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Abstract
Purpose: A major hurdle in the advancement of cell-based cancer immunotherapies is the inability to
track in vivo therapeutic cellmigration.With respect to dendritic cell (DC)-based cancer immunotherapies,
this lack of knowledge represents an even greater hurdle as the quantity of tumor-antigen specific DC
reaching a secondary lymphoid organ post injection is predictive of the magnitude of the ensuing tumor-
specific immune response.We propose fluorine-19 (F-19) cellularmagnetic resonance imaging (MRI) as
a suitable and non-invasive imaging modality capable of detecting and quantifying DC migration in vivo
and thus, serving as a surrogate marker of DC-based immunotherapeutic effectiveness.
Procedures: Murine DC were generated from bone marrow precursors and labeled with a
[19F]perfluorocarbon ([19F]PFC)-based cell labeling agent. DC were characterized by viability
and phenotyping assessments as well as characterized by ability to induce in vivo tumor-specific
immune responses following immunization in a B16-F10 mouse model of melanoma. The in vivo
migration of [19F]PFC (PFC)-labeled DC was first compared to control unlabeled DC by
microscopy and then measured using F-19 cellular MRI.
Results: Culture conditions were optimized such that 9 90% of DC labeled with PFC without affecting
viability, phenotype, and function. This optimization permitted consistent detection of PFC-labeled DC
migration using F-19 cellular MRI and resulted in the first successful comparison of in vivo migration
between PFC-labeled and control unlabeled therapeutic cells of the same origin. PFC-labeled DC are
migration-competent in vivo in a B16-F10 tumor-bearing mouse model.
Conclusions: We report a non-invasive and longitudinal imaging modality capable of detecting
and quantifying therapeutic cell migration at both 9.4 and 3 Tesla (T) and suitable for therapeutic
cell tracking in a tumor-bearing mouse model. F-19 MRI cell tracking is broadly applicable
across disease states and is conducive to clinical translation.
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Introduction
A pressing need for the development of novel strategies
to combat cancer exists for patients who are non-
responsive to standard of care treatment options or who
progress to a metastatic state [1]. One such emerging
strategy is cancer immunotherapy, which includes
exploiting the professional antigen presenting cell
(APC) ability of dendritic cells (DC) to elicit de novo
tumor-associated antigen (TAA)-specific cell- and
humoral-mediated adaptive immune responses. Addition-
ally, DC contribute to the activation of innate immune
cells like natural killer (NK) cells, NK T cells, and
macrophages that further promote and enhance TAA-
specific immune responses [2, 3].

DC must locate to secondary lymphoid organs like the
lymph node to exert their function in the context of DC-
based cancer immunotherapy [4]. In fact, the number of DC
reaching a lymph node is predictive of the magnitude of the
resulting TAA-specific immune response [5, 6]. Although
associated with excellent safety profiles spanning a multi-
tude of immunogenic cancers, the overall effectiveness is
suboptimal as consistently 5 % or less of peripherally
injected DC reach secondary lymphoid organs [7–10]. At
present, the lack of a non-invasive imaging modality capable
of tracking and quantifying in vivo DC migration hinders the
development of improved DC-based immunotherapies that
result in long-term progression-free survival.

We propose fluorine-19 (F-19) cellular magnetic reso-
nance imaging (MRI) as a suitable imaging platform to
monitor therapeutic cell migration in vivo [11, 12] that
overcomes limitations associated with previously used
imaging modalities. These include the lack of anatomical
information and the short half-lives of radiotracers hindering
longitudinal radionuclide-based imaging [13] as well as
superparamagnetic iron oxide (SPIO)-based cellular MRI
impeding in vivo migration and, at best, being semi-
quantitative [14, 15]. Previously, research has demonstrated
that therapeutic cells such as human and murine DC and
human peripheral blood mononuclear cells (PBMC) were F-
19 MRI-detectable in vivo via incorporation of a [19F]per-
fluorocarbon ([19F]PFC) cell labeling agent [16–18]. Thus,
we focused on comparing the in vivo migration and
subsequent induction of a TAA-specific CD8+ cytotoxic T
lymphocyte (CTL) response between [19F]PFC (PFC)-
labeled and unlabeled bone marrow-derived DC (BMDC).
Furthermore, we report for the first time detection and
quantification of migrating PFC-labeled DC in vivo with F-
19 MRI on a 3-Tesla (T) clinical MRI scanner.

