
anatomical imaging (RECIST [5]). One of the central goals
of personalized cancer treatment is to determine whether a
given therapeutic regimen triggers high levels of tumor cell
apoptosis and to adjust treatment in real-time until sufficient
tumor death is achieved. Molecular imaging of apoptosis
could serve this purpose as a generalized pharmacodynamic
imaging biomarker of treatment efficacy and dramatically
accelerate the realization of personalized medicine.

Numerous molecular imaging agents have been devel-
oped to visualize tumor apoptosis in pre-clinical animal
models and can be broadly divided into caspase substrates
[6–8], caspase inhibitors (e.g., isatin derivatives) [9, 10],
phosphatidylethanolamine ligands (e.g., duramycin and
cinnamycin) [11], and phosphatidylserine ligands (e.g.,
annexin V, the C2A domain of synaptotagmin-1 [12] and
phosphatidylserine-binding antibodies and peptides) [13–
16]. These agents are typically paired with a fluorophore or
radionuclide whose half-life roughly matches the biological
half-life of the probe. Thus, most fast clearing peptides and
small molecules are labeled with short-lived radionuclides
such as fluorine-18 (half-life 0 109 min) and most slow-
clearing proteins/antibodies are paired with long-lived radio-
nuclides such as technetium-99m or indium-111 (half-lives

in hours to days) or fluorescence reporters. These allow
sampling of tumor apoptosis across time scales ranging from
minutes to days.

Despite the diversity of apoptosis molecular imaging
probes in the pre-clinical space, there are no molecular
imaging technologies available to visualize and quantify
tumor apoptosis in the clinic. Clinical trials with
annexin-based SPECT agents in several cancers including
breast, head and neck, lung, and lymphoma failed to
show robust prediction of response based on imaging
shortly after chemotherapeutic or radiation treatment (20–
50 % increase in tumor uptake) [17]. More recent studies
with ICMT-11 likewise showed only a modest contrast
ratio between apoptotic and normal tissue and subse-
quently limited predictive power [18]. Both strategies
showed great promise in pre-clinical studies [14, 19], yet
struggled to attain the sensitivity and specificity required
for clinical decision-making.

The spatial and temporal heterogeneity of therapy-
mediated tumor cell apoptosis confounds traditional
molecular imaging strategies. Many cancer treatments
trigger low-level apoptosis in only a fraction of tumor
cells at any given time [20–22]. This phenomenon is
linked to the cell cycle, local therapeutic concentration,
local partial pressure of oxygen (hypoxia), and tumor
clonal heterogeneity [23]. The functional result is
heterogeneity of apoptosis following treatment which is
further compounded by high background apoptotic
activity arising from increased tumor cell turnover [24].
Finally, most therapies require weeks to months in order
to generate anatomically detectable response (decreased
tumor volume) indicating that apoptosis induction per-
sists over a long period of time. In contrast, most
molecular imaging strategies sample the tumor for
minutes to hours. This timescale is governed by six
probe-related rate constants: perfusion, clearance, isotopic
decay, metabolism, activation, and retention.

Because of the significant, robust, and reproducible
efforts of the molecular imaging and pathology communities
over the past 20 years, a substantial body of data describing
in vivo tumor apoptotic responses is now available. These
new data may enable better reporter design or better
selection of apoptosis imaging applications. After reviewing
years of IHC data and in vivo experiments, we propose that
these data indicate that the predictive power of apoptosis
imaging is limited not only by the biochemical robustness of
the reporters, but also by the underlying temporal uncer-
tainty in the activation of the biological process.
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To investigate the potential effects of variability in the
initiation of apoptosis and imaging integration time on
image contrast and predictive power, a mathematical model
of tumor apoptosis was developed based on a survey of the
pre-clinical literature. This model was designed to study the
imaging properties of cell death reporters on a macroscopic
scale based on the spatial resolution of PET/SPECT/CT.
Therefore, in the following analysis, tumor refers to the bulk
tumor immune microenvironment (TIME)—the heteroge-
neous mixture of tumor, immune, and stromal cells that
individually undergo cell death and contribute to the total
signal in the tumor compartment. We simulated variability in
initiation of apoptosis using uniform, Gaussian, and Landau
probability distributions centered at the median time of
maximal apoptotic response from the literature. Predicted
contrast ratios and area under the receiver-operator curves
(AUROCs) were calculated for each model as a function of
total integration (imaging) time and compared to observed
data in the PET/SPECT apoptosis imaging literature. Finally,
variability in imaging start time relative to the initiation of
therapy was simulated using the same approach described
above to determine the combined effect of variability in
apoptosis initiation time and imaging procedure initiation.
Our results predicted that robust molecular imaging of
apoptosis is profoundly time-dependent and that long
integration (imaging) times are necessary to compensate
for uncertainty in apoptosis initiation and imaging start time.

Methods
Model Construction

We surveyed the literature to identify studies where a
time course of tumor apoptosis was explicitly determined
by ex vivo analysis (Fig. 1). Acceptable methods to
identify and quantitate tumor apoptosis included immu-
nohistochemical staining for cleaved caspase 3/7,
TUNEL assay, or tissue morphology (Gold standards).
Only studies that provided quantitative measurement of
tumor apoptosis were used. The apoptotic response from
each study was extracted, normalized to time 0 h, and
then plotted against time to obtain an integrated
apoptotic response curve. From these curves, the full
width at half maximum (FWHM, hours), fold-change at
maximum, and time to maximum (hours) were extracted.
All data were converted to mean or median ± standard
deviation as necessary. Standard error of the mean was
converted to standard deviation (SD) by multiplying
SEM by the square root of the number of replicates.
Interquartile range was converted to SD as described
[25]. Ninety-five percent confidence intervals were
converted to SD as described [26]. The resulting data
were normalized to baseline values, and the features
described above were extracted. Although the apoptotic
response curves fell into six categories (unimodal,
bimodal, hyperbolic, sigmoidal, exponential, and

biphasic—see Fig. 2), the majority of studies showed a
unimodal response that was used to construct the
mathematical model.

Fig. 1 Extraction of tumor apoptosis time course data from
the literature. The tumor apoptosis literature was surveyed
and filtered according to the criteria described in the top two
boxes to obtain time series data relating the amplitude of
tumor apoptosis to the time post-treatment. The number at
the bottom of each box indicates the number of manuscripts
that met the stated criteria. The resulting time series data
(Table 1) were used to construct a mathematical model of
tumor apoptosis (red line) and background apoptosis (black
line). This model was computationally integrated (e.g.,
shaded blue box) to obtain theoretical contrast ratios.
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Model Analysis

All mathematical models were constructed in Mathema-
tica version 10. Tumor baseline apoptosis was modeled
as a low-frequency oscillator with a Gaussian distribution
of high-frequency noise. Induced tumor apoptosis was
modeled as a Gaussian response additive to the baseline
and constrained to the median fold-change, time-to-
maximum response, and FWHM parameters obtained
from the literature survey (Table 1). Two thousand
apoptosis initiation times were randomly selected from
a Gaussian distribution (mean at 48 h; SD 24 h), a
truncated Gaussian distribution (mean at 24 h; SD 24 h),
an asymmetric heavy-tailed Landau distribution (mean at
48 h; sigma 0 1), a truncated Landau distribution (mean
at 24 h; sigma 0 1), or a random (uniform) distribution.
These apoptosis induction times then were utilized to

build induced and baseline time series. An unweighted
numerical integration was calculated for both the induced
and background apoptosis states for durations of 0.5 to
216 h starting at 24 h. This yielded a virtual n 0 2000
dataset for both baseline and induced cell death. From
these data, an ROC curve was plotted and the AUROC
and SEM calculated (GraphPad Prism 8). An example
time series model can be found in Fig. 1.