Materials and Methods
Animals

C57BL/6 mice were purchased from Charles River
Laboratories (Wilmington, USA). B6.Cg-Tg(CAG-

DsRed*MST) 1Nagy/J (DsRed+) mice originally from
Jackson Laboratories (Bar Harbor, USA) were kindly
provided by Dr. Steven Kerfoot (University of Western
Ontario). All applicable institutional and/or national
guidelines for the care and use of animals were followed.

Murine BMDC Generation

Mature BMDC were prepared based on the method of
Inaba et al. and Dekaban et al. [15, 19] with modifica-
tions provided in electronic supplementary material
(ESM). Bone marrow progenitor cells were cultured for
4 days in complete RPMI media containing granulocyte-
macrophage colony-stimulating factor (GM-CSF) and
interleukin (IL)-4 [15]. Day 4 immature BMDC were
enriched by Histodenz™ gradient centrifugation. PFC
(2.5–7.5 mg/ml, Celsense Inc., Pittsburgh, USA) was
added to culture on day 4 post enrichment, with a
previously described maturation cocktail added on day 5
of culture [20]. BMDC cultured without PFC served as
control cells. On day 6 of culture, BMDC viability
(Annexin V/7-Aminoactinomycin D (7-AAD)) and phe-
notype (CD11c, CCR7, CD86) were determined by flow
cytometry and data acquired on a LSRII analytical flow
cytometer (BD Biosciences, San Jose, USA).

Adoptive Cell Transfer

BMDC were collected, washed in PBS, and formulated
for subcutaneous hind footpad injections (in 40 μl PBS)
into C57BL/6 mice. In one experiment, 1 × 106 or 2.5 ×
106 PFC-labeled BMDC injections were performed
immediately following CellTrace™ CFSE (CFSE) incor-
poration, with the identical number of CFSE+ control,
unlabeled BMDC being injected into the contralateral
footpad (n = 7 mice per condition). DsRed+ BMDC
adoptive cell transfer is available in ESM.

In a different experiment, four mice received a left
and right popliteal lymph node pre-treatment of IL-1β
(300 ng) 3 h prior to adoptive cell transfer and the
remaining three mice did not receive pre-treatment. The
hind footpads of these seven mice were injected with 3 ×
106 PFC-labeled BMDC. The last set of adoptive
transfers included three injection conditions: control
BMDC, SIINFEKL peptide-loaded control BMDC, and
SIINFEKL peptide-loaded PFC-labeled BMDC. Peptide
loading consisted of a 2-h incubation with SIINFEKL
(0.2 μg/ml). After loading, 2.5 × 106 BMDC injections
into both footpads for all three conditions were per-
formed into tumor-naïve mice (n = 5–7 mice per condi-
tion) or 3 × 106 BMDC footpad injections were
adoptively transferred into B16-F10 tumor-bearing mice
(n = 4–5 mice per condition).
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MRI of BMDC Migration

Where required, F-19 cellular MRI took place 48 h after
footpad injection. A 9.4-T Varian small animal MRI scanner
(Santa Clara, CA, USA) was used for tumor-naïve mouse
imaging and a 3-T clinical MRI scanner (General Electric,
ON, CA) was used for tumor-bearing mouse proton/F-19
imaging. A 3D-balanced steady state free precession
(bSSFP) sequence and removal of F-19 isoflurane signal
[12] was employed at both 9.4 and 3 T, with all parameters
described in detail in ESM.

Popliteal Lymph Node Histology

Mice that received CFSE+ or DsRed+ BMDC injections
were euthanized 48 h after adoptive cell transfer and
popliteal lymph nodes were removed. After cryopreservation
in sucrose, 16 μm cryosections were prepared and imaged
using an Olympus IX50 phase contrast inverted microscope
(Richmond Hill, CA) and Infinity3-3URF camera
(Lumenera, Ottawa, CA). Image Pro Plus 7.0 software
(Media Cybernetics, Rockville, MD, USA) was utilized for
morphometric analysis and represented as area of
fluorescence/area of lymph node.

Quantification of In Vivo SIINFEKL-Specific
Immune Response

Mice that received 2.5 × 106 control BMDC, SIINFEKL-
presenting control BMDC, and SIINFEKL-presenting
PFC-labeled BMDC were left for 7 days after injection,
at which time mice were euthanized, popliteal lymph
nodes removed, and a single cell suspension generated
for each individual mouse. Flow cytometry was
employed to identify CD3ε+CD8α+ (CD3+CD8+) T cells
and subsequent staining using a Class I iTAg MHC
tetramer, H-2Kb/PE SIINFEKL, identified SIINFEKL-
specific CD8+ T cells for each injection condition.