A similar methodology was utilized to test the influence
of variations in post-treatment imaging time on the AUROC.
Apoptosis initiation times were modeled as a Landau
distribution as indicated above. Then, 2000 imaging start
times were selected from either a Gaussian distribution
(mean 48 h; SD 24), a heavy-tailed Landau distribution
(mean 48 h; sigma 0 1), or a random (uniform) distribution.
Time courses and numerical integration were then conducted
for these data points as above.

Fig. 2 Apoptosis time curves observed in the literature. Only unimodal curves (boxed) were considered in subsequent
analyses.
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Results
Using the literature search heuristic described in Fig. 1, we
analyzed previous studies of in vivo tumor apoptosis where
tumor apoptosis as a function of post-treatment time was
explicitly measured by ex vivo histopathology or immuno-
histochemical analysis (cell morphology, cleaved caspase
3, or TUNEL). From this, we extracted the shape of the
apoptosis-versus-time curve for each study as well as the
full width at half maximum (FWHM), the time-to-
maximum apoptotic response (treatment is initiated at t 0
0), the maximum fold-change of apoptotic response over
background (untreated tumor), and the standard deviation
of the maximum response (SD). No obvious correlation
between treatment type and the time course of apoptotic
response was observed. As seen in Table 1, the majority of
the apoptosis time curves were unimodal (15/29, 52 %)
with a median post-treatment time-to-maximum of 24 h.
The median fold-change over non-treated tumors was 2.87.
A minority of curves were bimodal (4/29, 14 %) or
monotonic (10/29, 34 %). For the purposes of subsequent
simulations, only the unimodal model was considered.
Graphical representations of the apoptosis time curves are
provided in Fig. 2. All of the extracted curves can be found
in Supplementary Fig. 1.

Formation of Induction Models

A mathematical model of tumor apoptosis was con-
structed to understand the effect of sampling (integration)
time on the expected imaging contrast ratio. However,
since apoptosis may not be a phase-locked process, the
initiation time of apoptosis could be intrinsically uncer-
tain and was therefore considered a variable in the
simulation. The underlying distribution of the initiation
of cell death was simulated with a truncated Gaussian,
Gaussian, truncated Landau, Landau, or uniform distri-
bution. This is not to be confused with the shape of the
cell death function itself which was confined to a
Gaussian (unimodal) distribution. To prevent the initia-
tion of apoptosis prior to day 0, the truncated Gaussian
and Landau distributions were utilized such that the peak
of induction would occur at 24 h, the median time-to-
maximum for unimodal responses (see Table 1). In this
model, the probability of cell death induction prior to the
start of treatment was set to 0. For the non-truncated
Gaussian and Landau distributions, peak apoptosis was
set at 48 h which minimizes initiation prior to time 0.
We note that while 48 h initiation was not the median initiation
time, it was represented within the ex vivo data sets. Integration
times were varied between 30 min and 216 h.

Table 1 . Summary of apoptosis time course data obtained from the literature. NR not reported. Two FWHM values are provided for the bimodal data

Reference Treatment Model Detection method Curve type FWHM (h) Time to max (h) Fold-change at max SD at max (%)

[22] Cyclophosphamide Rats Cleaved cas-3 Monotonic N/A 20 2.11 35.4
[27] Radiation (overall) Mice Cleaved cas-3 Unimodal 13.8 4 2.98 54.7
[27] Radiation (initially hypoxic) Mice Cleaved cas-3 Unimodal 15.9 8 2.57 37.5
[27] Radiation (initially normoxic) Mice Cleaved cas-3 Unimodal 14.5 4 9.85 48.4
[28] Docetaxel Mice Cleaved cas-3 Monotonic N/A 72 4.19 35.1
[29] Paclitaxel Mice Cleaved cas-3 Bimodal 1.5, 14 6 2.86 39.9
[30] Irinotecan Mice Cleaved cas-3 Bimodal 3.5, 9 30.1 24 3.23 17.6
[30] 5-FU Mice Cleaved cas-3 Unimodal 16.1 8 1.86 7.9
[31] Cisplatin Rats Cleaved cas-3 Monotonic N/A 96 23.8 64.7
[30] Bevacizumab Mice Cleaved cas-3 Unimodal 14.2 24 2.05 7.9
[30] Oxaliplatin Mice Cleaved cas-3 Unimodal 26.9 24 3.89 3.5
[30] Panitumumab Mice Cleaved cas-3 Bimodal 3.1, 7.9 4 1.67 25.1
[32] Birinapant Mice Cleaved cas-3 Unimodal 9 77 72 2.87 14
[32] Irinotecan Mice Cleaved cas-3 Monotonic N/A 120 3.7 21.2
[33] Cisplatin Mice Morphology Unimodal 23.2 18 4.58 NR
[33] Cisplatin Mice Morphology Bimodal 52.4 18 8 NR
[34] Paclitaxel (no response) Human Morphology Unimodal 31.5 24 2.08 65.5
[34] Paclitaxel (partial response) Human Morphology Unimodal 51.1 72 4.48 25.7
[34] Paclitaxel (complete response) Human Morphology Monotonic N/A 72 3.98 23.5
[35] C225 Mice Morphology Unimodal 60.8 24 1.63 16.8
[35] Paclitaxel Mice Morphology Monotonic N/A 96 4.55 9.5
[22] Cyclophosphamide Rats TUNEL Monotonic N/A 20 1.8 19.3
[36] Radiation Rats TUNEL Unimodal 59.2 48 2.07 11.6
[37] Paclitaxel Mice TUNEL Monotonic N/A 72 28.34 12.5
[38] Imatinib Human TUNEL Monotonic N/A 168 7.5 NR
[29] Paclitaxel Mice TUNEL Unimodal 2.9 3 6.91 70.3
[39] Paclitaxel Mice TUNEL Monotonic N/A 72 25.61 11.7
[32] Birinapant Mice TUNEL Unimodal 89.5 72 2.18 27
[32] Irinotecan Mice TUNEL Unimodal 80.5 72 2.88 10.2
Median (unimodal responses) overall 26.9 24 2.87
Median (unimodal responses) human 41.3 48 3.28
Median (unimodal responses) rodent 19.6 24 2.87
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The Gaussian Induction Model

As seen in Fig. 3, for very well-controlled initiation of cell
death, a diagnostic ROC can be achieved with integration
times G 1 h which is consistent with typical PET radio-
tracers. Indeed, contrast ratios approaching 2 were observed
with diagnostically acceptable AUROC 9 0.9 depending
upon the peak of apoptosis induction. However, these
models demonstrated diminishing returns with integration
time. Since Gaussian distributions truly converge to 0, and
since the initiation times in this model were effectively
known a priori, the AUROC for longer integration times
begins to decrease after reaching a peak at 50–75 h. Once
the probability of initiating cell death effectively reaches 0,
integration covering these times only adds noise without
adding any useful information or predictive power. Both

Gaussian models reflect cases where the induction of cell
death shows low variability and the time-to-maximal
induction is known with high confidence.

The Landau Induction Model

A second model of tumor apoptosis was constructed where
the initiation of tumor apoptosis was simulated by a Landau
distribution. This is effectively a “long-tailed” asymmetric
Gaussian distribution centered around 48-h post-treatment
and represented moderate levels of uncertainty regarding the
initiation of tumor cell death (Fig. 4). A truncated Landau
distribution centered at 24-h post-treatment was also used. In
these models, contrast ratios approaching 2 could be
obtained with relatively short integration times (contrast

Fig. 3 Simulation of tumor apoptosis with Gaussian and truncated Gaussian distributions of apoptosis initiation time. a
Simulated signal (AU) obtained with the imaging integration time shown at the top of each graph. The calculated ROC for each
imaging integration time is shown below. b The distribution of apoptosis induction times utilized in the experiments (red 0
truncated Gaussian, black 0Gaussian. c The relationship between integration time and AUROC for both Gaussian models of
apoptosis start time (SEM is below the size of data points).
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ratio 0 1.9 with a 3-h integration time). However,
predictive power was significantly decreased relative to
Gaussian induction models and longer integration times
were required to yield an AUROC of 9 0.8. Even at the
longest integration times, significant variation in the
simulated contrast ratios led to AUROC values that
approached, but did not reach, unity. In contrast to the
Gaussian models, minimal diminishing returns were
found for the longest integration times.