Statistical Analysis

All data was presented as the mean ± standard error of the
mean (SEM). A t test, one- and two-way ANOVA with
Tukey’s multiple comparison test, and Kaplan-Meier sur-
vival analysis (Graph Pad Prism, Version 7, La Jolla, USA)
were used. Significance was considered if p ≤ 0.05.

Results
CD11c+ BMDC Can Be Efficiently Labeled With
PFC Without Affecting Viability or Phenotype

Following 6 days in culture, 9 80 % of cells were mature
CD11c+CCR7+CD86+ BMDC (Fig. 1a–c). Subsequently,

BMDC were stained with Annexin V/7-AAD to deter-
mine viability (Fig. 1d) in the presence of increasing
concentrations of PFC, ranging from 2.5 to 7.5 mg/ml.
Compared to control unlabeled BMDC, PFC labeling did
not affect BMDC phenotype across the concentrations of
PFC tested (Fig. 1e). BMDC viability was unaffected by
PFC at concentrations of 2.5 mg/ml (89.43 ± 0.77 %) and
5.0 mg/ml (86.71 ± 1.71 %), yet significantly decreased
at 7.5 mg/ml of PFC (77.36 ± 5.17 %; Fig. 1f).
Increasing the PFC concentration from 2.5 to 5.0 mg/ml
resulted in a 1.7-fold increase in the amount of fluorine
incorporated per cell (1.783 ± 0.141 × 1012 F-19 spins/
cell) and was not significantly increased at 7.5 mg/ml
(Fig. 1g). Using a red fluorescent version of PFC
(5 mg/ml), 92.3 % of BMDC incorporated PFC label
compared to unlabeled BMDC (Fig. 1h). All subsequent
labeling experiments were conducted with 5 mg/ml of
PFC.

PFC Labeling of BMDC Does Not Impede In Vivo
Migration

A comparison of PFC-labeled BMDC and control BMDC
migration was determined. BMDC were first confirmed to
have the same phenotype as outlined in Fig. 1a–c and then,
prior to injection, labeled with CFSE. Compared to an
aliquot of BMDC removed before CFSE labeling (Fig. 2a/b,
gray histograms), 100 % of PFC-labeled BMDC (Fig. 2a),
and control, unlabeled BMDC (Fig. 2b) incorporated an
equivalent amount of CFSE based on mean fluorescence
intensity (MFI). Thus, CFSE fluorescence served as an
accurate readout to compare in vivo migration between these
two conditions.

In vivo migration to popliteal lymph nodes was assessed
following low (1 × 106) and high (2.5 × 106) dose PFC-
labeled BMDC hind footpad injection with equal numbers of
CFSE+ control BMDC administered in the contralateral
footpad (N = 2; first trial, n = 3 per condition; second trial,
n = 4 per condition). After 48 h, popliteal lymph nodes were
removed to quantify fluorescence by digital morphometry.
Representative images of CFSE+ PFC-labeled BMDC and
CFSE+ control BMDC for both low and high injection doses
appear in Fig. 2c/e and Fig. 2d/f, respectively. CFSE+

BMDC were detected in central paracortical T cell-rich
zones of the lymph node. As the digital morphometric data
from two experiments was not different, the data was
combined. Quantification of CFSE fluorescence demon-
strated that PFC does not appear to impede BMDC in vivo
migration compared to control BMDC migration for both
low (Fig. 2g, p = 0.65) and high (Fig. 2h, p = 0.08) injection
doses. To control for a potential interaction between CFSE
and PFC, the exact same experiment was conducted using
DsRed+ BMDC transgenic mice. No statistical difference in
in vivo migration of PFC-labeled and unlabeled DsRed+

BMDC was observed (Fig. 2i, p = 0.43).
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F-19 Cellular MRI Detection of PFC-Labeled
BMDC Migration to the Popliteal Lymph Node

We next investigated if F-19 cellular MRI was suitable to detect
increases in BMDC in vivo migration as a result of lymph node
pre-treatment with IL-1β (300 ng). Three hours after popliteal
lymph node IL-1β pre-treatment of four mice, 3 × 106 PFC-
labeled BMDCwere injected into both hind footpads. A separate
group of three mice received the same injections without IL-1β
pre-treatment. F-19 MRI was performed 2 days later and PFC-
labeled BMDC produced a quantifiable footpad and popliteal
lymph node F-19 signal (Fig. 3a). IL-1β pre-treated mice (mouse
1–4) had quantifiable migration in five of eight popliteal lymph
nodes (range 4000 ± 800 to 20,000 ± 3000 cells) while mice not
receiving IL-1β pre-treatment (mouse 5–7) had quantifiable
BMDC migration in four of six popliteal lymph nodes (range
4300 ± 600 to 17,000 ± 2000 cells, Fig. 3a, absence of

quantifiable signal denoted by [*]). PFC-labeled BMDC
quantification for both conditions revealed that IL-1β pre-
treatment only tended to increase in vivo migration (Fig. 3b).