The Uniform Induction Model

To reflect very low levels of certainty regarding cell death
initiation times, induction of apoptosis was simulated to

occur randomly from 24 h to 11 days post-treatment
(Fig. 5). Short integration times (30 min–9 h) in this model
yielded median contrast ratios of G 1.3 with poor predictive
value (AUROC ~ 0.6). Median contrast ratios approaching
1.5 were only obtained for integration times longer than
216 h. ROC analysis showed high predictive power for the
216-h integrator (AUROC ~ 0.9).

Imaging Start Time Uncertainty

In addition to simulating uncertainty in the initiation of
tumor death, we sought to determine the effect of
imaging start time uncertainty on the median contrast
ratio in the Landau model. This uncertainty represented

Fig. 4 Simulation of tumor cell death with Landau and truncated Landau distributions of apoptosis initiation time. a Simulated
signal (AU) obtained with the imaging integration time shown at the top of each graph. The calculated ROC for each imaging
integration time is shown below. b The distribution of apoptosis induction times utilized in the experiments (red 0 truncated
Landau, black 0 Landau. c The relationship between integration time and AUROC for both Landau models of apoptosis start
time (SEM is below the size of data points).
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the variability of patient imaging time following the start
of treatment and was simulated using Gaussian, Landau,
and uniform probability distributions centered at 48-
h post-treatment. When the cell death initiation time
and imaging start time were allowed to vary, the
diagnostic potential of even the longest integration time
dramatically decreased from ~ 0.9 to ~ 0.7 (Fig. 6). We
still continued to observe a mild increase in the
AUROCs with increasing integration time, but because
the peak of apoptosis induction could be easily missed,
adding additional integration time yielded substantially
less predictive power than when the imaging start time
was fixed and early. Notably, both the uniform and
Landau distributions of imaging start time yield similar
diagnostic power.

Discussion
We have examined the effects of several key timing
variables on the final diagnostic value of hypothetical
molecular imaging reporters for cell death. In vivo, the
signal of any injectable reporter represents the convolution
of two processes, with each process defined by multiple rate
constants. The first process to consider is the activity of the
imaging agent. This includes the local uptake and washout
of the reporter, binding/association with the biological
target, dissociation from the target, biological half-life
(clearance), and the half-life of the reporter (radioactive
isotope). The second process under consideration is the
underlying time-dependent shape of the local target concen-
tration. This is a combination of multiple rate constants

Fig. 5 Simulation of tumor cell death with a uniform distribution of apoptosis initiation. a Simulated signal (AU) obtained with
the imaging integration time shown at the top of each graph. The calculated ROC for each imaging integration time is shown
below. b The distribution of apoptosis induction times utilized in the experiments. c The relationship between integration time
and AUROC for the uniform model of apoptosis start time (error bars show the SEM).
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including target synthesis, target degradation, target com-
partmentalization, and target inhibition. If the target is an
enzyme, the time-dependent kcat and Km as well as the local
concentration of any required co-substrates or co-factors also
becomes relevant to the analysis. Finally, the biological
clearance rate of the associated target complex, either
through inactivation or clearance by the immune system
(apoptotic bodies), must be taken into account in order to
define the effective concentration of target over time.

In order to parse this multivariate problem, we chose to model
an ideal scenario. The model was fundamentally optimistic as it
assumed that both wash-in and washout were instantaneous (delta
functions). In the case of a real reporter undergoing biological
clearance and radioactive decay, wash-in and washout kinetics
will yield a decrease in the underlying contrast ratio by broadening
the response function over time, resulting in exponential weight-
ing of earlier time points. To deal with the complexity of the
underlying target concentration, descriptive models were utilized
based upon a literature review of the shapes and timing of cell
death (both apoptosis and necrosis) after a single insult. The most
commonly described shape of the cell death response was either
unimodal or monotonic (which could be the initiation of a variety
of distributions). This shape was utilized for the underlying time
course to be interrogated, and the height and width were set by the
median value of the contrast ratios and FWHM described in the
literature. These descriptive models were varied in their initiation
of apoptosis by including multiple different models of induction

and applying the same models to tracer injection times. Each was
sampled with different integration times.

Each integration time could be mapped onto the fastest
off-rate constant for a given reporter. For example, consider
a long-circulating, high-affinity antibody (koff measured in
hours to days with a comparable systemic clearance rate). If
this antibody were labeled with carbon-11 (half-life
20.3 min), it would fall within the short integration time
regime. If it were labeled with a longer-lived isotope such as
zirconium-89, it would fall within the long integration time
regime. Similarly, small molecules with short biological
half-lives fall within the short integration time regime
regardless of the conjugated radionuclide. Less intuitively,
biological clearance of the bound target also effectively
decreases the integration time. At some point during cell
death, caspases will lose their catalytic activity and mem-
brane compromised cells will be cleared from the milieu by
the immune system, effectively shortening the integration
time. These rate constants would also be context dependent.
For example, the rate of clearance of apoptotic bodies from
normal non-immune privileged sites is fast, but in immune
privileged sites such as a tumor or the eye [40] rates could
be much slower. The convolution of rate constants for all of
these processes and interactions defines the available
imaging time window (integration time). We propose that
short integration times, driven by rapid radionuclide decay,
fast systemic clearance, or transient target availability would
be particularly susceptible to timing variability in the
initiation of apoptosis. Conversely, long integration times
would more robustly sample the apoptotic landscape leading
to higher contrast ratios and predictive power. If true, this
presents a compelling argument for the use of long-
circulating probes conjugated to long-lived radionuclides
that target long-lived epitopes/activities within the microen-
vironment of the dying tumor.

Given the inherently small difference in apoptotic activity
between treated and untreated tumors (G 2.9-fold, Table 1),
we predicted that the integration time would have a
significant effect on the predicted contrast ratio. The
variability in the time until maximum apoptotic response in
pre-clinical studies also suggested that long integration times
would be critical to obtain acceptable contrast ratios in cases
of timing uncertainty. When the onset of apoptosis was
known with high certainty, as reflected in the Gaussian
model, the predicted contrast ratio of the imaging procedure
was nearly 100 % of the theoretical contrast ratio for all
integration times. However, when the initiation of tumor
apoptosis was highly uncertain, as in the uniform model, the
predicted contrast ratio and AUROC were linearly depen-
dent on integrator times 9 72 h and effectively integrator
time-independent at G 72 h. Moreover, the predictive power
of imaging as measured by AUROC never reached a
clinically relevant value for integration times G 200 h.
Although this model suggested a somewhat unreasonable
level of uncertainty in the initiation of tumor cell death
(between 1 and 8 days post-treatment), the model

Fig. 6 Variable imaging start time reduces predictive power.
If a subject is imaged later than the peak induction of cell
death, the diagnostic potential dramatically decreases. While
longer integration time does capture the longer tails of the
induced apoptosis, a fixed early imaging time is critical to
enable AUROC 9 0.85.
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nevertheless illustrated how the combination of short
imaging times and high biological uncertainty degraded
image contrast and predictive power.

A more realistic depiction of the uncertainty in tumor
apoptosis initiation was provided by the Landau model. In this
model, most cases of tumor apoptosis occurred in the predicted
time range, but a smaller number of cases occurred at much
longer post-treatment times. Contrast ratio was still strongly
dependent on integration time, but acceptable AUROC values
were obtained with integration times less than 72 h. This
interrogation time could be obtainable using 89Zr-conjugated
antibodies or other agents with similarly long isotopic and
biological half-lives. Short integration times in this model were
predicted to result in reasonable, but not clinically actionable
predictive values (AUROC ~ 0.75).