Fig. 1. CD11c+ BMDC label with PFC without affecting viability and phenotype. a CD11c+ BMDC were phenotyped for b
CCR7 and c CD86 expression and then viability assessed using d Annexin V/7-AAD. e BMDC phenotype and f viability were
determined across PFC concentrations. PFC labeling of BMDC occurred in g dose-dependent manner, with h 9 90 % of
CD11c+ BMDC incorporating fluorescent PFC label. Data shown as mean ± SEM (two-way ANOVA, *p G 0.05).

Fig. 2. PFC does not impede BMDC in vivo migration. a
CFSE+ PFC-labeled BMDC and b CFSE+ control BMDC were
formulated into low (1 × 106) and high (2.5 × 106) hind footpad
injection doses (n = 7 per dose). Two days later, images of
popliteal lymph node cryosections revealed CFSE fluores-
cence for c low and e high PFC-labeled BMDC injection
doses and d low and f high control BMDC injection doses,
respectively. CFSE fluorescence quantification is summa-
rized for g low and h high injection conditions. i The same
experiment was conducted and quantified with 2 × 106

DsRed+ PFC-labeled or control BMDC injections (n = 4 mice).
The experimenter was blinded prior to image acquisition,
images were taken at ×100 magnification (scale bar =
300 μm) and data shown as mean ± SEM (t test, p 9 0.05).

b
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PFC Labeling Does Not Interfere with BMDC
Induction of an Antigen-Specific Immune Re-
sponse

The ability of PFC-labeled BMDC to present antigen and
initiate an antigen-specific immune response was compared
to unlabeled BMDC presenting the same antigen, while

antigen-unloaded unlabeled BMDC served as the negative
control. BMDC exhibited a mature phenotype as described
in Fig. 1 for all three conditions. Additional gating for
H-2Kb demonstrated that nearly all CD11c+CD86+CCR7+

BMDC were H-2Kb+. Surface presentation of SIINFEKL
(OVA257-264) in the context of H-2Kb was measured with an
antibody specifically recognizing H-2Kb:SIINFEKL

Fig. 3. F-19 MRI detection and quantification of BMDC migration to popliteal lymph nodes. PFC-labeled BMDC (3 × 106) hind
footpad injections were performed on mice that received left (L) and right (R) popliteal lymph node area IL-1β (300 ng) pre-
treatment 3 h earlier (mouse 1–4), while mouse 5–7 did not receive pre-treatment. a A representative 9.4 T proton/F-19 MRI
composite identified F-19 signal (“hot-iron” pseudocolored) at the injection site (red arrow), popliteal lymph node (white arrow),
and reference tube (red circle) 2 days later. Popliteal lymph node composites for each mouse are shown with quantifiable signal
in white text and lack of quantifiable signal denoted by asterisk (*). b The average number of MRI-detectable BMDC that
migrate to a target lymph node is displayed for both injection conditions (means ± SEM). Data is representative of N = 2
independent experiments, with n = 3–4 mice per condition (t test, p 9 0.05).
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complex [21] with non-specific background levels detected
(G 2 %) for the negative control formulation (Fig. 4a). This
was in stark contrast to 9 98 % of BMDC positive for
SIINFEKL:H-2Kb complex after a 2-h incubation with
SIINFEKL peptide for control unlabeled (Fig. 4b) and

PFC-labeled (Fig. 4c) BMDC. Hence, PFC did not interfere
with MHC Class I expression nor loading of SIINFEKL
onto surface-expressed H-2Kb molecules.