A survey of the PET/SPECT apoptosis imaging literature
(Table 2) indicates that the Landau model appropriately
simulated variability in the timing of apoptosis initiation.
The extracted normalized data can be found in Supplemen-
tary Fig. 2. Imaging time course data provided in these
studies was strikingly similar to the ex vivo histopathology
data shown in Table 1. When only the unimodal responses
were considered, the median values of FWHM and time to
maximum apoptotic response in rodents corresponded
almost perfectly to those obtained by ex vivo analysis. In
addition, the median fold-change at max (1.99) was very
close to the predicted contrast ratio for the 3 h integrator in
the Landau model (1.9). When only 18F- and 99mTc-based
tracers are considered, the median contrast ratio in rodent
models dropped to 1.8. In human studies where a unimodal
response was observed, the fold-change at max was slightly
higher than in rodent models (3.7), while the FWHM was
significantly reduced (14.1). Although this represented only
a single data point, it suggests that the magnitude of the
apoptotic response in a clinical setting may be higher than in
pre-clinical rodent models although the duration of the
response (FWHM) may be significantly shorter. When the
more rapid onset of this response was considered (4 h until
max response versus 24 h in rodents), a long integration time
may still be essential to avoid missing the bulk of the
apoptotic signal in human tumors. Given the paucity of
apoptosis imaging data in human patients, we are reluctant
to draw definitive conclusions regarding the optimal inte-
gration time from this sparse data set.

Our simulations indicated that addition of uncertainty in
the start of the imaging procedure would dramatically reduce
the contrast ratio and predictive power of nearly all PET/
SPECT apoptosis imaging agents. Although this variable
may be less relevant in pre-clinical imaging studies where
imaging experiments are tightly controlled, it is likely to
play a major role in clinical settings, particularly in the case
of clinical trials. While PET operational data in the literature
were scarce, a report by Beyer and colleagues showed a 3–
7 day wait time between referral and imaging at 30 % of
PET imaging facilities (Beyer et al. 2011). In 15 % of sites,
the post-referral wait time could exceed 8 days. Clinical

imaging trial protocols often allow similar flexibility
between treatment and imaging in order to maintain patient
recruitment levels. Our models indicate that 24 h of imaging
time variability would significantly degrade predictive
power of apoptosis imaging to values far below the level
where clinical decisions can be made.

Limitations of the Models

As enumerated earlier, this model represented an ideal imaging
experiment. Multiple doses during the course of treatment, as is
common with cancer therapeutics, could affect cell death
dynamics and broaden response. Broadening the responsewould
ultimately decrease the susceptibility of the shorter lived
reporters to multiple variables but particularly, the uncertainty
in the timing of the injection of the imaging agent. The onset of
apoptosis would also be less important (but not fall to zero)
depending on whether multiple treatments caused a spike
followed by return to baseline, or increased the baseline level
of tumor cell death (best case scenario). Unfortunately, there
were very few examples of multiple intervention therapy
associated with apoptosis time course studies in the literature.
However, these would be exciting and highly informative
studies and we look forward to incorporating the results into
our models as more pre-clinical and clinical data become
available. It is also worth considering that the value of apoptosis
imaging diminishes as the course of therapy goes on and
collapses to zero once anatomic imaging of tumor size is
completed (RECIST). The primary benefit from cell death
imaging is rapid evaluation of treatment efficacy which would
be most beneficial if carried out early in the therapeutic course.
The use of apoptosis imaging in the context of multiple
therapeutic interventions would therefore have to be carefully
considered to balance clinical information with patient risk.

As stated above, we have considered only a unimodal
model of tumor apoptosis to predict the contrast ratio and
predictive power of molecular imaging agents. As seen in
Tables 1 and 2, there was evidence of both bimodal and
monotonic apoptosis response curves in the literature. It was
not clear that any improvements in contrast ratio or
predictive power would be observed in bimodal responses
since the minor peak typically occurs soon after treatment (G
4 h) and is significantly more narrow than the major peak.
This could lead to underestimation of the total apoptotic
response at early imaging time-points, particularly if
imaging fell between the minor and major peaks.