Unlabeled control BMDC and PFC-labeled BMDC (both
presenting SIINFEKL peptide) were injected into both hind

Fig. 4. BMDC-induced antigen-specific immune response is unaffected by PFC labeling. a BMDC not incubated with
SIINFEKL peptide have low non-specific H-2Kb:SIINFEKL complex staining compared to 9 98 % staining observed for b control
and c PFC-labeled BMDC incubated with SIINFEKL peptide. d–f One week after 3 × 106 BMDC hind footpad injections were
performed for each injection condition, single cell suspension from excised popliteal lymph nodes were analyzed to identify
CD3+CD8+ T cells that express a TCR that specifically binds H-2Kb:SIINFEKL. SIINFEKL-specific CD8+ T cell immune
responses are summarized for g all three injection conditions described in (a–c). Data is representative of N = 4 independent
experiments (n = 5–7 mice in each group) and is shown as mean ± SEM (one-way ANOVA, *p G 0.05).
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footpads of seven mice per condition (2.5 × 106). Five
negative control mice received unlabeled BMDC not
presenting peptide. SIINFEKL-specific CD8+ T cell immune
responses developed in the draining popliteal lymph nodes
for 1 week. Subsequently, both popliteal lymph nodes were
removed and processed for each mouse to identify
CD3+CD8+ T cells whose T cell receptor (TCR) specifically
recognizes the SIINFEKL peptide:H-2Kb complex via
tetramer staining (Fig. 4d–f). Similar percentages of tetra-
mer+ CD3+CD8+ T cells were measured for PFC-labeled and
control BMDC conditions, indicating that PFC does not
interfere with BMDC induction of antigen-specific immune
responses in vivo. Both were significantly higher than the
background immune response observed in the negative
control condition (Fig. 4g).

F-19 Cellular MRI Detection of PFC-Labeled
BMDC in Tumor-Bearing C57BL/6 Mice

We engineered a B16-F10 melanoma cell line to express
ovalbumin (OVA), green fluorescent protein (GFP), and
luciferase (luc). This luc+GFP+OVA+ cell line (B16-
F10+++, Online Resource 1) was used in a tumor-bearing
mouse challenge experiment (Fig. 5a) to address whether
PFC labeling affected BMDC migration and tumor therapy
outcome. BMDC were confirmed mature and SIINFEKL
peptide-presenting as described in Figs. 1 and 4, respec-
tively, prior to immunization and did not differ between
injection conditions (Fig. 5b). Greater than 90 % of cells
surface express SIINFEKL:H-2Kb for both for control
BMDC (91.0 ± 2.02 %) and PFC-labeled BMDC (93.6 ±
0.38 %) incubated with SIINFEKL (Fig. 5b). Negative
control BMDC revealed only background non-specific
SIINFEKL:H-2Kb staining (Fig. 5b). Moreover, the inten-
sity of SIINFEKL peptide surface presentation (determined
by MFI) did not significantly differ between SIINFEKL-
presenting control, unlabeled BMDC (MFI = 3103 ± 508),
and PFC-labeled BMDC (MFI = 2195 ± 314) preparations
(Fig. 5c, p = 0.23) and was above the threshold required for
inducing a SIINFEKL-specific immune response.

All C57BL/6 mice were inoculated with 7 × 104 B16-
F10+++ cells (day minus 2 (day − 2)) and then immunized
in both hind footpads with 3 × 106 BMDC (designated day
0) from one of the three aforementioned injection condi-
tions (n = 4–5 mice per condition). PFC-labeled BMDC-
injected tumor-bearing mice underwent proton/F-19 MRI
at 3 T on day 2 after immunization. A representative
overlay of an anatomical MRI with pseudocolored F-19
MRI demonstrated that PFC-labeled BMDC produced
quantifiable F-19 signal in the left and right popliteal
lymph nodes (Fig. 5d). A F-19 signal was also detected in
both hind footpad injection sites (range 1.24–1.60 × 106

cells, Fig. 5d). Left and right popliteal lymph node area
insets for all mice that received PFC-labeled BMDC
vaccinations are shown (Fig. 5d) and color-matched with

the popliteal lymph node quantification (Fig. 5e). PFC-
labeled cells were detected in all but one popliteal lymph
node and ranged from 3.63 × 103 to 1.91 × 104 cells.

B16-F10+++ tumor-bearing mice were longitudinally
analyzed via bioluminescence imaging (BLI) and a Vernier
caliper to monitor tumor growth (Fig. 6a). The fold change
in BLI signal from day 0 (Fig. 5a) was graphed for each
immunization condition until experimental endpoint, with
larger tumors associated with negative control immuniza-
tions compared to SIINFEKL-presenting control BMDC and
SIINFEKL-presenting PFC-labeled BMDC immunizations
(Fig. 6b). A survival analysis, represented using the same
color scheme in Fig. 6a/b, suggests extended and equivalent
survival (~ 6 days) for both SIINFEKL-presenting BMDC
immunizations in 30 % of the mice (Fig. 6c). PFC labeling
of SIINFEKL-presenting BMDC permits detection and
quantification of in vivo migration to popliteal lymph nodes
using F-19 cellular MRI without affecting the ensuing
SIINFEKL-specific anti-tumor response occurring in
tumor-bearing mice compared to SIINFEKL-presenting
control BMDC immunizations.

Discussion
When compared to more widely used iron oxide-based MRI,
F-19 is much less sensitive; however, it is becoming
increasingly popular due to the important advantages it has
over conventional cellular MRI employing contrast agents.
F-19 MRI sensitivity is dependent on intracellular F-19
concentration, MR properties of the F-19 label, and MRI
system hardware and acquisition parameters [22, 23], all of
which contribute to potential low signal-to-noise ratio
(SNR). To compensate, F-19 signal is strengthened by
imaging at magnetic field strengths well above 3 T [24,
25]. With clinical translation in mind, our group used a
surface coil and SNR-efficient bSSFP pulse sequence to
detect and quantify tumor-associated macrophages [26] and
migrated BMDC presented here in mice at 3 T, the
maximum field strength for most human MRI systems. By
translating F-19 MRI into the clinical realm, PFC-labeled
therapeutic cells can be unambiguously detected and
quantified in vivo due to the lack of endogenous F-19. This
is in stark contrast to iron oxide-based MRI, which produces
a negative contrast signal void or blooming artifact indistin-
guishable from chemical shift artifacts originating from
anatomical structures like high fat-tissue interfaces, air-
filled lungs, and iron-rich blood vessels and spleen [15, 27].

PFC Labeling Does Not Alter BMDC Viability,
Phenotype, and In Vivo Migration

To combat low sensitivity of F-19 detection, preliminary
studies centered around culture conditions that produced
maximal PFC uptake. Culturing highly endocytic, immature
BMDC with 5.0 mg/ml PFC resulted in efficient PFC
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Fig. 5. F-19 MRI detection of BMDC migration to the popliteal lymph node in B16-F10+++ tumor-bearing mice. a C57BL/6
mice received BMDC immunizations (described in Fig. 4) 2 days after B16-F10+++ inoculation. b BMDC phenotype and c MFI
did not differ between injection conditions except for H-2Kb:SIINFEKL complex, in which control and PFC-labeled BMDC
incubated with SIINFEKL had significantly increased percentage positive and elevated MFI of H-2Kb:SIINFEKL BMDC
compared to BMDC not incubated with SIINFEKL (gray, black compared to white bars/symbols). d Proton/F-19 MRI (3 T)
overlay reveals injection site (red text) and popliteal lymph node (red boxes) F-19 detection 2 days after injection as well as
popliteal lymph node composites for each mouse. e Lymph node-migrated BMDC were quantified (triangles = left lymph
nodes, circles = right lymph nodes) for all nodes but one (denoted by asterisk (*), d). Data shown as mean ± SEM (two-way
ANOVA, *p G 0.05, one-way ANOVA, **p G 0.05).
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Fig. 6. Anti-tumor immune response induced by BMDC immunization is unaffected by PFC labeling in tumor-bearing mice.
Tumor growth was monitored with a BLI (radiance (p/s/cm2/sr ×107) scale on right) and b measured longitudinally (fold change
from day 0 BLI measurement). c A Kaplan-Meier survival analysis is displayed for mice that received BMDC not presenting
SIINFEKL (black), control BMDC presenting SIINFEKL (red), and PFC-labeled BMDC presenting SIINFEKL (blue). Data shown
as mean ± SEM.
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loading (1.783 × 1012 F-19 spins/cell) while BMDC pheno-
type or viability remained unchanged. Any further increases
in PFC concentration were associated with modest improve-
ments to PFC uptake at the detriment of significant
decreases in viability. Both PFC loading and decreased
viability with increasing PFC concentration are consistent
with previous reports [16, 28, 29]. A red fluorescent version
of PFC was employed to qualitatively assess label uptake via
flow cytometric analysis. Greater than 93 % of CD11c+

BMDC incorporated PFC, which is far superior than BMDC
labeling efficiencies (43.9 ± 17.4 %) reported with the
positron emission tomography (PET) agent, [89Zr]Oxine
[30], for example.