The monotonic apoptotic responses comprise a large
fraction of the time courses documented in the literature (~
34 %) and could be sub-categorized into exponential,
hyperbolic, sigmoidal, and biphasic (Fig. 2). It was unclear
whether these curves represented the early part of a long-
duration unimodal response that was not interrogated by the
addition of later sampling times. If this were the case, these
curves may represent a sufficiently low-frequency apoptotic
process as to be amenable to apoptosis imaging with short
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integration times. Future modeling studies will be carried out
to validate this hypothesis.

Finally, the number of papers here are clearly insufficient
to discriminate the shape of the underlying distribution of
apoptotic response. Initiation times and FWHM are also
subject to sparse sampling of the underlying time course. To
address this, we tested multiple distributions to identify
common results that were robust to the underlying ground
truth. When required, we utilized median rather than mean
values to generate our models. The median was a descriptor
of the central location that was less sensitive to changes in
the shape of the underlying distribution particularly if the
underlying distribution involved heavy tails and/or asymme-
try. As additional cell death time course data become
available, we anticipate further refinement of our models.

Implications for Molecular Imaging

A unimodal, high-frequency model of tumor apoptosis was
chosen to study the effect of image timing variability on image
contrast and predictive power. For processes that were indeed
truly well-controlled, the unimodal response appeared, at first
glance, to be a sufficiently well-defined and predictable process
for molecular imaging with short integration times. While this
assumption may hold in pre-clinical mouse tumor models where
the tumor is more homogeneous (grown from a clonal popula-
tion), pharmacokinetic variability is constrained through the use of
inbred strains, and imaging procedures could be scheduled
precisely, it is likely to break down when these factors are no
longer present. Indeed, our models suggested that significant time
variability in the apoptotic response was likely to preclude the
utility of short integration times, and by extension, fast clearing
probes with short half-life radionuclides. Only in the case where
there was minimal uncertainty in the initiation of tumor apoptosis
were these probes predicted to yield sufficient contrast and
predictive power for clinical use. Besides apoptosis and necrosis,
there aremany emerging forms of cell death all of which likely co-
exist. If one of these biological systems consistently leads to long,
broad induction with high target stability, then short-lived
reporters might re-emerge with new targets of interest.

Because it will be rare to fully define the underlying
distribution of both the initiation of cell death, and the shape
of the cell death process, it is important to consider the
integration times that were most robust to the underlying
models. The results in this work suggested that longer
integration times relative to standard 18-fluorine and 11-
carbon isotopes will be necessary for high contrast ratios
when the timing of tumor apoptosis is uncertain. In the case
of PET/SPECT, this implies that slow-clearing probes
conjugated to long-lived radioisotopes have a greater chance
of detecting tumor cell death with high predictive power
(AUROC 9 0.9). This is supported by promising pre-clinical
data of radiolabeled anti-phosphatidylserine antibodies and
longer circulating annexin V analogs, although translation to

the clinic has yet to be demonstrated [35, 49]. If the
underlying process of necrosis is more stable or broader than
apoptosis, then this might also explain the potential utility of
the PS class of reporters. The requisite longer-lived isotopes,
however, will require a concomitant trade-off with unfavor-
able dosimetry profiles. In oncologic applications with a
single imaging time point, this may indeed be an acceptable
safety trade off, but careful consideration is required for patient
populations with better expected outcomes. This conclusion is
also supported by the time course imaging data from biolumi-
nescence imaging studies. As seen in Table 2, contrast ratios
obtained from bioluminescence imaging in split luciferase
systems (e.g., pcFluc-DEVD) showed significantly higher fold-
change at max values than those obtained in nuclear imaging
studies. In these systems, imaging signal is being continuously
produced at the site of apoptosis and effectively provides days of
integration time with no apoptosis-independent signal decay.
Although these models are non-translatable, they do provide an
existence proof of high contrast from long integration times of
apoptotic reporters.
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