For DC to function as adjuvants in cell-based cancer
immunotherapies, they must be in vivo migration-competent
and possess a mature and activated phenotype. Without such
attributes, tumor-induced immunosuppression is not over-
come and the potential for induction of a tolerogenic rather
than effective TAA-specific immune response exists [31,
32]. We do not consider this to be an issue in our model due
to equivalent and high surface expression of CD86 and
CCR7 measured for both BMDC conditions. In demonstrat-
ing that PFC-labeled and unlabeled BMDC migration to a
draining lymph node does not significantly differ, we are the
first to report on the comparison of PFC-labeled and
unlabeled therapeutic cell migration, rather than simply
reporting therapeutic cells are migration-competent after
PFC labeling [11]. Additionally, unlike SPIO-labeled
BMDC that are susceptible to varying degrees of impaired
migration based on SPIO size [14, 33], PFC-labeled BMDC
do not exhibit such an impairment. Within secondary
lymphoid paracortical regions, BMDC present TAA in
association with appropriate co-stimulatory and cytokine
signaling that leads to de novo activation and proliferation of
TAA-specific CTL, which is absolutely required for DC-
based immunotherapeutic benefit.

Detection and Quantification of PFC-Labeled
BMDC In Vivo Migration Using F-19 MRI

For F-19 cellular MRI to serve as a surrogate non-invasive
marker of DC-based immunotherapeutic effectiveness, quan-
tifiable F-19 signal in the lymph node from PFC-labeled
BMDC must be possible [34]. We used an established
method to increase BMDC migration [5, 35] by treating the
draining popliteal lymph node area with IL-1β prior to
BMDC adoptive transfer as a main contributor to suboptimal
immunotherapeutic success is the low percentage of DC that
reach the lymph node post injection [10]. With our 9.4 T
small animal MR scanner system, quantifiable PFC-labeled
BMDC signal was measured, but an IL-1β-induced en-
hanced migration was not observed. Due to the low
sensitivity of F-19 MRI, 3 × 106 PFC-labeled BMDC were
adoptively transferred to ensure quantifiable in vivo F-19
signal detection. Tissue pre-conditioning functions best at

low injection doses [36] and thus, we believe that this
injection dose was too high to detect measurable increases in
migration due to tissue pre-conditioning. Even so, demon-
strating consistent detection of lymph node-migrated PFC-
labeled BMDC using F-19 MRI in combination with
fluorescence microscopy detection of CFSE+ and DsRed+

BMDC in the lymph node permits our group to conclude
that in vivo F-19 signal is primarily due to originally injected
migration-competent PFC-labeled BMDC. This is further
strengthened by previous xenogeneic work from our
laboratory in which murine lymph nodes with detectable F-
19 MRI signal were digested and counterstained with human
CD45 to select for CFSE+ CD45+ originally injected human
PBMC [18]. The identification of human CD45+ cells in
lymph nodes eliminates the notion of false positive signal
caused by resident murine macrophages engulfing apoptotic
PFC-labeled cells [37]. Lastly, migration to alternative
in vivo locations (liver, spleen, and lungs) most likely
occurred, albeit it at a level below the detection threshold.
PFC is stably retained within live cells but is rapidly cleared
via the reticuloendothelial system [38] and eventually by the
lungs following cell apoptosis.

Labeling BMDC with PFC Does Not Hinder
In Vivo Antigen-Specific Immune Response

Although DC TAA presentation in secondary lymphoid
organs initiates a cascade of events resulting in broad innate
and adaptive immune cell activation [2, 3], quantification of
TAA-specific CD8+ T cell activation is widely used to
assess anti-tumor immune responses [39]. Therefore, a
H-2Kb-restricted immunogenic epitope, derived from
chicken ovalbumin, SIINFEKL (OVA257-264), served as a
model pseudo-TAA presented in the context of H-2Kb on
nearly 100 % of PFC-labeled and unlabeled BMDC. Seven
days after immunization when T cell-mediated responses are
highest [40], SIINFEKL-specific CD8+ T cell responses
were measured in popliteal lymph nodes. The magnitude of
TAA-specific response was unchanged by PFC labeling of
therapeutic BMDC and was significantly higher than
background levels measured in the negative control condi-
tion, indicating that a productive SIINFEKL-specific im-
mune response was launched. This provides further
validation that lymph node-migrated BMDC are viable and
capable of initiating an immune response, and that with our
current setup, PFC-labeled BMDC in vivo migration can be
quantified with F-19 MRI without affecting viability,
phenotype, and function.

Monitoring PFC-Labeled BMDC Migration in a
Tumor-Bearing Mouse Model

The highly immunosuppressive and metastatic cell line,
B16-F10 [41], was chosen for our C57BL/6 tumor-bearing
mouse model as prior murine studies have noted both cell-
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and humoral-mediated anti-tumor immune responses [42,
43]. Following subcutaneous B16-F10 inoculation, mice
were immunized with SIINFEKL-presenting PFC-labeled
BMDC that were migration-competent as detected and
quantified with F-19 MRI. With continuous monitoring of
tumor growth by BLI and caliper measurement alongside
survival analysis, slower tumor growth and thus, prolonged
survival, was observed in 20–40 % of tumor-bearing mice
that received SIINFEKL-presenting PFC-labeled or unla-
beled BMDC immunizations compared to control mice (day
24 versus day 18, respectively). We acknowledge that the
modest immunotherapeutic effect is based on a small
number of animals and not really an indication of efficacy;
however, our current tumor-bearing mouse model is condu-
cive to characterizing PFC-labeled BMDC migration and
serving as a non-invasive image modality to assess immu-
notherapeutic effectiveness.

The suboptimal immunotherapeutic efficacy described above
has several possible explanations. The maturation cocktail used to
mature BMDC ex vivo contains prostaglandin E2 (PGE2) in order
to activate CCR7 and render BMDC in vivomigration-competent
[44]. PGE2 has also been shown to limit BMDC-derived IL-12
secretion. Together with IFN-γ, IL-12 promotes TH1-mediated
CD4+ T helper (TH) cell immune responses that are required for
long-term CTL responses to persist [3, 44]. Caution with drawing
conclusions regarding PGE2 inclusion in BMDC generation
should be exercised as PFC-labeled and unlabeled BMDC both
up-regulated CD40 uponmaturation cocktail stimulation (data not
shown). This is consistent with previous reports from our group
and leads to enhanced and prolonged IL-12 secretion upon
ligation with CD154 [3, 20, 33] present on CD4+ TH cells.

By demonstrating a strong induction of SIINFEKL-
specific CD8+ T cell responses in tumor-naïve mice yet
marginal immunotherapeutic benefit for the same immuni-
zation in tumor-bearing mice, it is likely that B16-F10+++

tumor-induced immunosuppression and rapid growth con-
tributed to this disparity. An immunosuppressive tumor
microenvironment is established by but not limited to
secretion of transforming growth factor-β, vascular endothe-
lial growth factor, and IL-10 that, in turn, recruit and retain
myeloid-derived suppressor cells and regulatory CD4+ T
cells [45, 46]. In combination with H-2Kb down-regulation,
overcoming tumor-induced immunosuppression is challeng-
ing and tumor-penetrating immune cells develop an exhaus-
tion rather than effector phenotype [45]. In our model, we do
not believe H-2Kb down-regulation to be the primary culprit
as nearly all tumor cells surface-expressed H-2Kb prior to
inoculation. Moreover, immune responses directed at TAA,
such as human tyrosinase-related protein-2, have been
launched in the presence of tumor-induced H-2Kb down-
regulation [47]. A more robust phenotypic comparison of
markers of activation (CD44, CD69, CD137), degranulation
(LAMP-1), and exhaustion (PD-1) [46, 48] of TAA-specific
CTL between tumor-naïve and tumor-bearing mice would
provide useful mechanistic information pertaining to the lack
of greater anti-tumor efficacy.

Conclusions
This is the first report demonstrating that PFC does not
significantly impede in vivo BMDC migration or interfere
with BMDC functionality in the context of cell-based
immunotherapies. F-19 cellular MRI is a useful and non-
invasive imaging modality to compare in vivo migration and
thus, immunotherapeutic potency, between differing BMDC
generation protocols, such as inclusion of poly(I:C), a toll-
like receptor (TLR)3 ligand, within the maturation cocktail
[42]. F-19 MRI is also broadly amenable as a surrogate
marker to compare immunotherapeutic efficacies of combi-
nation therapies, an example being DC-based immunother-
apies and checkpoint inhibitors that have proven effective in
combating melanoma [49]. Finally, F-19 MRI can be
exploited to gain knowledge regarding in vivo migration of
therapeutic cells in emerging small animal models, like the
tamoxifen-induced mouse model of human melanoma [50],
as well as in different immunogenic tumors and disease
states.
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